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A GROEBNER BASIS FOR THE 2× 2
DETERMINANTAL IDEAL MOD t2

TOMAŽ KOŠIR AND B.A. SETHURAMAN

Abstract. In an earlier paper ([6]) we had begun a study of the
components and dimensions of the spaces of (k−1)-th order jets of
the classical determinantal varieties: these are the varieties Zm,n

r,k

obtained by considering generic m×n (m ≤ n) matrices over rings
of the form F [t]/(tk), and for some fixed r, setting the coefficients
of powers of t of all r×r minors to zero. In this paper, we consider
the case where r = k = 2, and provide a Groebner basis for the
ideal Im,n

2,2 which defines the tangent bundle to the classical 2 ×
2 determinantal variety. We use the results of these Groebner
basis calculations to describe the components of the varieties Zm,n

r,4

where r is arbitrary. (The components of Zm,n
r,2 and Zm,n

r,3 were
already described in [6].)

1. Introduction

Let F be an algebraically closed field and Ak
F the affine space of

dimension k over F . By a variety in Ak
F we will mean the zero set

of a collection of polynomials over F in k variables; in particular, our
varieties are not assumed irreducible. In the paper [6], we had begun
a study of the components and dimensions of the following varieties
that are very closely related to the classical determinantal varieties:
Consider the truncated polynomial ring F [t]/(tk) (k = 1, 2, 3, . . . ), and
let X(t) = (xi,j(t))i,j be the generic m × n (m ≤ n) matrix over this

ring; thus, the (i, j) entry of X is of the form xi,j(t) = x
(0)
i,j +x

(1)
i,j t+· · ·+

x
(k−1)
i,j tk−1, where for various i, j and l the x

(l)
i,j are variables. Let Im,nr,k be

the ideal of R = F [x
(l)
i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n, 0 ≤ l < k] generated

by the coefficients of powers of t in each r × r minor of the generic
matrix X(t), and define Zm,n

r,k ⊆ Anmk
F to be the zero set of Im,nr,k .
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(When k = 1, of course, we simply recover the classical determinantal
varieties.)

These varieties are just the spaces of (k − 1)-th order jets of the
classical determinantal varieties. Our interest in them was sparked by
the fact that a special case of these varieties had arisen in some previous
work on commuting matrices ([9]).

We had shown in [6] that Zm,n
r,k is irreducible when r = m, and

reducible (with at least 1 + bk/2c components) when r < m. When
r = 2 < m, we had explicitly determined the components, and shown
that there are exactly 1 + bk/2c of them.

In this paper, we provide a Groebner basis of the ideal I := Im,n2,2

that defines the 2 × 2 determinantal variety mod t2, for 2 ≤ m ≤ n.
Since these varieties may be interpreted as the tangent bundle over the
classical 2 × 2 determinantal variety (see [6, §1] or [1, AG §16.2] for
instance) they are of independent geometric interest. Note that in the
classical case (k = 1) the defining minors already form a Groebner basis
(see [10], also [3] and [8]). In our case (k = 2), however, Groebner bases
have to contain other polynomials in addition to the defining ones (see
Remark 2.3 ahead).

Essential portions of our Groebner basis calculations were done with
the computer algebra system Singular ([5]). To simplify our compu-
tations, we actually compute a Groebner basis of a related ideal I0

and deduce a Groebner basis for I from this. The two Groebner bases
together show that the ideal I0 is precisely the ideal of one of the two
components of Zm,n

2,2 . We then use this result, along with general facts
about Zm,n

r,k from [6], to provide a complete description of the compo-

nents of Zm,n
r,k in the case k = 4 and r arbitrary. (The components for

k = 2 and k = 3 were already described in [6].)

2. Groebner basis Computations

We will first switch to an easier notation: we will write xi,j and yi,j,

(1 ≤ i ≤ m, 1 ≤ j ≤ n), instead of x
(0)
i,j and x

(1)
i,j , respectively, and we

will write R = F [xi,j, yi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n]. Expanding each
2× 2 minor of the generic matrix (xi,j + tyi,j)i,j, we see that our ideal
I is defined by the family of polynomials δ[i,j][k,l] and ε[i,j][k,l], where

(1) δ[i,j][k,l] = det

(
xi,k xi,l
xj,k xj,l

)
= xi,kxj,l − xi,lxj,k,

and ε[i,j][k,l] is its “polarization,” i.e.,

(2) ε[i,k][j,l] = xi,kyj,l + yi,kxj,l − xi,lyj,k − yi,lxj,k.
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We will consider the graded reverse lexicographic order (grevlex) on
the monomials on R given by the following scheme: y1,1 > y1,2 > · · · >
y1,n > y2,1 > · · · > y2,n > · · · > ym,n > x1,1 > x1,2 > · · · > x1,n >
x2,1 > · · · > x2,n > · · · > xm,n. For a polynomial f ∈ R, we will write
lm(f) for its leading monomial. We introduce the following auxiliary
polynomials:

ρ[i,j,k][p,q,r] = det

 yi,p yi,q yi,r
yj,p yj,q yj,r
xk,p xk,q xk,r

 ,(3)

λ[i,j,k][p,q,r] = det

 yi,p yi,q xi,r
yj,p yj,q xj,r
yk,p yk,q xk,r

 ,(4)

ψ[i,j,k][p,q,r] = det

 yi,p yi,q yi,r
yj,p yj,q yj,r
yk,p yk,q yk,r

 .(5)

Note that at this stage the relative order of the indices i, j, k and
p, q, r can be arbitrary; for instance, ρ[1,3,2][1,2,3] will stand for the de-
terminant of a matrix whose middle row consists of y3,∗ and third row
consists of x2,∗.

We will assume that the characteristic of F is not 2 in what follows:

Theorem 2.1. A Groebner basis for I = Im,n2,2 (2 ≤ m ≤ n) with

respect to the grevlex ordering described above consists of the five fam-

ilies of polynomials ∆ = {δ[i,j][k,l] | 1 ≤ i < j ≤ m, 1 ≤ k < l ≤ n},
E = {ε[i,j][k,l] | 1 ≤ i < j ≤ m, 1 ≤ k < l ≤ n}, R = {ρ[i,j,k][p,q,r] | 1 ≤
i < j ≤ k ≤ m, 1 ≤ p < q < r ≤ n}, Λ = {λ[i,j,k][p,q,r] | 1 ≤ i < j <

k ≤ m, 1 ≤ p < q ≤ r ≤ n}, and Ξ = {xs,tψ[i,j,k][p,q,r] | 1 ≤ s ≤ m, 1 ≤
t ≤ n, 1 ≤ i < j < k ≤ m, 1 ≤ p < q < r ≤ n}.

Remark 2.2. Whenm = 2, it is to be understood above that a Groebner

basis for I2,n
2,2 consists of all δ[1,2][k,l] and all ε[1,2][k,l] with 1 ≤ k < l ≤ n,

and all ρ[1,2,2][p,q,r] with 1 ≤ p < q < r ≤ n. (In particular, when

m = n = 2, this is a special case of [6, Theorem 3.3] that the defining

polynomials δ[1,2][1,2] and ε[1,2][1,2] form a Groebner basis for I2,2
2,2 . This

is an exceptional situation, see Remark 2.3 ahead.)

Proof. We will write G for the family of polynomials in the statement of

the theorem. We first show that the polynomials ρ[i,j,k][p,q,r], λ[i,j,k][p,q,r],

and xs,tψ[i,j,k][p,q,r], with indices as in the theorem, indeed are in I.

Actually, we will show more: all polynomials ρ[i,j,k][p,q,r], λ[i,j,k][p,q,r],
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and xs,tψ[i,j,k][p,q,r], with no restriction on the indices, are in I. We

have:

ρ[i,j,k][p,q,r] − ρ[i,k,j][p,q,r] + ρ[i,k,j][p,q,r] − ρ[j,k,i][p,q,r] +

ρ[j,k,i][p,q,r] + ρ[i,j,k][p,q,r] = 2ρ[i,j,k][p,q,r].

However, it is easy to see that each of the three pairs in the left hand

side is in I: for instance,

ρ[i,j,k][p,q,r] − ρ[i,k,j][p,q,r] = yi,pε[j,k][q,r] − yi,qε[j,k][p,r] + yi,rε[j,k][p,q].

Similarly, the second pair can be rewritten as a sum of products of yk,∗
and ε[i,j][∗,∗], while the third pair, which equals, ρ[j,k,i][p,q,r] − ρ[j,i,k][p,q,r],

can be rewritten as a sum of products of yj,∗ and ε[i,k][∗,∗]. Since

the characteristic of F is not 2 by assumption, we find that indeed

ρ[i,j,k][p,q,r] ∈ I.

A similar computation with the sum λ[i,j,k][p,q,r]−λ[i,j,k][p,r,q]+λ[i,j,k][p,r,q]−
λ[i,j,k][q,r,p] + λ[i,j,k][q,r,p] + λ[i,j,k][p,q,r] shows that all possible polynomials

λ[i,j,k][p,q,r] are in I.

As for the polynomials xs,tψ[i,j,k][p,q,r], we expand the determinant of

the matrix 
xs,t ys,p ys,q ys,r
xi,t yi,p yi,q yi,r
xj,t yj,p yj,q yj,r
xk,t yk,p yk,q yk,r


in two ways, once along the top row, and once along the last column.

Equating the two, we find

xs,tψ[i,j,k][p,q,r] − ys,pλ[i,j,k][q,r,t] + ys,qλ[i,j,k][p,r,t] − ys,rλ[i,j,k][p,q,t] =

−ys,rλ[i,j,k][p,q,t] + yi,rλ[s,j,k][p,q,t] − yj,rλ[s,i,k][p,q,t] + yk,rλ[s,i,j][p,q,t].

Since we have already shown that all possible λ[i,j,k][p,q,r] are in I, it

follows that xs,tψ[i,j,k][p,q,r] ∈ I.

Remark 2.3. It is already clear that, unlike in the classical case, the

generating polynomials in ∆ and E do not suffice as a Groebner basis for

I (except when m = n = 2). Namely, the leading monomial of any

δ[i,j][k,l] (i < j, k < l) is xi,lxj,k, while the leading monomial of ε[i,j][k,l]
(i < j, k < l) is xi,kyj,l. On the other hand, the leading monomial of

ρ[i,j,k][p,q,r] (i < j ≤ k, p < q < r) is yi,ryj,qxk,p, and such a leading term

is not divisible by the leading monomial of any δ[i,j][k,l] or ε[i,j][k,l].
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The proof that the given families form a Groebner basis of I fol-

lows from the following theorem. This result helps us reducing the

complexity of the Groebner basis computations (see Remark 2.7).

Theorem 2.4. Assume m ≥ 3, and let I0 denote the ideal of R =

F [xi,j, yi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n] defined by the polynomials of the

families ∆, E, and Ψ = {ψ[i,j,k|p,q,r] | 1 ≤ i < j < k ≤ m, 1 ≤ p <

q < r ≤ n}. Then a Groebner basis of I0 with respect to the grevlex

ordering above consists of the polynomials in the families ∆, E, R, Λ,

and Ψ.

We will prove this theorem ahead, but we will now show how the

proof of Theorem 2.1 follows from Theorem 2.4. In order to show that

the polynomials in G form a Groebner basis for I we need to show that

all possible pairs of S-polynomials S(α, β), where α and β range over

G, can be written as
∑
fγγ, fγ a polynomial in R, and γ ranging over

G, with lm(fγγ) ≤ lm(S(α, β)) (see e.g. [4, Chapter 2, §9, Theorem

3]). We will adopt the notation of [4] and write S(α, β)→G0 when this

happens. We assume first that m ≥ 3 and we write H for the family of

polynomials of Theorem 2.4 above, i.e. H = ∆∪ E ∪R∪Λ∪Ψ. Since

the polynomials of H form a Groebner basis for I0, and since I ⊂ I0,

we must have S(α, β)→H0 for all α, β ∈ G by the generalized division

algorithm (see [4, Chapter 2, §3, Theorem 3] for instance). Write U for

the family of polynomials in ∆, E , R and Λ. Then, for α, β ∈ G we

write

S(α, β) =
∑
γ∈U

fγγ +
∑
ψ∈Ψ

fψψ

with lm(fγγ), lm(fψψ) ≤ lm(S(α, β)).

We break up each fψ as gψ+hψ, where hψ contains all the monomials

of fψ that only involve the yi,j or are constant, so gψ contains all the

monomials of fψ divisible by at least one of the xi,j. Since every mono-

mial of every polynomial in G is divisible by some xi,j, every monomial

of S(α, β) will also be divisible by some xi,j. By choice, every monomial

in every γ ∈ U and every monomial in every gψ is divisible by some xi,j
while no monomial of any of the polynomials hψψ is divisible by any

xi,j. Hence, setting all xi,j = 0, we find
∑

ψ∈Ψ hψψ = 0. We thus have

the rewrite

S(α, β) =
∑
γ∈U

fγγ +
∑
ψ∈Ψ

gψψ.
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Moreover, lm(gψ) ≤ lm(fψ) as the monomials of gψ come from fψ, so

lm(gψψ) ≤ lm(fψψ) ≤ lm(S(α, β)). Further breaking up each gψ as∑
m, where m runs through the monomials of gψ, and writing mψ

as m′xi,jψ for some xi,j that necessarily divides m, we get a rewrite

of S(α, β) in terms of the polynomials in G. Moreover, for any such

monomial m appearing in a gψ, lm(m) ≤ lm(gψ), so lm(m′xi,jψ) =

lm(mψ) ≤ lm(gψψ) ≤ lm(S(α, β)). Thus, S(α, β)→G0 as desired.

In the case where m = 2, we may embed the ambient ring R =

F [xi,j, yi,j | 1 ≤ i ≤ 2, 1 ≤ j ≤ n] in the ring R′ = F [xi,j, yi,j | 1 ≤
i ≤ 3, 1 ≤ j ≤ n] and work there. Given α and β from the families

in Remark 2.2, we have a rewrite S(α, β) =
∑

γ∈H fγγ, where the

family H is from the larger ring R′, and lm(fγγ) ≤ lm(S(α, β)). Since

the polynomial S(α, β) does not involve any of the variables x3,j or

y3,j, the sum of all the monomials on the right side of the equation

S(α, β) =
∑

γ∈H fγγ that are divisible by some x3,j or y3,j must be

zero. Throwing these out, we find that we are left precisely with a sum

of polynomials of the form gγγ, where γ comes from one of the families

in Remark 2.2, and where gγ is obtained from the corresponding fγ by

throwing away any monomial divisible by some x3,j or y3,j. It follows

that lm(gγ) ≤ lm(fγ) so lm(gγγ) ≤ lm(fγγ) ≤ lm(S(α, β)). We thus

have the desired rewrite showing that indeed the polynomials from the

families in Remark 2.2 form a Groebner basis for I2,n
2,2 .

The rest of the proof of Theorem 2.1 therefore consists of proving

Theorem 2.4.

Proof of Theorem 2.4:

We need to show that all possible pairs of S-polynomials S(α, β),

where α and β range over these families in H, can be written as∑
fγγ, fγ a polynomial in R, and γ ranging over H, with lm(fγγ) ≤

lm(S(α, β). We will dispose of some computations right away by in-

voking the theorem proved by Sturmfels (and others, see [3, 8, 10])

cited earlier about the classical determinantal ideals Im,nr,1 : the defin-

ing determinantal polynomials for the classical determinantal varieties

form a Groebner basis for Im,nr,1 under the grevlex order, with the mn

variables ordered in any manner such that the leading monomial of

any r × r determinant is the product of the entries on the diagonal

from the top right to the bottom left corner. We call this product the

antidiagonal term. (Note that although Sturmfels’ proof is for one par-

ticular (lexicographic) order, the proof works for any order that ensures
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that the leading monomial is always the antidiagonal term. The key to

Sturmfels’ proof, and the only place where the specific order comes into

the picture, is in Lemma 6 of [10], and this in turn depends only on the

fact that the leading term of any r× r determinant is the antidiagonal

term.)

Since the polynomials in ∆ are just the defining polynomials of the

classical 2× 2 determinantal variety in the variables xi,j, and since our

order on the xi,j ensures that the leading term of any 2×2 determinant

is always the antidiagonal term, we find S = S(δ[i,j][k,l], δ[i′,j′][k′,l′])→∆0.

Trivially therefore, S→H0 as well. Similarly, we find by Sturmfels’

result that S = S(ψ[i,j,k][p,q,r], ψ[i′,j′,k′][p′,q′,r′])→Ψ0. Trivially therefore,

S→H0.

We next dispose of S-polynomials of pairs of polynomials of the form

S(R,R), S(R,Ψ), S(Λ,Λ), and S(Λ,Ψ) as well. (Here S(A,B) stands

for the set of all S-polynomials S(α, β) for α ∈ A and β ∈ B.) Given

a pair ρ[i,j,k][p,q,r] and ρ[i′,j′,k′][p′,q′,r′] whose S-polynomial we need, we

arrange our variables in a 2m× n matrix with the upper m× n block

consisting of the yi,j and the lower m × n block consisting of the xi,j,

and then choose the submatrix M consisting of the y variables from

the rows i, j, i′, j′, and columns p, q, r, p′, q′, and r′ and the x

variables from the row k, k′ and columns p, q, r, p′, q′, and r′. (The

understanding here is that when some of the rows and columns defined

by the two ρ polynomials are equal we use the variables from these

rows and columns just once.) Working within this submatrix M , we

find once again that the variable order on the yi,j and xi,j that we

have chosen guarantees that the leading term of any 3× 3 determinant

of M is always the antidiagonal term, so Sturmfels’ result shows that

S = S(ρ[i,j,k][p,q,r], ρ[i′,j′,k′][p′,q′,r′]) can be rewritten as
∑

γ fγγ, with γ

ranging over all 3×3 minors of M , and lm(fγγ) ≤ lm(S). Such minors

are of three kinds: (1) All three rows consist of y variables: these are

just the polynomials ψ that are already in H. (2) The first two rows

consist of y variables and the last row consists of x variables: these are

just the polynomials ρ that are already in H. (3) The first row consists

of y variables and the last two rows consist of x variables: such a γ

can be expanded (along the top row) as a sum ysδs where ys ranges

over the y variables in the first row, and of course, δs ∈ H. Since

the monomials of ysδs all appear in γ, i.e., no cancelation occurs, it
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follows that lm(ysδs) ≤ lm(γ). So lm(fγysδs) ≤ lm(fγγ) ≤ lm(S).

This implies that S→H0.

To compute the S-polynomial of a pair ρ[i,j,k][p,q,r] and ψ[i′,j′,k′][p′,q′,r′],

we choose the submatrixM consisting of the y variables from the rows i,

j, i′, j′, k′ and columns p, q, r, p′, q′, and r′ and the x variables from the

row k and columns p, q, r, p′, q′, and r′. Working within this submatrix

M , Sturmfels’ result shows that S = S(ρ[i,j,k][p,q,r], ψ[i′,j′,k′][p′,q′,r′]) can

be rewritten as
∑

γ fγγ, with γ ranging over all 3× 3 determinants of

M , and lm(fγγ) ≤ lm(S). Such determinants are of two kinds: (1)

The first kind has all three rows consisting of the y variables: these

are just the polynomials ψ that are already part of H. (2) The second

kind has the top two rows consisting of the y variables and the last

row consisting of the x variables: these are just the polynomials ρ that

already part of H. It follows therefore that S→H0.

An analogous reduction works for S(Λ,Λ) and S(Λ,Ψ). We first

arrange our variables in a m × 2n matrix with the left m × n block

consisting of the yi,j and the right m × n block consisting of the xi,j,

and then choose an appropriate submatrix M as above. The order on

the yi,j and xi,j that we have chosen once again guarantees that the

leading term of any 3× 3 determinant of M is always the antidiagonal

term. Sturmfels’ result now applies to M and ensures analogously that

all S(Λ,Λ)→H0 and S(Λ,Ψ)→H0.

Finally, all computations of S(∆,Ψ) can be eliminated since the

leading terms of any α ∈ ∆ and β ∈ Ψ are obviously relatively prime,

so S(α, β)→H0 anyway ([4, Chapter 2, §9, Proposition 4]).

We now proceed to show that the remaining eight cases of S-polynomials

reduce to zero as well: we need to check the S-polynomials of elements

of the following pairs of families: S(∆, E), S(∆,R), S(∆,Λ), S(E , E),

S(E ,R), S(E ,Λ), S(E ,Ψ), and S(R,Λ). For each pair of families in this

list, there is a large number of cases to check, depending on the relative

position of the variables in the two polynomials whose S-polynomial is

being computed.

We first observe the following:

Lemma 2.5. Suppose one has a rewrite S(α′, β′) =
∑

γ′ f ′γ′γ′, with

γ′ ∈ H and with lm(f ′γ′γ′) ≤ lm(S(α′, β′)). Suppose that α′ and β′

are defined by various products of xi,j and yi,j arising from a fixed

grid T ′ = {(i′ξ, j′η) | 1 ≤ ξ, η ≤ p} with i′1 < i′2 < · · · < i′p and
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j′1 < j′2 < · · · < j′p. Suppose, too, that all the variables that appear

in all the polynomials f ′γ′ and γ′ in the rewrite above also arise from

the same grid T ′. Let T = {(iξ, jη) | 1 ≤ ξ, η ≤ p} be another grid with

i1 < i2 < · · · < ip and j1 < j2 < · · · < jp. Write α, β, γ, fγ for the

corresponding polynomials obtained by substituting xiξ,jη for xi′ξ,j′η and

yiξ,jη for yi′ξ,j′η . Then S(α, β) =
∑

γ fγγ, and lm(fγγ) ≤ lm(S(α, β)).

Moreover, γ ∈ H.

Proof. The map from the subrings W ′ = F [xi′,j′ , yi′,j′ | (i′, j′) ∈ T ′] to

W = F [xi,j, yi,j | (i, j) ∈ T ] that sends xi′ξ,j′η to xiξ,jη and yi′ξ,j′η to yiξ,jη
is a ring homomorphism that preserves the monomial order. Moreover,

H, by definition, is closed under such maps. �

We will use this lemma as follows: While computing all possible S-

polynomials S(α, β) where α and β, for instance, come from the families

∆ and R respectively, it is sufficient to consider just the submatrix

(xi,j + tyi,j)i,j, 1 ≤ i, j ≤ 4, and to show that for all possible pairs

α ∈ ∆ and β ∈ R coming from this 4 × 4 submatrix, S(α, β) →H′ 0,

where H′ is the subset of H consisting of all polynomials arising from

this submatrix. This is sufficient because if the variables in α ∈ ∆ and

β ∈ R, for general α and β, are disjoint from each other, then their

leading terms will be relatively prime, and we will have S(α, β)→H0

anyway ([4, Chapter 2, §9, Proposition 4]). Otherwise, the rows that

define α and β must have at least one member in common, and similarly

for the columns that define α and β, hence, the variables in α and β

arise from at most 2+3−1 = 4 rows and columns. It follows then that

α and β are the images of some α′ and β′ defined on the upper left 4×4

grid under a map of the sort described in the lemma, and the lemma

then applies. (As an example, to rewrite S(δ[10,13][3,5], ρ[5,7,10][5,7,10]) it

is sufficient to rewrite S(δ[3,4][1,2], ρ[1,2,3][2,3,4]) in terms of polynomials in

∆, E , R, Λ, and Ψ that only involve variables from the upper left 4×4

grid.) Similar considerations apply to other pairs of families, and we

find that while computing S(∆, E) and S(E , E) it is sufficient to work

with a generic 3 × 3 matrix (xi,j + tyi,j)i,j, while computing S(∆,R),

S(∆,Λ), S(E ,R), S(E ,Λ), and S(E ,Ψ), it is sufficient to work with a

4×4 matrix, and while computing S(R,Λ), it is sufficient to work with

a 5× 5 matrix.

We have done these computations using the computational algebra

package Singular ([5]) and have checked that S(α, β)→H0 for all pairs.
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S(δ[1,2][1,2], ε[1,2][2,3]) = (y2,2)δ[1,2][1,3] + (−y2,1)δ[1,2][2,3]

+ (−x2,3)ε[1,2][1,2] + (x2,2)ε[1,2][1,3]

S(δ[1,2][1,2], ε[1,3][2,3]) = (y3,2)δ[1,2][1,3] + (−y3,1)δ[1,2][2,3] + (−y1,3)δ[2,3][1,2]

+(y1,2)δ[2,3][1,3] + (−y1,1)δ[2,3][2,3] + (−x2,3)ε[1,3][1,2] + (x2,2)ε[1,3][1,3]

S(δ[1,2][1,2], ε[2,3][1,2]) = (y2,2)δ[1,3][1,2] + (−y1,2)δ[2,3][1,2]

+ (−x3,2)ε[1,2][1,2] + (x2,2)ε[1,3][1,2]

S(δ[1,2][1,2], ε[2,3][1,3]) = (−y3,1)δ[1,2][2,3] + (y2,3)δ[1,3][1,2] + (y2,1)δ[1,3][2,3]

+(−y1,3)δ[2,3][1,2] + (−y1,1)δ[2,3][2,3] + (−x3,2)ε[1,2][1,3] + (x2,2)ε[1,3][1,3]

S(δ[1,2][1,3], ε[2,3][1,2]) = (y3,1)δ[1,2][2,3] + (y2,2)δ[1,3][1,3] + (−y2,1)δ[1,3][2,3]

+(−y1,2)δ[2,3][1,3] + (y1,1)δ[2,3][2,3] + (−x3,3)ε[1,2][1,2] + (x2,3)ε[1,3][1,2]

S(δ[1,3][1,2], ε[1,2][2,3]) = (y2,2)δ[1,3][1,3] + (−y2,1)δ[1,3][2,3] + (y1,3)δ[2,3][1,2]

+(−y1,2)δ[2,3][1,3] + (y1,1)δ[2,3][2,3] + (−x3,3)ε[1,2][1,2] + (x3,2)ε[1,2][1,3]

Table 1. S(∆, E)

(See Remark 2.7 about the complexity of computations involved.) The

process essentially consists of dividing S(α, β) by the polynomials in

H, using the generalized division algorithm, as described, for instance,

in [4, Chapter 2, §3].

The cases S(∆, E) and S(E , E) are particularly simple to enumerate,

since in each case, we only have to work with a 3 × 3 grid. The six

relations shown in Table 1 (in which the equality as well as the order

relation between the leading monomials on the right side and the left

side can easily be verified by hand) take care of all S(α, β) with α ∈ ∆

and β ∈ E . (For instance, S(δ[1,3][1,2], ε[1,3][2,3]) can be obtained from

S(δ[1,2][1,2], ε[1,2][2,3]) with an application of Lemma 2.5.)

Similarly, the nine relations shown in Table 2 take care of all S(α, β)

with α, β ∈ E . (Note that the polynomials in R and Λ do not appear

in the S(∆,∆) and S(∆, E) calculations, but do appear in S(E , E)

calculations.)

The number of separate cases to consider in the remaining cases

S(∆,R), S(∆,Λ), S(E ,R), S(E ,Λ), S(E ,Ψ), and S(R,Λ), even though

we are working in a matrix of maximum size 5× 5, is simply too large

to be able to report every computation in this paper. (Again, we
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S(ε[1,2][1,2], ε[1,2][1,3]) = (−y2,1)ε[1,2][2,3] + (−1)ρ[1,2,2][1,2,3]

S(ε[1,2][1,2], ε[1,3][1,2]) = (−y1,2)ε[2,3][1,2] + (−1)λ[1,2,3][1,2,2]

S(ε[1,2][1,2], ε[1,3][1,3]) = (−y2,1)ε[1,3][2,3] + (−y1,2)ε[2,3][1,3]

+(y1,1)ε[2,3][2,3] + (−1)ρ[1,2,3][1,2,3] + (−1)λ[1,2,3][1,2,3]

S(ε[1,2][1,3], ε[1,2][2,3]) = (y1,3)δ[1,2][1,2] + (−y1,2)δ[1,2][1,3]

+ (y1,1)δ[1,2][2,3] + (x1,3)ε[1,2][1,2]

S(ε[1,2][1,3], ε[1,3][1,2]) = (y3,1)ε[1,2][2,3] + (−y1,3)ε[2,3][1,2]

+ (1)ρ[1,2,3][1,2,3] + (−1)λ[1,2,3][1,2,3]

S(ε[1,2][1,3], ε[1,3][1,3]) = (−y1,3)ε[2,3][1,3] + (−1)λ[1,2,3][1,3,3]

S(ε[1,3][1,2], ε[2,3][1,2]) = (y3,1)δ[1,2][1,2] + (−y2,1)δ[1,3][1,2]

+ (y1,1)δ[2,3][1,2] + (x3,1)ε[1,2][1,2]

S(ε[1,3][1,3], ε[2,3][2,3]) = (y3,1)δ[1,2][2,3] + (−y2,1)δ[1,3][2,3]

+(y1,3)δ[2,3][1,2] + (−y1,2)δ[2,3][1,3] + (2y1,1)δ[2,3][2,3]

+(−x3,3)ε[1,2][1,2] + (x3,2)ε[1,2][1,3] + (x2,3)ε[1,3][1,2]

S(ε[1,3][2,3], ε[2,3][1,3]) = (y3,2)δ[1,2][1,3] + (−y2,3)δ[1,3][1,2]

+(−y2,1)δ[1,3][2,3] + (y1,2)δ[2,3][1,3] + (x3,2)ε[1,2][1,3] + (−x2,3)ε[1,3][1,2]

Table 2. S(E , E)

refer to Remark 2.7 for the complexity of computations involved.) The

complete computations are available from the authors ([7]): for each

pair of polynomials α and β, we present the polynomial S(α, β), its

leading monomial listed explicitly, each divisor γ ∈ H and each quotient

fγ in the rewrite S(α, β) =
∑

γ fγγ (with γ ∈ H) listed explicitly,

and the leading monomial of each product fγγ listed explicitly. If

desired, the reader can easily check from these listings the equality

S(α, β) =
∑

γ fγγ (as well as the relationship lm(fγγ) ≤ lmS(α, β))

for any pair α, β. �

We immediately have the following:

Corollary 2.6. Both I and I0 are radical.

Proof. This is clear, since the leading terms of a Groebner basis for

the two ideals are square free (see the proof of [6, Theorem 3.4] for

instance). �
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In the next section we will recall some facts about Zm,n
2,2 that will

immediately show that the ideal I0 is one of the two primary compo-
nents of I. This will be used in describing the components of Zm,n

r,k in
the case k = 4.

Remark 2.7. If one were to check directly, i.e., without referring to

Theorem 2.4, that the elements of G form a Groebner basis for I,

one could eliminate computation of S(Ξ,Ξ) by using Sturmfels’ result

for the classical case, but one would have to compute polynomials in

S(R,Ξ) and S(Λ,Ξ). Each of these involve computing with a 6 ×
6 matrix. The number of different S-polynomials to consider is of

the order of 106. By contrast, the most complicated case for I0 is

S(R,Λ), which involves a 5 × 5 matrix. In this case we only have to

consider on the order of 104 S-polynomials: a hundred-fold reduction

in complexity. Still, the massive undertaking of checking the reduction

of all S-polynomials could not be done without help of a computer.

3. The components for k = 4

We recall that in [6], we determined the components for Zm,n
r,k for

k = 2 and k = 3, for all values of r < m. (Recall from [6] that when
r = m the variety Zm,n

m,k is irreducible for all values of k. Also, in the
case k = 3 and r < m, we described the components for all but finitely
many values of (m,n).) We will use our Groebner basis for I and I0

from the previous section to determine the components of Zm,n
r,k in the

case k = 4, for all values of r < m.
We need to first recall some theorems from [6]. We also need to

revert to the notation of writing our generic matrix as (xi,j(t) )i,j, where

xi,j(t) = x
(0)
i,j + x

(1)
i,j t+ · · ·+ x

(k−1)
i,j tk−1. We recall from the introduction

that R = F [x
(l)
i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n, 0 ≤ l < k].

We have the following basic decomposition:

Theorem 3.1. ([6, Theorem 2.8]) The variety Zm,n
r,k (for r ≥ 2) is

the union of two subvarieties Z0 and Z1. The variety Z0 is the clo-

sure of any of the open sets Ui,j (1 ≤ i ≤ m, 1 ≤ j ≤ n), where

x
(0)
i,j is nonzero. Moreover, it is the closure of the open set U where

all x
(0)
i,j are nonzero. Alternatively, the variety Z0 is the union of the

components of Zm,n
r,k that correspond to minimal primes of I that do

not contain some (hence any) x
(0)
i,j . Such components always exist, and

are in one-to-one correspondence with the components of the variety
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Zm−1,n−1
r−1,k . The correspondence preserves the codimension (in Amnk

and A(m−1)(n−1)k respectively) of the components, and in fact, Z0 is bi-

rational to Zm−1,n−1
r−1,k ×A(m+n−1)k. The variety Z1 is the subvariety of

Zm,n
r,k where all x

(0)
i,j are zero, and is isomorphic to Zm,n

r,k−r × Amn(r−1)

when k > r, and isomorphic to Amn(k−1) when k ≤ r. Z1 will be wholly

contained in Z0 precisely when there are no minimal primes of I that

contain some (hence all) x
(0)
i,j .

We also have the following, which explicitly describes the correspon-
dence between Z0 and Zm−1,n−1

r−1,k and is the basis for the proof of the
theorem above:

Theorem 3.2. ([6, Theorem 2.3]) Assume r ≥ 2. Let z
(l)
i,j , 1 ≤ i ≤

m− 1, 1 ≤ j ≤ n− 1, 0 ≤ l < k be a new set of variables, and write T

for the ring F [z
(l)
i,j | 1 ≤ i ≤ m−1, 1 ≤ j ≤ n−1, 0 ≤ l < k], and T ′ for

the ring F [z
(l)
i,j , x

(l)
1,n, . . . , x

(l)
m,n, x

(l)
m,1, . . . , x

(l)
m,n−1 | 1 ≤ i ≤ m−1, 1 ≤ j ≤

n− 1, 0 ≤ l < k]. Also, write Z for the m− 1×n− 1 matrix (zi,j(t) )i,j
over T [t]/(tk), where zi,j(t) =

∑k−1
l=0 z

(l)
i,j t

l. We have an isomorphism

R[(x(0)
m,n)

−1] ∼= T ′[(x(0)
m,n)

−1],

given by

f : x
(l)
i,n → x

(l)
i,n 1 ≤ i ≤ m

x
(l)
m,j → x

(l)
m,j 1 ≤ j ≤ n− 1

x
(l)
i,j → z

(l)
i,j + q

(l)
i,j (x

(p)
m,j, x

(r)
i,n, x

(s)
m,n, (x

(0)
m,n)

−1), 0 ≤ p, r < l, 1 ≤ s < l,

for 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n− 1, 0 ≤ l < k.

(Here, the q
(l)
i,j are polynomials in the indicated variables.)

Under this isomorphism, the localization of I at x
(0)
m,n corresponds to

the localization of the ideal Im−1,n−1
r−1,k T ′ at x

(0)
m,n, where Im−1,n−1

r−1,k is the

ideal of T determined by the coefficients of powers of t of the various

(r−1)×(r−1) minors of the matrix Z. Moreover, this induces a one-to-

one correspondence between the prime ideals P of R that are minimal

over I and do not contain x
(0)
m,n and the prime ideals Q of T that are

minimal over Im−1,n−1
r−1,k . If P corresponds to Q then the codimension of

P in R equals the codimension of Q in T .

We recall that the motivation behind this theorem is row-reduction
on the matrix (xi,j(t) )i,j under the assumption that x

(0)
m,n (and hence
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xm,n(t)) is invertible, and that the point of the isomorphism is the
assignment

(6) zi,j(t) = xi,j(t)− xm,j(t)xi,n(t)x
−1
m,n(t)

for 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n− 1.
We now determine the primary decomposition of I = Im,n2,2 . We

recall from [6, Theorem 7.1] that Zm,n
2,2 has precisely two components,

namely the subvarieties Z0 and Z1 of Theorem 3.1 above. Write J0 and
J1 for the ideals of Z0 and Z1 respectively. Since I is radical (Corollary
2.6 above), I = J0 ∩ J1. Since the component Z1 is the subvariety

defined by I and all the x
(0)
i,j , and since I is already contained in the

(prime) ideal generated by the x
(0)
i,j , we find that J1 is precisely the ideal

generated by the x
(0)
i,j .

The component Z0 is the closure of the open set where x
(0)
m,n is

nonzero, so J0 is the radical of the ideal (I : (x
(0)
m,n)∞). By standard

Groebner basis facts (see [11, Lemma 12.1]–note that the hypothesis
on the basis being reduced is not necessary there), a Groebner basis of

(I : (x
(0)
m,n)∞) with respect to the chosen monomial order is given by

factoring out all powers of x
(0)
m,n from every polynomial in a Groebner

basis of I. (Note that the fact that xm,n is the variables with the least
weight in the order of the variables is important here.) The polyno-

mials in our Groebner basis of I that are divisible by x
(0)
m,n (note the

change of notation between §2 and §3) are the various x
(0)
m,nψ[i,j,k][p,q,r],

so factoring x
(0)
m,n from them yields the polynomials in Ψ. Once all poly-

nomials of the family Ψ are in the Groebner basis of (I : (x
(0)
m,n)∞), one

no longer needs the other polynomials x
(0)
s,tψ[i,j,k][p,q,r], (s, t) 6= (m,n),

in the Groebner basis, since lm(x
(0)
s,tψ[i,j,k][p,q,r]) = x

(0)
s,t lm(ψ[i,j,k][p,q,r]). It

follows that a Groebner basis of (I : (x
(0)
m,n)∞) is given by the polyno-

mials in ∆, E , R, Λ, and Ψ. Since these polynomials are all in I0 and

generate I0, we find that (I : (x
(0)
m,n)∞) equals the ideal I0 of the pre-

vious section. Moreover, I0 is radical (Corollary 2.6), so J0 is precisely
I0. (This shows as well that I0 is prime.)

We split this off for future reference as:

Proposition 3.3. The ideal I = Im,n2,2 is the intersection of the two

prime ideals I0 and the ideal generated by all x
(0)
i,j . Moreover, I0 = (I :

(x
(0)
m,n)∞).

We now proceed to determine the components of Zm,n
r,k when k = 4.

We recall from [6, Proposition 6.3] that when k < r, the subvariety
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Z1 is wholly contained in Z0, and the components of Zm,n
r,k and their

codimensions in Amnk are hence determined by those of Zm−1,n−1
r−1,k and

their codimensions in A(m−1)(n−1)k. Thus, it is sufficient to determine
the components of Zm,n

4,4 , Zm,n
3,4 , and Zm,n

2,4 . But of these, the last has
already been determined in [6, Theorem 5.1], which we state below as:

Theorem 3.4. ([6, Theorem 5.1]) The variety Zm,n
2,4 has three compo-

nents X0, X1, and X2. The component X0 is the closure of the subset

where some x
(0)
i,j is nonzero, and has codimension 4(m − 1)(n − 1) in

A4mn. The component X1 is the closure, in the subvariety where all

x
(0)
i,j are zero, of the open set where some x

(1)
i,j is nonzero; this compo-

nent has codimension 2(m− 1)(n− 1) +mn. The third component X2

is the subvariety where all x
(0)
i,j and x

(1)
i,j are zero; this has codimension

2mn.

Finally, we recall the notation ui(t) for the i-th row of the ma-
trix (xi,j(t) )i,j: this is an element of (R[t]/tk)n. We write ui(t) =∑k−1

l=0 u
(l)
i t

l, so the various u
(l)
i are row vectors from Rn, and we refer

to u
(l)
i as being “of degree l.”

We begin with Zm,n
3,4 :

Theorem 3.5. In the variety Zm,n
3,4 (for all values of m,n with 3 < m ≤

n), the subvariety Z1 of Theorem 3.1 above is wholly contained in Z0.

Therefore the components of Zm,n
3,4 are in one-to-one correspondence

with the components of Zm−1,n−1
2,4 as in Theorem 3.1, and by Theorem

3.4 these have codimensions 4(m− 2)(n− 2), 2(m− 2)(n− 2) + (m−
1)(n− 1), and 2(m− 1)(n− 1) in A4mn.

Proof. Let us write X ′
0, X

′
1, and X ′

2 for the three components of Z0

corresponding to the three components X0, X1, and X2 of Zm−1,n−1
2,4 .

We will prove that the subvariety Z1 is contained in the component

X ′
2, by showing that the ideal of X ′

2 is contained in the ideal of Z1. We

will need the primary decomposition Im,n2,2 that we just established to

prove the containment of ideals.

The ideal of Z1 is easy to determine: the equations that define Z1

are those of Im,n3,4 along with all x
(0)
i,j = 0. The equations of Im,n3,4 are

ui1(t) ∧ ui2(t) ∧ ui3(t) = 0

for all 1 ≤ i1 < i2 < i3 ≤ m, which expands to the following four

equations:
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u
(0)
i1
∧ u

(0)
i2
∧ u

(0)
i3

= 0,∑
�

u
(1)
i1
∧ u

(0)
i2
∧ u

(0)
i3

= 0,∑
�

u
(2)
i1
∧ u

(0)
i2
∧ u

(0)
i3

+
∑

�

u
(1)
i1
∧ u

(1)
i2
∧ u

(0)
i3

= 0,∑
�

u
(3)
i1
∧ u

(0)
i2
∧ u

(0)
i3

+
∑

�

u
(2)
i1
∧ u

(1)
i2
∧ u

(0)
i3

+ u
(1)
i1
∧ u

(1)
i2
∧ u

(1)
i3

= 0

for all 1 ≤ i1 < i2 < i3 ≤ m. (Here, the notation
∑
�

u
(d1)
i1

∧ u
(d2)
i2

∧ u
(d3)
i3

stands for sums of all possible terms u
(d1)
i1

∧ u
(d2)
i2

∧ u
(d3)
i3

, with i1, i2, i3

fixed and the di permuted.) It is clear that on setting all u
(0)
i1

to zero, we

are just left with the classical determinantal equations u
(1)
i1
∧u

(1)
i2
∧u

(1)
i3

=

0 on the variables x
(1)
i,j , and the ideal defined by these is well-known to

be prime (and in particular, radical). Hence, the ideal of Z1 is given

by the x
(0)
i,j and the various u

(1)
i1
∧ u

(1)
i2
∧ u

(1)
i3

for 1 ≤ i1 < i2 < i3 ≤ m.

As for the ideal of X ′
2, let us first compute the ideal of X2 in the ring

T = F [z
(l)
i,j | 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1, 0 ≤ l < 4] – see Theorem

3.4 and the remarks following that theorem for the setup. The variety

X2 is defined by Im−1,n−1
2,4 along with all z

(0)
i,j = 0 and all z

(1)
i,j = 0. The

ideal Im−1,n−1
2,4 is generated by the following equations (here the various

wi are the rows of the (m− 1)× (n− 1) generic matrix (zi,j(t) )i,j):

w
(0)
i1
∧w

(0)
i2

= 0,∑
�

w
(1)
i1
∧w

(0)
i2

= 0,∑
�

w
(2)
i1
∧w

(0)
i2

+
∑

�

w
(1)
i1
∧w

(1)
i2

= 0,∑
�

w
(3)
i1
∧w

(0)
i2

+
∑

�

w
(2)
i1
∧w

(1)
i2

= 0.

Clearly, setting all z
(0)
i,j = 0 and all z

(1)
i,j = 0 makes these equations

vanish, so the X2 is defined by all z
(0)
i,j and all z

(1)
i,j . This is a radical

ideal, so this is the ideal of X2, and it is of course prime.

Write J for this ideal. We now compute the image of the ideal JT ′

in the ring R[(x
(0)
m,n)−1] under the isomorphism of Theorem 3.4. Recall
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Equation (6) that zi,j(t) = xi,j(t) − xm,j(t)xi,n(t)x
−1
m,n(t) for 1 ≤ i ≤

m− 1, 1 ≤ j ≤ n− 1, which we rewrite as

xm,n(t)zi,j(t) = xi,j(t)xm,n(t)− xm,j(t)xi,n(t).

Comparing coefficients of the constant term and the t term on both

sides, we find

(7) x(0)
m,nz

(0)
i,j = x

(0)
i,j x

(0)
m,n − x

(0)
m,jx

(0)
i,n

and

(8) x(1)
m,nz

(0)
i,j + x(0)

m,nz
(1)
i,j = x

(1)
i,j x

(0)
m,n + x

(0)
i,j x

(1)
m,n − x

(1)
m,jx

(0)
i,n − x

(0)
m,jx

(1)
i,n.

Recall that x
(0)
m,n is invertible in T ′. Thus, Equation (7) shows that

x
(0)
m,nz

(0)
i,j = δ[i,m][j,n], so the ideal generated by just the z

(0)
i,j goes over to

the ideal generated by the various δ[i,m][j,n], 1 ≤ i ≤ m−1, 1 ≤ j ≤ n−1.

Equation (8) then shows that x
(0)
m,nz

(1)
i,j = ε[i,m][j,n] − x

(1)
m,nδ[i,m][j,n]/x

(0)
m,n,

so the ideal generated by both the z
(0)
i,j and the z

(1)
i,j goes over to the

ideal generated by the various δ[i,m][j,n] and the various ε[i,m][j,n], 1 ≤
i ≤ m− 1, 1 ≤ j ≤ n− 1.

Write K̃ for this ideal. We claim that K̃ contains all δ[i,p][j,q] and

ε[i,p][j,q], for all 1 ≤ i, p ≤ m and 1 ≤ j, q ≤ n. We first consider the

case p = m and q < n for given i < p and j < q. Then consider the

following matrix  xi,j(t) xi,q(t) xi,n(t)

xm,j(t) xm,q(t) xm,n(t)

xm,j(t) xm,q(t) xm,n(t)

 .

The determinant of this matrix is zero, and expanding along the bot-

tom row and considering the constant term of the determinant, we find

x
(0)
m,nδ[i,m][j,q] is in K̃, and since x

(0)
m,n is invertible, δ[i,m][j,q] is in K̃. Sim-

ilarly, considering the t term and using the fact that δ[i,m][j,q] is already

in K̃, we find ε[i,m][j,q] is in K̃ as well. A similar proof with the n-th col-

umn duplicated shows that δ[i,p][j,n] and ε[i,p][j,n] are in K̃ for i < p < m

and j < n. Finally, given 1 ≤ i, p < m and 1 ≤ j, q < n, consider the

matrix  xi,j(t) xi,q(t) xi,n(t)

xp,j(t) xp,q(t) xp,n(t)

xm,j(t) xm,q(t) xm,n(t)

 .

Expanding the determinant in two ways, once along the bottom row

and once along the top row, then comparing the constant terms and
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the coefficients of t on both sides and invoking what we just proved

in the special cases where p = m or q = n, we find that δ[i,p][j,q] and

ε[i,p][j,q] are in K̃ as claimed.

Note that K̃ is radical since it is the image of JT ′. Note too that

its generators are those of Im,n2,2 . It follows from Theorems 3.1 and 3.4

that the ideal of X2 is the pullback of I = Im,n2,2 under localization at

x
(0)
m,n, i.e., the ideal (I : (x

(0)
m,n)∞). We have seen in the computation

of the primary decomposition of I above (see Proposition 3.3) that

(I : (x
(0)
m,n)∞) is precisely the ideal I0 of the previous section. The

generators of I0 are the polynomials in ∆, E and Ψ, all of which are

clearly in the ideal of Z1, proving that the subvariety Z1 is contained

in the component X ′
2. The last statement of the theorem is now just

an application of Theorems 3.1 and 3.4.

�

Theorem 3.6. The variety Zm,n
4,4 , for all values of m,n with 4 < m ≤

n, except possibly the pairs (5, 5), (5, 6), (5, 7), (5, 8), (5, 9), (5, 10),

(5, 11), (5, 12), (6, 6), (6, 7), and (6, 8), has four components. One

is the subvariety Z1, which has codimension mn in A4mn, while the

other three are those that arise from Z0 (as in Theorem 3.5), and have

codimensions 4(m− 3)(n− 3), 2(m− 3)(n− 3) + (m− 2)(n− 2), and

2(m− 2)(n− 2) in A4mn.

Proof. This is an easy consequence of Theorem 3.5 and dimension-

counting. By Theorem 3.1, the subvariety Z1 is simply A3mn, which of

course has codimensionmn in A4mn. The components of the subvariety

Z0 on the other hand are in one-to-one correspondence with those of

Zm−1,n−1
3,4 , so by Theorem 3.5 above, Z1 has three components, with

codimensions 4(m − 3)(n − 3), 2(m − 3)(n − 3) + (m − 2)(n − 2),

and 2(m− 2)(n− 2) in A4mn. (Note that the correspondence between

the components of Z0 and those of Zm−1,n−1
3,4 preserves codimensions

in A4mn and A4(m−1)(n−1) respectively.) It is easy to see that for all

m,n ≥ 5 except for the pairs indicated, mn is smaller than any of these

three codimensions coming from Z0, so Z1 is a separate component. �
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