A JACOBI-DAVIDSON TYPE METHOD FOR THE TWO-PARAMETER
EIGENVALUE PROBLEM*

MICHIEL E. HOCHSTENBACH! TOMAZ KOSIR* AND BOR PLESTENJAK?

Abstract. We present a new numerical method for computing selected eigenvalues and eigenvectors of the
two-parameter eigenvalue problem. The method does not require good initial approximations and is able to tackle
large problems that are too expensive for methods that compute all eigenvalues. The new method uses a two-
sided approach and is a generalization of the Jacobi-Davidson type method for the right definite two-parameter
eigenvalue problems (M. E. Hochstenbach and B. Plestenjak, SIAM J. Matrix Anal. Appl., 24 (2002), pp. 392-
410). Here we consider the much wider class of nonsingular problems. In each step we first compute Petrov triples
of a small projected two-parameter eigenvalue problem and then expand the left and right search spaces using
approximate solutions of appropriate correction equations. Using a selection technique it is possible to compute
more than one eigenpair. Some numerical examples are presented.

Key words. Two-parameter eigenvalue problem, subspace method, Jacobi-Davidson method, correction
equation, Petrov—Galerkin, two-sided approach.

AMS subject classifications. 65F15, 15A18, 15A69.

1. Introduction. We are interested in computing one or more eigenpairs of the two-
parameter eigenvalue problem

Az = ABixy + pChaq,

(1.1)

Aoxg = ABoxg + uCoxo,
where A;, B;, and C; are given n; X n; matrices over C, A\, u € C and x; € C™ for i = 1,2. A pair
(A, ) is called an eigenvalue if it satisfies (1.1) for nonzero vectors x1,z2. The tensor product
1 ® xo is then the corresponding right eigenvector. Similarly, y; ® yo is the corresponding left
eigenvector if 0 # y; € C™ and y(A; — AB; — pCy) =0 for i =1,2.

Multiparameter eigenvalue problems of this kind arise in a variety of applications [1], particu-
larly in mathematical physics when the method of separation of variables is used to solve bound-
ary value problems [23]. When the separation constants cannot be decoupled, two-parameter
Sturm-Liouville problems of the form

(1.2) —(pi(@)yi (@) + qi(@)yi(xi) = Nag (z0) + pas(2:))yi(z:),
where z; € [a;, b;], with boundary conditions

yi(ai) cos a; — yi(ai)sina; =0, 0<a;<m,
Yi(bi) cos B; — y;(bi) sin B; = 0, 0< 8 <,

can arise, where oy € [0,7), 3; € (0,n] and p}, g;, a;1, a2 are real valued and continuous, for
i = 1,2. Using discretization the problem (1.2) can be converted into the form (1.1). As an
example, let us consider the equation Au + k?u = 0 in R? that represents the vibration of a

*Version: March 21, 2004.

TDepartment of Mathematics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-
7058 (hochsten@case.edu). Part of this research was done when the author was employed by Utrecht University.

tDepartment of Mathematics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
(tomaz.kosir@fmf.uni-1j.si, bor.plestenjak@fmf.uni-lj.si). These authors’ research was supported in part by the
Ministry of Education, Science, and Sport of Slovenia (Research Projects Z1-3136 and PO-0508).




fixed membrane [14]. In a rectangular membrane the separation of variables leads to two Sturm-—
Liouville equations that can be solved independently. In a circular membrane the two equations
(the angular and the radial) form a triangular situation and cannot be solved independently. We
can solve them one by one by inserting the parameter from the solution of the angular equation
into the radial equation. In an elliptic membrane the separation leads to the Mathieu and the
modified Mathieu equation (see e.g. [23])

yi (1) + (2X cosh 221 — )y (

1(w1)
Yy (w2) — (2A cos 2x2 — p)ya(

x1) =0,
(1.3) !
1‘2) = 0,
that have to be solved simultaneously and thus form a genuine two-parameter eigenvalue prob-
lem.

Another problem that can be cast in the form (1.1) is the three-point boundary problem [7].

A typical problem is

(1.4) —(p(2)y' ()" + a(2)y(z) = (\r(@) + ps(@)y(2),

subject to y(a) = y(b) = y(c) = 0, where a < b < ¢. We can treat (1.4) as a two-parameter
eigenvalue problem

—(p(xi)yé(ﬂfi)), + q(zi)yi(zi) = (Ar(xi) + ps(xi))yi(xi)

for i = 1,2, where z1 € [a,b], zo € [b,c], and the boundary conditions are y;(a) = y1(b) =
y2(b) = ya2(c) = 0. An example (see [23] for details) is Lamé’s equation

y'(@) + % (a: i a + T i b + x 1 c) v (@) + (x — a)?x—i_—ﬂba;(az — c)y(as) =0

which arises in the solution of Laplace’s equation in elliptic coordinates.

Two-parameter problems appear in the algebraic form (1.1) as well. In [16], it is shown that
the optimal value of the relaxation parameter w in the method of successive over-relaxation for
a separable elliptic partial differential equation in two independent variables can be obtained
from the eigenvalues of a certain two-parameter eigenvalue problem. In [15], algorithms for
the estimation of material electrical properties from measurements of interdigital dielectrometry
sensors are discussed. When the sensors are applied to the material that is composed of two lay-
ers, the properties of the individual layers are the eigenvalues of the appropriate two-parameter
eigenvalue problem. Yet another example is the dynamic model updating [6]. Suppose that we
have a spring-mass model where the mass matrix is known and the stiffness parameter values of
two springs have to be updated based on the outside measurements of the natural frequencies.
The updated parameters are the eigenvalues of a two-parameter problem. The above examples
show the need for numerical solvers of problem (1.1).

Two-parameter problems can be expressed as two coupled generalized eigenvalue problems
as follows. On the tensor product space S := C™ ® C"? of the dimension N := nine we define

Ay =B ®Cy — (1 ® By,
A=A ®Cy—C;® Ay,
A9 =B;® Ay — A1 ® By

(for details on the tensor product and relation to the multiparameter eigenvalue problem, see,
for example, [2]). We assume that the two-parameter problem (1.1) is nonsingular, that is the



corresponding operator determinant Ay is invertible. In this case I'y = A A and Ty =
Ay 'Ay commute and problem (1.1) is equivalent to the associated problem

Alz = )\A()Z,
(1.5)
A9z = ploz

for decomposable tensors z € S, z =z ® y (see [2]). The left and right eigenvectors of (1.1) are
Ap-orthogonal; i.e., if 21 ® o and y; ® yo are right and left eigenvector of (1.1), respectively,
corresponding to distinct eigenvalues, then

yiBiz1 yiCiz

(y1 @ y2)* Ap(z1 @ 22) = =0.

YsBoxa  y5Co10

If (A, p) is an eigenvalue of (1.1) then

dim ( ﬂ Ker [(Fl — \I)(Ty — pj)h])
i14ig=N
i1,i5>0

is the algebraic multiplicity of (X, p). We say that (A, ) is algebraically simple when its algebraic
multiplicity is one.

The following lemma is a consequence of Lemma 3 in [9].

LEMMA 1.1. If X is an algebraically simple eigenvalue of the two-parameter eigenvalue
problem (1.1) and x1®xo and y1@ys are the corresponding right and left eigenvector, respectively,
then the matrix

yiBir1  yiCin
ysBoxy  y5Cox0

is nonsingular.

There exist some numerical methods for two-parameter eigenvalue problems. Most of them
require that the problem is real and right definite, i.e., that all matrices A;, B;, and C; are real
symmetric and that Ag is positive definite, and as a consequence, eigenvalues and eigenvectors
are real. Most of the presented two-parameter problems are right definite, for instance (1.3)
and the one in [16], but not all, for instance the one in [15] where the eigenvalues are complex.
It is the aim of this paper to introduce an algorithm for such non right definite two-parameter
eigenvalue problems.

One of the algorithms (also usable for large sparse matrices) for the right definite two-
parameter problem is a Jacobi-Davidson type method [11] and ideas from this method are
generalized in this paper to handle all nonsingular two-parameter eigenvalue problems.

One possible approach to solve (1.1) is to solve the associated couple of generalized problems
(1.5). In the right definite case this can be achieved by numerical methods for simultaneous
diagonalization of commutative symmetric matrices [13, 20, 5], while an algorithm for the general
nonsingular case using QZ algorithm is presented in this paper (see Algorithm 2.3). Solving the
problem via the associated problem is only feasible for problems of low dimension as the size of
the matrices of the associated problem is N x N.

Another method that can be used for non right definite two-parameter problems of moderate
size is Newton’s method [4], which has the deficiency that it requires initial approximations close
enough to the solution in order to avoid misconvergence. The continuation method [18] can be
used for weakly elliptic problems, i.e., such that A;, B; and C; are real symmetric and one of



B;, C; is positive definite. We mention that right definite two-parameter problems are also
weakly elliptic [17, Lemma 2.1].

In this paper, we introduce a new Jacobi-Davidson type method that can be used to compute
selected eigenpairs for nonsingular problems. The method works even without close initial
approximations and is suitable for large sparse matrices. Our method computes the eigenvalue
(A, p) of (1.1), which is closest to a given target (Ar,ur) € C2, ie., the one with minimum
X = A + | — pr .

The outline of the paper is as follows. In Section 2, we present a new algorithm for the com-
putation of eigenpairs using the associated problem. This method is only suitable for matrices
of moderate size, so we combine it with a subspace method. We generalize the Petrov—Galerkin
approach to two-parameter eigenvalue problems in Section 3. In Section 4, we present a two-
sided Jacobi-Davidson type method for two-parameter eigenvalue problems. Several possible
correction equations are discussed in Section 5. In Section 6, we present a selection technique
that allows the computation of more than one eigenpair. The time complexity is given in Sec-
tion 7, and some numerical examples are presented in Section 8. Conclusions are summarized
in Section 9.

2. Algorithm based on the associated problem. We propose the following method to
solve the associated problem (1.5). First we compute a QZ decomposition (generalized Schur
form) of the matrix pencil (A1, Ag). We obtain unitary matrices () and Z such that Q*A¢Z = R
and Q*A1Z = S are upper triangular. Since A is nonsingular the same is true for R. From

AJIA = ZRTISZY

it follows that the eigenvalues of the first generalized eigenvalue problem in (1.5) are the quotients
s4i/mi; of the diagonal elements of matrices S and R.

Next, we sort the generalized Schur form so that multiple eigenvalues of the first generalized
eigenvalue problem in (1.5) appear in blocks (see for instance [22]). Let us assume that the
generalized Schur form is sorted to meet this requirement and let matrix R~'S be partitioned
accordingly as

Ly Lz -+ Ly

0 Loy --- Loy
(2.1) rRs=| . T 7
0 0 - Ly

In the above partition, multiple eigenvalues of Ay LA are clustered in upper triangular matrices
L1, ..., Ly along the diagonal so that A\(L;;) # A(L;;) for i # j, where A(Lgy) is the eigenvalue
of a block Lgg. Let us denote the size of L;; by m; for i =1,...,p.

LEMMA 2.1. Let

Lyy Lip --- Ly
0 Ly - Ly

L=1| . . }
0 0 - Ly

be a partitioning of a block upper triangular matriz L such that A(L11), ..., A(Lyp) are mutually
disjoint, where A(Lyy) is the set of eigenvalues of Lgy. If M commutes with L then M is block
upper triangular partitioned conformally with L.



Proof. First we study the case p = 2. Let M be partitioned conformally with L as

My Mo

M= [le Mm} '
From LM — ML = 0 and the above assumption we obtain the equation LooMoy — Mo L11 = 0.
Because Lq1 and Loo have no eigenvalues in common, this is a nonsingular homogeneous Sylvester
equation for My (see for example [21, p. 223]). Therefore, the unique solution is Ms; = 0.

In case p > 2 one can see that M is block upper triangular by applying the above argument
on all appropriate 2 x 2 block partitions of L and A. O

LEMMA 2.2. T = Q*AsZ partitioned conformally with (2.1) is block upper triangular.

Proof. As Ag'A; and Ay'Ay commute, so do R™1S and R™!T. Tt follows from Lemma 2.1
that R~'T is block upper triangular partitioned conformally to (2.1). As block upper triangular
matrices keep their shape when multiplied by a triangular matrix, it follows from T'= R(R™!T)
that T is block upper triangular as well. O

Once R, S and T are partitioned conformally with (2.1) as

Ryy Rz -+ Ry S Sz -0 Sy Ty Ty - Ty
0 Ry -+ Ry 0 Sxp - Sy 0 Toy -+ Ty
R = . . . . y = . . . . y T= . . . . 5
0 0 - Ry 0 0 - Sy 0 0 - Ty
it is straightforward to compute eigenvalues of (1.1). To each diagonal block L;; of size m; in
R~'S correspond m; eigenvalues (i, fti1), - - - » (Ai, flim, ), where ); is the eigenvalue of Lj and
i1, - - -5 fim,; are eigenvalues of the generalized eigenvalue problem Tjw = pR;w.
Now that we have all eigenvalues (\j, ), j = 1,...,N, of (1.1) we compute the corre-

sponding eigenvectors xj1 ® xj2. We do this by solving (A; — \;B; — p1;C;)xj; = 0, where xj; is
normalized, for ¢ = 1,2. In a similar way we can obtain left eigenvectors y;1 ® y;2 when they
are required.

The complete procedure is summarized in Algorithm 2.3.

ALGORITHM 2.3. An algorithm for the nonsingular two-parameter eigenvalue problem (1.1).

1. Compute Ag, Ay and Ag of the associated problem (1.5).

2. Compute a generalized Schur decomposition Q*A¢Z = R and Q*A1Z = S, such that
Q, Z are unitary, R and S are upper triangular, and the Schur form is sorted so that
multiple values of \; := s;/r;; are clustered along the diagonal of R=1S. As a result of
this, R and S are partitioned as

Riin Rip -+ Ry S Sz - S
0 RQQ cee RQp 0 522 e SQp

R=| . . s S= . . )
0 0 - Ry 0 0 - Sy

where the size of R;; and Sy is m; and mq +--- +mp = N.
3. Compute diagonal blocks Th1,...,Tp, of T = Q*AyZ, partitioned conformally with R
and S.

4. Compute the eigenvalues fu;1, ..., [tim,; of the generalized eigenvalue problem
Tiiw = pRijw

fori=1,...,p.



5. The eigenvalues of (1.1) are

(A, 1)y ooy (A 1y )55 (Aps itp1)s -+ oy (Aps pmyy )

reindex them as (A, 1), ..., (AN, un)-

6. For each eigenvalue (\;, 1), 7 =1,..., N, of (1.1) take for zj; and y;; the smallest right
and the smallest left singular vector of A; — \;B; — p;C;, respectively, for i = 1,2 (see
Remark 2.5).

REMARK 2.4. In numerical computation we may cluster not only multiple eigenvalues but
also close eigenvalues of R™1S. After clustering we take the mean of all eigenvalues in the
cluster of size m; as a multiple eigenvalue of order m;. This means that we take \; as a mean
of all eigenvalues of the generalized eigenvalue problem

S»,j»,jw = )\Riﬂjw

fori=1,...,p.

REMARK 2.5. In practice there will be an error in a detected eigenvalue (\j, pj). Because
of that we take the right singular vector corresponding to the smallest singular value to find the
normalized xj; such that (A; — \jB; — pujCi)xji = 0 for i = 1,2, In a similar way we get the
approximation to the left eigenvector.

Let as assume that A;, B;, C; are dense and that n; = ng = n. The time complexity of
Algorithm 2.3 is O(n®) for the computation of eigenvalues using QZ decomposition of matrices
of size n?. The maximum additional work for eigenvectors is O(n°) as we have to compute O(n?)
singular value decompositions of matrices of size n. If we are not interested in all eigenvectors
(as is often the case for large sparse matrices) then the additional work can be substantially less.

Large time complexity is the reason that Algorithm 2.3 is useful only for matrices of a modest
size. For larger problems we embed this method in a subspace method and use Algorithm 2.3
for the small projected problems.

3. Subspace methods and Petrov triples. In this section we study subspace methods
for the two-parameter eigenvalue problem. In a subspace method we start with a given search
subspace from which approximations to eigenpairs are computed (extraction). In the extraction
we usually have to solve a smaller eigenvalue problem of the same type as the original one. After
each step we expand the subspace by a new direction (expansion) and as the search subspace
grows, the eigenpair approximations will converge to an eigenpair of the original problem. In
this section we discuss the extraction and in the next section we discuss the algorithm and the
expansion.

Suppose that we have k-dimensional search spaces U;; C C™ and k-dimensional test spaces
Vi C€ C™ for ¢ = 1,2. Let the columns of the n; x k matrices U, and V; form orthogonal bases
for U, and Vi, respectively, for ¢ = 1,2. The Petrov—Galerkin conditions

(Al — UBl — TCl)ul 1 Vlka
(AQ — O'BQ — TCQ)UQ 1 ng,

where u; € Uy \{0} for i = 1,2, lead to the smaller projected two-parameter problem

VirArUiger = o Vi B Uigey + 7V, C1Uygen,

(3.1) i i .
Vo AoUskca = o Vo BoUsgeo + V5, CoUsgco,

where u; = Ujrc; # 0 for i = 1,2 and 0,7 € C.



We say that an eigenvalue (o, 7) of (3.1) is a Petrov value for the two-parameter eigenvalue
problem (1.1) with respect to the search spaces Ui, and Uy, and test spaces Vi and Voi. If
(o,7) is an eigenvalue of (3.1) and ¢ ® ¢y is the corresponding right eigenvector, then u; ® ug
is a right Petrov vector. Similarly, if di ® ds is the corresponding left eigenvector of (3.1) then
v1 ® vg is a left Petrov vector, where v; = Vi d; for i = 1,2. It is easy to check that ¢ and 7 are
equal to the two-sided tensor Rayleigh quotients

o = pi(u,0) = (v1 ®v2)* A (u; ® ug) _ (viAju ) (vECoug) — (viCruy ) (viAgus)

(32) ’ (01 @ v2)*Ag(ur @ u2)  (viBrug)(v3Cous) — (viCrur ) (viBaus)’
' T = polu,v) = (v1 ® v2)* Ag(u; ® ug) _ (vi Bruy)(vs Agug) — (v Ajuy ) (v Baug)

’ (’Ul ® ’L)Q)*Ao(ul ® UQ) (’UTBl'U/l)('U;CQ'U/Q) — (’UTCl'U/l)('U;BQ'U/Q) '

In order to obtain Petrov values, we have to solve small two-parameter eigenvalue problems.
For this purpose, we use Algorithm 2.3. Altogether, we obtain k? Petrov triples (o), 75),uj1 @
uj2,v1 ® vj2) that are approximations to eigentriples ((Aj, 115), j1 ® 52, yj1 ® yj2) of (1.1) for
j=1,..., k%

4. Jacobi—Davidson type method. The Jacobi-Davidson method [19] is one of the sub-
space methods that may be used for the numerical solution of one-parameter eigenvalue prob-
lems. For an overview of subspace methods see, for example, [3]. In the Jacobi-Davidson method
approximate solutions to certain correction equations are used to expand the search space. The
search for a new direction is restricted to the subspace that is orthogonal or oblique to the last
chosen right (or left) Petrov vector.

A Jacobi-Davidson type method has been successfully applied to the right definite two-
parameter eigenvalue problem [11]. The method in [11] is one-sided, which means that the search
spaces V; in (3.1) are the same as the test spaces ;. When we tested the one-sided method
from [11] on non right definite problems, it turned out that the performance was sometimes
not optimal, in particular there were problems with convergence to unwanted eigenvalues or no
convergence at all. Therefore we generalize the two-sided Jacobi-Davidson method [10] to two-
parameter eigenvalue problems. The idea is to take U; as search spaces for the right eigenvectors
and V; as search spaces for the left eigenvectors. An advantage of a two-sided method is that both
the left and the right eigenvector are approximated which implies an accurate approximation
of the eigenvalue (see Lemma 5.1). An obvious disadvantage is that such an approach requires
twice as much work (in terms of matrix-vector multiplications) for one iteration. Numerical
experiments in Section 8 indicate that for non right definite problems the two-sided Jacobi—
Davidson type method often gives better results than the one-sided one.

A brief sketch of the two-sided Jacobi—Davidson type method for the two-parameter problem
is presented in Algorithm 4.1. In step 2(b) we have to choose a Petrov triple. Some options are
given later in this section. In step 2(e), we have to find new search directions in order to expand
the search and test subspaces. We discuss several possible correction equations in Section 5.

ALGORITHM 4.1. A two-sided Jacobi—Davidson type method for the nonsingular two-
parameter eigenvalue problem.

1. Start. Choose initial vectors w1, uo,v7 and vo with unit norm.
(a) Set U;; = [ul], Vi = [1)1] fori=1,2.
(b) Set k =1.

2. Iterate. Until convergence or k > kpax do:
(a) Solve the projected two-parameter eigenvalue problem (3.1) by Algorithm 2.3.
(b) Select an appropriate Petrov value (o, 7) and the corresponding right and left Petrov

vectors u1 ® ug and v ® vg, where u; = Uypcy, v; = Vipd; for i = 1,2, respectively.



(¢) Compute the right and left residuals

(4.1) TlR = (Al - O'Bl' — TC’i)ui,
(4.2) ’r’iL == (A, - O'Bi - TC,')*’U@'
fori=1,2.

(d) Stop if px < €, where

R)|2 Ry2 L2 L2\ /2
(4.3) pr. = (1117 4 202+ lrr 12+ 2 117)
(e) Solve approximately one of the proposed correction equations (see Section 5) and
obtain new directions s; and t; for i = 1, 2.
(f) Expand the search subspaces. Set

Uik+1 = RGS (Ui, s1),
V;ﬁ,k-i—l = RGS (V;kvtl)

where RGS denotes the repeated Gram—Schmidt orthonormalization, for i = 1, 2.
(g) Set k=Fk+ 1.
(h) Restart. If the dimension of the image of Uy, and Vi, exceeds lpax, then replace Uy,
Vi with new orthonormal bases of dimension lyjy.

To apply this algorithm, we need to specify a target (A, pr), a tolerance e, a maximum
number of steps kmax, & maximum dimension of the search subspaces lyax, and a number [,;, <
Imax that specifies the dimension of the search subspaces after a restart (see Remark 4.2).

We also have to specify a criteria for Step 2(b). Suppose that we are looking for the eigenvalue
closest to the target (A, pur). We suggest to combine two approaches. In the first part we select
the Petrov value (o, 7) closest to the target until the residual pj drops below echange- In the
second part we take the Petrov triple with the smallest residual (4.3). Both stages can be seen
as an accelerated inexact Rayleigh quotient iteration.

REMARK 4.2. As Algorithm 2.3 is able to solve only low-dimensional two-parameter problems
(8.1) in a reasonable time, we expand the search spaces up to the preselected dimension lyax and
then restart the algorithm. For a restart, we take the lynin eitgenvector approximations with the
smallest residuals (4.3) as a basis for the initial search space.

REMARK 4.3. In Step 2(d) we could also stop the algorithm if either the norm of the right
residuals ¢ and r& or the norm of the left residuals v¥ and r¥ is small enough. In either
case we can expect that (o,T) is a good approrimation to an eigenvalue and we can compute the
corresponding right or left eigenvectors by solving one (orthogonal) correction equation, see also
[10].

In the following section we discuss the expansion in Step 2(e) and derive several correction
equations.

5. Correction equations. Let (o,7) be a Petrov value that approximates the eigenvalue
(A, p) of (1.1) and let u; ® uz and v; ® ve be its corresponding left and right Petrov vector,
respectively. Let us assume that uq,u9,v; and vo are normalized.

We are searching for orthogonal improvements of the left and right Petrov vectors of the
form

(5.1) (A = AB; — pCy) (ui + si) =
(Al — )\Bi — ,U,Ci)*(vi + ti)

0,
0,



where s; 1 a; and t; L b; for ¢ = 1,2. We will discuss the choices for a; and b; later, at this time
we require just that a; £ u; and b; f v;.
Using (4.1) and (4.2), we can rewrite (5.1) and (5.2) as

(Al —O’Bi—TCi) S; = —TlR—l-

()\ — O')Biui + (/L - T)Clul

(5.3) + (A =0)Bisi + (= 7)Cisi,
(A, —oB; — TC,-)*t,- = —’f’iL + ()\ - U)*vai + (M - T)*C;’Ui
(5.4) + (A= 0)*Bit; + (ju— 7)*Cit,.

LEMMA 5.1. Ifu; = x; — s; and v; = y; — t;, for i = 1,2, are close enough approrimations
to a left and a right eigenvector of (1.1) for the same algebraically simple eigenvalue (A, )
then the two-sided Rayleigh quotient (o,7) = (p1(u,v), p2(u,v)) is an O(|[si|||[t1] + IIs2|lllt2l)
approximation to (A, ), i.e.,

[

Proof. We write the residual (4.1) as

\ — Osullta]l + lss lt21)-

(5.6) rft = —(A; — AB; — uCy)si + (A — o) Biju; + (1 — 7)Ciu.

When we multiply equation (5.6) by v} and take into account that v r,LR =0 and
v; (A = AB; — pCy) = —ti(A; — AB; — uCy)

for i = 1,2, then we obtain

(5 7) [vi‘Blul vi‘C’lul} [)\ - O'] _ [t’f(Al - )\Bl - ,uC'l)sl]
) 'U;BQU/Q 'U;CQU/Q W= t;(AQ — )\BQ — ,LLOQ)SQ )

If ||s;|| and ||t;|| are small enough then (5.7) is a nonsingular system because of Lemma 1.1 and
continuity. We can deduce from (5.7) that

A—ol|l _
=2l
and so obtain (5.5). O
It follows from Lemma 5.1 that asymptotically (i.e., when we have good approximate right
and left eigenvectors), we can consider s; and ¢; as first order corrections, (A—o)Bju;+(u—7)Cjiuy;
and (A—o)*B}v; + (n—7)*C;v; as second order corrections, and finally, (A —o)B;s;+ (1 —7)Cjs;
and (A — 0)*B}t; + (u — 7)*C;t; can be interpreted as third order corrections.

|:’UTB1U1 ’L)T01U1:|_1 |:t:(A1 — )\Bl — MCl)Si:|
USBQUQ USCQUQ t;(Az — )\BQ - /,LCQ)Si

5.1. First order based correction equations. If we ignore the second and higher order
terms in (5.3) then we obtain the equation
(5.8) (A@ - O'Bi - TC,')S,’ = —rlR.
R i

i

C;,
vic;)?

¢; L v, that does not change rf. Secondly, since s; is orthogonal to a;, we can write (I — Zi[;’) S;
% £

Because r;* is orthogonal to v;, we can multiply (5.8) with an oblique projection I — where

instead of s;. Thus we obtain the correction equation for the vector u;

(5.9) (I — 5% ) (A; — oB; — 7Cy) (I _ ﬂ) s = —rk

*




for i = 1,2. In a similar way we obtain from (5.4) the correction equation for the vector v;

diut N (o
(5.10) (I — ﬁ) (Al —oB; — TCl) (I - b;‘vi) t; = —T’iL

for i = 1,2, where d; Y u;.

We solve these correction equations only approximately, for instance using some Krylov
subspace method. Since the operator in (5.9) maps af onto viJ-, it is suitable to take a; = v;
in order to apply Krylov solver without a preconditioner (see for example the discussion in [10,
Section 4.2]). If a; # v;, then we need a preconditioner that maps the image space v;- bijectively
onto ail. Similarly, we need a preconditioner for (5.10) when b; # u;.

Different choices of vectors a;, b;, ¢;, d; lead to different correction equations. We discuss some
options.

1. For the first correction equation we take a; = d; = v;, b; = ¢; = u;. We obtain a pair of

correction equations

<I - U:U’ ) (A —oB; — 7C}) (I - %> si= -k,

*

(I — viui) (Al —oB; — Tcl)* (I _ Uit > t; = —’f‘iL

* *
Uy V; U; Vg

(5.11)

for s; L v, t; L w; for ¢ = 1,2. The operator in the first equation is the conjugate
transpose of the operator in the second equation and we can solve these equations si-
multaneously by bi-conjugate gradients (BiCG). It is also possible to solve equations in
(5.11) separately by the generalized minimum residual method (GMRES).
2. For this correction equation we take a; = ¢; = u;, b = d; = v;.

It is a natural approach for (5.9) and (5.10) to take a; = u; and b; = v; as in this case we
are looking for updates orthogonal to the current approximation. As it turns out later
in Section 5.2, when we use preconditioning, an interesting choice for ¢; and d; is to take
¢; = u; and d; = v;, which leads to a pair of correction equations

uvy . o
I— " (A@ - O-Bl - TCIL)(I — uluz)sz =-r;,
V; Ug

(5.12)

(I D ) (Ai = o Bi = 7C))" (I — vv] )t = —rf

U; Uy

for s; L u;, t; L v; for i = 1,2. In order to solve (5.12) approximately by a Krylov solver
we need a preconditioner because a; # v;, see Section 5.2.
3. In this case we take a; = u;, b; = v;, ¢; = g;, d; = h;, where

9i = (At — o) Byui + (pr — 7)Cius,

h; = ()\T — O')*vai + (,UfT — T)*Cl*vl
The idea behind the choice of ¢; and d; is that when the target (A, ur) is close to the
eigenvalue then the projections with g; and h; almost annihilate the second order terms

in equations (5.3) and (5.4) and thus reduce the neglected quantity.
We derive the correction equations

*
V; 9i

<I - gﬂh-) (Ai = oB; — 7C)(I — wiuf)s; = —rf,
(5.13)

(I — hlul ) (Al — O'Bl' — TC’l)*(I — viv;‘)ti = —T-L

* (2



for s; L w;, t; L v for i = 1,2. Again, if we want to solve (5.13) approximately by a
Krylov solver then we need a preconditioner as a; # v;, see the next section.

5.2. Preconditioned first order based correction equations. We mentioned that we
need a preconditioner for a Krylov solver for the correction equation (5.9) when the domain
subspace a;- and the range subspace v;- do not agree. But we can also use a preconditioner
when the domain and the range agree to speed up the convergence.

Suppose that a left preconditioner M; is available for A; — o B; — 7C; such that Mi_l(Ai —
0B; — 7C;) =~ I. A calculation shows that if we assume that aM; '¢; # 0 then the inverse of

the map
Ut U aF
<I _ vl*cl-> M, (I _ a:;)
i Ci 5 Wi

arM; e ! vie

from v to ai-. Therefore, using left preconditioning changes (5.9) into

M ea* o a*
(I— l—flal) M (I— o )(Ai —oB; —7C;) (I— %) Si

from a;" to v is the map

arM; ¢ vfe a;us
M ea* _
== (I — Lt M
aiMi C;

for i = 1,2. Correction equation (5.10) for the left eigenvector can be dealt with similarly. A
preconditioner for A; — o B; — 7C; automatically suggests a preconditioner for (A; — o B; — 7C;)*.

We can combine different preconditioners with different correction equations. Here are some
possibilities.

1. Our suggestion for the preconditioner is
(514) Ml = Az - )\TBZ - MTOZ‘,

where (A1, pr) is the target. Instead of exact inversion we can also take an inexact
inverse, for example one obtained using an incomplete LU decomposition.

2. The simplest option is to take the identity as a preconditioner in order to be able to use
a Krylov solver for the correction equation. For example, if we take correction equation
(5.12) and the identity as a preconditioner, then we have to multiply (5.9) and (5.10) by

U; vy
i
Uzv Ug

orthogonal projectors I — w;u} and I — v;v, respectively. From (I —w;uf) (1 —

I — wuf and (I — vvf) (I -

u.

*

ViU,
E3

ui Vs

) = I —vv] we get

(515) (I —ujui)(Aj —oB; — 7Cy) (I —wjuj)s; = —(I — uiuf)rﬁ,
‘ (I — Uﬂ);k)(Al — O'Bl' — TCl)*(I — Uﬂ);‘)ti = —(I — 1)1'1);‘)7’{’

for ¢ = 1,2. One can recognize (5.15) as the correction equations of standard Jacobi-
Davidson applied to A; — oB; — 7C; and (4; — oB; — 7C;)*.



5.3. Second order based correction equation. For this case we generalize the correc-
tion equation with oblique projections for the right definite two-parameter eigenvalue problem
[11]. If we define

0 AQ—UBQ—TOQ

R L
R_| "N L_ | ™M
r - R ) r - L )
7"2 T2

then we can reformulate (5.3) and (5.4) (neglecting third order correction terms) as

K:[Al—O'Bl—Tcl 0 ],

s1| _ R [ Biwm G
(5.16) K [32] =—r"+(\-0) _B2u2:| +(p—1) |:02U2:|
and
* t1 _ L . * _val Nk Cik’Ul
(5.17) K [tz] =—r"+(\—0)  Bivs + (u—1) Civy |

Let Vg be a (n1 + ng) x 2 matrix with orthonormal columns such that

- 5] 5]

BQUQ CQUQ
and let
. (%1 0
Wr = [ 0 v2] .

With the oblique projection
P =1—Ve(WqVe)™' Wi

onto span(Wg)* along span(VR), it follows that

Bju Cu
R _ R 1ur | |
Prr't =r" and Py [BQUQ] = Pr [C’guz] =0.

Therefore, from multiplying (5.16) by Pr we obtain

PRK [31] = —rR,
52

Suppose that we are looking for corrections such that s; 1 v; and ¢; L u;. Then

and the result is the correction equation

(5.18) PrK Py {Zl} = _rf
2



REMARK 5.2. If u1 ® ug and vi ® ve are close approximations to eigenvectors r1 ® xro and
Y1 ®@ya, corresponding to a single eigenvalue of (1.1), then it follows from Lemma 1.1 that W} Vg
is nonsingular. If the above is not true, then it is possible that Vi does not exist or that W5Vg s
singular. In either of these two cases we can use one of the correction equations from Section 5.1
to expand the search and test spaces.

In a similar manner we obtain a correction equation for ¢; and to. If Vi, W1, and P, are
defined similarly for (5.17), then we have

(5.19) PLK* P, [H = L
2
We separately solve (5.18) and (5.19) approximately using a few steps of GMRES.
Better results can be expected if we use preconditioners. Suppose that M is a left precon-
ditioner for K, for instance a block preconditioner with the preconditioners M; in (5.14) as

blocks. One can show that if Wi M ~1VR is nonsingular then the inverse of a map PrM Pgr from
span(Wg)* to span(Wg)* is

<I - M—lvR(WﬁM—lvR)—lwgg) M~'Pg.
Thus we obtain a preconditioned correction equation
(I - M‘1VR(W§M‘1VR)‘1W§> M™'PRK P [Z;]
(5.20) = <I — M‘lVR(WﬁM_lvR)‘1W§> MR,

In a similar manner we get a preconditioned equation for ¢; and ts.

5.4. One-sided approach. Instead of the two-sided we could also apply the one-sided
approach where the search subspace is the same as the test subspace. One-sided versions can be
easily derived from the above two-sided correction equations. All one has to do is to use V; = U;
for i = 1,2, and to solve only the correction equations for s; and so.

The advantage of the one-sided approach is that it requires roughly half as much work for one
outer iteration. On the other side, numerical results in Section 8 show that two-sided approach
gives more accurate results. Also, if we use the one-sided approach then we can not apply
Lemma 1.1 as we did in Remark 5.2.

6. Computing more eigenpairs. Suppose that we are interested in p > 1 eigenpairs
of (1.1). In one-parameter eigenvalue problems various deflation techniques can be applied in
order to compute more than one eigenpair. The difficulties that are met when we try to translate
standard deflation ideas from one-parameter problems to two-parameter problems are discussed
in [11].

For a general two-parameter eigenvalue problem we can apply a similar technique as in
[11] for the right definite problem using the Ag-orthogonality of left and right eigenvectors.
Suppose that we have already found p eigenvalues (\;, i;) with the corresponding left and right
eigenvectors x1; ® ro; and y1; ® y9; for i = 1,...,p. Now we adjust Algorithm 4.1 so that in
Step 2b we consider only those Petrov triples for which uq ® us and v; ® ve satisfy

(6.1) min <|(v1 ® v2)*Ao(x1; @ x9;)|, |(Y1i @ ya2i)* Ao (ur ® U2)|> <nfori=1,...,p



for an n > 0. A suggestion for n (used in Example 8.4 in Section 8) is

1 )
n=g,min ((yu ® y2i) Ao(x1; @ $2¢))-

i=1,....p
If no triple satisfies this condition then we take the one with the smallest left side of (6.1).
Let us mention that an efficient way to compute (6.1) is to apply the relation (cf. (3.2))

(21 ® 22)" Ao(y1 ® y2) = (21 Biy1)(25C2y2) — (21C1y1) (x5 Bays).

If we want to compute more eigenpairs using the one-sided approach then we have to compute
the left eigenvectors separately for each converged eigenvalue. If we use the two-sided approach
then left and right eigenvectors are already computed.

7. Time complexity. The analysis of time complexity of Algorithm 4.1 is similar to the
analysis for the Jacobi-Davidson algorithm for right definite two-parameter eigenvalue in [11,
Section 6]. Because of that the details are omitted and the main results are stated.

If we assume that n = n1 = no and that m steps of GMRES are used for the approximate
solutions of the correction equations, then the time complexity of one outer step of Algorithm 4.1
for dense matrices is O(mn?). Also important is the storage requirement. If an algorithm works
with matrices A;, B;, and C; as Algorithm 4.1 does then it requires O(n?) memory. On the other
hand, Algorithm 2.3 that works with the associated system (1.5) needs @(n*) memory, which
may fast exceed the available memory, even for modest values of n.

If the matrices A;, B;, and C; are sparse, then the time complexity of the outer step of
Algorithm 4.1 is of order O(mMV), where MV stands for a matrix-vector multiplication by an
n X n matrix.

8. Numerical examples. The following numerical results were obtained with Matlab 6.5.

In the first examples we use a two-parameter eigenvalue problem with known eigenpairs,
which enables us to check the obtained results. The construction is similar to the one in [11]
and therefore the details are omitted.

We take matrices

(8.1) A =ViFU;, B;=V,GU;, C;=V;H;U;

of dimension n x n, where F;, GG;, and H; are complex diagonal matrices and U;, V; are random
matrices for i = 1,2. We select diagonal elements of matrices F;, G;, and H; as complex numbers
a+ i3 where o and 8 are uniformly distributed random numbers from the interval (—0.5,0.5).
All the eigenvalues can be computed from the diagonal elements of F;, G;, and H; for ¢ = 1, 2.

ExaAMPLE 8.1. We compare different correction equations without preconditioning on ma-
trices (8.1) of size n = 100. For the initial vectors we perturb the exact eigenvectors with a
random perturbation of order 1073, In each Step 2b of Algorithm 4.1 we take the Petrov triple
with the smallest residual (4.3).

Table 8.1 contains the number of steps required for the residual (4.3) to become smaller
than 10~%. The other parameters are lynayx = 10, lmin = 2 and kmax = 200. We compared three
two-sided correction equations without preconditioning:

e NP1 - first order correction equation (5.11), where s; L v; and ¢; L u;.

e NP2 - first order correction equation (5.15), where s; L wu; and ¢; L v;. Although
it is preconditioned, we treat this equation as an unpreconditioned one because the
preconditioner is the identity.

e NP3 - second order correction equation (5.18) and (5.19).



TABLE 8.1
Comparison of three correction equations NP1, NP2, and NP8 without preconditioning for the initial vectors
llui —z1:]| = O(1072) and ||vi—y1:]| = O(1072). GMRES: the number of steps used in GMRES for the approzimate
solution of the correction equation; Iterations: the number of outer iterations for convergence.

NP1 NP2 NP3
GMRES | Iterations | GMRES | Iterations | GMRES | Iterations
90 > 200 90 > 200 180 50
95 46 95 36 190 25
99 3 99 3 199 5

The results in the table indicate that the convergence is slow or we have no convergence at all if
the correction equations are not solved accurately, and this happens as the number of GMRES
steps gets closer to the size of the matrices. Let us remark that the number of GMRES steps
for the second order correction equation is larger because the size of the matrices is twice the
size of the matrices in the first order correction equations.

ExXAMPLE 8.2. For the second example we take the same initial vectors and parameters as
in Example 8.1, but, this time we use preconditioned correction equations. For a preconditioner
we take (5.14). We compared the following three two-sided preconditioned correction equations:

e P1 - preconditioned first order correction equation NP1 from Example 8.1, where s; | v;
and t; L u;.

e P2 - preconditioned first order correction equation (5.13), where s; L w;, t; L v;, and
where the second order terms are small close to the eigenvalue.

e P3 - (5.20) preconditioned second order correction equation NP3 from Example 8.1.

TABLE 8.2
Comparison of three correction equations P1, P2, and P3 with preconditioning for initial vectors ||u; — x1;|| =
O(10™*)e and ||vi — y1:|| = O(1073). GMRES: the number of steps used in GMRES for the approzimate solution
of the correction equation; iterations: the number of outer iterations for convergence.

P1 P2 P3
GMRES | Iterations | GMRES | Iterations | GMRES | Iterations
1 63 1 63 1 99
2 70 2 59 2 36
4 28 4 28 4 24
8 6 8 6 8 6
15 4 15 4 15 3

The results in Table 8.2 indicate that correction equations with preconditioners work better
than the ones that are not preconditioned and we have a fast convergence for a modest number
of GMRES steps.

ExAaMPLE 8.3. In this example we use matrices (8.1) of size n = 1000. We take initial
vectors u; = ug = vy = vy = [l --- 1]T and parameters ly.x = 15 and [y = 4. Our goal is
the eigenvalue closest to the origin. In Step 2b of Algorithm 4.1 we pick the Petrov triple with
the Petrov value closest to the target (0,0) until the residual py is less than echange = 1025,
After that we take the Petrov triple with the smallest residual (4.3) until the residual is less
than 5- 1077

Figure 8.1 shows the convergence plot for two and one sided correction equations P2 and P3
using various number of GMRES steps to solve the correction equation. One can see that once



Fic. 8.1. Convergence plot for the eigenvalue closest to (0,0) for u; = v; = [1 ---
the log,o of the residual norm (4.3) versus the outer iteration number for the Jacobi—-Davidson type method using
correction equation with 5 (solid line), 10 (dotted line), and 20 (dashed line) GMRES steps to solve the correction
equation. The correction equations are: two-sided P8 (top left), one-sided P8 (top right), two-sided P2 (bottom
left) and one-sided P2 (bottom right).
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the residual becomes smaller than echange (top horizontal dotted line in the figures) and we are
close to the eigentriple, the number of GMRES steps determines the speed of the convergence.

There is no guarantee that the process will converge to the eigenvalue closest to the tar-
get. Table 8.3 shows the indices of the obtained eigenvalues if the eigenvalues are ordered by
their distance from the target. This example shows that although the one-sided methods may
converge faster than the two-sided methods (especially measured in number of matrix-vector

multiplications), they often converge to an undesired eigenvalue.

TABLE 8.3
Indices of the obtained eigenvalues from Figure 8.1.

GMRES | two-sided P3 | one-sided P3 | two-sided P2 | one-sided P2
1 2 16 3 1
2 1 26 2 80
3 2 4 2 9

ExXaAMPLE 8.4. In this example we test the selection technique from Section 6 that enables
us to compute more than one eigenvalue. Matrices are the same as in the previous example.



Figure 8.2 shows a convergence plot for the first ten computed eigenvalues. For each eigenvalue
we select the closest Petrov value to the origin until the residual becomes smaller than echange
and in the remaining steps we select Petrov triple with the minimum residual. We consider only
Petrov triples that satisfy the condition (6.1). The indices of the computed eigenvalues ordered
as they were obtained are 1,34,4,5,2,16,3,6,9, and 12. The statistics in the following example
show that the probability of a successful convergence is high if we carefully tune the parameters
of the method.

Fic. 8.2. Convergence plot for the first ten computed eigenvalues using the selection technique from Section 6.
Used is correction equation P3 with 15 GMRES steps and parameters lmax = 15, Imin = 4, and Echange = 10723,

log10 of residual norm

0 20 40 60 80
number of outer iterations

ExaMPLE 8.5. We use the same n = 1000 matrices as in Example 8.4. We test the
preconditioned correction equation P3 on the same set of 10 random initial vectors. For each
initial vectors the goal was to compute the 10 eigenvalues closest to the target using the same
approach as in the previous example. We set the maximum number of outer steps to 300 and
use different number of GMRES steps and different echange-

The numbers in Table 8.4 show that the probability of computing the correct eigenvalues is
high when the parameters are carefully chosen. If ecpange is too small then in the first phase,
when we select the closest Petrov value to the origin, the method requires too many iterations
until the residual is smaller than echange. On the other hand, if echange is too large then the
method is likely to converge fast, but to an unwanted eigenvalue. More GMRES steps may
reduce the number of outer iterations and enlarge the probability, but we must keep in mind
that the total amount of work is dependent to the number of matrix-vector multiplications, and
thus roughly equal to the product of the number of GMRES steps and outer iterations. Also,
if we use too many GMRES steps, than the correction equations are solved too accurately and
the method requires more iterations until the residual is smaller than echange-

The results show that we can compute more eigenvalues close to the target if we use the two-
sided method. The performance of the one-sided method is less optimal. The one sided method
usually requires more outer iterations and situations where we have very slow convergence or no
convergence at all occur more frequently.

EXAMPLE 8.6. In the last example we study the three-point problem

(8.2) y"+ (AN +pcosz)y =0



TABLE 8.4
Statistics of the Jacobi—Davidson type method using the same set of 10 random initial vectors for computing 10
closest eigenvalues to the origin using correction equation P8 and different number of GMRES steps and €change-
The parameters are lmax = 15 and lmin = 4, mazimum number of outer iterations is 300. GMRES: the number of
steps used in GMRES for the approzimate solution of the correction equation; In 10 (In 50): the average number
of the computed eigenvalues among the 10 (50) closest eigenvalues to the origin; Conv: the average number of the
computed eigenvalues; Iter.: the average number of outer iterations for convergence.

two-sided correction equation P3

Echange = 1072 Echange = 1073 Echange = 107*

GMRES || In 10 | In 50 | Conv. Iter. || In 10 | In 50 | Conv. Iter. || In 10 | In 50 | Conv. Iter.
10 6.8 8.4 10.0 72.8 7.8 9.5 9.9 | 115.9 7.7 9.3 10.0 89.7
20 6.3 8.8 10.0 56.7 7.8 9.5 10.0 91.7 8.7 9.7 10.0 | 113.3
30 6.9 7.8 10.0 65.6 7.9 9.2 10.0 88.6 8.7 9.7 10.0 | 124.2

one-sided correction equation P3

Echange = 10_2 Echange = 10_3 Echange = 10_4
GMRES || In 10 | In 50 | Conv. Iter. || In 10 | In 50 | Conv. Iter. || In 10 | In 50 | Conv. Iter.
10 4.5 8.0 10.0 97.5 6.6 8.7 9.5 | 103.8 6.6 7.7 8.1 | 192.8
20 2.4 6.5 10.0 80.8 6.2 8.8 10.0 | 122.1 7.7 8.8 9.1 | 204.3
30 1.3 2.4 8.4 | 160.6 6.2 9.0 10.0 | 121.7 6.7 8.8 9.0 | 200.3

with boundary conditions

y(0) = y(2.5) = y(5) = 0.
Instead of (8.2) we can study the two-parameter problem
(8.3) yl + AN+ pcoszy)y; =0, i=1,2,

where 21 € [0,2.5], x2 € [2.5,5] and the boundary conditions are y;(0) = y1(2.5) = 0 and
y2(2.5) = y2(5) = 0. One can see from the determinant

1 cos(zy)
1 cos(z2)

= cos(zg) — cos(z1)

that (8.3) is not right definite.
We can compute eigenvalues of (8.3) using finite differences. If we take h = 1/(n — 1),

T1; = th, x9; = x1; + 2.5 for i = 1,...,n, then the n X n matrices that form the two-parameter
problem are

T, ...
A=Ay = 72 tridiag(1, —2,1),
(8.4) By =By =1,

C = diag(cos(z11),...,co8(z1p)), Co = diag(cos(xa1),...,cos(xa,)).

Eigenfunctions for the six closest eigenvalues to (0,0) are shown on Figure 8.3.

Using finite differences and n = 1000 we test preconditioned correction equation P3 using
the same set of 50 random initial vectors and various number of GMRES steps. The goal is
to compute the 10 closest eigenvalues to the target (0,0). Results in Table 8.5 show that it is
possible to compute a selection of the closest eigenvalues to the target using the Jacobi-Davidson



Fic. 8.3. Eigenfunctions of the three-point boundary problem (8.2) for the siz closest eigenvalues to (0,0):
(A, p1) = (—1.5790,0), (A\aypi2) = (—6.3145,0), (A3, pa) = (—2.1197,6.5418), (\a,pua) = (—5.1698, —5.4264),
(A5, p15) = (—8.9898, 8.4441) and (e, pe) = (—14.2019, 0).
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TABLE 8.5
Statistics of the Jacobi—Davidson type method using the same set of 10 random initial vectors for computing 10
closest eigenvalues to the origin using correction equation P8 and different number of GMRES steps for problem
(8.4) and n = 1000. The parameters are lmax = 15, lmin = 4, and €change = 1072, GMRES: the number of
steps used in GMRES for the approximate solution of the correction equation; In 10: the average number of the
computed eigenvalues among the 10 closest eigenvalues to the origin; Iterations: the average number of outer
iterations for convergence.

Corr. equation | GMRES | In 10 | Iterations
two-sided P3 5 10.0 86.2
two-sided P3 10 10.0 48.9
two-sided P3 20 9.9 42.2
two-sided P3 30 10.0 50.8
one-sided P3 5 10.0 70.5
one-sided P3 10 9.8 50.7
one-sided P3 20 10.0 68.2
one-sided P3 30 9.9 90.3

type method. It appears that the optimal solution in this case is to take a modest number of
GMRES steps.

In this example the difference in the performance of the one-sided and the two-sided approach
is smaller as in Example 8.5. This happens because the matrices are real symmetric and therefore
the left and right eigenvectors of real eigenvalues agree. The discretized problem (8.4) has
complex eigenvalues as well but the ones that we are interested in are all real.

9. Conclusions. We have presented a new Jacobi-Davidson type method for the nonsingu-
lar two-parameter eigenvalue problem. This problem is a very challenging one, where we have to
use many available techniques to be successful: a two-sided subspace approach, preconditioning,
selection techniques instead of deflating, and the use of a target.

Numerical examples show that the two-sided subspace approach is often more expensive, but
also more reliable. An additional advantage of the two-sided approach is that during the process
we have approximate left and right eigenvectors, and hence in principle (see [12] for details) an
approximation to the condition number of the eigenvalue to which we are converging.



The new method can compute selected eigenpairs without good initial approximations and
it can tackle very large two-parameter problems, especially if the matrices A;, B;, and C; are
sparse. In such situations, preconditioning is of great importance.

Let us also mention that Algorithm 2.3 and Algorithm 4.1 both offer a simple generalization
to multiparameter problems with more than two parameters.
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