
ROOT VECTORS FOR GEOMETRICALLY SIMPLE TWO-PARAMETER
EIGENVALUES

Paul Binding∗

Department of Mathematics
and Statistics

University of Calgary
Calgary, Alberta
Canada T2N 1N4.

e-mail: binding@ucalgary.ca
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Abstract. A class of two-parameter eigenvalue problems involving generally
non self-adjoint and unbounded operators is studied. A basis for the root subspace at a
geometrically simple eigenvalue of Fredholm type is computed in terms of the underlying
two-parameter system. Comparison with Faierman’s work on two-parameter boundary
value problems of Sturm-Liouville type is given as an application.

1. Introduction

We consider a pair of two-parameter equations of the form

Wi(λλλ)xi = 0 6= xi, (1.1)

where
Wi (λλλ) = Ai0λ0 + Ai1λ1 + Ai2, (1.2)

Aij (j = 1, 2) are bounded linear operators acting on Hilbert spaces Hi (i = 1, 2) over the
complex numbers, Ai0 are closed densely defined with domain D (Ai0) ⊆ Hi, and λλλ =
(λ0, λ1) ∈ C2. Evidently Wi(λλλ) is a linear operator with domain D (Ai0) for all such
parameters λλλ.

The spectral theory of such systems has been developed from various viewpoints – see
[1, 8, 22, 24, 26] for books on the subject. In most of the literature, the Aij are self-adjoint
and satisfy definiteness conditions guaranteeing that the eigenvalues are simple in certain
senses. A standard self-adjoint example is when (1.1) are Sturm-Liouville equations. One
application of these ideas is to completeness and expansion theory of elliptic boundary
value problems via separation of variables. For work on non self-adjoint problems we refer
to [5, 9, 11, 14, 15].
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2000 Math. Subj. Class. Primary 35P10, 47A13. Secondary 35J55.

1



To introduce our analysis, we make the following constructions. The operators Aij ,
j = 1, 2, induce operators A†ij on the Hilbert space tensor product H = H1 ⊗H2 by means
of

A†1j (x1 ⊗ x2) = A1jx1 ⊗ x2 and A†2j (x1 ⊗ x2) = x1 ⊗A2jx2

on decomposable tensors, extended by linearity and continuity to the whole of H. Similarly
Ai0 induces an operator A†i0 with domain D

(
A†i0

)
⊂ H (see [24, §2.3]). We denote by D the

intersection D
(
A†10

)
∩ D

(
A†20

)
, which is a dense subspace of H. We define the operator

∆0 =

∣∣∣∣∣
A†11 A†12

A†21 A†22

∣∣∣∣∣ = A11 ⊗A22 −A12 ⊗A21 (1.3)

on H and operators

∆1 = −A†22A
†
10 + A†12A

†
20 and ∆2 = −A†11A

†
20 + A†21A

†
10 (1.4)

on D. In §2 we shall make assumptions guaranteeing the existence and commutativity of
the operators Γj = ∆−1

2 ∆j , j = 0, 1, on D.
The nullspace of an operator A is denoted by N (A). A pair λλλ = (λ0, λ1) ∈ C2 is called

an eigenvalue of the pair of commuting linear transformations {Γ0, Γ1} if

R1 = R1(λλλ) = N (Γ0 − λ0I) ∩N (Γ1 − λ1I) 6= {0} . (1.5)

The subspace R1 is called the geometric eigenspace corresponding to λλλ. The set of all
the eigenvalues is called the point spectrum of {Γ0, Γ1}. We say that λλλ is a geometrically
simple eigenvalue of {Γ0, Γ1} if dimR1 = 1. Under assumptions to be specified in §2, the
eigenvalues λλλ of (1.2) and that of its associated linear transformations Γ0, Γ1 coincide and
we have

R1(λλλ) = N (W1 (λλλ))⊗N (W2 (λλλ)) . (1.6)

(See [5, §4].) We shall simply refer to such λλλ as eigenvalues from now on.
We define the m-th root subspace

Rm = Rm(λλλ) =
m⋂

k=0

N
[
(Γ0 − λ0I)k (Γ1 − λ1I)m−k

]
, (1.7)

for m ≥ 2. The least integer M , if it exists, such that RM = RM+1 is called the ascent of
λλλ. We call the subspace

R = R(λλλ) = ∪∞m=1Rm

the root subspace of W = (W1,W2) at λλλ. Note that each subspace Rm is an invariant
subpace for both Γ0 and Γ1. If the ascent of λλλ is equal to 1 then λλλ is called semisimple.
If λλλ is a geometrically simple eigenvalue and its ascent is equal to 1 then R = R1 is
one-dimensional and λλλ is called algebraically simple.
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The elements of R are called root vectors and it is our purpose to describe bases of
root vectors for R in terms of the Aij . This problem was raised by Atkinson [1] and has
been studied in certain definite selfadjoint cases by many authors. See [26] for a review of
eigenvector completeness under various conditions including positive definiteness of ∆2. In
these cases the eigenvalues are real (i.e. λλλ ∈ IR2) and always dimR = dimR1. Thus if
an eigenvalue is geometrically simple then it is also algebraically simple. Moreover, (1.6)
shows that a basis for R = R1 can be constructed from the eigenvectors x1⊗ x2 for the Γj ,
xi as in (1.1).

Without definiteness, however, this may fail and various authors have tackled Atkin-
son’s question. We cite [3] on real eigenvalues for selfadjoint problems and [8] on general
eigenvalues for Sturm-Liouville (and therefore geometrically simple) problems. Faierman
gives bases of Rl for l = 2 and 3 and gives a conjecture for general l. In an earlier paper
[5] we gave a basis for R2 for general nonselfadjoint (including geometrically nonsimple)
problems. A coalgebraic approach to this problem in [11] describes root subspaces Rl for
all l in terms of Aij , but it is difficult to use it to construct bases explicitly. Here we shall
give a general construction for a basis of R for geometrically simple eigenvalues of problems
that are not necessarily selfadjoint. We shall relate our construction in the Sturm-Liouville
case to Faierman’s work in §5.

Our plan is as follows. Our main assumptions are discussed in §2, followed by the
construction of a basis for the root subspace in the so-called nonderogatory case. In §3,
we lay foundations for the more difficult derogatory case. The main result (Theorem 4.1)
is proved by induction on m – see (1.7) – in §4. §5 contains the specialization to the
Sturm-Liouville case.

2. Preliminaries

We begin with our assumptions on the Aij . We make two regularity assumptions and a
solvability assumption.
Assumption I There exists α ∈ C such that the operator ∆′

2 = ∆2 + α∆0 : D → H has
a bounded inverse.

This assumption holds in many interesting cases. We refer to [5, p. 231] for a discussion.
To simplify the notation we assume, unless stated otherwise, that the operator ∆2 has

a bounded inverse. This form of Assumption I can be obtained by a shift in parameters.
Let A†ij denote the restriction of A†ij to D. The array

A =

[
A†10 A†11 A†12

A†20 A†21 A†22

]

then defines a linear map A : D3 −→ H2. Here Hk is the direct sum of k copies of H.
Omitting the j-th column we get a transformation Aj acting on the (algebraic) direct sum
D2 for j = 0, 1, 2. Note that ∆j = (−1)j detAj . We denote by Cj the j-th column of A.
Now we state the solvability assumption.
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Assumption II The equation A2y = C2x has a solution y ∈ D2 for all x ∈ D.

Again see [5, p. 236] for a discussion of this assumption.
The linear transformations Γj = ∆−1

2 ∆j , (j = 0, 1) act on D. These are called the
associated linear transformations of the two-parameter system (1.2). Under Assumption II
it follows from [5, Thm. 3.2] that the linear transformations Γ0 and Γ1 commute on D, i.e.,
Γ0Γ1x = Γ1Γ0x for all x ∈ D, and that

A†i0Γ0x + A†i1Γ1x + A†i2x = 0 (2.1)

for i = 1, 2 and all x ∈ D. Relation (2.1) is a consequence of Assumption II that will be
often used in the proofs.

Next we define the notions of eigenvalues and point spectra for a two-parameter system.
A point λλλ ∈ C2 is called an eigenvalue of the two-parameter system (1.2) if both nullspaces
N (Wi (λλλ)) , i = 1, 2, are nontrivial. The set of all eigenvalues is called the point spectrum
of (1.2), and it is denoted by σ (W). An eigenvalue λλλ ∈ σ(W) is called geometrically simple
if dimN (Wi (λλλ)) = 1 for both i. Thus λλλ is a geometrically simple eigenvalue of (1.2) if and
only if it a geometrically simple eigenvalue for the pair of associated linear transformations
(Γ0, Γ1) although perhaps not for either of Γj separately.
Assumption III λλλ = (λ0, λ1) is a geometrically simple eigenvalue of finite ascent M and
Wi(λλλ), i = 1, 2, are Fredholm of index 0 [25].

This assumption is satisfied, for example, in several cases arising from boundary value
problems, e.g., of Sturm-Liouville type (see §5). Assumption III is in terms of the maps Aij

except for the assumption of finite ascent. This is defined in terms of the associated linear
transformations. It follows from our results in §4 that an equivalent definition of the ascent
is possible in terms of the Aij – it is the least m such that N (Sm) = 0.

In view of Assumption III we have dimN (Wi (λλλ)) = dimN (Wi (λλλ)∗) = 1 for both i,
R1 ⊂6= R2 ⊂6= · · · ⊂

6=
RM and RM+k = RM for all k ≥ 1.

Finally we remark that Assumptions I-III of our present setup are stronger than As-
sumptions I-III of [5] or [21] in the case n = 2. Assumption I here and in [5, 21] is the same.
Here and in [21] we use the same solvability assumption while in [5] a weaker solvability
assumption is used. In [21] it is assumed further that λλλ is geometrically simple. In both
[5, 21] it is assumed that the Wi(λλλ) are Fredholm operators not necessarily of index 0. The
assumption of Fredholm index 0 here is made simply for ease of notation.

Next we state two-parameter versions of some results of [5, 18, 19, 20] on root subspaces
at geometrically simple eigenvalues of commuting linear maps and of multiparameter sys-
tems. These versions are used in what follows.

We write
Dm = dimRm and dm = Dm −Dm−1

for m ≥ 1. Here D0 = 0.

Lemma 2.1. If λλλ is a geometrically simple eigenvalue then for each m ≥ 2 the subspace
Rm is finite-dimensional.
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Proof. The argument is similar to the one used in the proof of [5, Lemma 5.2]. It is by
induction on m. Assume m ≥ 2. The subspace Rm is invariant for both Γj − λjI, j = 0, 1.
The range R ((Γj − λjI) |Rm) is contained in Rm−1 and thus is finite-dimensional because
of the inductive assumption. Each kernel N ((Γj − λjI) |Rm) has finite codimension in
Rm, i.e., the orthogonal complement Qj of N ((Γj − λjI) |Rm) in Rm is finite-dimensional.
Hence the linear span Q of the Qj , j = 0, 1, is finite dimensional. Then Rm = Rm−1 +Q
also has finite dimension. 2

Since λλλ is geometrically simple (1.6) implies that d1 = 1. The restricted maps of Γ0 and
Γ1 to Rm commute, and so it follows that di ≤ i for all i ≥ 1. Suppose that

xi1 ∈ N (Wi (λλλ)) , i = 1, 2 (2.2)

are nonzero vectors. Then the vector

z1 = x11 ⊗ x21 (2.3)

spans R1. Further, we choose nonzero vectors yi1 ∈ N (Wi (λλλ)∗) (i = 1, 2) and we write

S2 =

[
〈A10x11, y11〉 〈A11x11, y11〉
〈A20x21, y21〉 〈A21x21, y21〉

]
. (2.4)

Here we use 〈x, y〉 to denote the scalar product of vectors x, y. It is clear from the context
which Hilbert space Hi or H is meant. Now [5, Cor. 6.4] states that d2 = dimN (S2). If
d2 ≤ 1 then we call λλλ nonderogatory. Otherwise, d2 = 2, and we call λλλ derogatory. Bases
for the root subspaces Rm corresponding to a nonderogatory eigenvalue of an n-parameter
system (for n ≥ 2) are constructed in [19] in the finite-dimensional setup. For completeness
we will give an infinite-dimensional two-parameter version of the main result of [19] (see
Theorem 2.2 below).

For c = [c1, c2]
T ∈ C2 and i = 1, 2, we write

Ui(c) = Ai0c1 + Ai1c2.

If M = 1 then z1 spans RM . Assume from now on that M ≥ 2. The following is a
two-parameter analogue of the main result of [19]. It gives a basis for the root subspace at
a nonderogatory eigenvalue.

Theorem 2.2. Suppose that λλλ ∈ C2 is a nonderogatory eigenvalue for a two-parameter
system (1.2) and suppose that 2 ≤ m ≤ M . Then there exist c2, c3, . . . , cm ∈ C2, c2 6= 0,
and xi2, xi3, . . . , xim ∈ D (Ai0), i = 1, 2, such that

k−1∑

j=1

Ui (ck+1−j) xij + Wi (λλλ) xik = 0 for k = 2, 3, . . . , m, i = 1, 2. (2.5)

5



Moreover, for k = 1, 2, . . . , m, the vectors

zk =
k∑

j=1

x1j ⊗ x2,k+1−j , (2.6)

are such that

(Γi−1 − λi−1I) zk =
k−1∑

j=1

ck+1−j,izj , i = 1, 2, (2.7)

where ck =
[

ck1 ck2

]T
, and {z1, z2, . . . , zm} is a basis for the m-th root subspace Rm.

Proof. The theorem is proved by induction on m. For each m we choose a vector zm ∈
Rm\Rm−1 and use Assumptions II and III to prove the existence of vectors xij ∈ D (Ai0)
such that (2.6) and (2.7) hold. Here the arguments follow closely those in the proof of [5,
Thm. 6.2]. For the converse, (2.7) follows from (2.5) and (2.6) by a direct calculation (see
[19, Lemma 13]). 2

3. Derogatory Eigenvalues

We assume now that λλλ is a geometrically simple eigenvalue which is derogatory, i.e., S2 = 0
or equivalently d2 = 2. First we recall some results on the structure of nilpotent commuta-
tive matrices with one-dimensional joint kernel and d2 = 2 (see [18, 20]).

3.1. Structure of Nilpotent Commutative matrices. We denote by R = RM the
root subspace corresponding to λλλ and we write N = dimR. The restricted linear maps
Ci = (Γi − λiI) |R, i = 0, 1, are commuting and nilpotent. There exists a basis

B = {z1, z21, z22, z31, . . . , z3d3 , . . . , zM1, zM2, . . . , zMdM
} (3.1)

for R such that for m = 1, 2, . . . , M, the set

Bm = {z1, z21, z22, z31, . . . , z3d3 , . . . , zm1, zm2, . . . , zmdm}
is a basis for Rm. We call such a basis B a filtered basis (for R). In a filtered basis the
matrices for C = {C0, C1} are simultaneously reduced to a special upper-triangular form
and we view them as a cubic array of dimensions N ×N × 2

C =




0 C12 C13 · · · C1,M

0 0 C23 · · · C2,M

...
...

. . . . . .
...

0 0 0 · · · CM−1,M

0 0 0 · · · 0




, (3.2)

where

Ckm =




ckm
11 ckm

12 · · · ckm
1,dm

ckm
21 ckm

22 · · · ckm
2,dm

...
...

...
ckm

dk,1 ckm
dk,2 · · · ckm

dk,dm



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is a cubic array of dimensions dk × dm × 2 and ckm
gf =

[
ckm
1gf ckm

2gf

]T ∈ C2. The column
cross-sections

Ckm
f = [ ckm

1f ckm
2f · · · ckm

dk,f ] , f = 1, 2, . . . , dm. (3.3)

of Ckm are 2× dk matrices. The constants ckm
igf are determined by the relations

Ci−1zmf =
m−1∑

k=1

dk∑

g=1

ckm
igfzkg, i = 1, 2,

where we write z11 = z1. (For further details see [18, 20].)

For m ≥ 4 we denote by Φm the set of multi-indices


(l1, l2, l3) ; lj ≥ 2,

3∑

j=1

lj ≤ m + 2



 ,

and for l = (l1, l2, l3) ∈ Φm we denote by χl the set of multiindices
{
(h1, h2, h3); 1 ≤ hj ≤ dlj for j = 1, 2, 3

}
.

We call a matrix C symmetric if C = CT .
For use in our proofs we state a version of some of results of [18, 20] for pairs of com-

mutative matrices. Since c12
11 and c12

12 are linearly independent we can choose a basis for R2

such that Ci−1z2j = δijz1, where δij is the Kronecker symbol. By adding appropriate linear
combinations of z21 and z22 to other vectors zmf , m ≥ 3, we find a basis B such that the
following result holds :

Theorem 3.1. There exists a filtered basis B for R and associated with it a set of sym-
metric matrices

Cm
f =

[
Cklm

f

]m−1

k,l=2
, m = 3, 4, . . . , M, f = 1, 2, . . . , dm, (3.4)

where Cklm
f =

[
cklm
ghf

]dk dl

g=1, h=1
are dk × dl matrices, such that for the corresponding commu-

tative array (3.2) we have :

(a) C12
1 =

[
1 0

]T
, C12

2 =
[

0 1
]T

and C1m
f =

[
0 0

]T
for m = 3, 4 . . . , M and

f = 1, 2, . . . , dm,

(b) C2km
f = Ckm

f are the column cross-sections (3.3),

(c) for m = 3, 4, . . . , M matrices C2,m−1,m
f , f = 1, 2, . . . , dm are linearly independent,

(d) Cklm
f = 0 if k + l > m + 1,
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(e) for m = 4, 5, . . . , M and f = 1, 2, . . . , dm the relations

m−l3+1∑

k=l1+l2−1

dk∑

g=1

cl1l2k
h1h2g cl3km

h3gf =
m−l1+1∑

k=l2+l3−1

dk∑

g=1

cl1l3k
h1h3g cl2km

h2gf (3.5)

hold for all l = (l1, l2, l3) ∈ Φm and (h1, h2, h3) ∈ χl.

We remark that property (e) in the above theorems together with the symmetry of
matrices Cm

f is equivalent to the commutativity of the matrices C0 and C1 and that cklm
ghf

are the structure constants for multiplication in the commutative algebra generated by
C0, C1 and the identity matrix (see [20]).

In the rest of the section we consider, unless stated otherwise, only filtered bases B such
that the associated matrices Cf

m satisfy the properties (a)–(e) of Theorem 3.1.

3.2. Bases for Rm for m = 2, 3. We denote by D′i the (vector space) intersection
D (Ai0) ∩ (N (Wi(λλλ)))⊥, where (N (Wi(λλλ)))⊥ is the orthogonal complement of N (Wi (λλλ))
in Hi.

Lemma 3.2. For i = 1, 2, the subspace D′i is an infinite-dimensional vector subspace of
Di = Di(Ai0).

Proof. Since the lattice of vector subspaces is modular [7, p. 13] and since N (Wi(λλλ)) ⊂
Di it follows that

Di =
(
N (Wi(λλλ))⊕ (N (Wi(λλλ)))⊥

)
∩ Di = N (Wi(λλλ)) +

(
N (Wi(λλλ))⊥ ∩ Di

)
.

SinceN (Wi(λλλ)) is finite-dimensional andDi infinite-dimensional alsoD′i is infinite-dimensional
vector space. 2

The following is a technical observation, which enables us to shorten proofs but has
no significance otherwise. In actual calculations of basis vectors we can choose vectors
xg

ik ∈ D (Ai0) (i.e. not necessarily xg
ik ∈ D′i ) that satisfy all other required conditions.

Lemma 3.3. Suppose that a vector xi ∈ (N (Wi (λλλ)∗))⊥. Then there exists a vector
vi ∈ D′i such that xi = Wi (λλλ) vi.

Proof. Suppose that xi ∈ (N (Wi (λλλ)∗))⊥. Since Wi (λλλ) is a Fredholm operator its
range is a closed subspace of Hi [25] and therefore (N (Wi (λλλ)∗))⊥ = R (Wi (λλλ)). Thus
there exists a vector ui ∈ D (Ai0) such that xi = Wi (λλλ) ui. Since D(Wi(λλλ)) = D(Ai0) we
can find vectors vi ∈ D′i and wi ∈ N (Wi (λλλ)) such that vi + wi = ui. Then it follows that
xi = Wi (λλλ) vi. 2

The following result is a special case of [5, Thm. 6.3]. Note that the additional condition
that xk

i2 ∈ D′i is a consequence of Lemma 3.3.
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Theorem 3.4. Assume that λλλ ∈ σ (W) is a derogatory eigenvalue, i.e. S2 = 0, and that

c12
11 =

[
1 0

]T
and c12

12 =
[

0 1
]T

. Then there exist vectors xk
i2 ∈ D′i such that

Ui

(
c12
1k

)
xi1 + Wi (λλλ) xk

i2 = 0 (3.6)

for i, k = 1, 2. Furthermore, the vectors

z2k = x11 ⊗ xk
22 + xk

12 ⊗ x21 (3.7)

are such that
(Γi−1 − λi−1I) z2k = δikz1

for i, k = 1, 2, and {z1, z21, z22} is a basis for R2. Here δik is the Kronecker symbol.

Next we define the matrix S3 by

S3 =

[ 〈
A10x

1
12, y11

〉 〈
A10x

2
12, y11

〉
+

〈
A11x

1
12, y11

〉 〈
A11x

2
12, y11

〉
〈
A20x

1
22, y21

〉 〈
A20x

2
22, y21

〉
+

〈
A21x

1
22, y21

〉 〈
A21x

2
22, y21

〉
]

.

We identify the vector space Θ of all symmetric 2×2 matrices with the vector space C3 via
the isomorphism ψ : Θ −→ C3 defined by

ψ (C) =
[

c11 c12 c22

]T
(3.8)

for

C =

[
c11 c12

c12 c22

]
∈ Θ.

The following theorem gives the structure of basis vectors of R3.

Theorem 3.5. Suppose that {cl : 1 ≤ l ≤ d} is a basis forN (S3) and that C3
l =

[
c223
jkl

]2

j,k=1
=

ψ−1 (cl) ∈ Θ for 1 ≤ l ≤ d. Then we have d = d3 and there exist vectors xl
i3 ∈ D′i, i = 1, 2,

l = 1, 2, . . . , d such that
2∑

k=1

Ui

(
c23

kl

)
xk

i2 + Wi (λλλ) xl
i3 = 0, (3.9)

where c23
kl =

[
c223
1kl c223

2kl

]T
. The vector

z31 = x11 ⊗ xl
23 + xl

13 ⊗ x21 +
2∑

j,k=1

c223
jkl x

j
12 ⊗ xk

22 (3.10)

is in R3\R2, and

(Γi−1 − λi−1I) z3l =
2∑

k=1

c223
ikl z2k (3.11)
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for i = 1, 2 and 1 ≤ l ≤ d. Moreover, {z1, z21, z22, z31, z32, . . . , z3d} is a basis for R3.
Conversely, choose vectors z31, z32, . . . , z3d2 ∈ R3\R2 such that {z1, z21, z22, z31, z32, . . . ,

z3d3} is a basis for R3 and such that (3.11) holds for both i and all l. Then

C3
l =

[
c223
11l c223

12l

c223
21l c223

22l

]

are symmetric,
{
ψ

(
C3

l

)
: 1 ≤ l ≤ d3

}
is a basis for N (S3), and there exist vectors xl

i3 ∈
D′i, i = 1, 2, such that (3.9) and (3.10) hold.

Proof. Because cl ∈ N (S3) and C3
l = ψ−1 (cl) it follows that

2∑

j=1

2∑

k=1

c223
jkl

〈
Ai,j−1x

l
i2, yi1

〉
= 0

for i = 1, 2. Thus
∑2

k=1 Ui
(
c23

kl

)
xk

i2 ∈ (N (Wi (λλλ)∗))⊥ and by lemma 3.3 there exist vectors
xi3 ∈ D′i such that (3.9) hold for i = 1, 2. Next we form the vector z3l as in (3.10). In the
following calculation we assume that i = 0. For i = 1 the calculation is similar and we omit
it. We have that

(∆0 − λ0∆2) z3l =

= (A11 ⊗W2(λλλ)−W1(λλλ)⊗A21)


x11 ⊗ xl

23 + xl
13 ⊗ x21 +

2∑

j,k=1

c223
jkl x

j
12 ⊗ xk

22


 =

=
2∑

j,k=1

c223
jkl

(
A1,k−1x

j
12 ⊗A21x21 −A11x11 ⊗A2,j−1x

k
22

)
+

+
2∑

j,k=1

c223
jkl

(
−A11x

j
12 ⊗A2,k−1x21 + A1,j−1x11 ⊗A21x

k
22

)
=

=
2∑

j,k=1

c223
jkl (−A11 ⊗A2,j−1 + A1,j−1 ⊗A21)

(
xk

12 + x11 ⊗ xk
22

)
= ∆2

(
2∑

k=1

c223
1kl z2k

)
.

Conversely, suppose that z3 ∈ R3\R2. Then there exist a symmetric matrix

C =

[
c11 c12

c12 c22

]
∈ Θ

and a vector a =
[

a0 a1

]T ∈ C2 such that for i = 0, 1, we have

(Γi − λiI) z3 =
2∑

k=1

ci+1,kz2k + aiz1.
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We may and will assume that a = 0. This is achieved by substituting z3− a0z21− a1z22 for
z3. Thus we have

(Γi − λiI) z3 =
2∑

k=1

ci+1,kz2k (3.12)

Next it follows from (2.1) that

1∑

j=0

A†ij (Γj − λjI) z3 + Wi (λλλ)† z3 = 0

and from (3.12) that

1∑

j=0

A†ij

(
2∑

k=1

cj+1,kz2k

)
+ Wi (λλλ)† z3 = 0. (3.13)

For i = 1, 2, we choose vectors vi ∈ Hi so that 〈xi1, vi〉 = 1 and
〈
xk

i2, vi

〉
= 0 for k = 1, 2.

This is possible because Span {xi1} ∩ D′i = {0}. For i = 1 and i = 2, respectively, we form
the scalar product of (3.13) by y11 ⊗ v2 and v1 ⊗ y21, respectively, to get

1∑

j=0

〈
Aij

2∑

k=1

cj+1,kx
k
i2, yi1

〉
= 0. (3.14)

Hence, by Lemma 3.3, there exist vectors xi3 ∈ D′i such that

2∑

k=1

Ui (ck) xk
i2 + Wi (λλλ) xi3 = 0, (3.15)

where ck =
[

c1k c2k

]T
. Now we form the vector

z31 = x11 ⊗ x23 + x13 ⊗ x21 +
2∑

j,k=1

cjkx
j
12 ⊗ xk

22.

The same calculation as in the first part of the proof shows that

(Γi − λiI) z31 =
2∑

k=1

ci+1,kz2k

for i = 0, 1. It follows that z31 − z3 ∈ R1 and so there exists a number δ ∈C such that
z3 = z31 + δz1. Without loss we can use the vector x13 + δx11 in place of x13. Then it
follows that

z3 = x11 ⊗ x23 + x13 ⊗ x21 +
2∑

j,k=1

cjkx
j
12 ⊗ xk

22.
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The final step is to verify that ψ (T ) ∈ N (S3), which follows immediately from the equalities
(3.14). 2

Note that Theorem 3.1 implies the existence of vectors z3l ∈ R3\R2, (1 ≤ l ≤ d3) such
that the following hold:

- {z1, z21, z22, z31, z32, . . . , z3d3} is a basis for R3,

- equality (3.11) holds for both i and all l,

-
{
C3

l : 1 ≤ l ≤ d3
}

are linearly independent.

Since Γ0 and Γ1 commute it follows that c223
12l = c223

21l , (1 ≤ l ≤ d3) and therefore the matrices
C3

l are symmetric.

4. A Basis for Root Subspace Rm, m ≥ 3 at a Derogatory Eigenvalue

Our goal in this section is to prove, by induction on m, the following theorem which is our
main result.

Theorem 4.1. Suppose that
{
cm
1f , f = 1, 2, . . . , d

}
is a basis for the kernel of Sm. Then

d = dm and there exist vectors xf
im ∈ D′i and matrices Cm

f such that conditions (i) to
(iii) below hold when m − 1 is replaced by m. In particular the union Bm = Bm−1 ∪
{zm1, zm2, . . . , zmd}, where

zmf = xf
1m ⊗ x21 + x11 ⊗ xf

2m +
[m

2 ]∑

k=2

m+1−k∑

l=k

dk∑

g=1

dl∑

h=1

cklm
ghf

(
xg

1k ⊗ xh
2l + xh

1l ⊗ xg
2k

)
(4.1)

for f = 1, 2, . . . d, is a basis for the root subspace Rm.

Here
[

m
2

]
denotes the integer part of m

2 .
We will prove Theorem 4.1 at the end of the section. Let us first introduce the inductive

assumptions. For m = 1, 2, 3, . . . we suppose that we have vectors xi1 ∈ D (Ai0) , xh
il ∈ D′i,

i = 1, 2, l = 2, 3, . . . , m− 1; h = 1, 2, . . . , dl, and symmetric (structure) matrices (see (3.4) )

C l
h =




C22l
h C23l

h · · · C2,l−2,l−1
h C2,l−1,l

h(
C23l

h

)T
C33l

h · · · C3,l−2,l
h 0

...
...

...
...(

C2,l−2,l
h

)T (
C3,l−2,l

h

)T · · · 0 0
(
C2,l−1,l

h

)T
0 · · · 0 0




(4.2)

such that :
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(i) the matrices C2,l−1,l
h , h = 1, 2, . . . , dl are linearly independent for l = 3, 4, . . . , m− 1,

the column cross-sections (see (3.3) ) Cjl
h are equal to C2jl

h , and the entries of matrices
C l

h satisfy the relations

l−l3+1∑

k=l1+l2−1

dk∑

g=1

cl1l2k
h1h2g cl3kl

h3gh =
l−l1+1∑

k=l2+l3−1

dk∑

g=1

cl1l3k
h1h3g cl2kl

h2gh, (4.3)

for l = 4, 5, . . . ,m− 1, l ∈ Φl and h ∈ χl,

(ii) the relations (2.2), (3.6) and

l−1∑

k=2

dk∑

g=1

Ui

(
ckl

gh

)
xg

ik + Wi (λλλ) xh
il = 0 (4.4)

for i = 1, 2, l = 3, 4, . . . , m− 1 and h = 1, 2, . . . , dl hold (here ckl
gh =

[
c2kl
1gh c2kl

2gh

]T
),

(iii) the vectors z1, z21, z22, of (2.3) and (3.7) together with vectors z31, z32, . . . , z3d3 , . . . ,
zm−1,1, zm−1,2, . . . , zm−1,dm−1 , that are defined by

zlh = xh
1l ⊗ x21 + x11 ⊗ xh

2l +
[ l
2 ]∑

k=2

l+1−k∑

r=k

dk∑

g=1

dr∑

e=1

ckrl
geh

(
xg

1k ⊗ xe
2r + xe

1r ⊗ xg
2k

)

for l = 3, 4, . . . , m− 1 and h = 1, 2, . . . , dl, form a filtered basis for the root subspace
Rm−1. We also write

Bm−1 =
{
z1, z21, z22, . . . , zm−1,1, zm−1,2, . . . , zm−1,dm−1

}
.

By Theorem 3.5 it follows that there exist vectors xi1, x
h
i2, x

h
i3 and matrices Ch

2 such that
conditions (i) to (iii) are satisfied for m− 1 = 3. Now we assume that the above conditions
are satisfied for m − 1 (with 3 ≤ m − 1 ≤ M − 1) and we prove that we can find vectors
xf

im ∈ D′i, i = 1, 2, f = 1, 2, . . . , dm, and matrices Cm
f , f = 1, 2, . . . , dm, such that (i) to (iii)

hold with m− 1 replaced by m.
Our next step is to introduce matrices Sm. We do this in two stages. First we use

matrices Ck
g , k < m, and second certain orthogonality relations.

For the purpose of calculation we write Tm =
[
T klm

]m−1

k,l=2
for an unknown symmetric

matrix in the form (4.2). The entries of the dk × dl matrix T klm are denoted by tklm
gh . They

must satisfy the conditions

m−l3+1∑

k=l1+l2−1

dk∑

g=1

cl1l2k
h1h2g tl3km

h3g −
m−l2+1∑

k=l1+l3−1

dk∑

g=1

cl1l3k
h1h3g tl2km

h2g = 0 (4.5)
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for l ∈ Φm and h ∈ χl. We write the 2× dm−1 matrix T 1,m−1,m also as a column

tm
1 =

[
t2,m−1,m
11 t2,m−1,m

21 t2,m−1,m
12 t2,m−1,m

22 · · · t2,m−1,m
1dm−1

t2,m−1,m
2dm−1

]T
. (4.6)

We denote the sum
∑l

i=1 di by d̂l. For every column of Tm we define a column vector tm
kg,

k = 2, 3, . . . , m− 1, g = 1, 2, . . . , dk of size ν = min
{
d̂k−1 + g, d̂m−k

}
by taking the first ν

entries in the
(
d̂k−1 + g

)
-th column of Tm. Note that tm

kg are defined so that they consist
of all the entries above and including the main diagonal of the matrix Tm omitting those
labelled 0 in (4.2). We define a column vector tm

2 by

tm
2 =

[
(tm

11)
T (tm

12)
T (tm

21)
T · · ·

(
tm
2d2

)T · · ·
(
tm
m−2,1

)T · · ·
(
tm
m−2,dm−2

)T
]T

.

(4.7)
We split the entries of the matrix Tm into two column vectors tm

1 and tm
2 . The mapping

ψm : Tm 7→ (tm
1 , tm

2 ) , defined on all symmetric matrices of the form (4.2), is a generalization
of the transformation ψ defined by (3.8). It is bijective and therefore it has an inverse, which
maps two vectors tm

1 and tm
2 into a matrix Tm of the form (4.2). We use this inverse mapping

in Lemma 4.3. We write the system of equations (4.5) in matrix form as

S21
m tm

1 + S22
m tm

2 = 0 (4.8)

where the entries of the matrices S21
m and S22

m are determined by the system (4.5). These
entries are given because we assumed that the matrices Ck

g were known for k ≤ m− 1.
We also want the entries of the matrices T 2km to satisfy the scalar relations

m−1∑

k=2

dk∑

g=1

〈(
t2km
1g Ai0 + t2km

2g Ai1

)
xg

ik, yi1

〉
= 0 (4.9)

for both i. These can be written equivalently in matrix form

S11
m tm

1 + S12
m tm

2 = 0. (4.10)

Again the entries of the matrices S11
m and S12

m are determined by the equations (4.9).
Now we are prepared to define the matrices Sm. First we choose a matrix Bm so that

its columns form a basis for the kernel of
[ (

S12
m

)∗ (
S22

m

)∗ ]
.

Then we define a matrix

Sm = B∗
m

[
S11

m

S21
m

]
,

so equations (4.8) and (4.10) yield Smtm
1 = 0.
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We now choose vectors zmf ∈ D, f = 1, 2, . . . , dm so that Bm−1 ∪ {zm1, zm2, . . . , zmdm}
is a basis for the space Rm. By Theorem 3.1 there exist matrices Cm

f for f = 1, 2, . . . , dm

such that (i) holds and that we have

(Γi−1 − λi−1I) zmf =
m−1∑

k=2

dk∑

g=1

c2km
igf zkg (4.11)

for i = 1, 2 and f = 1, 2, . . . , dm. Next we prove three auxiliary results.

Lemma 4.2. In the above setting it follows that dimN (Sm) ≥ dm.

Proof. Let ψm

(
Cm

f

)
=

(
cm
1f , cm

2f

)
. By Theorem 3.1(e) and the definition of ψm it

follows that S21
m cm

1f + S22
m cm

2f = 0. Relation (2.1) implies

1∑

j=0

A†ij (Γj − λjI) zmf + Wi (λλλ)† zmf = 0

for both i. By relations (4.11) we get that

m−1∑

k=2

dk∑

g=1

Ui

(
ckm

gf

)†
zkg + Wi (λλλ)† zmf = 0. (4.12)

Here ckm
gf =

[
c2km
1gf c2km

2gf

]T
. Because we assume that xg

ik ∈ D′i and D′i ∩ Span {xi1} = {0}
it follows that for each i there exists a vector vi ∈ Hi such that 〈xi1, vi〉 = 1 and

〈
xg

ik, vi
〉

= 0
for k = 2, 3, . . . ,m− 1 and g = 1, 2, . . . , dk. Then the scalar products of (4.12) by y11 ⊗ v2

and v1 ⊗ y21, for i = 1 and i = 2 respectively, are equal to 0. It follows, using the structure
of the vectors zkg in condition (iii), that

m−1∑

k=2

dk∑

g=1

〈
Ui

(
ckm

gf

)
xg

ik, yi1

〉
= 0 (4.13)

for all f , and so
2∑

j=1

m−1∑

k=2

dk∑

g=1

c2km
jgf

〈
Ai,j−1x

g
ik, yi1

〉
= 0.

Therefore cm
1f and cm

2f solve equation (4.10) and cm
1f , f = 1, 2, . . . , dm are elements of

the kernel of the matrix Sm. Since these vectors are linearly independent, we have dm ≤
dimN (Sm). 2

Lemma 4.3. Suppose that cm
11 is an element of the kernel N (Sm). Then there exists a

vector cm
21 such that (4.8) and (4.10) hold. Furthermore there exist vectors x1

im ∈ D′i, i = 1, 2
such that

m−1∑

k=2

dk∑

g=1

Ui

(
ckm

g1

)
xg

ik + Wi (λλλ) x1
im = 0. (4.14)

Here ckm
g1 are determined by the first block column of Cm

1 = ψ−1
m (cm

1 , cm
2 ).
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Proof. From the structure of the matrix Sm it follows that for an element cm
11 ∈ N (Sm)

there exists a vector cm
21 such that relations (4.8) and (4.10) hold. Using the inverse of

the isomorphism ψ−1
m we associate with the pair of vectors cm

11 and cm
21 a matrix Cm

1 . The
relations (4.10) can be written equivalently in the form (4.13). Then it follows for both i
that

m−1∑

k=2

dk∑

g=1

Ui

(
ckm

g1

)
xg

ik ∈ (N (Wi (λλλ)∗))⊥ = R (Wi(λλλ)) .

The latter equality holds since Wi(λλλ) is a Fredholm operator. By Lemma 3.3 there exists
a vector x1

im ∈ D′i such that (4.14) holds. 2

Lemma 4.4. Suppose that we have the same setting as in Lemma 4.3. We construct a
vector

zm1 = x1
1m ⊗ x21 + x11 ⊗ x1

2m +
[m

2 ]∑

k=1

m+1−k∑

l=k

dk∑

g=1

dl∑

h=1

cklm
gh1

(
xg

1k ⊗ xh
2l + xh

1l ⊗ xg
2k

)
.

Then it follows that

(Γj−1 − λj−1I) zm1 =
m−1∑

k=2

dk∑

g=1

c2km
jg1 zkg (4.15)

for j = 1, 2.

Proof. We use a direct calculation to show (4.15). We consider only the case j = 1. The
case j = 2 is proved in the same way. By the basic properties of operator determinants we
have

(∆0 − λ0∆2) zm1 −
m−1∑

k=2

dk∑

g=1

c2km
1g1 ∆2zkg = (4.16)

=

∣∣∣∣∣
−W1 (λλλ)† A†11

−W2 (λλλ)† A†21

∣∣∣∣∣
(
x1

1m ⊗ x21 + x11 ⊗ x1
2m

)
− (4.17)

−
m−1∑

k=2

dk∑

g=1

∣∣∣∣∣∣∣

U1

(
ckm

g1

)†
A†11

U2

(
ckm

g1

)†
A†21

∣∣∣∣∣∣∣
(
xg

1k ⊗ x21 + x11 ⊗ xg
2k

)
+ (4.18)

+

∣∣∣∣∣
−W1 (λλλ)† A†11

−W2 (λλλ)† A†21

∣∣∣∣∣
[m

2 ]∑

k=2

m+1−k∑

l=k

dk∑

g=1

dl∑

h=1

cklm
gh1

(
xg

1k ⊗ xh
2l + xh

1l ⊗ xg
2k

)
− (4.19)

−
m−1∑

k=3

dk∑

g=1

c2km
1g1

[ k
2 ]∑

l=2

k+1−l∑

r=l

dl∑

h=1

dr∑

e=1

crlk
ehg∆2

(
xe

1r ⊗ xh
2l + xh

1l ⊗ xe
2r

)
. (4.20)
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Relation (4.14) implies that the sum of (4.17) and (4.18) is equal to 0. Since crlk
ehg = clrk

heg it
follows that (4.20) is equal to

−
m−1∑

k=3

k−1∑

l=1

k+1−l∑

r=l

dk∑

g=1

dl∑

h=1

dr∑

e=1

c2km
1g1 crlk

ehg∆2x
e
1r ⊗ xh

2l =

= −
m−2∑

r=2

r−1∑

l=2

dl∑

h=1

dr∑

e=1




m−1∑

k=l+r−1

dk∑

g=1

c2km
1g1 crlk

ehg


 ∆2x

e
1r ⊗ xh

2l. (4.21)

We use relations (3.5) and the definition of ∆2, and we rearrange the order of summation
to show that (4.21) is equal to

−
[m

2 ]∑

k=2

m+1−k∑

l=k

dk∑

g=1

dl∑

h=1

l−1∑

r=k

dr∑

e=1

cklm
gh1

∣∣∣∣∣∣∣

U1

(
crk

eg

)†
A†11

U2

(
crk

eg

)†
A†21

∣∣∣∣∣∣∣

(
xe

1r ⊗ xh
2l + xh

1l ⊗ xe
2r

)
. (4.22)

If we use 4.4 and (4.14) we see that the sum of (4.19) and (4.22) is 0. Therefore (4.16) is
equal to 0, and (4.15) follows. 2

Now we are ready to prove our main result.
Proof of Theorem 4.1. Suppose that we are given a basis

{
cm
1f , f = 1, 2, . . . , d

}
for

N (Sm). Then by Lemma 4.3 it follows that we can find vectors xf
im ∈ D′i and matrices Cm

f

of the form (4.2), where Cm
f = ψ−1

m

(
cm
1f , cm

2f

)
for some cm

2f , such that (i) and (ii) hold when
m − 1 is replaced by m. We apply Lemma 4.4 to show that for f = 1, 2, . . . , d the vectors
zmf are in Rm but not in Rm−1. They are linearly independent because cm

1f , f = 1, 2, . . . , d
are linearly independent. It follows that d ≤ dm and, because d ≥ dm by Lemma 4.2, we
have d = dm. Thus (iii) holds also. 2

5. The Sturm-Liouville Case

Faierman [8] considers a two-parameter eigenvalue problem involving a class of coupled
Sturm-Liouville boundary value problems

d

dti

(
pi (ti)

dyi

dti

)
+

(
(−1)i+1µ1ai1 (ti) + (−1)iµ2ai2 (ti)− qi (ti)

)
yi = 0, i = 1, 2, (5.1)

yi (0) cos αi − pi (0)
dyi

dti
(0) sinαi = 0, 0 ≤ αi < π, i = 1, 2, (5.2)

and
yi (1) cosβi − pi (1)

dyi

dti
(1) sinβi = 0, 0 < βi ≤ π, i = 1, 2, (5.3)

where µµ = (µ1, µ2) are parameters, I = [0, 1] and ti ∈ I. As in [8, pp. 2 and 10] we assume
that :
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(i) for i = 1, 2 the functions pi, qi, aij , j = 1, 2 are real valued, pi, aij are Lipschitz
continuous, pi is positive and qi is essentially bounded,

(ii) the function ω(t1, t2) = a11(t1)a22(t2)− a12(t1)a21(t2) on I2 is not identically 0,

(iii) ai1(ti) > 0 for ti ∈ I and i = 1, 2.

Weaker assumptions would be possible (cf. [4, 5, 26]) but we adhere to Faierman’s
assumptions for the purpose of comparison.

Two-parameter problems which satisfy condition (iii) are called elliptic. In the literature
also a formally stronger condition

(iii’) each aij(ti) is positively bounded below on I
is considered (e.g. [3]). Two-parameter problems which satisfy condition (iii’) are called
uniformly elliptic. We show in Lemma 5.1 that we can transform an elliptic problem to a
uniformly elliptic one by a linear substitution in parameters.

To introduce the operators Aij we take Hi = L2(I). We have

Aijyi(ti) = aij(ti)yi(ti), i, j = 1, 2 (5.4)

for yi ∈ Hi and

Ai0yi(ti) =
d

dti

(
pi (ti)

dyi

dti

)
− qi (ti) yi, i = 1, 2, (5.5)

where the domain D (Ai0) consists of all functions yi ∈ Hi such that yi and dyi
dti

are absolutely

continuous, d2yi

dti
2 ∈ Hi and the boundary conditions (5.2) and (5.3) hold.

Lemma 5.1. Assume that the problem (5.1)–(5.3) is such that (i)–(iii) hold. Then there
exists an invertible linear substitution of parameters µµ such that the problem is uniformly
elliptic after the substitution.

Proof. The numerical range

κi =
{
(ci1, ci2) ∈ IR2 : for j = 1, 2 cij = (Aijxi, xi) for some xi ∈ Hi, ‖xi‖ = 1

}

is a bounded convex set for i = 1, 2. By conditions (i) and (iii) it follows that for some
ε > 0 we have c11 > ε for all elements of κ1 and c21 < −ε for all elements of κ2. Then
there exist two lines through the origin in IR2 that separate κ1 and κ2 and we can find an
invertible linear map τ on IR2 that maps κ1 and κ2 into the first and the third quadrant,
respectively. If we apply τ to the parameters µµ it follows that the transformed problem is
uniformly elliptic. 2

We hereafter assume without loss of generality that the parameters µµ are chosen so that
condition (iii’) holds, i.e., that the two-parameter problem is uniformly elliptic. In order to
apply the results of the previous sections we need to verify Assumptions I–III. By [8, Thm.
2.4] it follows that ∆2 is a self-adjoint operator with dense domain D of those functions in
the Sobolev space W 2

2

(I2
)

that satisfy the boundary condition on I2 associated with (5.2)
and (5.3). For details see [8, pp. 10–30]. Next we have :
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Lemma 5.2. N (∆0) ∩N (∆2) = {0}.

Proof. Assume that ∆0u = ∆2u = 0 for some u ∈ D. By (ii) it follows that ω is nonzero
on some open set Ω ⊂ I2. Hence u|Ω ≡ 0. By the unique continuation property for ∆2 [8,
Prop. 3.1] it follows that u ≡ 0 on I2. 2

Now it follows from [5, Prop. 2.1] that Assumption I holds for an α ∈ IR. As in §2 we
shall hereafter assume without loss of generality that α = 0, i.e., that ∆2 has a bounded
inverse. This is achieved by a shift in parameters. Assumption II is a consequence of the
following lemma. This is given in a special case in [5, §9.3]. Since the argument there
appears to be incomplete we provide a more detailed proof here.

Lemma 5.3. The system
[

A†10 A†11

A†20 A†21

] [
u1

u2

]
=

[
A†12z

A†22z

]
(5.6)

has a solution u = (u1, u2) ∈ D2 for all z ∈ D.

Proof. By eliminating u2 in (5.6) we have

−∆2u1 = ∆0z. (5.7)

By [8, Thm. 2.2] there exists u1 ∈ D which solves (5.7). Similarly the elimination of u2

leads to −∆2u2 = ∆1z, which again is soluble for u2 ∈ D by [8, Thm. 2.2]. Thus it remains
to show that u1 and u2 satisfy (5.6).

We shall do this first under the assumption that each Ai0 is positive definite. For
N ∈ IN we define bounded self-adjoint operators A

(N)
i0 sharing the same eigenvectors and

the lowest N eigenvalues with Ai0. The remaining eigenvalues of A
(N)
i0 are defined as 1. The

definition of A
(N)
i0 is completed by linearity and continuity to Hi. We define ∆(N)

j , j = 1, 2,

analogously to ∆j and we note that A
(N)
i0 and ∆(N)

j are uniformly bounded with inverses
bounded uniformly in N for i, j = 1, 2.

Now consider the system of equations

A
(N)
i0

†
z0 = A†i1z1 + A†i2z2, i = 1, 2, (5.8)

where z2 =
(
∆(N)

1

)−1
w for a fixed w ∈ H. Proceeding as in the proof of [2, Thms. 4.2 and

6.1] we obtain

z0 = −
(
∆(N)

2

)−1
∆0

(
∆(N)

1

)−1
w and z1 = −

(
∆(N)

2

)−1
w,

so (5.8) yields

A
(N)
i0

†
xN = −A†i1

(
∆(N)

2

)−1
w −A†i2

(
∆(N)

1

)−1
w, i = 1, 2, (5.9)
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where xN =
(
∆(N)

2

)−1
∆0

(
∆(N)

1

)−1
w. Now [2, Lemma 4.1] shows that the right hand

side in (5.9) has limit −A†i1∆
−1
2 w − A†i2∆

−1
1 w = yi, say, as N → ∞. Thus A

(N)
i0

†
xN

converges to yi. Since the inverses of A
(N)
i0 are bounded uniformly in N it follows that

xN −
((

A
(N)
i0

)−1
)†

yi → 0 as N → ∞. Similarly, since the inverses of
(
∆(N)

2

)−1
are

bounded uniformly in N it follows that xN → ∆−1
2 ∆0∆−1

1 w as N → ∞ (cf. [2, Lemma
4.1]). Thus

∆−1
2 ∆0∆−1

1 w =
(
A−1

i0

)†
yi,

whence
A†i0∆

−1
2 ∆0∆−1

1 w = −A†i1∆
−1
2 w −A†i2∆

−1
1 w.

Now put w = ∆1z to obtain (5.6) for u1 = −∆−1
2 ∆0z and u2 = −∆−1

2 ∆1z. To remove the
restriction that Ai0 are uniformly positive we use the technique of [6, Thms. 3.1 and 3.2].
2

In the rest of this section we discuss the eigenvalues and associated root subspaces of
(5.1)–(5.3). If there exist nonzero functions yi ∈ D (Ai0), i = 1, 2 which solve (5.1)–(5.3)
for a pair µµ = (µ1, µ2) ∈ C2 then µµ is called an eigenvalue for the problem (5.1)–(5.3).
The function w(t1, t2) = y1(t1)y2(t2) is such that (∆i − µi∆0) w = 0 for i = 1, 2. Because
we assume that ∆2 has a bounded inverse, and in particular, is one-to-one, we have that
µ2 6= 0. Then it follows for each eigenvalue µµ of (5.1)–(5.3) that λλλ = (λ0, λ1) =

(
1
µ2

, µ1

µ2

)
is

an eigenvalue of the associated two-parameter system

Wi (λλλ) = Ai0λ0 + Ai1λ1 + Ai2, i = 1, 2. (5.10)

Here Aij are given by (5.4) and (5.5). We shall hereafter keep the notation µµ and λλλ as
above, so if λλλ = (λ0, λ1) is an eigenvalue of (5.10) then µµ = (µ1, µ2) =

(
λ1
λ0

, 1
λ0

)
is the

corresponding eigenvalue of (5.1)–(5.3). Note that µ2 and λ0 are always nonzero.
The eigenvalues of (5.1)–(5.3) form a countably infinite set of points without accumu-

lation. There are only finitely many non-semisimple eigenvalues and finitely many non-real
eigenvalues. Nonreal eigenvalues appear in conjugate pairs. See [8, Thms. 6.1 and 6.2] for
these results.

The problem (5.1)–(5.3) for i = 1 or i = 2 has for a fixed value of µµ at most a one-
dimensional space of solutions. If µµ ∈ IR2 then Wi (µµ) is a self-adjoint operator. If µµ ∈
C2\IR2 then Wi (µµ)∗ = Wi (µµ), where ¯ denotes complex conjugation. Since Wi (µµ) yi = 0
holds if and only if Wi (µµ) yi = 0 it follows that dimN (Wi (µµ)) = dimN (Wi (µµ)∗) = 1. We
are now ready to establish Assumption III.

Lemma 5.4. Each eigenvalue µµ of the problem (5.1)–(5.3) is geometrically simple of finite
ascent, and both Wi (λλλ), i = 1, 2 are Fredholm operators of index 0.

Proof. The remarks preceeding this lemma together with [16, Example III.5.14] establish
everything except finite ascent, and the latter follows from [8, Thm. 6.6]. 2
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There are various differences between the approach of [8] and the one here. In [8] the
eigenvalues µµ = (µ1, µ2) are considered. We use instead the eigenvalues λλλ = (λ0, λ1). In [8]
root subspaces are considered only with respect to the pencil ∆2−µ2∆0, while we consider
joint root subspaces for pencils ∆i − λi∆2, i = 0, 1. When bases for root subspaces are
constructed our approach significantly reduces technical difficulties since all the geometric
eigenspaces are now one-dimensional, i.e., all the joint eigenvalues are geometrically simple.

In order to be able to compare our results with those of [8] we need the following auxiliary
results :

Lemma 5.5. If λ0 6= 0 and z1, z2, . . . , zm ∈ D are such that

(∆0 − λ0∆2) zj = ∆2zj−1, j = 1, 2, . . . ,m, (5.11)

where z0 = 0, then

uj =
j−1∑

k=0

(−1)j

(
j

k

)
λj+k

0 zk+1

are such that
(∆2 − µ2∆0) uj = ∆0uj−1, j = 1, 2, . . . , m, (5.12)

where u0 = 0 and µ2 = λ−1
0 .

Proof. By induction on j we prove that (5.11) implies

(∆2 − µ2∆0) zj =
j−1∑

k=1

(−1)kµk+1
2 ∆0zj−k, j = 1, 2, . . . , m.

Then (5.12) follows by a straightforward calculation which we omit. 2

We call a chain of vectors u1, u2, . . . , um such that (5.12) holds a Jordan chain for the
pencil ∆2 − µ2∆0.

Corollary 5.6. Let µ2 = λ−1
0 . Then µ2 is a semi-simple eigenvalue for the pencil ∆2−µ2∆0

if and only if λ0 is a semi-simple eigenvalue for ∆0 − λ0∆2.

Lemma 5.7. Suppose that Rm is the m-th root subspace for (5.10) at an eigenvalue λλλ =
(λ0, λ1) (see (1.7)). Then it follows that (∆2 − µ2∆0)Rm ⊂ ∆0Rm−1. In particular, if Bm

is the basis for Rm given in Theorem 4.1 then

(∆2 − µ2∆0) zmj =

m−1∑

l=1


(−1)lµl

2

l∑

k=1

dk∑

g=1

γmk
jg ∆0zkg


 ,
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where γmk
jg are defined inductively by

γk+1,k
jg = c2,k,k+1

1gj and γk+r,k
jg =

k+r−1∑

l=k+1

dl∑

h=1

c2,l,k+r
1hj γlk

hg

for r = 2, 3, . . .

Proof. If we multiply the relation (Γ0 − λ0I)Rm ⊂ Rm−1 by −λ−1
0 ∆2 on the left

we have that (∆2 − µ2∆0)Rm ⊂ ∆2Rm−1. Then we prove by induction on m that
(∆2 − µ2∆0)Rm ⊂ ∆0Rm−1. The second part of the lemma also follows by induction
on m. We omit the details. 2

Now we compare our results with those of [8]. First we consider the case of a real
eigenvalue. We assume that λλλ ∈ IR2 is an eigenvalue of (5.10), that z1 = x11 ⊗ x21 is a
corresponding eigenvector and that

S2 =

[
〈A11x11, x11〉 〈A11x11, x11〉
〈A20x21, x21〉 〈A21x21, x21〉

]
.

Proposition 5.8. For λλλ ∈ IR2 the following are equivalent :

(i) λλλ is a semi-simple eigenvalue,

(ii) 〈∆0z1, z1〉 6= 0,

(iii) the rank of the matrix S2 is equal to 2.

Proof. Conditions (i) and (ii) are equivalent by [8, Thm. 6.15] and Corollary 5.6. The
equivalence of (i) and (iii) follows from [5, Thm. 6.3]. 2

Proposition 5.9. For λλλ ∈ IR2 the following are equivalent :

(i) λλλ is not a semi-simple eigenvalue,

(ii) λλλ is a nonderogatory eigenvalue, but not algebraically simple,

(iii) 〈∆0z1, z1〉 = 0,

(iv) the rank of the matrix S2 is less than or equal to 1.

Proof. If rankS2 is less than 2 then it has to be equal to 1. Namely, it follows from (iii’)
that 〈Ai1xi1, xi1〉 6= 0 for i = 1, 2, and therefore S2 6= 0. Then if λλλ is not semi-simple it has
to be nonderogatory. The equivalence of conditions (i)–(iv) now follows from Proposition
5.8. 2

By the above propositions it follows that a basis B for a root subspace R at a real
eigenvalue λλλ is described by Theorem 2.2. Then a root subspace Mµ2 (in the notation of
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[8]) at a real eigenvalue µ2 is equal to the direct sum of the root subspaces corresponding
to the eigenvalues λλλ = (λ0, λ1) with λ0 = 1

µ2
. Lemma 5.5 implies that a basis for Mµ2 is

thus obtained by Theorem 2.2 as the union of all the bases of the root subspaces R(λλλ) with
λ0 = 1

µ2
. This yields Theorems 3.5 and 6.18 of [8] and also the Sturm-Liouville case of [3,

Thm. 3.1]. The interested reader will find a numerical implementation of the algorithm for
computation of a basis at a nonderogatory eigenvalue in [23].

Assume now that λλλ = (λ0, λ1) is a nonreal eigenvalue of (5.10). Then λ0 is nonreal [8,
p. 99]. We write z1 = x11 ⊗ x21 for an eigenvector correponding to λλλ and

S2 =

[
〈A10x11, x11〉 〈A11x11, x11〉
〈A20x21, x21〉 〈A21x21, x21〉

]
.

Proposition 5.10. For a nonreal eigenvalue λλλ the following are equivalent :

(i) λλλ is semi-simple,

(ii) 〈∆0z1, z1〉 6= 0,

(iii) the rank of the matrix S2 is equal to 2.

Proof. Conditions (i) and (ii) are equivalent by [8, Thm. 6.14] and Corollary 5.6. The
equivalence of (i) and (iii) follows from [5, Thm. 6.3]. 2

If λλλ is not semi-simple and rankS2 is equal to 1 then λλλ is nonderogatory and Theorem
2.2 gives a basis for the corresponding root subspace. By Lemma 5.7 it follows that the
union of bases, of root subspace at the eigenvalues λλλ for which λ0 = 1

µ2
, is a basis for the

root subspace Mµ2 (in notation of [8]). If Mµ2 is a root subspace at a nonreal eigenvalue
µ2 it is equal to the direct sum of the root subspaces corresponding to the eigenvalues
λλλ = (λ0, λ1) with λ0 = 1

µ2
. If all these eigenvalues λλλ are nonderogatory then Lemma 5.5

implies that a basis for Mµ2 is obtained by Theorem 2.2. This yields Theorems 6.9 and
6.19 of [8] and it also gives a basis for those j in [8, pp. 118–122] for which s2 < j ≤ s1. The
eigenvalues λλλ that correspond to the remaining j (i.e., such that 1 ≤ j ≤ s2) are derogatory,
i.e., S2 = 0. Now we use Theorem 4.1 to obtain a basis B for the root subspace at λλλ. The
main result about bases for Mµ2 in [8] is Theorem 6.20. The basis that Faierman gives
there is a union of bases of root subspaces R(λλλ) over all λλλ with λ0 = 1

µ2
. These are of two

types : for s2 < j ≤ s1 the eigenvalues λλλ are nonderogatory and our Theorem 2.2 gives the
required properties described in [8, Lemma 6.9]. The other eigenvalues with 1 ≤ j < s2 are
derogatory. Bases for R(λλλ) are described in Conjecture 6.1 of [8], which is established in
[8] only when the ascent of Γ0 is at most 3. Our basis in Theorem 4.1 is constructed in all
cases of finite ascent. We hope to discuss the precise relationship with [8, Conj. 6.1] in a
separate publication.

Finally, we remark that bases forR(λλλ) can be used to obtain completeness and expansion
results as carried out in [8, Thms. 6.7 and 6.8] and [8, §6.7], respectively. Then orthonormal
bases are important. These can be constructed by a Gram-Schmidt type orthogonalization
applied inductively for each m in the construction of a basis for R(λλλ). Additional care

23



needs to be taken for the root subspaces at pairs of conjugate eigenvalues; for other pairs
of eigenvalues the root subspaces are orthogonal by [8, Thm. 6.1].

References

[1] F.V. Atkinson. Multiparameter Eigenvalue Problems. Academic Press, 1972.

[2] P.A. Binding. Left Definite Multiparameter Eigenvalue Problems. Trans. Amer. Math.
Soc., 272:475–486, 1982.

[3] P.A. Binding. Multiparameter Root Vectors. Proc. Edin. Math. Soc., 32:19–29, 1989.

[4] P.A. Binding and P.J. Browne. Asymptotics of Eigencurves for Second Order Ordinary
Differential Equations I. J. Diff. Eq., 88:30–45, 1990.
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