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Abstract. The paper contains a geometric description of the dimension of the total root subspace of
a regular multiparameter system in terms of the intersection multiplicities of its determinantal hyper-
surfaces. The new definition of regularity used is proved to restrict to the familiar definition in the
linear case. A decomposability problem is also considered. It is shown that the joint root subspace
of a multiparameter system may be decomposable even when the root subspace of each member is
indecomposable.

1. Introduction

In this paper, we are mainly interested in a geometric description of the dimensions of the root
subspaces (which are also called generalized or algebraic eigenspaces) of regular multiparameter sys-
tems of arbitrary degree. Binding and Browne studied in [3] a special class of linear two-parameter
systems over the real numbers, and showed that the dimension of the root subspace at a given
eigenvalue is equal to the sum of the orders of contact of the eigencurves at that eigenvalue. In this
special case our results reduce to those of [3]. In [3] analytical methods were used, while we are
using results from algebraic geometry [17] and commutative algebra [1,16].

The study of eigenspaces and root subspaces is one of the central topics of multiparameter
spectral theory. Its importance stems primarily from classical analysis, where the understanding
of root subspaces yields various completeness and expansion results. The literature on the subject
is extensive and for further details we refer to the books [2,9,14,19,21]. Beside this ‘classical’
motivation our topic may also be of algebraic and geometric interest. For example, the somewhat
related problem of linearization of polynomials in several variables was studied in [5,6,20].

An n-parameter system f is a system of n endomorphisms fi : A ⊗ Vi → A ⊗ Vi of free A-
modules, where we assume that A is a commutative regular Noetherian algebra of Krull dimension
dim A = n over a field F and Vi are finite dimensional vector spaces over F . Typically, A = F [x]
is the polynomial algebra in n variables x = (x1, x2, . . . , xn) and fi are polynomials in x whose
coefficients are linear maps on Vi. We say that f is regular if the determinants {det fi|i = 1, 2, . . . , n}
form a regular sequence in A. Another equivalent definition is that f is regular if the Koszul complex
KA(det f) is acyclic [17]. We show that in the particular case when A = F [x] and all the fi are linear
polynomials this definition coincides with the usual definition of regularity that is used, for instance,
by Atkinson in [2]. Our definition of regularity not only extends the familiar one to the nonlinear
case, but is also natural in the context of the commutative algebra used in our proofs. Another
advantage is that it can be localized and so we can speak of local regularity at each eigenvalue.
Since our results are local in nature, it suffices to assume local regularity of the systems. One of the
crucial results is that regularity of the system f at a point m in its spectrum σ(f) implies acyclicity
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of its Koszul complex KA(f), where A is the localization of A at m. In [10] we proved that the root
subspace of a linear multiparameter system at a point m ∈ σ(f) is given by the cotensor product

N = M0
1 ⊗A

0 M0
2 ⊗A

0
. . .⊗A0 M0

n,

where Mi is the cokernel of fi localized at m and where 0 is the contravariant functor which takes a
module into its dual comodule [12]. The left adjoint of 0 is ∗ and the composite 0∗ is the completion
functor for the cofinite topology. Hence, for every A0-comodule N the dual M = N ∗ is a module
over a complete local ring so that we can apply Serre’s multiplicity theory [17] to compute the
length lA of M. Our main result is that

lA(M) = lA(A/〈det f1, . . . , det fn〉),

which in turn is the intersection multiplicity of the system of determinantal hypersurfaces at the
point m. In the case A = F [x] and m = 〈x1 − λ1, x2 − λ2, . . . , xn − λn〉 the residue class field of A
is the fixed underlying field F , therefore the length coincides with the dimension of M as a vector
space over F . For a general maximal ideal m of A we have dimF M = lA(M)[A/m : F ]. In the
paper we mostly consider the case when A/m ∼= F .

For the terminology from commutative algebra used in this paper we refer to the books of
Matsumura [16] and Serre [17], while for the terminology concerning the coalgebra dual of the
polynomial algebra we refer to our papers [10,11]. All algebras and coalgebras are over a fixed base
field F . If A is a commutative F -algebra and M is an A-module then Max(A) and Spec(A) are the
maximal ideal spectrum and the prime ideal spectrum of A, while Var(M) = {p ∈ Spec(A)|Mp 6=
0} = {p ∈ Spec(A)| annM ⊆ p} is the variety of M .

2. Spectral Properties of an Endomorphism

For any regular commutative Noetherian algebra A over the field F and any finite dimensional
vector space V there is a canonical isomorphism of A-algebras

A⊗ EndF (V ) ∼= EndA(A⊗ V ).

For every element f ∈ A⊗ EndF (V ) consider the exact sequence

A⊗ V
f−→ A⊗ V → M → 0

and its localization at a maximal ideal m of A

A⊗ V
f−→ A⊗ V →M→ 0,

where the Noetherian local algebra A = Am has maximal ideal mA and the residue class field
k = A/mA is a finite field extension of F . The coalgebra dual A0 is a colocal coalgebra and
Â = A0∗ is the completion of A in its mA-adic topology. The comodule dual sequence

0 →M0 → A0 ⊗ V
f0

−→ A0 ⊗ V

is exact, since the functor 0 : Modop
A → ComodA0 is a right adjoint [12]. Our main interest lies with

M0. But M0∗0 = M0 and the completion functor 0∗ = Â ⊗A − : ModA → Mod bA is exact, so that
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we may always replace A by its completion A0∗. Since A is regular the localization A = Am is also
regular [17, p. IV-41, Prop. 23], and A is a unique factorization domain [17, IV-39].

The spectrum of the A-endomorphism f : A⊗ V → A⊗ V is defined by

σ(f) = Max(A) ∩Var(M).

In this paper we study spectral properties of the root subspaces of one and several endomorphisms
and we will therefore mainly consider the localized exact sequences above.

For an element p ∈ A we denote by 〈p〉 the ideal generated by p in the localized algebra A = Am.
If V is finite dimensional and det f is a regular element of A then f(adj f) = (det f) ⊗ 1. The
commutative diagram with exact rows of A-modules

0 −−−−→ A⊗ V
(det f)⊗1−−−−−−→ A⊗ V −−−−→ A/〈det f〉 ⊗ V −−−−→ 0

adj f

y
∥∥∥

yπ

0 −−−−→ A⊗ V
f−−−−→ A⊗ V −−−−→ M −−−−→ 0

induces a commutative diagram with exact rows of A0-comodules

0 −−−−→ M0 −−−−→ A0 ⊗ V
f0

−−−−→ A0 ⊗ V −−−−→ 0

π0

y
∥∥∥

y(adj f)0

0 −−−−→ (A/〈det f〉)0 ⊗ V −−−−→ A0 ⊗ V
(det f)0⊗1−−−−−−→ A0 ⊗ V −−−−→ 0

and therefore (A/〈det f〉)0 ∼= ker((det f)0). Observe that theA-module map π : A/〈det f〉⊗V →M
is surjective.

2.1. Theorem. Suppose that A is regular, hence a unique factorization domain, and that det f =
pl1
1 pl2

2 . . . plr
r is the primary decomposition in A of the determinant of f ∈ A ⊗ EndF (V ). If

pi = 〈pi〉 for i = 1, 2, . . . , r then {p1, p2, . . . , pn} is the set of minimal primes associated with
M, {p1, p2, . . . , pr} ⊂ AssM ⊂ VarM, and li = lpi(M) is the length of the Api-module Mpi .
Moreover, if dimA = 2, then AssM = VarM\ {m}.
Proof. For every prime ideal p of A the sequence of Ap-modules

Ap ⊗ V
fp−→ Ap ⊗ V →Mp → 0

is exact and f(adj f) = (det f) ⊗ 1 has localization fp(adj fp) = (det fp) ⊗ 1. Observe that det fp

is invertible in Ap if and only if pi /∈ p for i = 1, 2, . . . , r, i.e. det fp is not invertible in Ap if and
only if pi ∈ p for some i. Hence, Mp 6= 0 if and only if pi ∈ p for some i. Moreover, Mpi 6= 0
for all i, so that pi ∈ VarM for every i. This implies that p ∈ VarM if and only if pi ∈ p and
hence {p1, p2, . . . , pr} ⊂ AssM. If p ∈ VarM and dimA/p = n − 1 then p = pi for some i. If
dimA = 2 then AssM = VarM \ {m}. This is because Mp 6= 0 if and only pi ∈ p for some i,
therefore pi ⊂ p ⊂ m, which implies that pi = p or p = m.

Now observe that dimApi
= 1, since every nonzero principal prime ideal of a unique factorization

domain has height one. Thus, Api
is a discrete valuation ring, i.e. a local Noetherian domain whose

maximal ideal is principal, while

dimM = dimA/ annM = dimA/pi = coht pi = dimA− 1.
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In the exact sequence of Api-modules

Api
⊗ V

fpi−−→ Api
⊗ V →Mpi

→ 0

the module Mpi
is not zero and det fpi

= cip
li
i for some invertible element ci in Api . Since Api is a

discrete valuation ring, in particular a principal ideal domain, the map fpi can be diagonalized, i.e.
Mpi

∼= ⊕jApi
/p

dij

i A for some integers di0 ≥ di1 ≥ . . . ≥ dis, and lpi
(M) = l(Mpi

) =
∑s

j=1 dij =
li. ¤

Let us mention at this point that for every A-module map f : A ⊗ V → A ⊗ V the equal-
ity f(adj f) = (det f) ⊗ 1 implies that 〈det f〉 ⊆ annM ⊂ ∩ipi = 〈p1p2 · · · pr〉, where det f =
pl1
1 pl2

2 . . . plr
r is the primary decomposition in A and pi = 〈pi〉.

2.2. Theorem. If m ∈ σ(f) is simple, i.e. if M/mM∼= A/mA, then M∼= A/〈det f〉.
Proof. The maximal ideal of A = Am is mA and A/mA⊗AM ∼= M/mM. Every homomorphism
θ : A/mA →M/mM can be lifted to an A-module map χ : A →M such that the diagram

A χ−−−−→ M
η

y
yη

A/mA θ−−−−→ M/mM
commutes, and so 1⊗A χ = θ (via the natural isomorphism A/mA⊗A A ∼= A/mA). Tensoring the
exact sequence of A-modules

A χ−→M→ cokχ → 0

by A/mA over A gives a commutative diagram

A/mA⊗A A 1⊗Aχ−−−−→ A/mA⊗AM −−−−→ A/mA⊗A cokχ −−−−→ 0

∼=
y ∼=

y ∼=
y

A/mA θ−−−−→ M/mM −−−−→ cokχ/m cokχ −−−−→ 0

with exact rows. If θ : A/mA → M/mM is an isomorphism, then cok χ/m cokχ = 0. By the
Nakayama Lemma [1] we must conclude that cok χ = 0, so that χ : A → M is surjective and
kerχ = annM. If det f = pl1

1 pl2
2 · · · plr

r is the primary decomposition then it follows from Theorem
2.1 that pi = 〈pi〉 ∈ AssM. Then Api

is a discrete valuation ring for each i and hence (annM)pi
=

ann(Mpi
) = psi

i Api for some si ≤ li. On the other hand, because Mpi can be generated as an
Api -module by a single element, it follows that the map fpi in the exact sequence

Api ⊗ V
fpi−−→ Api

⊗ V →Mpi
→ 0

has a diagonal matrix representation with diagonal (psi
i , 1, . . . , 1). But then si = li, since det(fpi

) =
cip

li
i for some invertible element ci in Api

, and so annMpi
= pli

i Api
. Moreover, if a ∈ annM, i.e.

aM = 0, then aMpi = 0, hence a ∈ annMpi = pli
i Api for every i, which implies that each pli

i divides
a in A, so that a ∈ 〈det f〉. We conclude that kerχ = annM = 〈det f〉 and A/〈det f〉 ∼= M. ¤

The above theorem remains valid when A and M are replaced by A/miA and M/miM for i ≥ 1.
It follows that the isomorphism A/〈det f〉 ∼= M is an isomorphism of filtered A-modules.
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3. Finite System of Endomorphisms

Consider a system f = (f1, f2, . . . , fn) of endomorphisms fi ∈ EndA(A ⊗ Vi), where the Vi are
finite dimensional vector spaces over the field F . Note that n = dim A. For each fi consider the
exact sequence

A⊗ Vi
fi−→ A⊗ Vi → Mi → 0

and its localization
A⊗ Vi

fi−→ A⊗ Vi →Mi → 0

at a maximal ideal m of A. Then the comodule dual sequence

0 →M0
i → A0 ⊗ Vi

f0
i−→ A0 ⊗ Vi

is also exact. The joint spectrum of f is the intersection

σ(f) = ∩n
i=1σ(fi) = Max(A) ∩n

i=1 Var(Mi)

and consists of all maximal ideals m of A satisfying (Mi)m 6= 0 for i = 1, 2, . . . , n. If A = F [x] and
m = 〈x1 − λ1, x2 − λ2, . . . , xn − λn〉 then λλλ = (λ1, λ2, . . . , λn) is an eigenvalue of f in the sense
usual in multiparameter spectral theory [2,3,10,11,14]. In this case we will frequently change the
notation and write λλλ for the ideal m.

The Koszul complex KA(f) associated with f is defined recursively by

KA(fi) : A⊗ Vi
fi−→ A⊗ Vi

and
KA(f1, . . . , fi, fi+1) = KA(f1, . . . , fi)⊗A KA(fi+1).

Its homology is denoted by H∗(f). In a similar way we construct the Koszul complex KA(det f) of
the n-tuple det f = (det f1, det f2, . . . , det fn) of elements of A recursively by

KA(det fi) : A
det fi−−−→ A

and
KA(det f1, . . . , det fi, det fi+1) = KA(det f1,det f2, . . . , det fi)⊗A KA(det fi+1)

and its homology is H∗(det f). Since localization and completion are exact and preserve tensor
products, we see that KA(f)m

∼= KA(f) and KA(det f)m
∼= KA(det f) at the maximal ideal m of

A. Moreover, H∗(KA(f)) ∼= H∗(KA(f))m and in particular

H0(KA(f)) ∼= H0(KA(f)m) ∼= M1 ⊗AM2 ⊗A . . .⊗AMn.

A chain complex K is called acyclic if Hp(K) = 0 for all p 6= 0. The system f is called regular
if the Koszul complex KA(det f) is acyclic. Locally, we say that f is regular at a maximal ideal
m ∈ σ(f) if KA(det f) is acyclic. By [17, IV-5-12] it is equivalent to say that f is regular (locally
regular, respectively) if (det f1, det f2, . . . , det fn) is a regular sequence in A (in A, respectively).
An element m ∈ σ(f) is called simple if Mi/mMi

∼= A/mA for i = 1, 2, . . . , n. The following two
results are immediate consequences of Theorem 2.2.
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3.1. Corollary. A point m ∈ σ(f) is simple if and only if

M∼= M1 ⊗AM2 ⊗A . . .⊗AMn
∼= A/〈det f1, det f2, . . . , det fn〉

as filtered A-modules. ¤
3.2. Corollary. If m ∈ σ(f) is simple, then M is (up to isomorphisms of filtered A-modules)
uniquely determined by the determinants det f1,det f2, . . . , det fn in A. In particular, the length of
the A-module M/mkM depends on the determinants only. ¤

The Koszul complex KA0(f0) associated with the sequence of A0-comodule maps f0 is the cochain
complex defined recursively by

KA0(f0
i ) : A0 ⊗ Vi → A0 ⊗ Vi

and
KA0(f0

1 , . . . , f0
i , f0

i+1) = KA0(f0
1 , . . . , f0

i )⊗A0
KA0(f0

i+1).

Since the functor 0 : ModA → ComodA0 is exact [12] and preserves tensors, it follows that KA0(f0) ∼=
KA(f)0 and H∗(KA0(f0)) ∼= H∗(KA(f))0. In particular,

H0(KA0(f0)) ∼= H0(KA(f))0 ∼= M0
1 ⊗A

0 M0
2 ⊗A

0
. . .⊗A0 M0

n

is the ‘total root space’ of the system f at m.
Our main tool relating the geometric aspects of the determinants det f to the module theoretic

aspects of the Mi is Serre’s multiplicity theory [17]. In addition, the following theorem is a crucial
step toward our main result.

3.3. Theorem. If the system f is regular at a point m ∈ σ(f) then :
(1) the Koszul complex KA(f1, f2, . . . , fi) is acyclic and A-free for each i = 1, 2, . . . , n,
(2) TorAj (M1 ⊗A · · · ⊗AMi−1,Mi) = 0 for i = 2, 3, . . . , n and j 6= 0.

Proof. By definition, f is regular at the point m if KA(det f) is acyclic. By [17, IV-5-12] it is
equivalent to say that det f = (det f1,det f2, . . . , det fn) is a regular sequence in A. Since det fi 6= 0
and fi(adj fi) = (det fi) ⊗ 1 = (adj fi)fi we have the commutative diagram with exact rows and
columns of A-modules

0 0
y

y
0 −−−−→ A⊗ Vi

fi−−−−→ A⊗ Vi −−−−→ Mi −−−−→ 0
∥∥∥ adj fi

y
yµi

0 −−−−→ A⊗ Vi
(det fi)⊗1−−−−−−→ A⊗ Vi −−−−→ A/〈det fi〉 ⊗ Vi −−−−→ 0

y
y

Ni Niy
y

0 0
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for each i = 1, 2, . . . , n. This means in particular that

0 −→ A⊗ Vi
fi−→ A⊗ Vi −→Mi −→ 0

is a free A-resolution of Mi, so that
dhAMi = 1.

But A is a regular Noetherian local algebra, so we also have [17, IV-35-43]

gldhA = dimA = n and dhAMi + codhAMi = n.

We conclude that dimMi = n − 1 = codhAMi and similarly dimNi = n − 1 = codhANi, so
that each Mi and each Ni is a Cohen-Macaulay A-module [17, IV-18]. Moreover, we also have the
commutative diagram with exact rows and columns of A-modules

0 0
y

y
0 −−−−→ A⊗ Vi

adj fi−−−−→ A⊗ Vi −−−−→ Ni −−−−→ 0
∥∥∥ fi

y
yνi

0 −−−−→ A⊗ Vi
(det fi)⊗1−−−−−−→ A⊗ Vi −−−−→ A/〈det fi〉 ⊗ Vi −−−−→ 0

y
y

Mi Miy
y

0 0

for each i = 1, 2, . . . , n.
We want to show by induction on i that in fact the Koszul complex KA(f1, f2, . . . , fi) for i =

1, 2, . . . , n, is a free resolution of M[i] = M1 ⊗A M2 ⊗A · · · ⊗A Mi, i.e. that KA(f1, . . . , fi) is
acyclic. So suppose that Xi = KA(f1, . . . , fi) is acyclic and let Yi = KA(det f1,det f2, . . . , det fi),
which is acyclic by hypothesis. Then by induction the map of complexes

Fi : Xi → Yi,

is defined as the tensor product of the injective maps Fj : KA(fj) → KA(det fj) given by the
commutative diagrams

A⊗ Vj
fj−−−−→ A⊗ Vj∥∥∥ adj fj

y

A⊗ Vj
(det fj)⊗1−−−−−−→ A⊗ Vj

,

so that

Fi+1 = Fi ⊗A Fi+1 : Xi+1 = Xi ⊗A KA(fi+1) → Yi ⊗A KA(det fi+1) = Yi+1.
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This map of complexes induces a map of exact sequences in homology

H0(Hp(Xi)⊗A KA(fi+1)) −−−−→ Hp(Xi+1) −−−−→ H1(Hp−1(Xi)⊗A KA(fi+1))y
y

y
H0(Hp(Yi)⊗A KA(det fi+1)) −−−−→ Hp(Yi+1) −−−−→ H1(Hp−1(Yi)⊗A KA(det fi+1))

for p ≥ 0 [17, p. IV-2, Prop. 1], where the left hand and the right hand horizontal arrows are
injective and surjective, respectively. When Xi is acyclic, and since Yi is acyclic by hypothesis, the
diagram is trivial for p > 1, so that

Hp(Xi+1) = 0

for p > 1. The case p = 0 reduces to the commutative square

H0(H0(Xi)⊗A KA(fi+1))
∼=−−−−→ H0(Xi+1)y

y
H0(H0(Yi)⊗A KA(det fi+1))

∼=−−−−→ H0(Yi+1)

and it gives a canonical map

H0(Fi+1) = µ[i+1] : M[i+1] = H0(Xi+1) → H0(Yi+1) = A[i+1] ⊗ V (i+1),

where M[i+1] = M1 ⊗AM2 ⊗A . . . ⊗AMi+1, A[i+1] = A/〈det f1, . . . , det fi+1〉 ∼= A/〈det f1〉 ⊗A
· · · ⊗A A/〈det fi+1〉, µ[i+1] = µ1 ⊗A µ2 ⊗A · · · ⊗A µi+1, and V (i+1) = V1 ⊗ . . .⊗ Vi+1. When p = 1
we get the commutative square

H1(Xi+1)
∼=−−−−→ H1(H0(Xi)⊗A KA(fi+1))y

y
H1(Yi+1)

∼=−−−−→ H1(H0(Yi)⊗A KA(det fi+1))

.

The left hand vertical arrow of the first of the above two diagrams is the ‘cokernel’ and the right
hand vertical arrow of the second diagram is the ‘kernel’ of

H0(Xi)⊗A (A⊗ Vi+1)
1⊗Afi+1−−−−−→ H0(Xi)⊗A (A⊗ Vi+1)

H0(Fi)⊗A1

y
yH0(Fi)⊗Aadj fi+1

H0(Yi)⊗A (A⊗ Vi+1)
1⊗Adet fi+1−−−−−−−−→ H0(Yi)⊗A (A⊗ Vi+1)

in which the bottom map

det fi+1 : A[i] ⊗ V (i+1) → A[i] ⊗ V (i+1)

is injective by hypothesis. If H0(Fi) were also injective then we could conclude that the top map is
injective and hence also that

H1(Xi+1)
∼=−→ H1(H0(X)⊗A KA(fi+1)) = 0.
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To make the induction procedure work one must now be able to show that the ‘kernel’ vanishes,
i.e. that H0(Fi+1) : H0(Xi+1) → H0(Yi+1), is injective.

To begin we will show that H0(Fi)⊗A adj fi+1 is injective. For this it suffices to prove that

1⊗A adj fi+1 : H0(Yi)⊗A (A⊗ Vi+1) → H0(Yi)⊗A (A⊗ Vi+1)

is injective. The map det fi+1 : A[i] → A[i] is injective by hypothesis. From the commutative
diagram

A[i] ⊗ Vi+1
fi+1−−−−→ A[i] ⊗ Vi+1∥∥∥

yadj fi+1

A[i] ⊗ Vi+1
det fi+1−−−−−→ A[i] ⊗ Vi+1

we find that fi+1 : A[i] ⊗ Vi+1 → A[i] ⊗ Vi+1 is injective. But the diagram

A[i] ⊗ Vi+1
adj fi+1−−−−−→ A[i] ⊗ Vi+1∥∥∥ fi+1

y

A[i] ⊗ Vi+1
det fi+1−−−−−→ A[i] ⊗ Vi+1

also commutes so that
adj fi+1 : A[i] ⊗ Vi+1 → A[i] ⊗ Vi+1

is also injective.
Let us first show that µ[i+1] = H0(Fi+1) : H0(Xi+1) → H0(Yi+1) is injective for i = 0, 1. For

i = 0 this is clear from the first diagram in this proof. The case i = 1 is a bit more complicated.
Consider the diagram

M1 ⊗ V2
f2−−−−→ M1 ⊗ V2 −−−−→ M1 ⊗AM2

µ1⊗A1

y µ1⊗A1

y µ1⊗A1

y
A/〈det f1〉 ⊗ V (2) f2−−−−→ A/〈det f1〉 ⊗ V (2) −−−−→ (A/〈det f1〉 ⊗ V1)⊗AM2∥∥∥ adj f2

y 1⊗Aµ2

y
A/〈det f1〉 ⊗ V (2) det f2−−−−→ A/〈det f1〉 ⊗ V (2) −−−−→ A[2] ⊗ V (2)

,

where all the vertical maps, except possibly the right hand top vertical map, are injective, the
left hand horizontal maps are injective and the right hand horizontal maps are surjective. The
composite of the right hand vertical maps is H0(F2). Moreover, we have the exact sequence

TorA1 (N1,M2) →M1 ⊗AM2
µ1⊗A1−−−−→ (A/〈det f1〉 ⊗ V1)⊗AM2 → N1 ⊗AM2 → 0,

and so it suffices to show that TorA1 (N1,M2) = 0. But this follows from the commutative diagram

N1 ⊗ V2
f2−−−−→ N1 ⊗ V2 −−−−→ N1 ⊗AM2yµ1⊗A1

y
y

A/〈det f1〉 ⊗ V (2) det f2−−−−→ A/〈det f1〉 ⊗ V (2) −−−−→ A[2] ⊗ V (2)
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in which the left hand vertical map, the left hand bottom horizontal map and hence also the left
hand top map are injective. Now let i ≥ 1.

Induction hypothesis: For each j such that 0 ≤ j ≤ i and every subset J ⊂ [n] with [j] ∩ J = ∅
and |J | = i− j the map

µ[j] : M[j] ⊗A AJ → A[j] ⊗A AJ ⊗ V (j)

is injective. Here [j] = {1, 2, . . . , j} and |J | is the cardinality of J . Furthermore, AJ is the tensor
product over A of the quotients A/〈det fk〉 with k ∈ J , i.e. AJ = A/J , where J is the ideal of A
generated by {det fk|k ∈ J}.

If k /∈ [j] ∪ J then by the induction hypothesis and the regularity condition the vertical maps
and the bottom horizontal map in the commutative square

M[j] ⊗A AJ det fk−−−−→ M[j] ⊗A AJ

µ[j]

y
yµ[j]

A[j]∪J ⊗ V (j) det fk−−−−→ A[j]∪J ⊗ V (j)

are injective and hence so is the top horizontal map. Furthermore, since (adj fk)fk = det fk =
fk(adj fk), it follows that in the commutative diagram with exact rows

M[j] ⊗A AJ ⊗ Vk
fk−−−−→ M[j] ⊗A AJ ⊗ Vk −−−−→ M[j] ⊗AMk ⊗A AJ

∥∥∥ adj fk

y
yµk

M[j] ⊗A AJ ⊗ Vk
det fk−−−−→ M[j] ⊗A AJ ⊗ Vk −−−−→ M[j] ⊗A Ak ⊗A AJ ⊗ Vk,

in which the right hand horizontal maps are surjective and the left hand bottom map is injective,
the maps fk and adj fk are injective and hence so is µk. Moreover, for every l such that 1 ≤ l ≤ j
and Jl = (l+1, . . . , j, k)∪J it follows by the induction hypothesis and the regularity condition that
the vertical maps and the bottom horizontal map in the commutative square

M[l−1] ⊗A AJl
det fl−−−−→ M[l−1] ⊗A AJl

µ[l−1]

y
yµ[l−1]

A[l−1]∪Jl ⊗ V (l−1) det fl−−−−→ A[l−1]∪Jl ⊗ V (l−1)

are injective and hence so is the top horizontal map. In the commutative diagram with exact rows

M[l−1] ⊗A AJl ⊗ Vl
fl−−−−→ M[l−1] ⊗A AJl ⊗ Vl −−−−→ M[l] ⊗A AJl

∥∥∥ adj fl

y
yµl

M[l−1] ⊗A AJl ⊗ Vl
det fl−−−−→ M[l−1] ⊗A AJl ⊗ Vl −−−−→ M[l−1] ⊗A Al ⊗A AJl ⊗ Vl

the map det fl is injective and the right hand horizontal maps are surjective. Since (adj fl)fl =
det fl = fl(adj fl), it follows from the above commutative diagram that the maps fl and adj fl are
also injective and hence so is µl.

Now, choosing k = i + 1, we find by composition that

µ[j] : M[j] ⊗A AJ → A[j] ⊗A AJ ⊗ V (j)

is injective for j = 0, 1, 2, . . . , i + 1 and any J ⊂ [n] with [j] ∩ J = ∅ and |J | = i + 1− j. ¤
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4. Euler Characteristic and Intersection Multiplicities

As in the preceeding sections

dimM = dimA/ annAM = sup {dim(A/p)|p ∈ Ass(M)}

is the Krull dimension of an A-module M. Moreover, since A is a Noetherian (complete regular)
local algebra over a field F , the ‘intersection theorem’

dimN ≤ dhAM+ dim(M⊗A N )

of Peskine-Szpiro [4, Cor. 9.4.6] holds for finitely generated A-modules M and N .

4.1. Lemma. If f is regular then the A-module M1 ⊗AM2 ⊗A · · · ⊗AMn has finite length and
for i = 1, 2, . . . , n :

(1) dim(M1 ⊗AM2 ⊗A · · · ⊗AMi) = n− i,
(2) dim(M1 ⊗A · · · ⊗AMi) + dimMi+1 = dimA+ dim(M1 ⊗AM2 ⊗A · · · ⊗AMi+1), where

Mn+1 = A,
(3) M1 ⊗AM2 ⊗A · · · ⊗AMi is a Cohen-Macaulay module.

Proof. As in the proof of Theorem 3.3, we denote by M[i] the product M1 ⊗A M2 ⊗A · · · ⊗A
Mi, i = 1, 2, . . . , n. The module M[n] is also denoted by M. If f is regular then det f =
(det f1, det f2, . . . , det fn) is a regular sequence in A, so that A/〈det f〉 has finite length. The
surjection A/〈det f〉 ⊗ V → M implies that M has finite length, since V = V1 ⊗ V2 ⊗ · · · ⊗ Vn is
finite dimensional over F . By Theorem 3.3 we have the inequalities

dhAM[i] ≤ i and dhA(Mi ⊗A · · · ⊗AMn) ≤ n− i + 1

for i = 1, 2, . . . , n. Moreover, dimM = 0 since M has finite length, and dimMi = n − 1 by
Theorem 2.1, Applying the theorem of Peskine and Szpiro [4, Thm. 9.4.5] to M = M[i] ⊗A
(Mi+1 ⊗A · · · ⊗AMn) we get that dimM[i] ≤ dhA(Mi+1 ⊗A · · · ⊗AMn) ≤ n − i. Now M[i] ∼=
M[i] ⊗A A, hence [4, Cor. 9.4.6] gives

n = dimA ≤ dhAM[i] + dim(M[i] ⊗A A) ≤ i + n− i = n

for i = 1, 2, . . . , n. But then we must conclude that dhAM[i] = i and dimM[i] = n− i for each i,
and therefore

dimM[i] + dimMi+1 = 2n− i− 1 = dimA+ dimM[i+1]

for i = 1, 2, . . . , n− 1. The equality dhAM[i] + codhAM[i] = n [17, IV-35, Prop. 21] implies that
codhAM[i] = n− i = dimM[i], so that each M[i] is a Cohen-Macaulay module. ¤

4.2. Corollary. If q = {q1, q2, . . . , qn} is a regular sequence in A and pi is a prime divisor of qi

for each i then the sequence p = {p1, p2, . . . , pn} is also regular.

Proof. Since A/〈q1, . . . , qn〉 has finite length also A/〈p1, . . . , pn〉 has finite length and dimA/〈pi〉 =
n− 1. Observe that Theorem 3.3 is still valid if we replace Mi by A/〈pi〉, fi by pi, adj fi by qi/pi,
and det fi by qi. Now taking Mi = A/〈pi〉 in Lemma 4.1 we see that p is a regular sequence. ¤
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Next we recall some of the definitions and the properties of the theory of cycles [17]. If q is a
prime ideal of A then ht q = dimAq and coht q = dimA/q. Moreover, ht q + coht q = dimA = n,
since A is a finitely generated F -algebra and an integral domain. The free abelian group

Z(A) =
{∑

z(q)q|z(q) ∈ Z
}

generated by Spec(A) is the group of cycles of A. If

Za(A) =





∑

coht q=a

z(q)q|z(q) ∈ Z




is the subgroup of cycles of coheight a, then Z(A) = ⊕Za(A). A cycle z =
∑

z(q)q is called positive
if and only if z(q) ≥ 0 for all q. Grading by height or codimension gives Zα(A) = Zn−α(A) ={∑

ht q=α z(q)q|z(q) ∈ Z
}

.

If dimA = n and a + b = n + c then the cycle product

· : Za(A)⊗ Zb(A) → Zc(A)

is defined by linearity
za · zb =

∑

coht r=c

za(p)zb(q)χAr(Ar/p,Ar/q)r,

i.e. p · q =
∑

coht r=c χAr(Ar/p,Ar/q)r. Grading by height or codimension gives

· : Zα(A)⊗ Zβ(A) → Zα+β(A),

where
zα · zβ =

∑

ht r=α+β

zα(p)zβ(q)χAr(Ar/p,Ar/q)r,

i.e. p · q =
∑

ht r=α+β χAr(Ar/p,Ar/q)r.
For any finitely generated A-module M and every integer a, consider the cycle [17, V-1-2]

za(M) =
∑

coht q=a

lq(M)q,

where lq(M) = lAq(Mq), coht q = dimA/q, and the sum is over all prime ideals q of coheight a.
If dimM ≤ a, dimN ≤ b and dim(M⊗A N ) ≤ c with a + b = n + c then the cycles za(M) and
zb(N ) are defined, intersect properly, and Serre’s theorem [17,V-22] says that the intersection cycle
is given by

za(M) · zb(N ) = zc(TorA(M,N )) =
∑

i

(−1)izc(TorAi (M,N )),

where the coefficient of a prime ideal p ∈ V (M⊗A N ) with coht p = c is the Euler characteristic

χp(M,N ) =
∑

i

(−1)il(TorAi (M,N )p),
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which is additive in M and N .
Some of the properties of the cycle function za are :
(1) za(M) ≥ 0.
(2) za(M) = 0 if dimM ≤ a− 1: If dimA/ annM = dimM ≤ a − 1 and coht q = a then

annM is not in q and hence Mq = 0.
(3) za is additive: If 0 → N → M → L → 0 is exact then so is 0 → Nq → Mq → Lq → 0.

Hence, l(Mq) = l(Nq) + l(Lq) so that za(M) = za(N ) + za(L).
(4) Universal property: Every additive function on Ka(A) taking positive values in an ordered

abelian group factors through za.
(5) If A is a domain and dimA = n, then Zn(A) ∼= Z and zn : Kn(A) → Z is the rank function.

4.3. Theorem. Let f be an n-parameter system, m ∈ σ(f) and let I be the ideal 〈det f1,det f2, . . . ,
det fn〉 in A = Am. If f is regular at m then M = M1 ⊗AM2 ⊗A . . .⊗AMn has finite length and

lA(M) =
∑

pi| det fi

lp1(M1) . . . lpn(Mn)lA(A/〈p1〉,A/〈p2〉, . . . ,A/〈pn〉) = lA(A/I),

where the length lpi(Mi) of the localization of Mi at pi is equal to the multiplicity of pi in det fi

and lA(A/〈p1〉,A/〈p2〉, . . . ,A/〈pn〉) = χA(A/〈p1, p2, . . . , pn〉) = i(p1, p2, . . . , pn) is the intersection
multiplicity of the hypersurfaces defined by the irreducible polynomials pi at the point m.

Proof. Lemma 4.1 says that

n− s = dim(M1 ⊗A . . .⊗AMs) = sup {coht p|p ∈ Ass(M1 ⊗A . . .⊗AMs)} .

In particular, M has finite length and the cycles zn−1(Mi) intersect properly. In fact, since
TorA(M1 ⊗A . . .⊗AMs,Ms+1) = M1 ⊗A . . .⊗AMs by Theorem 3.3(2) and

dim(M1 ⊗A · · · ⊗AMs) + dimMs+1 = dimA+ dim(M1 ⊗A · · · ⊗AMs+1)

by Lemma 4.1, the cycles zn−s(M1 ⊗A . . . ⊗A Ms) and zn−1(Ms+1) intersect properly for each
s = 1, 2, . . . , n− 1 [17, p. V-22, Prop. 1]. Now one proves by induction on s that

zn−1(M1) · zn−1(M2) · . . . · zn−1(Ms) = zn−s(M1 ⊗A . . .⊗AMs).

In particular, for s = n we get

zn−1(M1) · zn−1(M2) · . . . · zn−1(Mn) = z0(M) = lA(M)m.

By Theorem 2.1 the prime ideals of coheigth n − 1 in Var(Mi) are exactly the principal primes
generated by the prime divisors of det fi, and so

zn−1(Mi) =
∑

coht q=n−1

lq(Mi)q =
∑

p| det fi

l〈p〉(Mi)〈p〉,

where p runs all over prime divisors of det fi. The associativity of the cycle product shows that the
coefficient of m on the left hand side of the equation is exactly

∑

pi| det fi

lp1(M1) . . . lpn(Mn)χ(A/〈p1〉, . . . ,A/〈pn〉).
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The same procedure applied to the system det f shows that this is also equal to l(A/〈det f〉). Further-
more, it follows by Corollary 4.2 that we may replace the Euler characteristic χA(A/〈p1〉,. . . ,A/〈pn〉)
by the length lA(A/〈p1, . . . , pn〉). ¤

If the Koszul complex KA(f) of the n-parameter system f on the affine space An is acyclic, then
so is KA(f) at every point λλλ, since localization and completion are exact. In this case the assertions
of Theorem 4.3 hold for every point λλλ in An, i.e. at the ideal m generated by the polynomials
xi − λi, i = 1, 2, . . . , n.

Note that if the residue class field A/mA of A is isomorphic to the base field F then the length of
the A-moduleM coincides with the (vector space) dimension ofM over F , i.e. lA(M) = dimF (M).
Since M is finite dimensional, there is a positive integer, and hence a least positive integer r, such
that mrM = 0, i.e. mr ⊂ annAM. On the other hand, since the det fi form a regular sequence,
there is an integer, hence a least integer s, such that ms ⊂ I, i.e. annMms = M (see [18, p. 186,
Lemma 1]). The string of inclusions

I ⊆
n∑

j=1

annAMj ⊆ annAM⊂ m

implies that r ≤ s, with equality if I = annAM.
Observe that Theorem 4.3 generalizes a result of Binding and Browne [3], who proved for a

particular class of linear two-parameter systems with F = R that the dimension of the root subspace
(in our notation of M1 ⊗AM2) at the simple point λλλ equals the sum of the orders of contact of
the eigencurves (counting multiplicities) passing through λλλ. For the two-parameter case and also
for a simple point in the spectrum we have a more direct proof of Theorem 4.3 avoiding the use of
Theorem 3.3.

4.4. Theorem. If the 2-parameter system f is regular at the point m ∈ σ(f) then M1 ⊗AM2 has
finite length and

lA(M1 ⊗AM2) =
∑

pi| det fi

lp1(M1)lp2(M2)lA(A/〈p1, p2〉) = lA(A/〈det f1, det f2〉),

where
lA(A/〈p1, p2〉) = i(p1, p2)

is the intersection multiplicity of the algebraic curves defined by the irreducible polynomials p1 and
p2 at the point m.

Proof. By 2.1 there are canonical surjective A-module maps πi : A/〈det fi〉 ⊗ Vi → Mi for each
i = 1, 2 and hence a surjection of A-modules A/I⊗V →M, where I is the ideal 〈det f1, det f2〉 ⊂ A
and M = M1 ⊗AM2. The quotient A/I has finite length, i.e. AssA/I = {m}, since KA(det f)
is acyclic. Now M has finite length, since A/I has it and since V is finite-dimensional. It now
suffices to observe that dimA = 2 and dimMi = 1 for i = 1, 2. Since ∪p∈AssMi

p is the set
of zero-divisors for Mi in A and m /∈ AssMi there is a non-zerodivisor ai ∈ m for Mi, hence
dimMi/aiMi = 0. This means that codhMi = dimMi, i.e. that Mi is a Cohen-Macaulay
A-module, and we conclude by [17, V-19] that TorAk (M1,M2) = 0 for k > 0. This implies that
χm(TorA(M1,M2)) = lA(M1 ⊗A M2). For the rest see [8, 18 p.186], or prove it directly as
follows. The pair (det f1, det f2) forms a regular sequence in A, and so det f1 and det f2 must be
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relatively prime. Moreover, every pair of irreducible divisors {p1, p2} of {det f1, det f2} forms a
regular sequence in the Noetherian regular local (hence Cohen-Macaulay) algebra A [8 p. 40, 18].
It follows by [17, IV-5] that the Koszul complex KA(p1, p2) ∼= KA(p1)⊗AKA(p2) is a free resolution
of the A-module A/〈p1, p2〉. We conclude that

TorA(A/〈p1〉,A/〈p2〉) = A/〈p1〉 ⊗A A/〈p2〉 ∼= A/〈p1, p2〉
by [17, V-26], so that χA(A/〈p1〉,A/〈p2〉) = lA(A/〈p1, p2〉). ¤
4.5. Theorem. If m is a simple regular point for the multiparameter system f then

M∼= A/〈det f1, . . . , det fn〉
and

lA(M) =
∑

pi| det fi

lp1(M1) . . . ipn(Mn)lA(A/〈p1, p2, . . . , pn〉) = lA(A/I),

where I = 〈det f1, det f2, . . . , det fn〉 and lA(A/〈p1, p2, . . . , pn〉 = i(p1, p2, . . . , pn) is the intersec-
tion multiplicity of the hypersurfaces defined by the irreducible polynomials pi at the point m.

Proof. It suffices to show that the Koszul complex KA(f) is acyclic. The Koszul complex KA(det f)
is acyclic by assumption. It follows in particular that det fi 6= 0 and hence that fi : A⊗Vi → A⊗Vi

is injective for i = 1, 2, . . . , n so that KA(fi) is a free resolution of the A-module Mi. By Theorem
2.2 we have that Mi

∼= A/〈det fi〉. Now we prove by induction that KA(f) is acyclic. Assume that
Yi = KA(f1) ⊗A KA(f2) ⊗A . . . ⊗A KA(fi) is a free resolution of M1 ⊗A M2 ⊗A . . . ⊗A Mi

∼=
A/〈det f1, det f2, . . . , det fi〉. The acyclicity of KA(det f) implies that

TorAj (A/〈det f1, det f2, . . . , det fi〉,A/〈det fi+1〉) = 0

for j 6= 0 and therefore that

HA
j (Yi+1) = TorAj (M1 ⊗AM2 ⊗A . . .⊗AMi,Mi+1) = 0

for j 6= 0. We conclude that Yi+1 is acyclic and the proof is complete when i = n− 1. ¤

5. The Linear Multiparameter Case

A linear n-parameter system f is a system of linear polynomials

fi (x) =
n∑

j=1

Aijxj −Ai0, (i = 1, 2, . . . , n)

in n variables x = (x1, x2, . . . , xn), where we assume that the coefficients Aij are linear maps acting
on a finite-dimensional vector space Vi over a field F . From now on we assume that F is infinite.
The linear map Aij induces a linear map A†ij on the vector space V = V1 ⊗ V2 ⊗ · · · ⊗ Vn by acting
on the i-th tensor factor. The determinant ∆0 of the matrix




A†11 A†12 · · · A†1n

A†21 A†22 · · · A†2n
...

...
...

A†n1 A†n2 · · · A†nn






16 LUZIUS GRUNENFELDER AND TOMAŽ KOŠIR

is a linear transformation on V . It is well defined because any two entries from distinct rows in
the above matrix commute. In a similar way linear transformations ∆i (i = 1, 2, . . . , n) on V are

defined by replacing the i-th column in the matrix by
[
A†k0

]n

k=1
.

Recall that for each fi we have the short exact sequence

F [x]⊗ Vi
fi−→ F [x]⊗ Vi −→ Mi −→ 0

and its localization at a maximal ideal m in the variety VarMi

A⊗ Vi
fi−→ A⊗ Vi −→Mi −→ 0.

5.1. Theorem. For a linear multiparameter system f over an infinite field F the following are
equivalent :

(1) f is regular, i.e. KA (det f) is acyclic,
(2) there exists αi ∈ F (i = 0, 1, . . . , n) such that

∑n
i=0 αi∆i is invertible,

(3) the spectrum σ (f) is finite,
(4) the (Krull) dimension dim F [x] / 〈det f1, det f2, . . . , det fn〉 = 0,
(5) the sequence (det f1, det f2, . . . , det fn) is a regular sequence in F [x].
Each of the above statements implies :
(6) the Koszul complex KA (f) is acyclic for all m ∈ σ (f) and H0

A (f) has finite length.

Proof. The implication (2) ⇒ (3) was proved by Atkinson in [2, Thm. 6.8.1] and the inverse
implication (3) ⇒ (2) follows from [2, Thm. 8.7.2]. (Note that in the proof of [2, Thms. 8.2.1 and
8.7.2] the fact that F is an infinite field is used. This is the case for instance, if charF = 0.) To show
that (3) ⇔ (4) note that the spectrum σ (f) coincides with the set of all maximal ideals containing
det f . This set is finite if and only if dim F [x] / 〈det f1, det f2, . . . , det fn〉 = 0. The equivalencies
(1) ⇔ (4) and (1) ⇔ (5) are proved by Serre in [17, p. III-11, Prop. 6] and [17, p. IV-5, Prop. 3],
respectively.

Finally it follows by Theorem 3.3 that (1) ⇒ (6). ¤
Each of the equivalent statements (1), (3), (4) or (5) could be used as a definition of regularity

of a linear multiparameter system. Theorem 5.1 implies that in the linear case our definition of
regularity is equivalent with the standard one, i.e. to the statement (2) in Theorem 5.1 (see e.g.
[2]).

The following is a restatement of Theorem 4.3 for the linear case.

5.2. Theorem. If f is a regular linear n-parameter system on the affine space An then the
A-module M = M1 ⊗AM2 ⊗A . . .⊗AMn has finite length and

lA (M1 ⊗AM2 ⊗A . . .⊗AMn) =
∑

pi| det Pi

lp1(M1) . . . lpn(Mn)lA (A/ 〈p1, p2, . . . , pn〉) ,

where
lA (A/ 〈p1, p2, . . . , pn〉) = i(p1, p2, . . . , pn)

is the intersection multiplicity of the hypersurfaces defined by the irreducible polynomials pi at the
point m ∈ σ (f).



GEOMETRIC ASPECTS OF MULTIPARAMETER SPECTRAL THEORY 17

5.3. Example. Let us consider the linear 2-parameter system f , where the matrices f1(x) and
f2(x) are given by




x1 + x2 + 1 0 0 0
2 2x1 + x2 + 1 1− x2 2
0 x1 + x2 x1 + x2 x2 − 1
0 0 0 x1 + 2x2


 and




x2 − 1 x1 − 1 0
x1 x1 0
0 1 x2


 .

This system is simple at the point m = 〈x1, x2〉, i.e. the joint eigenspace at λλλ = (0, 0) is 1-
dimensional, so by Corollary 4.5 we have

M = M1 ⊗A M2
∼= A/ 〈det f1, det f2〉 ,

where det f1 = 2(x1 + x2 + 1)(x1 + 2x2)(x1 + x2)2 and det f2 = x1(x2 − x1)x2. A direct calculation
shows that for i = 1, 2, . . . the lengths of the filtered modules M/miM are 1, 3, 6, 8, 9, 9,. . . respec-
tively, and thus lA (M) = dimF M = 9. Let p11 = x1 + 2x2, p12 = x1 + x2, p21 = x1, p22 = x2− x1

and p23 = x2. By Theorem 5.2 we see next that

dimF M =
3∑

j=1

lA (A/ 〈p11, p2j〉) + 2
3∑

j=1

lA(A/ 〈p12, p2j〉 = 1 + 1 + 1 + 2 + 2 + 2 = 9.

5.4. Example. Some of the irreducible curves may be singular. Here is an example of such a
linear 2-parameter system f = (f1(x), f2(x)) in A5 :

f1 (x1, x2) =




x1 x2 0 0 0
0 x1 x2 0 0
−1 0 x1 x2 0
0 0 0 x1 x2

0 0 0 1 x1


 , f2 (x1, x2) =




x1 x2 0 0 0
0 x1 x2 0 0
0 0 x1 x2 0
1 0 0 x1 x2

0 0 0 0 x1


 ,

with the determinants det f1 = (x3
1 − x2

2)(x
2
1 − x2) and det f2 = x1(x4

1 − x3
2). The irreducible

components are then p11 = x3
1 − x2

2, p12 = x2
1 − x2, p21 = x1 and p22 = x4

1 − x3
2. The point (0, 0) is

then singular point for the curves of p11 and p22. Next it follows that

i (p11, p21) = lA
(A/

〈
x3

1 − x2
2, x1

〉)
= lA

(A/
〈
x1, x

2
2

〉)
= 2,

i (p11, p22) = lA
(A/

〈
x3

1 − x2
2, x

4
1 − x3

2

〉)

= 2lA
(A/

〈
x3

1 − x2
2, x2

〉)
+ lA

(A/
〈
x3

1 − x2
2, x1 − x2

〉)
= 6 + 2 = 8,

since x4
1 − x3

2 = x1

(
x3

1 − x2
2

)
+ x2

2 (x1 − x2), and

i (p12, p21) = lA
(A/

〈
x2

1 − x2, x1

〉)
= lA (A/ 〈x1, x2〉) = 1,

i (p12, p22) = lA
(A/

〈
x2

1 − x2, x
4
1 − x3

2

〉)

= 2lA
(A/

〈
x2

1 − x2, x2

〉)
+ lA

(A/
〈
x2

1 − x2, x1 − x2

〉)

+lA
(A/

〈
x2

1 − x2, x1 + x2

〉)
= 2 + 1 + 1 = 4,

since x4
1−x3

2 = x2
1

(
x2

1 − x2

)
+x2 (x1 − x2) (x1 + x2). Because lpij (Mi) = 1 for i = 1, 2 and j = 1, 2,

we conclude that dimF (M1 ⊗AM2) = 15.
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6. Blow-up at a Singular Point

The results in Theorem 4.3 and Theorem 5.2 provide a nice geometric interpretation of the
dimension of the total root space at a point λλλ = (λ1, λ2, . . . , λn), i.e. at the ideal m = 〈x1 − λ1 ,x2−
λ2,. . . ,xn − λn〉 , in the spectrum of a multiparameter system as long as all varieties associated with
the irreducible factors of the det fi are non-singular at that point. In the singular case the results
still hold, but are not so intuitive anymore. As a remedy we propose to blow up the affine space
An at the point λλλ (see [13,18]).

Let us assume for simplicity that λλλ = (0, 0, . . . , 0) ∈ An; the blow up at another point is obtained
by an affine change of coordinates. Consider the subvariety

B = {(x,y) |xiyj = xjyi, 1 ≤ i, j ≤ n} ⊂ An × Pn−1,

where Pn−1 is the n− 1-dimensional projective space over F , and the projection map

π : B → An × Pn−1 proj−−→ An

defined by π (x,y) = x. The ‘diagonal’ map

ρ : An/{λλλ} → B/π−1(λλλ),

given by ρ(x) = (x,x), is easily seen to be inverse to the corresponding restriction of π, and moreover

π−1(λλλ) = {λλλ} × Pn−1 ∼= Pn−1.

For any line La passing through λλλ, described by the parametric equation x = at, one has ρ(x) =
(x,a) for t 6= 0, and π−1(La) ∩ ({λλλ} × Pn−1) = {(0,a)}. We may extend ρ to

ρa : An → B

by defining ρ(λλλ) = (0,a). Choosing various lines, i.e. as a varies through Pn−1, we get all possible
points of λλλ×Pn−1, thus blowing up λλλ to {λλλ}×Pn−1 = π−1(λλλ). This gives a bijective correspondence
between lines through λλλ in An and points of the ‘exceptional divisor’ E = π−1(λλλ). Observe that
B = (B \ π−1(λλλ)) ∪ π−1(λλλ) and that B \ π−1(λλλ) ∼= An \ {λλλ} is irreducible. Hence the closure
B \ {x1 = 0} is irreducible as well. But π−1(La), and thus also π−1(La)∩π−1(λλλ), are in B \ π−1(λλλ)
for every a ∈ Pn−1, so that π−1(λλλ) ⊂ B \ π−1(λλλ). Therefore, B \ π−1(λλλ) = B and B is irreducible.

If Y ⊂ An is a closed subvariety passing through λλλ then the ‘blow-up’ of a curve Y at λλλ is
the closure YB = π−1(Y \ {λλλ}) in B. It is called the ‘strict transform’ of Y under the blow-up
π : B → An :

YB −−−−→ B

π

y
yπ

Y −−−−→ An

.

The total inverse image in B of the variety Y of an irreducible polynomial p(x) ∈ F [x] passing
through 0 in An is

π−1(Y ) = {(x,y) |p(x) = 0; xiyj = xjyi, 1 ≤ i, j ≤ n} ⊂ An × Pn−1.
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The projective space Pn−1 is covered by the n open sets Ui = {y|yi 6= 0}. If y1 6= 0, then we may
set y1 = 1 and use the remaining coordinates as affine parameters, so that

π−1(Y ) ∩ (An × U1) = {(x, z) |p(x) = 0,x = x1(1, z)} ⊂ A2n−1.

The substitution x = x1(1, z), then gives

p(x) = x
ep

1 q(x1, z),

where q is irreducible and not divisible by x1 and ep is the largest power of the maximal ideal
m of A containing p(x). The two irreducible components give E = {(x, z) |x = 0} and BY =
{(x, z) |q(x1, z) = 0,x = x1(1, z)}, so that BY ∩E = {z|q(0, z) = 0} is a variety of dimension n− 2.

6.1. Proposition. Let p1(x), p2(x), . . . , pn(x) be a regular sequence in F [x] and let Y1, Y2, . . . , Yn

be the corresponding hypersurfaces in An. Then E ∩n
i=1 YB is a finite set and

i(λλλ; Y1Y2 . . . Yn; An) = Πn
i=1eλλλ(Yi) +

∑

µµµ∈E

i(µµµ; BY1 ,BY2 , . . . ,BYn ; B),

where eλλλ(Yi) = epi is the largest power of the maximal ideal m of A containing pi(x).

Proof. If p1(x), p2(x), . . . , pn(x) form a regular sequence of polynomials in F [x], then the intersec-
tion multiplicity

i(λλλ; Y1Y2 . . . Yn; An) = lA (A/ 〈p1, p2, . . . , pn〉)
of the corresponding hypersurfaces Y1, Y2, . . . , Yn at the point λλλ in An is finite, and hence E∩n

i=1BYi

is a finite set. Moreover, if π : B → An is the blow-up of An at the point λλλ with the exceptional
divisor E, then the inverse image divisor of Yi on B is π∗(Yi) = eλλλ(Yi)E + BYi [8, p. 82]. The
assertion now follows from [8, p. 124]. See also [18, IV.3]. ¤
6.2. Example. As an illustration let us consider again the same 2-parameter system f in A5 as in
Example 5.4 :

f1 (x1, x2) =




x1 x2 0 0 0
0 x1 x2 0 0
−1 0 x1 x2 0
0 0 0 x1 x2

0 0 0 1 x1


 , f2 (x1, x2) =




x1 x2 0 0 0
0 x1 x2 0 0
0 0 x1 x2 0
1 0 0 x1 x2

0 0 0 0 x1


 ,

with the determinants det f1 = (x3
1 − x2

2)(x
2
1 − x2) and det f2 = x1(x4

1 − x3
2). Then, with x1z = x2,

one obtains p11 = x2
1(x1 − z2), p12 = x1(x1 − z), p21 = x1 and p22 = x3

1(x1 − z3), and we see that

i (Y11, Y21) = e(Y11)e(Y21) + i(Z11, Z21) = 2 + 0 = 2,

i (Y11, Y22) = e(Y11)e(Y22) + i(Z11, Z22) = 6 + 2 = 8,

i (Y12, Y21) = e(Y12)e(Y21) + i(Z12, Z21) = 1 + 0 = 1,

i (Y12, Y22) = e(Y12)e(Y22) + i(Z12, Z22) = 3 + 1 = 4.

Since all lpij (Mi) = 1 we conclude that dimF M1 ⊗A M2 = 15, which coincides with the result
obtained in Example 5.4.
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7. (In)decomposability of the Associated Modules

7.1. Proposition. If the module M = M1 ⊗AM2 ⊗A · · · ⊗AMn is indecomposable then all the
modules Mi are indecomposable.

Proof. It is clear that if Mi is decomposable then M is decomposable since ⊕ and ⊗A are distribu-
tive. ¤
7.2. Proposition. If m ∈ σ (f) is simple then M, and also each Mi, is indecomposable.

Proof. The decomposition of M = K ⊕ L induces a decomposition of M(0) = K(0) ⊕ L(0), where
M(0) = M/mM. Since M(0) is one-dimensional one of K(0) and L(0) is 0. By the Nakayama
Lemma then one of the modules K or L is 0. The proof for Mi is the same. ¤

In general however, the converse of Proposition 7.1 does not hold :

7.3. Example. Consider the two-parameter system

f1 (x) =




x1 0 x1 x2

0 x1 0 0
1 0 x1 0
0 1 0 x1


 and f2 (x) =




x2 0 x2 x1

0 x2 0 0
1 0 x2 0
0 1 0 x2


 .

Then det f1 (x) = x3
1 (x1 − 1) and det f2 (x) = x3

2 (x2 − 1). Because ∆0 is invertible it follows by
Theorem 5.1 that the system f = (f1, f2) is regular. All the irreducible factors of the determinantes
det f1 and det f2 are linear. Conting the multiplicities of these irreducible factors it follows by
Theorem 5.2 that the root subspace at (0, 0) has dimension 9.

One checks directly that

M0(0)
1 =





e00 ⊗




0
0
α
β


 : α, β ∈ F





and

M0(1)
1 =





e00 ⊗




α
β
γ
δ


 + e01 ⊗




0
0
ε
α


− e10 ⊗




0
0
α
β


 : α, β, γ, δ, ε ∈ F





.

Let U be the subcomodule of M0
1 ‘generated’ by the element

u = e00 ⊗




1
0
0
0


 + e01 ⊗




0
0
0
1


− e10 ⊗




0
0
1
0


 .

Then

U =





e00 ⊗




α
0
β
γ


 + e01 ⊗




0
0
0
α


− e10 ⊗




0
0
α
0


 : α, β, γ ∈ F





.
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Since U is the smallest subcomodule of M0
1 containing u it is indecomposable. Note also that

M0(0)
1 ⊂ U and therefore U (0) = M0(0)

1 . Suppose that M0
1 is decomposable, i.e. M0

1 = K ⊕ L.
Then U = (U ∩ K) ⊕ (U ∩ L). From the relation U (0) = M0(0)

1 . it follows that U (0) = K(0) ⊕ L(0)

and hence either K(0) = 0 or L(0) = 0. But then it follows by the dual Nakayama Lemma [12] that
either K = 0 or L = 0. Hence M0

1 is indecomposable. The proof that M0
2 is indecomposable is the

same only the indices i = 1 and i = 2 are interchanged.
Let R be the root subspace of the associated system Γ at λλλ = (0, 0). Obviously R is invariant

for both Γ1 and Γ2. We use the main results of [15] to construct a basis B for R such that the pair
(Γ1,Γ2) restricted to R is in the canonical form

Γ1|R =




0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0




and

Γ2|R =




0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0




.

Now it is easy to check that R = R1 ⊕ R2, where R1 is spanned by the first 8 vector of the
basis B and R2 is spanned by the last vector in B, and that both R1 and R2 are invariant for Γ1

and Γ2. Then R is decomposable as a module over the algebra generated by Γ1 and Γ2. Since
R = ε†

(
M(0)

1 ⊗B0 M(0)
2

)
by the main theorem of [10] it follows that M(0)

1 ⊗B0 M(0)
2 , and thus also

M1 ⊗AM2, is decomposable.
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[12] L. Grunenfelder and T. Košir. Koszul Cohomology for Finite Families of Comodule Maps and

Applications, Comm. in Alg 25: 459–479, 1997.
[13] R. Hartshorne. Algebraic Geometry. Springer-Verlag, 1977.
[14] H.(G.A.) Isaev. Lectures on Multiparameter Spectral Theory. Dept. of Math. and Stats.,

University of Calgary, 1985.
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[17] J.P. Serre. Algèbre Locale – Multiplicités, volume 11 of Lect. Notes in Math. Springer-Verlag,

1965.
[18] I.R. Shafarevich. Basic Algebraic Geometry. Springer-Verlag, 1974.
[19] B.D. Sleeman. Multiparameter Spectral Theory in Hilbert Space, volume 22 of Pitman Research

Notes in Mathematics. Pitman Publ. Ltd., London U.K., Belmont U.S.A., 1978.
[20] V. Vinnikov. Complete Description of Determinantal Representations of Smooth Irreducible

Curves. Lin. Alg. Appl., 125:103–140, 1989.
[21] H. Volkmer. Multiparameter Eigenvalue Problems and Expansion Theorems, volume 1356 of

Lecture Notes in Mathematics. Springer-Verlag, Berlin, New York, 1988.

Department of Mathematics, Statistics and Computing Science, Dalhousie University, Halifax,
Nova Scotia, Canada, B3H 3J5

and

Department of Mathematics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia


