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ABSTRACT. A class of multiparameter eigenvalue problems involving (generally) non
self-adjoint and unbounded operators is studied. Bases for lower order root subspaces, at
geometrically simple eigenvalues of Fredholm type of arbitrary finite index, are computed
in terms of the underlying multiparameter system.

1. INTRODUCTION
We consider an n-parameter system (n > 2) of the form

n
W; (A) = ZAZ'J')\J', 1 € n, (1.1)
§=0
where A;; (j € n) are bounded linear operators acting on a Hilbert space H; (i € n) over
the complex numbers, A;9 are closed densely defined operators with domain D (A;) C H;,
A= (Ao, AL,..., \y) are parameters, and n = {1,2,...,n}. Eigenvalue problems
W; (A) z; =0, x; 7é 0,A € C\{O}, (1.2)

arise in various applications: classically they arise in the theory of boundary value problems for
partial differential equations after separation of variables. For background on multiparameter
eigenvalue problems we refer to [2, 6, 7, 20, 22]. We assume that H; are separable Hilbert spaces
over C to allow for complex eigenvalues which can occur even when all the A;; are self-adjoint.
However, for A €IR"*! all the calculations can be performed over IR.

In applications to boundary value problems for partial differential equations the A;;, ¢, j € n,
are multiplication operators and A;g, @ € n, are differential operators. Then solutions of the
boundary value problems are given in terms of Fourier type series over a complete system of
eigenfunctions and associated functions. In the abstract setup, the completeness is naturally
studied in Hilbert space tensor product H = @ ; H; by means of certain determinantal op-
erators Aj;. For j =0,1,...,n, the operator A; is (up to the sign) the tensor determinant of
the array [Aik]?zl’ e With the j-th column omitted. In order to proceed we introduce certain
regularity and solvability assumptions. If dim H; < oo for all ¢ then the existence of a linear
combination of A;, which is an invertible operator, suffices [2]. In infinite dimensions and when
unbounded operators are involved (as in the applications to boundary value problems) several
sets of assumptions mostly for self-adjoint cases are used in the literature (see e.g. [2, 6, 20, 22]).
Here we use a setup introduced in [4] which encompasses most of the others and does not re-
quire self-adjointness. After these assumptions are made the completeness problem reduces to
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the description — in terms of the original operators A;; — of bases for a joint root subspace
of a certain commuting n-tuple of operators I';, j = 0,1,...,n — 1. (If A, is one-to-one then
I'; = A, 1A;) Specifically, for A = (Ao, A1, ..., Ap—1) € C" the root subspace Ry, [ =0,1,2,...,
is the subspace of vectors annihilated by all the products of (I 4+ 1)-tuples of operators from the
set {I'; — A\j1 }?:_01 . The joint eigenspace Ry is described in terms of elements of the spaces H;
and maps A;; in [2]. The root subspace R; is described and its basis is constructed for I = 1
in [4], and for general [ in [9] (see also [10]). However, for general eigenvalues A and general
[, the construction of bases via the cotensor product [9, Thms. 5.1 and 5.2] is technically in-
volved. So, it is natural to consider eigenvalue problems (1.2) with additional properties which
yield simpler description of a basis for R;. For instance, in [3] Binding proved a completeness
result for real eigenvalues of elliptic multiparameter systems. His results yield a method for
construction of bases for the corresponding root subspaces. In [15] constructed bases for root
subspaces of nonderogatory eigenvalues in a finite-dimensional setting. (See [19] for a discussion
of numerical implementation of results in [15].) In applications to boundary value problems all
the eigenvalues of (1.2) are geometrically simple, i.e. dim N (W; (X)) = 1 for all i. Here N (A)
is the nullspace of operator A. In the paper we consider such eigenvalues and construct bases
for the corresponding root subspaces Ro and R3. We remark that our results can be derived
from the construction in [9], however, we do not follow that route. Instead we use techniques of
linear algebra as in [13], where our results were first proved in finite-dimensional setup. We also
remark that our method can be extended for general [ but proofs similar to those in [13] require
long technical calculations and we do not reproduce them here. Note that our results are new
even in finite-dimensions. In infinite-dimensions we assume that W; (A) are Fredholm operators
of arbitrary (finite) index [21] (Fredholmness with index 0 is automatic in finite-dimensions).
Hence we allow dimensions dim N (W; (X)*) to be arbitrary positive integers. With slight mod-
ifications our approach would apply even when some (or all) of dim N (W; (A)*) were infinite.
The two-parameter version of our results for general [ is given in [5]. Further connections of
our results with boundary value problems will appear elsewhere.

One might observe looking at the main results on root subspaces in this paper and in
[4, 5, 13] that there is a close relation between the root subspaces and multiplicative structure of
the algebra generated by the commuting maps I';. This is indeed so. Suppose that R = U2 R,
is the root subspace at an eigenvalue of (1.1), that R is finite-dimensional, and that A is the
commutative subalgebra generated by the restrictions I'j|g, 7 = 0,1,...,n—1, in the algebra of
all linear maps on R. Then R is a module over A. Moreover, if the corresponding eigenvalue is
geometrically simple then A and R are isomorphic as A-modules, i.e., R is a free A-module of
rank 1. We refer to [11, 18] for proofs of these and further results on multiparameter eigenvalue
problems from a point of view of commutative algebra and algebraic geometry.

We conclude the introduction with a short setup of the paper. In next section we introduce
our regularity and solvability assumptions. In §3 we recall several results needed later. Our
main results are in sections 4 and 5, where bases for root subspaces Ry and Rg, respectively,
of a geometrically simple eigenvalue are described. In the last section we discuss two examples.

2. REGULARITY AND SOLVABILITY ASSUMPTIONS

In the rest of the paper we use the basic setup introduced in the first paragraph of §1. The
operators A;;, j € n, induce operators Azj on the Hilbert space tensor product H = H| ® Hy ®
-+ ® H, by means of

A;rj(x1®$2®"'®xn):x1®"'®xi—1®A7jjxi®xi+1®"'®xn



on decomposable tensors, extended by linearity and continuity to the whole of H. Similarly
Ajp induces an operator A;-ro with domain D (AIO) C H (see [20, §2.3]). We denote by D

the intersection (;_; D (AIO), which is a dense subspace of H since D (Ajp) @ D (Ag) @ -+ ®
D (Ano) € D. The operator Ag on H is defined by

Ao = det [Ajj}zjzl (2.1)

and operators A; (i € n) on D by replacing the i-th column in (2.1) by [—A}Zor .
1=
In what follows we make two regularity assumptions and a solvability assumption.

Assumption I We assume that the operator A, has a bounded inverse.

Remark 2.1. Actually a weaker assumption that the operator A, +a/\; has a bounded inverse
for some a € C and some index i would suffice. Then Assumption I follows by a shift in
parameters. In the finite-dimensional case Assumption I follows by a shift in parameters if there
is a linear combination of A;’s which is a nonsingular operator. This can be also formulated in
terms of polynomials det W; (X) in n + 1 variables Ao, A1, ..., Ap (cf. [2, Ch. 8] and [11]).

Now we normalize our multiparameter system by assuming that A, = 1, and from now we

write A = (Ao, A1, ..., Ap—1) and

n—1
=0

for i € n.

Next we define the notions of eigenvalues and spectra. An n-tuple A € C" is called an
eigenvalue of a multiparameter system (2.2) if all W; (X) are singular. The set of all eigenvalues
is called the spectrum of (2.2), and it is denoted by o (W).

Assumption IT A given eigenvalue A = (Ag, A1,..., A\p—1) of (2.2) is geometrically simple,
i.e., operators W;(A) are Fredholm [21] and dim N (W; (X)) = 1 for all 3.

Remark 2.2. Assumption II is satisfied for example, in several cases arising from boundary
value problems, e.g. of Sturm-Liouville type (see [4]). Note that in infinite-dimensional set-
tings it might happen that dim N (W;(X)) = 1 but dim N (W;(A)*) # 1. However, due to
Fredholmness assumption it follows that dim N (W;(A)*) < oo. In finite-dimensions the Fred-
holmness assumption is automatic, moreover an eigenvalue is geometrically simple if and only

if dim N (W;(X)) =1 for all i (cf. [15]).

n

Let A;rj denote the restriction of A;rj to D. The array A = [AH 4 n then defines a linear

=1, 7=0
map A : D"T! — H™. Here H" is the direct sum of n copies of H. Omitting the j-th column
we get a transformation A; acting on the (algebraic) direct sum D" for j = 0,1,...,n. Note
that A; = (—1) det Aj; for j € n. Next we define the transformations B; : D" — H" adjugate
to A;, so (Bj),, is the (k,)-th cofactor of A;. We denote by C; the j-th column of .A. Now we
state the solvability assumption.

Assumption III The equation A,y = C,z has a solution y € D" for all x € D.

The linear transformations I'; = A A : D — D(C H), (j =0,1,...,n — 1) are called the
associated transformations of a multiparameter system (2.2). Assumption III implies [4, Thm.



3.2] that the linear transformations I'; commute on D, i.e., I;I'joz = I';T;z for all z € D and 1,
j=0,1,...,n—1, and that

n—1
Z Agjf‘jx + Azn:v =0 (2.3)
j=0

for all z € D and 7 € n. Note that (2.3) can be viewed as a generalization of Cramer’s rule for
a system of linear equations.

An n-tuple A = (Ao, A1, ..., A\p—1) € C" is called an eigenvalue of the system of commuting
linear transformations {I; };:01 if

n—1
Ro= (N (T; = N\I) # {0}

J=0

The set of all the eigenvalues is called the spectrum of the system {I'; };.:01.
Assumptions I-IIT imply [4, §4] that the spectrum of (1.1) and that of its associated system
of linear transformations {I'; }?;01 coincide and that for a given eigenvalue A we have

Ro=N Wi (X)) @N (W2 (X)) @---@N (Wy (X)) (2.4)

The subspace Ry is called the eigenspace corresponding to A.
For [ > 1 we define root subspaces

Rl == m N[m(ro - )\0[, Pl - /\1], ey Pn—l - /\n—lj)] s (25)

meM; 1

where M1 is the set of all monomials in n variables of degree | 4+ 1. Using linearity it is easy
to see that R; is equal to

(N NIm@To—Xol, T1—Ail,..., Dpy — Apid)],

meR 41

where R4 is the set of all homogeneous polynomials in n variables of degree [ + 1.
The least integer [, if it exists, such that R; = R;y41 is called the ascent of X. We write K
for the ascent if it exists, and assume K = oo otherwise. The subspace

K
R=R

=0
is called the root subspace of W at A. For [ > 1 we denote by d; the difference dim R;—dim R;_;.
Observe that if A is geometrically simple then it follows from (2.4) that dp := dim Ry = 1. Our
Assumption III guarantees that the root vectors described in this paper in terms of operators
A;; span the root subspaces R; for I = 1,2,3. Actually, a weaker assumption that the root
subspace R; is contained in the subspace

K = {z € D : there exist y € D" such that A,y =Cpz}

is sufficient. Without such an assumption our method would yield only a basis for the subspace
RN K of R;.

The main ideas in the proof of the following result are essentially the same as those in the
proof of [4, Lem. 5.2]. Here, we include the proof for the sake of completeness.
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Lemma 2.3. Assume that R is finite-dimensional. Then for | > 1 the subspaces R; are also
finite-dimensional.

Proof. We use the induction on [. Suppose that R, are finite-dimensional for k < [ and that
[ > 1. For amonomial m € M; we write m(I', A) = m(To—Xol, 1= 1,...,Tph—1—An—11). The
subspace R; is invariant for all m(T', A). Since (I'; — A, I) m(T',A)u =0 for i = 0,1,...,n — 1,
and all u € Ry, it follows that the range Z (m(I', X) |g,) is a subspace of Rg. So, it is finite-
dimensional. Then each kernel N (m(I', A) |g,) has finite codimension in Ry, i.e., the orthogonal
complement Q,, of N ((m(T', X)) |r,) in R; is finite-dimensional. Hence the linear span Q of the
Qm, m € M is finite dimensional. By definition we have R;—1 = Nyenm,_ , N (m(T, A) |r,)
and therefore R; = R;_1 & Q. Hence, R; also has finite dimension. O

3. PRELIMINARIES
3.1. The Root Subspace R;. In this section we introduce some further notation and recall
some of the results from [4, 14, 17] that are needed later.

From now we fix an eigenvalue A € o (W) (which is geometrically simple). Suppose
that z;0 € N (W; (X)) (i =1,2,...,n) are nonzero vectors. By (2.4) it follows that the vec-
tor zg = 19 ® To0 @ -+ @ Tpo spans Rg. Further, we choose vectors yfg e N(W;(A)")
(ki=1,2,...,nf, i=1,2,...,n), such that {y}o,yfo,...,yzg} is a basis for N (W;(A)*). By
Assumption II it follows that the dimensions

n; = dim N (W;(X)*), i € n,

are finite. Fori € nand 7 =0,1,...,n — 1 we write
ny T
A?j = { (Aijzio,yjo)  (Aijzio,yio) -+ <Az’jflli0,yi6> }
and o o o
A(l)o A(l)l Aé,n—l
g | M A
Ao A Al

Here we use (x,y) to denote the scalar product of vectors z and y. It is clear from the context

n
which Hilbert space H; or H is meant. Note that By is a n* X n matrix, where n* = (Z ny )
i=1
The following result is a special case of [4, Thm. 6.3]. Recall that for a positive integer k
we denote by k the set of integers {1,2,...,k}.

Theorem 3.1. Assume that A is a geometrically simple eigenvalue of multiparameter system
W and that {zo; 2,22 ,zfl} is a basis for the subspace R such that

(Pz‘ — )\ZI> Z]f = afzo

T
fori =0,1,...,n—1and k € di. Then {al,az,...,adl}, where aF = [aé,a%,...,aﬁ,l] ,is a
basis for the kernel of By.
T
Conversely, suppose that {al,aQ,...,ad}, where aFf = [aﬁ,a%,...,aﬁ,l] , is a basis for
N (Bo). Then there exist vectors z¥, € D (Ay) such that
U, (ak> xi0 + Wi (X) xfl =0 (3.1)



for i € n and k € d, where
n—1
Ui (ak) = Z a?Aij.
§=0
Furthermore, the vectors

n
A= 010® @ Tis10 @ T O Tit10 @ © Tno (3.2)
i=1

are such that
(T — NI) 2 = a2

for all i and k and {zo; 2,22, ,z‘li} is a basis for the second root subspace R1; hence d; = d.

3.2. Commutative Arrays. Next we recall notation and some results from [14, 17]. Let
us first explain how the general setup introduced in this subsection is used later in the paper.

By Lemma 2.3 each root subspace R;, [ = 1,2, ..., is finite-dimensional. It is an invariant
subspace for I'; — \;I, i = 0,1,...,n — 1. The restricted operators A; = (I'; — \;I) |g, form
an n-tuple of commutative nilpotent operators on a finite-dimensional Hilbert space R;. We
choose a basis for R; and we identify A;, ¢ = 0,1,...,n — 1, with an n-tuple of commutative
nilpotent N x N matrices, where N = dimR;.

In the rest of the subsection we choose the notation so that it corresponds as much as possible

to the notation already introduced for the special commutative n-tuple A4;, ¢ =0,1,...,n — 1,
as above.
In general, we consider a set A = {4;, i =0,1,...,n — 1} of commutative nilpotent N x N

matrices. The set A is viewed also as a cubic array of dimensions N x N x n [14, 17]. For [ >0
we write

NAl= () N[m(Ag,A1,...,An 1))

mEM,4 1
Suppose that M = mlin {./\/Al = CN}. Then

{0V cNA Cc VAL c .. c NAM = ¢V (3.3)
is a filtration of the vector space CV. Further we write

D; =dimNA! and d,=D,— D, (3.4)
for =0,1,...,M. Here D_; = 0. Then there exists a basis
B= {zé,zg,...,zgo; z%,z%,...,zfl; cee 3 zh,zi{,...,zﬁ”}
for €V such that for I =0,1,..., M, the set
B = {zé,z%,...,zgo; z%,z%,...,zfl; e 3 z},z?,...,zldl}

is a basis for NA!. We call a basis B with the latter property a filtered basis. A set of
commutative nilpotent matrices A is then simultaneously reduced to a special upper-triangular



form and viewed as a cubic array

0 A0l A02 . AOM
0 0 A2 ... ALM
A= : , (3.5)
0o o 0 ... AM-1LM
0 0 0 . 0
where alf alfh
AKL_ aIQdI a]2€l2 e al?ﬁ,ldz
ajly ag, oagy
is a cubic array of dimensions dj X d; X n and af} € C™. The row and column cross-sections of
AR are
R =[alf alf - all) i€ d (30
and
Cff = lafy al o all,lged )

These are matrices of dimensions n X d; and n x dj, respectively. We wish to remark that the

T
matrices C;d of (3.7) are denoted by (CJM) in [14, 17]. We changed the notation for notational
simplicity since in our paper only the matrices in (3.7) appear.

We call a matrix A symmetricif A = AT. In [14, Cor. 1] we observed that A is commutative
if and only if certain products of row and column cross-sections are symmetric.

A commutative array A is called geometrically simple if dy = 1, i.e., if the joint kernel of
matrices in A has the dimension equal to 1.

Now we state a theorem used latter in the text that follows from [14, Thm. 2] and results
of [17, §4].

Theorem 3.2. Assume that A is a geometrically simple commutative array in form (3.5) with
M = 3. Then there exists a set

{T2f = [t?z‘j]z;:1§ fe dZ}

of linearly independent symmetric matrices such that C’]lcz = R?ngf for f € da.
Furthermore, there exists a set

Tg}f T32f
Tsp = - T 0 ; feds (3.8)
3f

of symmetric (di + dg) x (d1 + d2) matrices such that :

d1

(i) matrices T32f = [t%h] g=1h

il ; f € d3, are linearly independent,

T
(ii) CF = R{'TZ and CF = R{TY, + RY2 (T3) for f € d,



(iii) for hy,ha,h3 € di and f € d3 there is

Z tghth tfhgg Z tgh1h3 tfhgg' (39)

Remark 3.3. The symmetry of matrices T,y for m = 2,3 and f € d,, is equivalent to the
commutativity of A with M = 3. This follows from the fact that when the array A is geo-
metrically simple, i.e. dy = 1, the nonzero entries of matrices T, are structure constants for
multiplication in the commutative algebra generated by the matrices A; and the identity matrix
[17, Thm. 3]. In addition, the structure constants satisfy relations (3.9) and also higher order
symmetries [17, Cor. 4]. These arise since the products of three or more matrices of A do not
depend on the order of multiplication.

4. A BASIS FOR ROOT SUBSPACE Ro

We suppose that A is a geometrically simple eigenvalue and that aj!, ad!, ... ,agi form a basis

for N (By). Further, we assume that the columns of the matrix
bo=[ b b§ .- b |

form a basis for N (Bj). Observe that dj = n* —n + dy. We restrict our attention to the root
subspace R = Ra, which is finite-dimensional by Lemma 2.3. We bring the restricted linear
transformations (I'; — A\;I) |g, that are commuting and nilpotent, with respect to a filtered basis
to the form (3.5) with M = 2. It follows from Theorem 3.2 that for every column cross-section

2, f € dy there exists a unique symmetric matrix 7 such that R{'Ty = 012. We choose
vectors zl, k € dy, as in Theorem 3.1, such that B; = {zo, 21,22, .. z‘lil} is a basis for R and

(T AI)l—akZzoforZ—Ol ,n— 1.
NowwedeﬁnematrlcesAij forkzeﬁ,izo,l,...,n—landj:1,2,...,nby

AlF = | (Agab, vy (Ayal.ud) - <AM$5’%§>}T’

and matrices Byy, k € di by

Afg A AL
/o T
Blk: . :

d1/2 (CES)

Further we construct matrix § € ¢ *(@1+1) as follows : for p € we can uniquely

choose numbers k and [ so that £ > [ > 1 and p = (kgl)k + [ . Then the p-th column of S is
equal to Bl,ka?l + Bl,la if K # 1 and to By ka I otherwise. We also write

Sy = by

Further we identify the subspace Oy of symmetric d; x d; matrices with the vector space
C(h+DA/2 g the isomorphism v : © — C(aH+Dd/2 gefined by

T
I/J(T):[tn ti2 t22 t13 to3 t33 ... tig, togq, - tdldl} (4.1)



for

t1n tiz - Ty
t1g  toa -+ tog

T = ) ) o] €0,
tldl t2d1 T tdldl

We denote by D} the intersection D (Aj) N (N (Wi(Ai))) ", where (N (W;(A)))* is the
orthogonal complement of A (W; (X)) in H;. The following is a technical observation, which
enables us to shorten proofs but has no significance otherwise. In actual calculations of basis
vectors we can chose vectors z¥, € D (Aj) (i.e. not necessarily 29, € D;) that satisfy all other
conditions. Note also that by a similar argument as in Lemma 4.1 we can assume that =¥ € D!
in Theorem 3.1.

Lemma 4.1. Suppose that a vector z; € (N (W; (A)))*

such that €T, = Wl (A) Vj.

. Then there exists a vector v; € D

Proof. Suppose that 2; € (N (Wi (A)*))*". Because (N (Wi (A)*))" = R (W; (X)) it follows
that there exists a vector u; € D (Ajp) such that z; = W; (A) u;. By the definition of the direct
sum of vector spaces we can find vectors v; € D} and w; € N (W; (X)) such that v; + w; = u;.
Then it follows that x; = W; (X) v;. O

Proposition 4.2. Suppose thatt € N (S2)\ {0} and T = [tij]%:l =171 (t) € Oq. Then there
exists an n-tuple a’ € C" such that

di
Z tlelka?l + 308.02 =0, (4.2)
k=1
and there exist vectors x;o € D, for i =1,2,...,n, such that
d1
U; (aoz) Zi0 + Z U; (a}f) X+ Wi (A) 242 = 0, (4.3)
k=1

where a}f = Zldél tklag)l. Then the vector

n dy n—1 n
2= 2100 QT2® @Tpo+ Pty Y. D TR @TH R ®ah @ @za0 (4.4)
s=1 k=1 s=1t=s+1
is in Rg\Rl, and
di
(Fi — /\ZI) Z9 = Z a,ljzlf + CL?QZ() (45)
k=1

fori=0,1,...,n—1.
Conversely, if zo € Ro\R1 and (4.5) holds then ¢ (T) € N (S2), where T is the unique

symmetric matrix such that [ al? al? ... abf } = R'T. Furthermore, there exist vectors

xi2 € D(Ajp), i =1,2,...,n, such that (4.3) and (4.4) hold.



Proof. Because t € N (Sz) and T = 1~ (t) it follows that

di di
Z Z tkleBuagl = 0.

k=11=1
Hence Y01, S 1y Byuadt € (N (Bg))™ and therefore there exists a®® € €™ such that the
equality (4.2) holds. By deﬁnition of the matrices By and By it follows that

n—1

iitmz< Z]ak] 11,y10>+Z<AW a; mzo,y%>:0

k=11=1 7=0

for ki € n} and i € n. Thus U; (a%) 20 + S Ui (a)? )mk e NW; (/\)*))L and by Lemma
4.1 there exist vectors x;o € D} such that (4.3) hold for a 22111 tkla . Next we form the
vector zp as in (4.4). For vectors x;; € H;, i,j € n we Write

®
T11 T12 - Tln
To1 T2 v Top
= Z SgN 0 T14(1) ® T20(2) K- Q Lno(n)s (46)
oell,
Tnl Tp2 *° Tpn

where II,, is the set of all permutations of order n and sgno is the signature of permutation
0. Observe that for the “vector determinant” (4.6) usual determinantal properties with respect
to column operations hold. These properties hold for the “operator determinants” of the form
(2.1) as well. In particular, we have that

- (/\)1 AT Aln 1

W) Al Al
(_1)n(AO_)\OAn): 2( ) :21 2,n—1

Wy (A)T AILI e An n—1

To reduce the technical complexity of the proof we set ¢ = 0 in the following calculation. For
1 > 1 the calculation is similar to the one given. Using all the prepared notations and relations,
we have

®
0 Az e Al p—110
n 0 Ag 112510 As—1n—1Ts-10
n
(D" (Ao —XMAn)z2=> | - WAz  Aazer - Asn1Ze -
s=1 0 Agi11Ts41,0 - Asiln—1Ts11,0
0 Api1no T An,n—lxn()
A A ©
0 11710 - A1 p-1T10
k k k
di n—1 n —Ws(A) rg Aazg As,n—lxsl
550 55 o R -
kl=1 =1t=s+1 l l l
FOSEETR el Anl o Agaad,
0 ApiTno - An,n—1$n0
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Azrio Az - Aip—1Z10

0y | A20w20  Aziwao --- Agp_1220
= Qg . . .
ApoTno ApiTpo - An,n—lan
®
0 Anzxio -+ Aip—17i0
d1 n : : :
01 k k k
+ Z trl Z Us (al )‘Tsl ASlxsl T As,n—lmsl +
k=1 s=1 . . .
0 ApiTpo - An,nflxno
®
0 Anzio o Alp—1Tno
k k
n-1l n 0 Aslx51 ce As,n—lxsl
2.2 : : : +
=1t=s+1 01
N ot Ug(a)') 20 Anzo - Ain—12w0
0 Anlan te An,n—lxno
0 A A @
1110 - 1,n—1Tn0
01
Us (ak ) Tso As1Tso - As,nfl-rs()
o : : -
! !
0 Anzy - Apnary
0 Apino - An,n—lan
(since tkl = tlk)
1 ®
Up (@) 219 Anziwo - Aip—1210
di n : : :
_ 02 n 01 k k k _
=ag’ (=1)"Anzo+ Y tw )| Us(al)zhy Aazly - Agaal | =
k,l=1 s=1 . . .
01
Un (al ) Tno AnlTno - An,nflxno

dy
= a82 (—1)" Apzo + Z a,lc%) (-1)" Anzf.
k=1

Conversely, suppose that zo € Ro/R1 and that (4.5) holds. Then there exist a symmetric
matrix

tin ti2 o gy
tig  toa - tog,

T = ) ) ) € 6,
tig; tody, - tayd
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such that for i = 0,1,...n — 1, we have

da
a = tua) (4.7)
=1

by Theorem 3.2. Next it follows from (2.3) that

Z Al D2+ WiA) =0
and from (4.5) that
n—1 dy
) AL’ (Z ai;2t + 4 Zo) +Wi(A) 2 =0. (4.8)
7=0 k=1

For i € n we choose vectors v; € H; so that (x;0,v;) = 1 and < ll,vl> =0 for k € d;. This

is possible because Span{z;0} N D, = {0}. After multiplying (4.8) by 11 ® -+ @ v;_1 ® yli-loi ®
Vit1 ® - -+ ® vy, on the right we get

n—1 d1
> <Az’j > e fivyzo> + Z (AijaPaio, yly ) =0 (4.9)
=0 k=1

for h; € n} and all i. Hence, by Lemma 4.1, there exist vectors z;2 € D} such that (4.3) hold.
Now we form the vector

dy n—1 n

n
=) 210® QT2 @ QT+ Yty P TR QT @R @ @ T
s=1 k=1 s=1t=s+1

The same calculation as in the first part of the proof shows that
d1
(T; — NI) z% = Z a,lglef + a 22

for i = 0,1,...,n — 1. It follows that 24 — 20 € R and so there exists a number § €C such
that zo = 24 + 629. We replace one of the vectors s in 23 by x40 + 6240, say we use the vector
12 + dx1p in place of 12, to obtain the required form of 29, i.e.,

n n
22229310@"'@5532@"'@5%04‘ Z tk;lz Z x10®"‘®$§1®"‘®9§é1®"'®$n0-
k,l=1 s=1t=s+1

Note that here we might lose the condition that z19 € D..
It remains to be shown that 1 (T') € N (Sz). The equalities (4.9) can be written in matrix
form as

dy
Z Blka,lf + 30302 =0.
k=1

Multiplication on the left-hand side by the matrix b yields

dy

> biBua’ =0
k=1

12



and then also

di d
Z Z bSBlka?ltkl =0. (4.10)
k=11=1

Finally, we note that the relation (4.10) is equivalent to ¥(T") € N (S2). O

Theorem 4.3. Suppose that T = {t1,ts,...,t4} is a basis for N (Sy) and that

dy

Toy, = [tfs} =1 ().
r,s=1
Then there exists n-tuples a22 € C" such that
di
> th Brall + Boa)® =0, (4.11)

r,s=1

and there exist vectors x%, € D}, for i € n such that

di
U; (a%Q) X0 + Z U; (a,ln,%) xfl + W; (A) fo =0, (4.12)
r=1
where al? = Z?lzl tk a%l. Then vectors
n d1 n—1 n
2 = me@. Y N TR P Z tk Z Z 0@ QT R, @ - ®@Tng, (4.13)
s=1 r,s=1 t=1 u=t+1
k € d, and
82:{20;2%72%,...,Ziil;Z%,Z%,...7zg} (4.14)
is a basis for Rs.
e 1,2 da .12 di, 1 .2 da | ;
Conversely, if zy,25,...,25° are such that {zo,zl,zl,...,zl 29, 25, ..y 29 } is a basis for
Ro and T51,T59,. .., Thg, are symmetric matrices such that C’,%Q = R?ngk, k € do, then

{0 (To1) .4 (Th2) , - s (Toay) }
is a basis for N (Sz) and d = ds.

Proof. The theorem follows using the correspondence between t and 2o as described in
Proposition 4.2, and the fact that z§ are linearly independent if and only if T} are linearly
independent. O

From the proof of Proposition 4.2 it follows that vectors z§ in basis By can be chosen so
that they are of the form (4.13) with z¥, € D!. We assume hereafter that this is the case.

5. THE RoOT SUBSPACE Rj
We choose vectors z:{ €D, f €dssothat B3 = ByU {zz{, fe @} is a filtered basis for the root

subspace Rg3, which is finite-dimensional by Lemma 2.3. We put the restrictions (I'; — \iI) |r,
with respect to the basis B3 to the form (3.5). By Theorem 3.2 there exist symmetric matrices
T3¢, f € ds, in the form (3.8) such that (3.9) holds and for all i = 0,1,...,n — 1, we have

2 dg

(T — NI zg = Z Z a’g“]%i 2+ a(}:;’ 20, (5.1)
k=1g=1

13



and

d1
agt = > tihgan + Z tionan’ and ag} = Z tihg an - (5.2)
h=1

Note that (5.1) is the expansion of the vector (I'; — A\;1) z:’; with respect to the basis By given
in the array (3.5).

We use the notation of Theorem 3.2. We assume that vectors z& (in form (4.4) ) and matrices
Ty, k € dg, are given as in Theorem 4.3 and matrices T3¢, f € d3 as in Theorem 3.2. For
f € ds the entries of the d x dy matrix 72 37 satisfy the d} conditions (3.9), i.e.

Z tgh1h2 tfh3g Z tgh1h3 tfhgg 0 (5.3)
for hy,ho, hs € di. We write th 72 = [32 1" 1
or hy, he,h3 € di. We write the matrix 13, = [tfgh}g:LhZI also as a column
32 32 B2 432 32 32 32 T
ty = [ e o tian iz o trae o tRa, o Trdua, } (5.4)

and the symmetric matrix T31f as a column

T
e = [ B, B B o By o e o e | (5.5)

Thus we split the entries of a matrix T3y into two column vectors t and t?’2 We denote by O3
the set of all symmetric matrices in the form (3.8). The mapping 1/)3 L Oy — Qhd2 g h(dit)/2
given by 3 (Ts¢) = ( Vi ,ti’cz) is a generalization of the linear transformation 1 defined by (4.1).

It is bijective and therefore it has an inverse. The inverse maps two vectors t?cl and t?]’cz to a
matrix T3y € ©3. We use this inverse mapping in Lemma 5.2. We also write

P3(Ts¢) = tf for j =1,2. (5.6)

Note that v3;, j = 1,2, are surjective linear transformations, 131 : ©3 — CHl@+D/2 ang
. dida
P39 : O3 — CM.
Now we view relations (5.3) as a system of equations for the entries of T3y and we write
them in matrix form as

SH + 57t = 0. (5.7)
The entries of the matrices S?! and S?? are determined by (5.3): Matrices S?! and S22 have
d} rows; thus S?! € itxdids anq §22 ¢ @A AHD/2 ) The pows in S2! and S22 are ordered

lexicographically by all triples (hi, ho, h3) € di x di x d;.
Further we want the entries of the matrix 75, and of the n-tuple

af = [ o o o]
to satisfy the n* scalar relations
2 dy di di do :
Zzztfhg< ( ) zk’y10>+zztfgh< ( )nglﬂyi6>+
k=1g=1h=1 g=1h=1

14



n—1
+_ay <Aij$wv y56> =0 (5.8)
j=0
for [; € nj and ¢ € n. These can be written equivalently in matrix form
e 4 S 4 Byal = 0. (5.9)

Again the entries of the matrices S € ¢ ¥ hdz gnd §12 ¢ ¥ AHD/2 e determined by
the equations (5.8). The ordering of rows in S'! and S'2 is chosen so that it is compatible with
the ordering of rows in By.

We multiply the equation (5.9) by the matrix b{ on the left-hand side and we obtain

byS' 63 + bSt = 0. (5.10)

We choose a matrix bg so that its columns form a basis for the kernel of
bS Sll *
521 .

. b*S12

Next we prove three auxiliary results.

Then we define a matrix

Lemma 5.1. In the above setting it follows that t%Q € N(83) for f € d3 and dim N (S3) > ds.

Proof. By Theorem 3.2 it follows that the entries of the matrices T3 satisfy the conditions
(5.3). We put the entries of these matrices into two columns ti’cl and t32 as in (5.4) and (5.5)
via the isomorphism 3. Then we have 521t31 + 5221:3922 = 0. Relation (2 3) implies

ZA NI 2 + Wi (A) 2] =0
for i € n. From relations (5. ) it follows that

i dzk Ul’ (a,;?)T ZZ + UZ‘ (a(}g)T 20 + Wi (A)T Z;: =0. (5.11)

k=1g=1
Because we assumed 2%, € D} and D} N Span{z;o} = {0} it follows that there exist vectors
v; € H; such that (z;0,v;) = 1 and < g,vi) = 0for k = 1,2 and g € dj. We multiply the
equality (5.11) by a vector 11 ® -+ - Q@ v;—1 ® yioi ® Vip1 @ -+ - @ vy, on the right-hand side. Then
it follows, using the structure of vectors zi, k=0,1,2, that

ZZ< ( )zk+U(af)$ian?()i>:0 (5.12)

for i € n and f € d3. Now we apply relations (5.2) to obtain (5.8). The vectors ti’cl, t?? and
the n-tuple a?c?’ are such that equation (5.9) holds for all f. Since

* Qll
biBo = 0 and b; [ b0 ]
it follows that the vectors ti’?, f € d3 are elements of the kernel of S3. They are linearly
independent by Theorem 3.2 and so we have d3 < dim N (S3). O
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Lemma 5.2. Suppose that t32 is an element of the kernel N (S3). Then there exist a vector
t3! and an n-tuple a3 such that (5.7) and (5.9) with f = 1 hold. Furthermore there exist
vectors x}5 € D}, i € n such that

2 d
Z Zk: UZ' (aﬁ) l‘zgk + Ui (a??)) ZTi0 + WZ' (A) 1'113 = 0, (5.13)
k=1g=1

where af} are given by (5.2) for f =1 and Ty = W3t (631, ¢52).

Proof. From the structure of the matrix Ss it follows that for an element t32 € N (S3) there
exist a vector t31 and a n-tuple a3 such that relations (5.7) and (5.9) hold: Namely, relation

— 3 — M3 522 1

. b;S2 | ., . brsit 1" N
implies that g2 t7“ is orthogonal to the kernel of g21 . We denote by U~ the
orthogonal complement of a subspace U. Since (AM(A*))Y = R(A) for a lincar transformation

A between two finite-dimensional Hilbert spaces, it follows that there is an element t?cl e hdz

such that (5.7) and (5.10) for f = 1 hold. Then we have
b (141 + $7267) =0

Thus the vector (St3! + S12¢32) is orthogonal to the kernel of By and so, there is an element
a}® € C" such that (5.9) holds.

We associate with the pair of vectors t32 and t3!, using the inverse of the isomorphism V3 L
a symmetric matrix T5;. The relations (5.9) can be written equivalently in the form (5.12) for
f = 1. Then it follows for every i that

2 dg
S5 Ui (akd) 2 + Ui (a) w0 € V(Wi (0)"))*

k=1g=1

and hence it follows from Lemma 4.1 that there exists a vector z; € D} such that (5.13) holds.
g

The vector z3 is defined by

n n dy
=Y 200 @@ @T0+ Y, Y Bhp,T® @ @ @2 @ @z
=1

j 3k=1 hy,ho=1
i<k

n di  dg
+3 3 Y el @ a0 @zt

Jk=1 h1=1 ho=1
J#k

dq da

2 32 h1 ho h3

+> Y ( tgh1h2t1h3g) T @@ @@ © @Al @ @ an,
j€ng hed,® \9=!

where the latter summation does not occur for n = 2. Here ns is the set of all triples j =
(41,42, 73) of three pairwise distinct indices ji,jo,j3 € n and di® is the set of all triples h =
(h1, ha, h3) of indices in d;.
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Lemma 5.3. In the above setting we have

2 dg
(T = Xd)z3 =Y > akd 2 + a2 (5.14)
k=1g=1

fori=0,1,...,n—1.

The proof is a direct calculation, similar to the proof of Proposition 4.2. Because it is rather
technical we include it in Appendix.
Suppose that 7 = {ti’?, fe d} is a basis for the kernel of S3 where d = dim N (S3). Let

vectors :1;{3, i € n, matrix T35, n-tuple ag)c?’ and vector z;{ be associated with tz}z as described in
Lemmas 5.1-5.3 for f = 1. The following is our main result:

Theorem 5.4. The set
Byu{s; fed)

is a filtered basis for Rs.
Conversely, if 23,23, .., zgi‘ are such that Bs U {z:’;, fe dg} is a filtered basis for Rs and

T31,T32, ..., T34, are the associated symmetric matrices (3.8) then

{32 (T51) 32 (T52) 5 - - -, Y32 (T3a3) }
is a basis for N (S3) and d = ds.

Proof. If T is a basis for N (S3) then by Lemma 5.2 it follows that we can find required

vectors :1:{3, symmetric matrices 7537 and n-tuples a(}?’ . Lemma 5.3 implies that the associated

vectors z?{ are in R3\Ra. They are linearly independent since T3y are linearly independent. It

follows that d < ds and, because d > ds by Lemma 5.1, we have d = ds.

To prove the converse assume that zg, f € d3, are such that B3 = By U {zg; fe @}
is a filtered basis for R3 and T3f, f € ds3, are the associated symmetric matrices (3.8). By
Theorem 3.2(7) it follows that matrices T32f, f € ds are linearly independent. Note that then
also the images 132(T3f), f € d3 are linearly independent. If d3 < d we complete the set
{32 (T35); f € ds} to a basis T of N(S3). Then we proceed as in the first part of the proof.
We construct vectors 53{ , [ € d, as described in Lemmas 5.1 — 5.3. By the same arguments
as above it follows that By U {Eg ; f € d} is a basis for R3 and therefore that d = d3. Hence

{¢32 (T31) ,wgg (ng) g ,¢32 (T3d3)} is a basis for N(Sg) O

6. Two EXAMPLES
In this section we consider two examples of computations of bases for root subspaces at geomet-
rically simple eigenvalues that illustrate our methods. The first computation is at an eigenvalue
(with Fredholm index 0) of a finite dimensional three-parameter system and the second at an
eigenvalue with nonzero Fredholm index of an infinite dimensional two-parameter system. We
wish to note that the examples are chosen so that they are not covered by the methods of
[4, 5, 15, 16].

Example 6.1. Let us consider the 3-parameter system W, where the matrices W1 (), Wa(X)
and W3(X) are given by

A+ +1 0 0 0
. 2 20+ +1 -1 2
Wi(A) = 0 Mo+A do+AN A -—1 |
0 0 0 o + 2\
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M—1 X O . 1
WaA)=| X Ao O ande(A):[ 02 \ ]
0 1 M 2

Their determinants are
det Wl(A) = ()\0 + 2)\1)()\0 + /\1)(2)\0 + 1)()\0 + A+ 1),

det Wa(X) = oA (A1 — Ao — 1) and det W3(A) = A2

We apply [11, Thm. 5.2]. Since in each of the three determinants has exactly two irreducible
factors (counting multiplicities) that are zero at (0,0,0), and all the factors are linear, it follows
that the dimension of the root subspace R at the eigenvalue (0,0,0) is equal to 23 = 8.

It is easy to check that (0,0,0) is a geometrically simple eigenvalue. We apply our construc-
tion to form the corresponding root vectors. First we choose vectors

0 0
0 1
T10 = yx20= | 0 |, 230 =
1 1 0
0
and
0
Y10 = sy20=| 1 | ,y30 = .
0 1
1 0

The matrix By is zero, hence di = 3. We choose

1 0 0
all=10 |,a'=] 1 |,a8'=| 0
0 0 1

Vectors :cfl, i,k =1,2,3, have to solve the equations
Ai,k—lxio + Aigxﬁ =0.

Possible solution is

-2 -1 0 0
L1 = y X1l = 0 oy = | —1 |, ay = 1|
0
1 1
and the remaining vectors :L‘fl are zero. We choose by to be the identity matrix. Then
1 3 200 0
S=0 —-1000 0
0 0 000 -1
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Since Sy has rank equal to 3 it follows that ds = 3. The elements

2 0 0
0 0 0
-1 0 0
t%: 0 at%: 1 >t§: 0
0 0 1
0 0 0

form a basis for the nullspace N (S2). The corresponding vectors me, i,k =1,2,3, have to solve
equations
2Ai01‘}1 - Aﬂa}?l + Aiga}}Q =0, AiQxill -+ Aiox?l -+ Aig.’L‘ZZQ =0

and
Aigxz% + Aﬂx?l + Aiga??Q =0.
0
Zero vectors solve all the equations except the first one for i = 1. We choose xb = 105 for
—4
a solution. Next we find the matrices SY,i,j =1,2: S' = 8,, §?1 =0,
-4 0 0 -8 00 0 00O
S2=10 00 0 00000
0O 00O O OOOOUOFD
and ~ -
01 0 0O0O0OO0OO0OTO O
00 0O O0O100O0UO0OTO
00 2 1 000O0O0O0
10 0 00 0 OO0OD O
S2-100 0 000100
00 -1 00 O0O0OT1TO0
00 0O O0O0O1O0UO0TO0
00 0O O0OO0OOOTU O1
100 0 01010 0]

Since S has full rank and S*' = 0 it follows that S3 = S22, Its rank is equal to 8 and thus it
follows that d3 = 1. The corresponding elements t‘rf], j = 1,2, are chosen to be equal to

0

g 1

9 0
32 = 0 and t3! = 8

5 0

0

Vectors :);’113, 1 =1, 2,3, have to solve equations

16A2‘0L17111 + 2Aille2 — AZQJZ?Q —+ AZ‘O.T?Q + Aigxllg =0.
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0

A solution is x15 = 504 , ¥33 = 0 and i3 = 0. Using the above vectors we construct the
—10
eigenvector
0 0
0 1
zZ0 — 1 X 0 X 0 ‘|
0 1
and the root vectors
0 0 0 0 0 0
1 -2 1 9 0 -1 1
21 = ® 0 X , Rl = & -1 + & 0 ® )
0 1 0 1 0 0 1 0
1 0 1
0 0 0 [0 ] 0 0]
3 0 0 1 —15 -1 1
2= ®|0|® , 7= ®|0 |+ @|1||® :
1 1 -1 0 1 0 0 0
0 4 ] L 1 -
0 0 0 [0 ] 0 0 ]
9 —4 0 3 -1 0 0
0 1 -1 1 1 0 -1
2 1] L 0 .
0 0 0
1 54 0 30 0 1 —4 0 0
7= @] 0|+ @ -1]]|® - 1| .
0 1 0 0 0 0 1
-10 -8 2

Since dy + di + do + d3 = 8 it follows that the root subspace R is equal to Rs, i.e., the ascent is
M = 3, and that the above vectors zg, 21, 23, 23, 23, 23, 23, z% form a basis for the root subspace

at the eigenvalue (0,0, 0). |

Example 6.2. Consider a separable Hilbert space H with an orthonormal basis {en, },._,. We
define a two-parameter system on Hy = Ho = H by:

1 e m even 0, m=0,1
“Ajgen = Ag1ey, = " ’ Arem = Axen = ’ Y
2 —€m, m odd, em, M > 2,
eg—ey, m=0,
—eg +e m=1
Argem = Axen = 0T )
es —e3, m=2,
€m+1, m 2 3

Then the operators Ao = A9 ® Aoy — A11 ® Asg : H — H and

Aly AL

AQZ[ ]:HQ—>H2
A, AL
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are given by

A (=)™ 2, ®@ep, ifm<lork<l,
2 EEZ ()2 ) ep@er, ifmk>2,

and

ifm,s <1 andn,r >0,

)

(—1)" 2e, ® e
(—D)"em Repn

.,
T(L 1) 2e, @ e . ifm<1,s>2andn,r>0,
(—D)"em @en+e ®es

_ . ]
€m®€n+n( 1) 2er @ e , ifs<1l,m>2andn,r >0,
(=1)"en ®ep |
[ em ®er+ (—1)" 2e, ® e ]

. S -
L (—D)"em @en +er Qe _7 ifm,s > 2 and n,r >0

It is easy to verify that As is bounded, one-to-one and onto, and that As is onto. Hence
Assumptions I and III follow. We choose A = (0,0,1). Then W;(A) = Ajy for i = 1,2.
Since N (Ai2) = L (eg + e1) and N (Afy) = L (eg + e1,e2 + e3), where L (S) is the linear span
of the set S, it follows that A is a geometrically simple eigenvalue and that both W; (A) are
Fredholm operators (of index —1). So Assumption II follows as well. For i = 1,2 we choose

Ti0 = yilo =egter andy?o = eg+e3. Then A?j = fori =1,2and j =0,1, so Byisa4x?2

0

0
1

root vectors z} and 23 we need to find vectors xfl, i,k = 1,2, such that

zero matrix and d; = 2. We choose a' = ( (1) ) and a? = < ) To find the corresponding

Aigxlll + Aioxio =0 and Aigl'?l + Aﬂm‘io = 0.

We choose x1; = 2e1, #3, = 23, = 0 and 23, = e1. To find a basis for the root subspace Ry we
follow the construction in §4 and we find that

40 0
0 0 0
2= 0 0 1
0 0 0

T
Hence ds = 1 and we choose t = ( 010 ) to span the kernel of Ss. Then

T:w—ut):[g ;].

A possible choice for a% e C? and x12,x22 € H that solve the corresponding equations (4.11)
and (4.3) are a’? = 0 and 12 = w22 = 0. To continue with the computations of possible basis
vectors for the root subspace Rg observe that the corresponding matrix T32f is a 2 x 1 matrix,
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say T32f = l z ] Then relation (5.3) with hy = hs = 1 and he = 2 implies t = 0 and relation
(5.3) with hy = hg = 2 and hy = 1 implies z = 0. Hence there is no nonzero solution for the
matrix Tgf. So d3 =0 and R = Ro. From the previous discussion it follows that

B={(eg+e1)®(en+er1),2e1@(eg+e1),(e0+e1)@er,2e; Rer}

is a basis of R.

APPENDIX: PROOF OF LEMMA 5.3
The proof is similar to the proof of Proposition 4.2. We use a direct calculation to show (5.14).
We set i = 0. The calculation for other i is similar.
First we have

®
0 A1 e A1 n—1210
n 0 Aj—1azi—10 0 Ajoin-1T-10
n 1_ 1 1 1
(=1)" (Ap — XMAy) 23 = Z —W; (X) T3 Ajl%‘:s T Aj,nfll’js +
7=1 0 Aj11Ti010 0 Ajrin-175410
0 Anlxno o An,n—lan
0 A A @
11710 - Aip-1%10
. hy el . ha
n d Wi N Apxl - Ajpeary
31 ) ) .
+ 2. D Hun : : : +
3.k=1 hy,ha=1 h h h
[ Wi Aual - Al
0 ApiTpo - An,n—lenO
®
0 Anzxi - Arp—1mio
. hy el . ha
n di dg —W; (A) Li1 Aylflfﬂ Ay,n—lwﬂ
32 ) ) )

+ Z Z Z t1hyhs : : : +
3.k=1 hy=1 hy=1 h h h
T Wi (N) 23 Apixys o Apn—1255

0 ApiTno - An,n—1$n0
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dy

D3

j€ng hed;® \9=1

d2
2 32
Z t9h1 hztlhsg

~Wj (A) 2y

~Wi, (A) a2y

0

A A1 pn—1710
m , ha
Ahllel Ayl,n—llel
 ha , ho
Aazlf'?jgl AJz,nflszl

R X
Wiy A g1 Ajsrzy

An1no

. h3
Ajsn—1 g3l

An,nflxno

By virtue of (3.1), (4.3), (5.13) and column operations it follows that (A.1) is equal to

U
%)

<
Il
-

T
—

n d1
+ Z Z t:{)’lu ha

Jik=1 hi,ho=1
<k

J

0 Az A1 1710
0 Aj117i-10 Aj 1n-1Tj-10
23 g 4 g
U] (agl> l’JQ Ajll'jz Aj}nflz‘jQ +
0 Aj+1,1%5+41,0 Ajt1n-175+10
0 Api1no An,n—lenO
®
0 Anzio Al p—1710
0 Aj 11510 Aj 117510
13 .9 A g
(agl) i Ajiy) Ajn-175 +
0 Aj117410 Ajf1n—1Tj410
0 Api1no An,n—lxn()
Ur (@) 210 Anizio A1n-1710
03
Us (al?) zo0  Ag1220 Ao 1220
03
Un (al ) Tno AniTno Anfl,nl'n()
A A ®
0 11710 1,n—1710
U; (aP' )z Az Aip_12;
J \hy ) 430 1450 Jn—12L50
: +
h h
0 Ap12yy Apn-1231
0 Anlan An,n—lxno
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0 Az
0 Ajlx?{
+ : :
Uk (a%) Tro Ap1Tro
0 Anlwn()
0
01
n o di dy Uj <ah1> 230
32 .
+ 20 D0 D :
S =1 ho=1 0
0
0 Az
: -
dy 0 Ajll‘jll
+> : :
=1 12\ .9 g
9 Uk (agh2) xkl Aklwkl
0 Anlan
0 Az
0 Ajllll‘?ll
+ : :
Uk (a%) Tro Ar1Tro
0 Ani1Tno
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AkIJUk% Ak,n—lfgk%

Ap1no An,nflxno

At p_110

h1

Aj,nflle
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Ak,n—1$k1

An,n—lxno

At p_1210

h1

Aj,nflle

Ak n—1Tk0

An,n—lxno




0 Az
. 01 . . .
Uj (ahl) Tj0 AjiTjo

di . .
+ Z Z Ztghlhz lhsg 0 Ajzlx?;I

jeﬂg hE@S g=1

0 Ajsl'ff?i
0 Anl.xno
0 Az A1 pn—1710
0 Ajaally - Ajaoaagh
+| Uy (a%) 20 Aj21‘xj20 Aja 1250
0 Aj31$?§’1 ce Ajg,n—lx?;fl
(') An1‘$n0 s An,n;lxno
0 A11710 At 1710
6 A 11~$?11 e Ajlv";l‘r?lll
+ 0 Ajai? Ajymr123
Ujs (a08) 2j50  Aj1jso A n-12j30
6 Anl'mnO Ann—-1Zno

Al n—1210
Ajin—125,0
Ajy a2
Ajy

Anm,—lan

(A.2)

Next we apply all the conclusions of Theorem 3.2. In addition, note that the symmetry of

matrices T, and Theorem 3.2(iii) imply that

Ztghlhz lhgg — Z tghBhl 1h29

for any h = (hy, ha, h3) € di®. Then (A.2) is equal to
Uy (af®) z10 Ao A1 p—1210
Uy (a®) w0 A1 Az n—1720
Un (%) 2o Ap1zno An—1,nTno
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+3 Z GIA

j=1hy,ha=1

n dy

+2. D 22: G

j=1h1=1ho=1

n dy do

+3°0 Dt

j=1h1=1ho=1

n d1 d2

+ Z Z Zt9h1h2 lhsg

J1.J2= 1hed1 g=1
711<J2

Uj (ah 2

01
Un (ah3> Tno  An1Tno

A11x10
ha

A]lle

Anlxno

A11~T10
Ajl.:c;’%
An1Tno
AlllL'lO
Aﬂ.x?ll
An1Tno

A119310

)
1 Ajzy

Al,n—lxl()

h
‘Aj,nflﬂjjl2 +

An,n—lxno

Al,nfll‘lo
) ha
Ajn— 1T 59

An,n—l«TnO

Al,nflxlo

) ha
AJ,n—lle

An,n—lxn()

Al,nfll'lo
. h1
AJhn—lJf]’ll
) ha
Aj, n—=1L 451

An,n—lxno

Finally, by Theorem 3.2(ii) and column operations, it follows that (A.3) is equal to

dy n
13
Q&no + Y Ghiyg ) T -

(=" An a(1)3$10®x20®-- ®$ ® -
hi=1 j=1
h
+Zah21021‘10® 22®"'®an+
ho=1
dy n
2
+Zag1o Z Lohiha Z T10®@ -+ ®x]11® ®gjj21®...®xno
g9=1 h1,ho=1 J1,d2=1
J1<J2
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