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Abstract. A class of multiparameter eigenvalue problems involving (generally) non
self-adjoint and unbounded operators is studied. Bases for lower order root subspaces, at
geometrically simple eigenvalues of Fredholm type of arbitrary finite index, are computed
in terms of the underlying multiparameter system.

1. Introduction

We consider an n-parameter system (n ≥ 2) of the form

Wi (λλλ) =
n∑

j=0

Aijλj , i ∈ n, (1.1)

where Aij (j ∈ n) are bounded linear operators acting on a Hilbert space Hi (i ∈ n) over
the complex numbers, Ai0 are closed densely defined operators with domain D (Ai0) ⊆ Hi,
λλλ = (λ0, λ1, . . . , λn) are parameters, and n = {1, 2, . . . , n}. Eigenvalue problems

Wi (λλλ) xi = 0, xi 6= 0, λλλ ∈ C\{0}, (1.2)

arise in various applications: classically they arise in the theory of boundary value problems for
partial differential equations after separation of variables. For background on multiparameter
eigenvalue problems we refer to [2, 6, 7, 20, 22]. We assume that Hi are separable Hilbert spaces
over C to allow for complex eigenvalues which can occur even when all the Aij are self-adjoint.
However, for λλλ ∈IRn+1 all the calculations can be performed over IR.

In applications to boundary value problems for partial differential equations the Aij , i, j ∈ n,
are multiplication operators and Ai0, i ∈ n, are differential operators. Then solutions of the
boundary value problems are given in terms of Fourier type series over a complete system of
eigenfunctions and associated functions. In the abstract setup, the completeness is naturally
studied in Hilbert space tensor product H =

⊗n
i=1 Hi by means of certain determinantal op-

erators ∆j . For j = 0, 1, . . . , n, the operator ∆j is (up to the sign) the tensor determinant of
the array [Aik]

n n
i=1,k=0 with the j-th column omitted. In order to proceed we introduce certain

regularity and solvability assumptions. If dimHi < ∞ for all i then the existence of a linear
combination of ∆j , which is an invertible operator, suffices [2]. In infinite dimensions and when
unbounded operators are involved (as in the applications to boundary value problems) several
sets of assumptions mostly for self-adjoint cases are used in the literature (see e.g. [2, 6, 20, 22]).
Here we use a setup introduced in [4] which encompasses most of the others and does not re-
quire self-adjointness. After these assumptions are made the completeness problem reduces to
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the description – in terms of the original operators Aij – of bases for a joint root subspace
of a certain commuting n-tuple of operators Γj , j = 0, 1, . . . , n − 1. (If ∆n is one-to-one then
Γj = ∆−1

n ∆j .) Specifically, for λλλ = (λ0, λ1, . . . , λn−1) ∈ Cn the root subspace Rl, l = 0, 1, 2, . . .,
is the subspace of vectors annihilated by all the products of (l + 1)-tuples of operators from the
set {Γj − λjI}n−1

j=0 . The joint eigenspace R0 is described in terms of elements of the spaces Hi

and maps Aij in [2]. The root subspace Rl is described and its basis is constructed for l = 1
in [4], and for general l in [9] (see also [10]). However, for general eigenvalues λλλ and general
l, the construction of bases via the cotensor product [9, Thms. 5.1 and 5.2] is technically in-
volved. So, it is natural to consider eigenvalue problems (1.2) with additional properties which
yield simpler description of a basis for Rl. For instance, in [3] Binding proved a completeness
result for real eigenvalues of elliptic multiparameter systems. His results yield a method for
construction of bases for the corresponding root subspaces. In [15] constructed bases for root
subspaces of nonderogatory eigenvalues in a finite-dimensional setting. (See [19] for a discussion
of numerical implementation of results in [15].) In applications to boundary value problems all
the eigenvalues of (1.2) are geometrically simple, i.e. dimN (Wi (λλλ)) = 1 for all i. Here N (A)
is the nullspace of operator A. In the paper we consider such eigenvalues and construct bases
for the corresponding root subspaces R2 and R3. We remark that our results can be derived
from the construction in [9], however, we do not follow that route. Instead we use techniques of
linear algebra as in [13], where our results were first proved in finite-dimensional setup. We also
remark that our method can be extended for general l but proofs similar to those in [13] require
long technical calculations and we do not reproduce them here. Note that our results are new
even in finite-dimensions. In infinite-dimensions we assume that Wi (λλλ) are Fredholm operators
of arbitrary (finite) index [21] (Fredholmness with index 0 is automatic in finite-dimensions).
Hence we allow dimensions dimN (Wi (λλλ)∗) to be arbitrary positive integers. With slight mod-
ifications our approach would apply even when some (or all) of dimN (Wi (λλλ)∗) were infinite.
The two-parameter version of our results for general l is given in [5]. Further connections of
our results with boundary value problems will appear elsewhere.

One might observe looking at the main results on root subspaces in this paper and in
[4, 5, 13] that there is a close relation between the root subspaces and multiplicative structure of
the algebra generated by the commuting maps Γj . This is indeed so. Suppose that R = ∪∞l=0Rl

is the root subspace at an eigenvalue of (1.1), that R is finite-dimensional, and that A is the
commutative subalgebra generated by the restrictions Γj |R, j = 0, 1, . . . , n−1, in the algebra of
all linear maps on R. Then R is a module over A. Moreover, if the corresponding eigenvalue is
geometrically simple then A and R are isomorphic as A-modules, i.e., R is a free A-module of
rank 1. We refer to [11, 18] for proofs of these and further results on multiparameter eigenvalue
problems from a point of view of commutative algebra and algebraic geometry.

We conclude the introduction with a short setup of the paper. In next section we introduce
our regularity and solvability assumptions. In §3 we recall several results needed later. Our
main results are in sections 4 and 5, where bases for root subspaces R2 and R3, respectively,
of a geometrically simple eigenvalue are described. In the last section we discuss two examples.

2. Regularity and Solvability Assumptions

In the rest of the paper we use the basic setup introduced in the first paragraph of §1. The
operators Aij , j ∈ n, induce operators A†ij on the Hilbert space tensor product H = H1⊗H2⊗
· · · ⊗Hn by means of

A†ij (x1 ⊗ x2 ⊗ · · · ⊗ xn) = x1 ⊗ · · · ⊗ xi−1 ⊗Aijxi ⊗ xi+1 ⊗ · · · ⊗ xn
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on decomposable tensors, extended by linearity and continuity to the whole of H. Similarly
Ai0 induces an operator A†i0 with domain D

(
A†i0

)
⊂ H (see [20, §2.3]). We denote by D

the intersection
⋂n

i=1D
(
A†i0

)
, which is a dense subspace of H since D (A10)⊗D (A20)⊗ · · · ⊗

D (An0) ⊆ D. The operator ∆0 on H is defined by

∆0 = det
[
A†ij

]n

i,j=1
(2.1)

and operators ∆i (i ∈ n) on D by replacing the i-th column in (2.1) by
[
−A†i0

]n

i=1
.

In what follows we make two regularity assumptions and a solvability assumption.
Assumption I We assume that the operator ∆n has a bounded inverse.

Remark 2.1. Actually a weaker assumption that the operator ∆n+α∆i has a bounded inverse
for some α ∈ C and some index i would suffice. Then Assumption I follows by a shift in
parameters. In the finite-dimensional case Assumption I follows by a shift in parameters if there
is a linear combination of ∆i’s which is a nonsingular operator. This can be also formulated in
terms of polynomials det Wi (λλλ) in n + 1 variables λ0, λ1, . . . , λn (cf. [2, Ch. 8] and [11]).

Now we normalize our multiparameter system by assuming that λn = 1, and from now we
write λλλ = (λ0, λ1, . . . , λn−1) and

Wi (λλλ) =
n−1∑

j=0

Aijλj + Ain (2.2)

for i ∈ n.
Next we define the notions of eigenvalues and spectra. An n-tuple λλλ ∈ Cn is called an

eigenvalue of a multiparameter system (2.2) if all Wi (λλλ) are singular. The set of all eigenvalues
is called the spectrum of (2.2), and it is denoted by σ (W).
Assumption II A given eigenvalue λλλ = (λ0, λ1, . . . , λn−1) of (2.2) is geometrically simple,
i.e., operators Wi(λλλ) are Fredholm [21] and dimN (Wi (λλλ)) = 1 for all i.

Remark 2.2. Assumption II is satisfied for example, in several cases arising from boundary
value problems, e.g. of Sturm-Liouville type (see [4]). Note that in infinite-dimensional set-
tings it might happen that dimN (Wi(λλλ)) = 1 but dimN (Wi(λλλ)∗) 6= 1. However, due to
Fredholmness assumption it follows that dimN (Wi(λλλ)∗) < ∞. In finite-dimensions the Fred-
holmness assumption is automatic, moreover an eigenvalue is geometrically simple if and only
if dimN (Wi(λλλ)) = 1 for all i (cf. [15]).

Let A†ij denote the restriction of A†ij to D. The array A =
[
A†ij

]n n

i=1, j=0
then defines a linear

map A : Dn+1 −→ Hn. Here Hn is the direct sum of n copies of H. Omitting the j-th column
we get a transformation Aj acting on the (algebraic) direct sum Dn for j = 0, 1, . . . , n. Note
that ∆j = (−1)j detAj for j ∈ n. Next we define the transformations Bj : Dn → Hn adjugate
to Aj , so (Bj)lk is the (k, l)-th cofactor of Aj . We denote by Cj the j-th column of A. Now we
state the solvability assumption.
Assumption III The equation Any = Cnx has a solution y ∈ Dn for all x ∈ D.

The linear transformations Γj = ∆−1
n ∆j : D → D( ⊆ H), (j = 0, 1, . . . , n− 1) are called the

associated transformations of a multiparameter system (2.2). Assumption III implies [4, Thm.
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3.2] that the linear transformations Γi commute on D, i.e., ΓiΓjx = ΓjΓix for all x ∈ D and i,
j = 0, 1, . . . , n− 1, and that

n−1∑

j=0

A†ijΓjx + A†inx = 0 (2.3)

for all x ∈ D and i ∈ n. Note that (2.3) can be viewed as a generalization of Cramer’s rule for
a system of linear equations.

An n-tuple λλλ = (λ0, λ1, . . . , λn−1) ∈ Cn is called an eigenvalue of the system of commuting
linear transformations {Γj}n−1

j=0 if

R0 =
n−1⋂

j=0

N (Γj − λjI) 6= {0} .

The set of all the eigenvalues is called the spectrum of the system {Γj}n−1
j=0 .

Assumptions I-III imply [4, §4] that the spectrum of (1.1) and that of its associated system
of linear transformations {Γj}n−1

j=0 coincide and that for a given eigenvalue λλλ we have

R0 = N (W1 (λλλ))⊗N (W2 (λλλ))⊗ · · · ⊗ N (Wn (λλλ)) . (2.4)

The subspace R0 is called the eigenspace corresponding to λλλ.
For l ≥ 1 we define root subspaces

Rl =
⋂

m∈Ml+1

N [ m (Γ0 − λ0I, Γ1 − λ1I, . . . , Γn−1 − λn−1I)] , (2.5)

where Ml+1 is the set of all monomials in n variables of degree l + 1. Using linearity it is easy
to see that Rl is equal to

⋂

m∈Rl+1

N [ m (Γ0 − λ0I, Γ1 − λ1I, . . . , Γn−1 − λn−1I)] ,

where Rl+1 is the set of all homogeneous polynomials in n variables of degree l + 1.
The least integer l, if it exists, such that Rl = Rl+1 is called the ascent of λλλ. We write K

for the ascent if it exists, and assume K = ∞ otherwise. The subspace

R =
K⋃

l=0

Rl

is called the root subspace of W at λλλ. For l ≥ 1 we denote by dl the difference dimRl−dimRl−1.
Observe that if λλλ is geometrically simple then it follows from (2.4) that d0 := dimR0 = 1. Our
Assumption III guarantees that the root vectors described in this paper in terms of operators
Aij span the root subspaces Rl for l = 1, 2, 3. Actually, a weaker assumption that the root
subspace Rl is contained in the subspace

K = {x ∈ D : there exist y ∈ Dn such that Any = Cnx}

is sufficient. Without such an assumption our method would yield only a basis for the subspace
Rl ∩ K of Rl.

The main ideas in the proof of the following result are essentially the same as those in the
proof of [4, Lem. 5.2]. Here, we include the proof for the sake of completeness.
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Lemma 2.3. Assume that R0 is finite-dimensional. Then for l ≥ 1 the subspaces Rl are also
finite-dimensional.

Proof. We use the induction on l. Suppose that Rk are finite-dimensional for k < l and that
l ≥ 1. For a monomial m ∈ Ml we write m(Γ, λλλ) = m(Γ0−λ0I, Γ1−λ1I, . . . ,Γn−1−λn−1I). The
subspace Rl is invariant for all m(Γ, λλλ). Since (Γi − λiI)m(Γ, λλλ)u = 0 for i = 0, 1, . . . , n − 1,
and all u ∈ Rl, it follows that the range I (m(Γ, λλλ) |Rl

) is a subspace of R0. So, it is finite-
dimensional. Then each kernelN (m(Γ, λλλ) |Rl

) has finite codimension inRl, i.e., the orthogonal
complement Qm of N ((m(Γ, λλλ)) |Rl

) in Rl is finite-dimensional. Hence the linear span Q of the
Qm, m ∈ Ml is finite dimensional. By definition we have Rl−1 =

⋂
m∈Ml−1

N (m(Γ, λλλ) |Rl
) ,

and therefore Rl = Rl−1 ⊕Q. Hence, Rl also has finite dimension. 2

3. Preliminaries

3.1. The Root Subspace R1. In this section we introduce some further notation and recall
some of the results from [4, 14, 17] that are needed later.

From now we fix an eigenvalue λλλ ∈ σ (W) (which is geometrically simple). Suppose
that xi0 ∈ N (Wi (λλλ)) (i = 1, 2, . . . , n) are nonzero vectors. By (2.4) it follows that the vec-
tor z0 = x10 ⊗ x20 ⊗ · · · ⊗ xn0 spans R0. Further, we choose vectors yki

i0 ∈ N (Wi (λλλ)∗)
(ki = 1, 2, . . . , n∗i , i = 1, 2, . . . , n), such that {y1

i0, y
2
i0, . . . , y

n∗i
i0 } is a basis for N (Wi(λλλ)∗). By

Assumption II it follows that the dimensions

n∗i = dimN (Wi(λλλ)∗), i ∈ n,

are finite. For i ∈ n and j = 0, 1, . . . , n− 1 we write

A0
ij =

[ 〈
Aijxi0, y

1
i0

〉 〈
Aijxi0, y

2
i0

〉 · · ·
〈
Aijxi0, y

n∗i
i0

〉 ]T

and

B0 =




A0
10 A0

11 · · · A0
1,n−1

A0
20 A0

21 · · · A0
2,n−1

...
...

...
A0

n0 A0
n1 · · · A0

n,n−1




.

Here we use 〈x, y〉 to denote the scalar product of vectors x and y. It is clear from the context

which Hilbert space Hi or H is meant. Note that B0 is a n∗ × n matrix, where n∗ =

(
n∑

i=1

n∗i

)
.

The following result is a special case of [4, Thm. 6.3]. Recall that for a positive integer k
we denote by k the set of integers {1, 2, . . . , k}.
Theorem 3.1. Assume that λλλ is a geometrically simple eigenvalue of multiparameter system

W and that
{
z0; z1

1 , z
2
1 , . . . , z

d1
1

}
is a basis for the subspace R1 such that

(Γi − λiI) zk
1 = ak

i z0

for i = 0, 1, . . . , n− 1 and k ∈ d1. Then
{
a1,a2, . . . ,ad1

}
, where ak =

[
ak

0, a
k
1, . . . , a

k
n−1

]T
, is a

basis for the kernel of B0.

Conversely, suppose that
{
a1,a2, . . . ,ad

}
, where ak =

[
ak

0, a
k
1, . . . , a

k
n−1

]T
, is a basis for

N (B0). Then there exist vectors xk
i1 ∈ D (Ai0) such that

Ui

(
ak

)
xi0 + Wi (λλλ) xk

i1 = 0 (3.1)
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for i ∈ n and k ∈ d, where

Ui

(
ak

)
=

n−1∑

j=0

ak
j Aij .

Furthermore, the vectors

zk
1 =

n∑

i=1

x10 ⊗ · · · ⊗ xi−1,0 ⊗ xk
i1 ⊗ xi+1,0 ⊗ · · · ⊗ xn0 (3.2)

are such that
(Γi − λiI) zk

1 = ak
i z0

for all i and k and
{
z0; z1

1 , z
2
1 , . . . , z

d
1

}
is a basis for the second root subspace R1; hence d1 = d.

3.2. Commutative Arrays. Next we recall notation and some results from [14, 17]. Let
us first explain how the general setup introduced in this subsection is used later in the paper.

By Lemma 2.3 each root subspace Rl, l = 1, 2, . . . , is finite-dimensional. It is an invariant
subspace for Γi − λiI, i = 0, 1, . . . , n − 1. The restricted operators Ai = (Γi − λiI) |Rl

form
an n-tuple of commutative nilpotent operators on a finite-dimensional Hilbert space Rl. We
choose a basis for Rl and we identify Ai, i = 0, 1, . . . , n − 1, with an n-tuple of commutative
nilpotent N ×N matrices, where N = dimRl.

In the rest of the subsection we choose the notation so that it corresponds as much as possible
to the notation already introduced for the special commutative n-tuple Ai, i = 0, 1, . . . , n− 1,
as above.

In general, we consider a set A = {Ai, i = 0, 1, . . . , n− 1} of commutative nilpotent N ×N
matrices. The set A is viewed also as a cubic array of dimensions N ×N ×n [14, 17]. For l ≥ 0
we write

NAl =
⋂

m∈Ml+1

N [m (A0, A1, . . . , An−1)] .

Suppose that M = min
l

{
NAl = CN

}
. Then

{0} ⊂ NA0 ⊂ NA1 ⊂ · · · ⊂ NAM = CN (3.3)

is a filtration of the vector space CN . Further we write

Dl = dimNAl and dl = Dl −Dl−1 (3.4)

for l = 0, 1, . . . , M . Here D−1 = 0. Then there exists a basis

B =
{
z1
0 , z

2
0 , . . . , z

d0
0 ; z1

1 , z
2
1 , . . . , z

d1
1 ; . . . ; z1

M , z2
M , . . . , zdM

M

}

for CN such that for l = 0, 1, . . . , M, the set

Bl =
{
z1
0 , z

2
0 , . . . , z

d0
0 ; z1

1 , z
2
1 , . . . , z

d1
1 ; . . . ; z1

l , z2
l , . . . , zdl

l

}

is a basis for NAl. We call a basis B with the latter property a filtered basis. A set of
commutative nilpotent matrices A is then simultaneously reduced to a special upper-triangular

6



form and viewed as a cubic array

A =




0 A01 A02 · · · A0,M

0 0 A12 · · · A1,M

...
...

. . . . . .
...

0 0 0 · · · AM−1,M

0 0 0 · · · 0




, (3.5)

where

Akl =




akl
11 akl

12 · · · akl
1,dl

akl
21 akl

22 · · · akl
2,dl

...
...

...
akl

dk,1 akl
dk,2 · · · akl

dk,dl




is a cubic array of dimensions dk × dl × n and akl
ij ∈ Cn. The row and column cross-sections of

Akl are
Rkl

i = [akl
i1 akl

i2 · · · akl
i,dl

] , i ∈ dk, (3.6)

and
Ckl

j = [akl
1j akl

2j · · · akl
dk,j ] , j ∈ dl. (3.7)

These are matrices of dimensions n× dl and n× dk, respectively. We wish to remark that the

matrices Ckl
j of (3.7) are denoted by

(
Ckl

j

)T
in [14, 17]. We changed the notation for notational

simplicity since in our paper only the matrices in (3.7) appear.

We call a matrix A symmetric if A = AT . In [14, Cor. 1] we observed that A is commutative
if and only if certain products of row and column cross-sections are symmetric.

A commutative array A is called geometrically simple if d0 = 1, i.e., if the joint kernel of
matrices in A has the dimension equal to 1.

Now we state a theorem used latter in the text that follows from [14, Thm. 2] and results
of [17, §4].

Theorem 3.2. Assume that A is a geometrically simple commutative array in form (3.5) with
M = 3. Then there exists a set

{
T2f =

[
t2fij

]d1

i,j=1
; f ∈ d2

}

of linearly independent symmetric matrices such that C12
f = R01

1 T2f for f ∈ d2.
Furthermore, there exists a set



T3f =


 T 1

3f T 2
3f(

T 2
3f

)T
0


 ; f ∈ d3



 (3.8)

of symmetric (d1 + d2)× (d1 + d2) matrices such that :

(i) matrices T 2
3f =

[
t32
fgh

]d1 d2

g=1,h=1
; f ∈ d3, are linearly independent,

(ii) C23
f = R01

1 T 2
3f and C13

f = R01
1 T 1

3f + R02
1

(
T 2

3f

)T
for f ∈ d3,
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(iii) for h1, h2, h3 ∈ d1 and f ∈ d3 there is

d2∑

g=1

t2gh1h2
t32
fh3g =

d2∑

g=1

t2gh1h3
t32
fh2g. (3.9)

Remark 3.3. The symmetry of matrices Tmf for m = 2, 3 and f ∈ dm is equivalent to the
commutativity of A with M = 3. This follows from the fact that when the array A is geo-
metrically simple, i.e. d0 = 1, the nonzero entries of matrices Tmf are structure constants for
multiplication in the commutative algebra generated by the matrices Ai and the identity matrix
[17, Thm. 3]. In addition, the structure constants satisfy relations (3.9) and also higher order
symmetries [17, Cor. 4]. These arise since the products of three or more matrices of A do not
depend on the order of multiplication.

4. A Basis for Root Subspace R2

We suppose that λλλ is a geometrically simple eigenvalue and that a01
1 ,a01

2 , . . . ,a01
d1

form a basis
for N (B0). Further, we assume that the columns of the matrix

b0 =
[

b01
1 b01

2 · · · b01
d∗1

]
∈ Cn∗×d∗1

form a basis for N (B∗
0). Observe that d∗1 = n∗ − n + d1. We restrict our attention to the root

subspace R = R2, which is finite-dimensional by Lemma 2.3. We bring the restricted linear
transformations (Γi − λiI) |R, that are commuting and nilpotent, with respect to a filtered basis
to the form (3.5) with M = 2. It follows from Theorem 3.2 that for every column cross-section
C12

f , f ∈ d2 there exists a unique symmetric matrix Tf such that R01
1 Tf = C12

f . We choose

vectors zk
1 , k ∈ d1, as in Theorem 3.1, such that B1 =

{
z0, z

1
1 , z

2
1 , . . . , z

d1
1

}
is a basis for R1 and

(Γi − λiI) zk
1 = a01

kiz0 for i = 0, 1, . . . , n− 1.
Now we define matrices A1k

ij for k ∈ d1, i = 0, 1, . . . , n− 1 and j = 1, 2, . . . , n by

A1k
ij =

[ 〈
Aijx

k
i1, y

1
i0

〉 〈
Aijx

k
i1, y

2
i0

〉
· · ·

〈
Aijx

k
i1, y

n∗i
i0

〉 ]T
,

and matrices B1k, k ∈ d1 by

B1k =




A1k
10 A1k

11 · · · A1k
1,n−1

A1k
20 A1k

21 · · · A1k
2,n−1

...
...

...
A1k

n0 A1k
n1 · · · A1k

n,n−1




.

Further we construct matrix S ∈ Cn∗×(d1+1)d1/2 as follows : for p ∈ (d1+1)d1

2 we can uniquely

choose numbers k and l so that k ≥ l ≥ 1 and p = (k−1)k
2 + l . Then the p-th column of S is

equal to B1,ka01
l + B1,la01

k if k 6= l and to B1,ka01
k otherwise. We also write

S2 = b∗0S.

Further we identify the subspace Θ2 of symmetric d1 × d1 matrices with the vector space
C(d1+1)d1/2 via the isomorphism ψ : Θ2 −→ C(d1+1)d1/2 defined by

ψ (T ) =
[

t11 t12 t22 t13 t23 t33 . . . t1d1 t2d1 · · · td1d1

]T
(4.1)
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for

T =




t11 t12 · · · t1d1

t12 t22 · · · t2d1

...
...

...
t1d1 t2d1 · · · td1d1



∈ Θ2.

We denote by D′i the intersection D (Ai0) ∩ (N (Wi(λλλi)))
⊥, where (N (Wi(λλλi)))

⊥ is the
orthogonal complement of N (Wi (λλλ)) in Hi. The following is a technical observation, which
enables us to shorten proofs but has no significance otherwise. In actual calculations of basis
vectors we can chose vectors xg

ik ∈ D (Ai0) (i.e. not necessarily xg
ik ∈ D′i ) that satisfy all other

conditions. Note also that by a similar argument as in Lemma 4.1 we can assume that xk
i1 ∈ D′i

in Theorem 3.1.

Lemma 4.1. Suppose that a vector xi ∈ (N (Wi (λλλ)∗))⊥. Then there exists a vector vi ∈ D′i
such that xi = Wi (λλλ) vi.

Proof. Suppose that xi ∈ (N (Wi (λλλ)∗))⊥. Because (N (Wi (λλλ)∗))⊥ = R (Wi (λλλ)) it follows
that there exists a vector ui ∈ D (Ai0) such that xi = Wi (λλλ) ui. By the definition of the direct
sum of vector spaces we can find vectors vi ∈ D′i and wi ∈ N (Wi (λλλ)) such that vi + wi = ui.
Then it follows that xi = Wi (λλλ) vi. 2

Proposition 4.2. Suppose that t ∈ N (S2) \ {0} and T = [tij ]
d1

i,j=1 = ψ−1 (t) ∈ Θ2. Then there

exists an n-tuple a02 ∈ Cn such that

d1∑

k,l=1

tklB1ka01
l + B0a02 = 0, (4.2)

and there exist vectors xi2 ∈ D′i, for i = 1, 2, . . . , n, such that

Ui

(
a02

)
xi0 +

d1∑

k=1

Ui

(
a12

k

)
xk

i1 + Wi (λλλ) xi2 = 0, (4.3)

where a12
k =

∑d1
l=1 tkla01

l . Then the vector

z2 =
n∑

s=1

x10⊗· · ·⊗xs2⊗· · ·⊗xn0 +
d1∑

k,l=1

tkl

n−1∑

s=1

n∑

t=s+1

x10⊗· · ·⊗xk
s1⊗· · ·⊗xl

t1⊗· · ·⊗xn0 (4.4)

is in R2\R1, and

(Γi − λiI) z2 =
d1∑

k=1

a12
kiz

k
1 + a02

i z0 (4.5)

for i = 0, 1, . . . , n− 1.
Conversely, if z2 ∈ R2\R1 and (4.5) holds then ψ (T ) ∈ N (S2), where T is the unique

symmetric matrix such that
[

a12
1 a12

2 · · · a12
d1

]
= R01

1 T. Furthermore, there exist vectors

xi2 ∈ D(Ai0), i = 1, 2, . . . , n, such that (4.3) and (4.4) hold.
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Proof. Because t ∈ N (S2) and T = ψ−1 (t) it follows that
d1∑

k=1

d1∑

l=1

tklb∗0B1la01
k = 0.

Hence
∑d1

k=1

∑d1
l=1 tklB1la01

k ∈ (N (B∗
0))⊥ and therefore there exists a02 ∈ Cn such that the

equality (4.2) holds. By definition of the matrices B0 and B1k it follows that
d1∑

k=1

d1∑

l=1

tkl

n−1∑

j=0

〈
Aija

01
kjx

l
i1, y

hi
i0

〉
+

n−1∑

j=0

〈
Aija

02
j xi0, y

hi
i0

〉
= 0

for hi ∈ n∗i and i ∈ n. Thus Ui
(
a02

)
xi0 +

∑d1
k=1 Ui

(
a12

k

)
xk

i1 ∈ (N (Wi (λλλ)∗))⊥ and by Lemma
4.1 there exist vectors xi2 ∈ D′i such that (4.3) hold for a12

k =
∑d1

l=1 tkla01
l . Next we form the

vector z2 as in (4.4). For vectors xij ∈ Hi, i, j ∈ n we write
∣∣∣∣∣∣∣∣∣∣

x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
...

xn1 xn2 · · · xnn

∣∣∣∣∣∣∣∣∣∣

⊗

=
∑

σ∈Πn

sgnσ x1σ(1) ⊗ x2σ(2) ⊗ · · · ⊗ xnσ(n), (4.6)

where Πn is the set of all permutations of order n and sgnσ is the signature of permutation
σ. Observe that for the “vector determinant” (4.6) usual determinantal properties with respect
to column operations hold. These properties hold for the “operator determinants” of the form
(2.1) as well. In particular, we have that

(−1)n (∆0 − λ0∆n) =

∣∣∣∣∣∣∣∣∣∣∣

−W1 (λλλ)† A†11 · · · A†1,n−1

−W2 (λλλ)† A†21 · · · A†2,n−1
...

...
...

−Wn (λλλ)† A†n1 · · · A†n,n−1

∣∣∣∣∣∣∣∣∣∣∣

.

To reduce the technical complexity of the proof we set i = 0 in the following calculation. For
i ≥ 1 the calculation is similar to the one given. Using all the prepared notations and relations,
we have

(−1)n (∆0 − λ0∆n) z2 =
n∑

s=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 A11x10 · · · A1,n−1x10
...

...
...

0 As−1,1xs−1,0 · · · As−1,n−1xs−1,0

−Ws (λλλ) xs2 As1xs2 · · · As,n−1xs2

0 As+1,1xs+1,0 · · · As+1,n−1xs+1,0
...

...
...

0 An1xn0 · · · An,n−1xn0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊗

+

+
d1∑

k,l=1

tkl

n−1∑

s=1

n∑

t=s+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 A11x10 · · · A1,n−1x10
...

...
...

−Ws (λλλ)xk
s1 As1x

k
s1 · · · As,n−1x

k
s1

...
...

...
−Wt (λλλ)xl

t1 At1x
l
t1 · · · At,n−1x

l
tn

...
...

...
0 An1xn0 · · · An,n−1xn0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊗

=
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= a02
0

∣∣∣∣∣∣∣∣∣∣

A10x10 A11x10 · · · A1,n−1x10

A20x20 A21x20 · · · A2,n−1x20
...

...
...

An0xn0 An1xn0 · · · An,n−1xn0

∣∣∣∣∣∣∣∣∣∣

⊗

+

+
d1∑

k,l=1

tkl




n∑

s=1

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 A11x10 · · · A1,n−1x10
...

...
...

Us
(
a01

l

)
xk

s1 As1x
k
s1 · · · As,n−1x

k
s1

...
...

...
0 An1xn0 · · · An,n−1xn0

∣∣∣∣∣∣∣∣∣∣∣∣∣

⊗

+

+
n−1∑

s=1

n∑

t=s+1




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 A11x10 · · · A1,n−1xn0
...

...
...

0 As1x
k
s1 · · · As,n−1x

k
s1

...
...

...
Ut

(
a01

l

)
xt0 At1xt0 · · · At,n−1xt0

...
...

...
0 An1xn0 · · · An,n−1xn0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊗

+

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 A11x10 · · · A1,n−1xn0
...

...
...

Us
(
a01

k

)
xs0 As1xs0 · · · As,n−1xs0

...
...

...
0 At1x

l
t1 · · · At,n−1x

l
t1

...
...

...
0 An1xn0 · · · An,n−1xn0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊗





=

(since tkl = tlk)

= a02
0 (−1)n ∆nz0 +

d1∑

k,l=1

tkl

n∑

s=1

∣∣∣∣∣∣∣∣∣∣∣∣∣

U1
(
a01

l

)
x10 A11x10 · · · A1,n−1x10

...
...

...
Us

(
a01

l

)
xk

s1 As1x
k
s1 · · · As,n−1x

k
s1

...
...

...
Un

(
a01

l

)
xn0 An1xn0 · · · An,n−1xn0

∣∣∣∣∣∣∣∣∣∣∣∣∣

⊗

=

= a02
0 (−1)n ∆nz0 +

d1∑

k=1

a12
k0 (−1)n ∆nzk

1 .

Conversely, suppose that z2 ∈ R2/R1 and that (4.5) holds. Then there exist a symmetric
matrix

T =




t11 t12 · · · t1d1

t12 t22 · · · t2d1

...
...

...
t1d1 t2d1 · · · td1d1



∈ Θ2
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such that for i = 0, 1, . . . n− 1, we have

a12
k =

d2∑

l=1

tkla01
l (4.7)

by Theorem 3.2. Next it follows from (2.3) that

n−1∑

j=0

A†ij (Γj − λjI) z2 + Wi (λλλ)† z2 = 0

and from (4.5) that
n−1∑

j=0

A†ij




d1∑

k=1

a12
kjz

k
1 + a02

j z0


 + Wi (λλλ)† z2 = 0. (4.8)

For i ∈ n we choose vectors vi ∈ Hi so that 〈xi0, vi〉 = 1 and
〈
xk

i1, vi

〉
= 0 for k ∈ d1. This

is possible because Span {xi0} ∩ D′i = {0}. After multiplying (4.8) by v1 ⊗ · · · ⊗ vi−1 ⊗ yhi
i0 ⊗

vi+1 ⊗ · · · ⊗ vn on the right we get

n−1∑

j=0

〈
Aij

d1∑

k=1

a12
kjx

k
i1, y

hi
i0

〉
+

n−1∑

j=0

〈
Aija

02
j xi0, y

hi
i0

〉
= 0 (4.9)

for hi ∈ n∗i and all i. Hence, by Lemma 4.1, there exist vectors xi2 ∈ D′i such that (4.3) hold.
Now we form the vector

z1
2 =

n∑

s=1

x10 ⊗ · · · ⊗ xs2 ⊗ · · · ⊗ xn0 +
d1∑

k,l=1

tkl

n−1∑

s=1

n∑

t=s+1

x10 ⊗ · · · ⊗ xk
s1 ⊗ · · · ⊗ xl

t1 ⊗ · · · ⊗ xn0.

The same calculation as in the first part of the proof shows that

(Γi − λiI) z1
2 =

d1∑

k=1

a12
kiz

k
1 + a02

i z0

for i = 0, 1, . . . , n − 1. It follows that z1
2 − z2 ∈ R0 and so there exists a number δ ∈C such

that z2 = z1
2 + δz0. We replace one of the vectors xi2 in z1

2 by xi2 + δxi0, say we use the vector
x12 + δx10 in place of x12, to obtain the required form of z2, i.e.,

z2 =
n∑

s=1

x10 ⊗ · · · ⊗ xs2 ⊗ · · · ⊗ xn0 +
d2∑

k,l=1

tkl

n−1∑

s=1

n∑

t=s+1

x10 ⊗ · · · ⊗ xk
s1 ⊗ · · · ⊗ xl

t1 ⊗ · · · ⊗ xn0.

Note that here we might lose the condition that x12 ∈ D′i.
It remains to be shown that ψ (T ) ∈ N (S2). The equalities (4.9) can be written in matrix

form as
d1∑

k=1

B1ka12
k + B0a02 = 0.

Multiplication on the left-hand side by the matrix b∗0 yields

d1∑

k=1

b∗0B1ka12
k = 0
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and then also
d1∑

k=1

d1∑

l=1

b∗0B1ka01
l tkl = 0. (4.10)

Finally, we note that the relation (4.10) is equivalent to ψ(T ) ∈ N (S2). 2

Theorem 4.3. Suppose that T = {t1, t2, . . . , td} is a basis for N (S2) and that

T2k =
[
tkrs

]d1

r,s=1
= ψ−1(tk).

Then there exists n-tuples a02
k ∈ Cn such that

d1∑

r,s=1

tkrsB1ra01
s + B0a02

k = 0, (4.11)

and there exist vectors xk
i2 ∈ D′i, for i ∈ n such that

Ui

(
a02

k

)
xi0 +

d1∑

r=1

Ui

(
a12

rk

)
xr

i1 + Wi (λλλ) xk
i2 = 0, (4.12)

where a12
rk =

∑d1
s=1 tkrsa

01
s . Then vectors

zk
2 =

n∑

s=1

x10⊗· · ·⊗xk
s2⊗· · ·⊗xn0+

d1∑

r,s=1

tkrs

n−1∑

t=1

n∑

u=t+1

x10⊗· · ·⊗xr
t1⊗· · ·⊗xs

u1⊗· · ·⊗xn0, (4.13)

k ∈ d, and

B2 =
{
z0; z1

1 , z
2
1 , . . . , z

d1
1 ; z1

2 , z
2
2 , . . . , z

d
2

}
(4.14)

is a basis for R2.
Conversely, if z1

2 , z
2
2 , . . . , z

d2
2 are such that

{
z0; z1

1 , z
2
1 , . . . , z

d1
1 ; z1

2 , z
2
2 , . . . , z

d2
2

}
is a basis for

R2 and T21, T22, . . . , T2d2 are symmetric matrices such that C12
k = R01

1 T2k, k ∈ d2, then

{ψ (T21) , ψ (T22) , . . . , ψ (T2d2)}
is a basis for N (S2) and d = d2.

Proof. The theorem follows using the correspondence between t and z2 as described in
Proposition 4.2, and the fact that zk

2 are linearly independent if and only if Tk are linearly
independent. 2

From the proof of Proposition 4.2 it follows that vectors zk
2 in basis B2 can be chosen so

that they are of the form (4.13) with xk
i2 ∈ D′i. We assume hereafter that this is the case.

5. The Root Subspace R3

We choose vectors zf
3 ∈ D, f ∈ d3 so that B3 = B2∪

{
zf
3 , f ∈ d3

}
is a filtered basis for the root

subspace R3, which is finite-dimensional by Lemma 2.3. We put the restrictions (Γi − λiI) |R3

with respect to the basis B3 to the form (3.5). By Theorem 3.2 there exist symmetric matrices
T3f , f ∈ d3, in the form (3.8) such that (3.9) holds and for all i = 0, 1, . . . , n− 1, we have

(Γi − λiI) zf
3 =

2∑

k=1

dk∑

g=1

ak3
gfi z

g
k + a03

fi z0, (5.1)
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and

a13
gf =

d1∑

h=1

t31
fhg a01

h +
d2∑

h=1

t32
fgh a02

h and a23
gf =

d1∑

h=1

t32
fhg a01

h . (5.2)

Note that (5.1) is the expansion of the vector (Γi − λiI) zf
3 with respect to the basis B2 given

in the array (3.5).
We use the notation of Theorem 3.2. We assume that vectors zk

2 (in form (4.4) ) and matrices
T2k, k ∈ d2, are given as in Theorem 4.3 and matrices T3f , f ∈ d3 as in Theorem 3.2. For
f ∈ d3 the entries of the d1 × d2 matrix T 2

3f satisfy the d3
1 conditions (3.9), i.e.

d2∑

g=1

t2gh1h2
t32
fh3g −

d2∑

g=1

t2gh1h3
t32
fh2g = 0 (5.3)

for h1, h2, h3 ∈ d1. We write the matrix T 2
3f =

[
t32
fgh

]d1 d2

g=1,h=1
also as a column

t32
f =

[
t32
f11 · · · t32

fd11 t32
f12 · · · t32

fd12 · · · t32
f1d2

· · · t32
fd1d2

]T
(5.4)

and the symmetric matrix T 1
3f as a column

t31
f =

[
t31
f11 t31

f12 t31
22 t31

f13 · · · t31
f33 · · · t31

f1d1
· · · t31

fd1d1

]T
. (5.5)

Thus we split the entries of a matrix T3f into two column vectors t31
f and t32

f . We denote by Θ3

the set of all symmetric matrices in the form (3.8). The mapping ψ3 : Θ3 → Cd1d2⊕Cd1(d1+1)/2

given by ψ3 (T3f ) =
(
t31
f , t32

f

)
is a generalization of the linear transformation ψ defined by (4.1).

It is bijective and therefore it has an inverse. The inverse maps two vectors t31
f and t32

f to a
matrix T3f ∈ Θ3. We use this inverse mapping in Lemma 5.2. We also write

ψ3j(T3f ) = t3j
f for j = 1, 2. (5.6)

Note that ψ3j , j = 1, 2, are surjective linear transformations, ψ31 : Θ3 → Cd1(d1+1)/2 and
ψ32 : Θ3 → Cd1d2 .

Now we view relations (5.3) as a system of equations for the entries of T3f and we write
them in matrix form as

S21t31
f + S22t32

f = 0. (5.7)

The entries of the matrices S21 and S22 are determined by (5.3): Matrices S21 and S22 have
d3

1 rows; thus S21 ∈ Cd3
1×d1d2 and S22 ∈ Cd3

1×d1(d1+1)/2. The rows in S21 and S22 are ordered
lexicographically by all triples (h1, h2, h3) ∈ d1 × d1 × d1.

Further we want the entries of the matrix T3f and of the n-tuple

a03
f =

[
a03

f1 a03
f2 · · · a03

fn

]T

to satisfy the n∗ scalar relations

2∑

k=1

dk∑

g=1

d1∑

h=1

t3k
fhg

〈
Ui

(
a01

h

)
xg

ik, y
li
i0

〉
+

d1∑

g=1

d2∑

h=1

t32
fgh

〈
Ui

(
a02

h

)
xg

i1, y
li
i0

〉
+
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+
n−1∑

j=0

a03
j

〈
Aijxi0, y

li
i0

〉
= 0 (5.8)

for li ∈ n∗i and i ∈ n. These can be written equivalently in matrix form

S11t31
f + S12t32

f + B0a03
f = 0. (5.9)

Again the entries of the matrices S11 ∈ Cn∗×d1d2 and S12 ∈ Cn∗×d1(d1+1)/2 are determined by
the equations (5.8). The ordering of rows in S11 and S12 is chosen so that it is compatible with
the ordering of rows in B0.

We multiply the equation (5.9) by the matrix b∗0 on the left-hand side and we obtain

b∗0S
11t31

f + b∗0S
12t32

f = 0. (5.10)

We choose a matrix b3 so that its columns form a basis for the kernel of
[

b∗0S11

S21

]∗
.

Then we define a matrix

S3 = b∗3

[
b∗0S12

S22

]
.

Next we prove three auxiliary results.

Lemma 5.1. In the above setting it follows that t32
f ∈ N (S3) for f ∈ d3 and dimN (S3) ≥ d3.

Proof. By Theorem 3.2 it follows that the entries of the matrices T3f satisfy the conditions
(5.3). We put the entries of these matrices into two columns t31

f and t32
f as in (5.4) and (5.5)

via the isomorphism ψ3. Then we have S21t31
f + S22t32

f = 0. Relation (2.3) implies

n−1∑

j=0

A†ij (Γj − λjI) zf
3 + Wi (λλλ)† zf

3 = 0

for i ∈ n. From relations (5.1) it follows that

2∑

k=1

dk∑

g=1

Ui

(
ak3

gf

)†
zg
k + Ui

(
a03

f

)†
z0 + Wi (λλλ)† zf

3 = 0. (5.11)

Because we assumed xg
ik ∈ D′i and D′i ∩ Span {xi0} = {0} it follows that there exist vectors

vi ∈ Hi such that 〈xi0, vi〉 = 1 and
〈
xg

ik, vi
〉

= 0 for k = 1, 2 and g ∈ dk. We multiply the
equality (5.11) by a vector v1 ⊗ · · · ⊗ vi−1 ⊗ yhi

i0 ⊗ vi+1 ⊗ · · · ⊗ vn on the right-hand side. Then
it follows, using the structure of vectors zg

k, k = 0, 1, 2, that

2∑

k=1

dk∑

g=1

〈
Ui

(
ak3

gf

)
xg

ik + Ui

(
a03

f

)
xi0, y

hi
i0

〉
= 0 (5.12)

for i ∈ n and f ∈ d3. Now we apply relations (5.2) to obtain (5.8). The vectors t31
f , t32

f and
the n-tuple a03

f are such that equation (5.9) holds for all f . Since

b∗0B0 = 0 and b∗3

[
b∗0S11

S21

]

it follows that the vectors t32
f , f ∈ d3 are elements of the kernel of S3. They are linearly

independent by Theorem 3.2 and so we have d3 ≤ dimN (S3). 2
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Lemma 5.2. Suppose that t32
1 is an element of the kernel N (S3). Then there exist a vector

t31
1 and an n-tuple a03

1 such that (5.7) and (5.9) with f = 1 hold. Furthermore there exist
vectors x1

i3 ∈ D′i, i ∈ n such that

2∑

k=1

dk∑

g=1

Ui

(
ak3

g1

)
xg

ik + Ui

(
a03

1

)
xi0 + Wi (λλλ) x1

i3 = 0, (5.13)

where ak3
g1 are given by (5.2) for f = 1 and T31 = ψ−1

3

(
t31
1 , t32

1

)
.

Proof. From the structure of the matrix S3 it follows that for an element t32
1 ∈ N (S3) there

exist a vector t31
1 and a n-tuple a03

1 such that relations (5.7) and (5.9) hold: Namely, relation

0 = S3t32
1 = b∗3

[
b∗0S12

S22

]
t32
1

implies that

[
b∗0S12

S22

]
t32
1 is orthogonal to the kernel of

[
b∗0S11

S21

]∗
. We denote by U⊥ the

orthogonal complement of a subspace U . Since (N (A∗))⊥ = R(A) for a linear transformation
A between two finite-dimensional Hilbert spaces, it follows that there is an element t31

f ∈ Cd1d2

such that (5.7) and (5.10) for f = 1 hold. Then we have

b∗0
(
S11t31

1 + S12t32
1

)
= 0.

Thus the vector
(
S11t31

1 + S12t32
1

)
is orthogonal to the kernel of B∗

0 and so, there is an element
a03

1 ∈ Cn such that (5.9) holds.
We associate with the pair of vectors t32

1 and t31
1 , using the inverse of the isomorphism ψ−1

3 ,
a symmetric matrix T31. The relations (5.9) can be written equivalently in the form (5.12) for
f = 1. Then it follows for every i that

2∑

k=1

dk∑

g=1

Ui

(
ak3

g1

)
xg

ik + Ui

(
a03

1

)
xi0 ∈ (N (Wi (λλλ)∗))⊥

and hence it follows from Lemma 4.1 that there exists a vector x1
i3 ∈ D′i such that (5.13) holds.

2

The vector z1
3 is defined by

z1
3 =

n∑

j=1

x10 ⊗ · · · ⊗ x1
j3 ⊗ · · · ⊗ xn0 +

n∑
j,k=1
j<k

d1∑

h1,h2=1

t31
1h1h2

x10 ⊗ · · · ⊗ xh1
j1 ⊗ · · · ⊗ xh2

k1 ⊗ · · · ⊗ xn0

+
n∑

j,k=1
j 6=k

d1∑

h1=1

d2∑

h2=1

t32
1h1h2

x10 ⊗ · · · ⊗ xh1
j1 ⊗ · · · ⊗ xh2

k2 ⊗ · · · ⊗ xn0+

+
∑

j∈n3

d1∑

h∈d1
3




d2∑

g=1

t2gh1h2
t32
1h3g


 x10 ⊗ · · · ⊗ xh1

j11 ⊗ · · · ⊗ xh2
j21 ⊗ · · · ⊗ xh3

j31 ⊗ · · · ⊗ xn0,

where the latter summation does not occur for n = 2. Here n3 is the set of all triples j =
(j1, j2, j3) of three pairwise distinct indices j1, j2, j3 ∈ n and d1

3 is the set of all triples h =
(h1, h2, h3) of indices in d1.
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Lemma 5.3. In the above setting we have

(Γi − λiI) z1
3 =

2∑

k=1

dk∑

g=1

ak3
g1i z

g
k + a03

1i z0 (5.14)

for i = 0, 1, . . . , n− 1.

The proof is a direct calculation, similar to the proof of Proposition 4.2. Because it is rather
technical we include it in Appendix.

Suppose that T =
{
t32
f , f ∈ d

}
is a basis for the kernel of S3 where d = dimN (S3). Let

vectors xf
i3, i ∈ n, matrix T3f , n-tuple a03

f and vector zf
3 be associated with t32

f as described in
Lemmas 5.1–5.3 for f = 1. The following is our main result:

Theorem 5.4. The set
B2 ∪

{
zf
3 ; f ∈ d

}

is a filtered basis for R3.
Conversely, if z1

3 , z
2
3 , . . . , z

d3
3 are such that B2 ∪

{
zf
3 ; f ∈ d3

}
is a filtered basis for R3 and

T31, T32, . . ., T3d3 are the associated symmetric matrices (3.8) then

{ψ32 (T31) , ψ32 (T32) , . . . , ψ32 (T3d3)}
is a basis for N (S3) and d = d3.

Proof. If T is a basis for N (S3) then by Lemma 5.2 it follows that we can find required
vectors xf

i3, symmetric matrices T3f and n-tuples a03
f . Lemma 5.3 implies that the associated

vectors zf
3 are in R3\R2. They are linearly independent since T3f are linearly independent. It

follows that d ≤ d3 and, because d ≥ d3 by Lemma 5.1, we have d = d3.
To prove the converse assume that zf

3 , f ∈ d3, are such that B3 = B2 ∪
{
zf
3 ; f ∈ d3

}

is a filtered basis for R3 and T3f , f ∈ d3, are the associated symmetric matrices (3.8). By
Theorem 3.2(i) it follows that matrices T 2

3f , f ∈ d3 are linearly independent. Note that then
also the images ψ32(T3f ), f ∈ d3 are linearly independent. If d3 < d we complete the set{
ψ32 (T3f ) ; f ∈ d3

}
to a basis T of N (S3). Then we proceed as in the first part of the proof.

We construct vectors z̃f
3 , f ∈ d, as described in Lemmas 5.1 – 5.3. By the same arguments

as above it follows that B2 ∪
{
z̃f
3 ; f ∈ d

}
is a basis for R3 and therefore that d = d3. Hence

{ψ32 (T31) , ψ32 (T32) , . . . , ψ32 (T3d3)} is a basis for N (S3). 2

6. Two Examples

In this section we consider two examples of computations of bases for root subspaces at geomet-
rically simple eigenvalues that illustrate our methods. The first computation is at an eigenvalue
(with Fredholm index 0) of a finite dimensional three-parameter system and the second at an
eigenvalue with nonzero Fredholm index of an infinite dimensional two-parameter system. We
wish to note that the examples are chosen so that they are not covered by the methods of
[4, 5, 15, 16].

Example 6.1. Let us consider the 3-parameter system W, where the matrices W1(λλλ), W2(λλλ)
and W3(λλλ) are given by

W1(λλλ) =




λ0 + λ1 + 1 0 0 0
2 2λ0 + λ1 + 1 −λ1 2
0 λ0 + λ1 λ0 + λ1 λ1 − 1
0 0 0 λ0 + 2λ1


 ,

17



W2(λλλ) =




λ1 − 1 λ0 0
λ0 λ0 0
0 1 λ1


 and W3(λλλ) =

[
λ2 1
0 λ2

]
.

Their determinants are

det W1(λλλ) = (λ0 + 2λ1)(λ0 + λ1)(2λ0 + 1)(λ0 + λ1 + 1),

det W2(λλλ) = λ0λ1(λ1 − λ0 − 1) and detW3(λλλ) = λ2
2.

We apply [11, Thm. 5.2]. Since in each of the three determinants has exactly two irreducible
factors (counting multiplicities) that are zero at (0, 0, 0), and all the factors are linear, it follows
that the dimension of the root subspace R at the eigenvalue (0, 0, 0) is equal to 23 = 8.

It is easy to check that (0, 0, 0) is a geometrically simple eigenvalue. We apply our construc-
tion to form the corresponding root vectors. First we choose vectors

x10 =




0
0
1
0


 , x20 =




0
0
1


 , x30 =

[
1
0

]

and

y10 =




0
0
0
1


 , y20 =




0
1
0


 , y30 =

[
0
1

]
.

The matrix B0 is zero, hence d1 = 3. We choose

a01
1 =




1
0
0


 ,a01

2 =




0
1
0


 ,a01

3 =




0
0
1


 .

Vectors xk
i1, i, k = 1, 2, 3, have to solve the equations

Ai,k−1xi0 + Ai3x
k
i1 = 0.

Possible solution is

x1
11 =




0
−2
0
1


 , x2

11 =




0
−1
0
1


 , x2

21 =




0
−1
0


 , x3

31 =

[
0
−1

]
,

and the remaining vectors xk
i1 are zero. We choose b0 to be the identity matrix. Then

S2 =




1 3 2 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 −1


 .

18



Since S2 has rank equal to 3 it follows that d3 = 3. The elements

t2
1 =




2
0
−1
0
0
0




, t2
2 =




0
0
0
1
0
0




, t2
3 =




0
0
0
0
1
0




form a basis for the nullspace N (S2). The corresponding vectors xk
i2, i, k = 1, 2, 3, have to solve

equations
2Ai0x

1
i1 −Ai1x

2
i1 + Ai3x

1
i2 = 0, Ai2x

1
i1 + Ai0x

3
i1 + Ai3x

2
i2 = 0

and
Ai2x

2
i2 + Ai1x

3
i1 + Ai3x

3
i2 = 0.

Zero vectors solve all the equations except the first one for i = 1. We choose x1
12 =




0
15
0
−4


 for

a solution. Next we find the matrices Sij , i, j = 1, 2: S11 = S2, S21 = 0,

S12 =



−4 0 0 −8 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0




and

S22 =




0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 2 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 −1 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 0 0




.

Since S11 has full rank and S21 = 0 it follows that S3 = S22. Its rank is equal to 8 and thus it
follows that d3 = 1. The corresponding elements t3j

1 , j = 1, 2, are chosen to be equal to

t32
1 =




0
0
1
2
0
0
0
−1
0




and t31
1 =




16
0
0
0
0
0




.

Vectors x1
i3, i = 1, 2, 3, have to solve equations

16Ai0x
1
i1 + 2Ai1x

1
i2 −Ai2x

2
i2 + Ai0x

3
i2 + Ai3x

1
i3 = 0.
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A solution is x1
13 =




0
54
0
−10


, x1

23 = 0 and x1
33 = 0. Using the above vectors we construct the

eigenvector

z0 =




0
0
1
0


⊗




0
0
1


⊗

[
1
0

]

and the root vectors

z1
1 =




0
−2
0
1


⊗




0
0
1


⊗

[
1
0

]
, z2

1 =







0
0
1
0


⊗




0
−1
0


 +




0
−1
0
1


⊗




0
0
1





⊗

[
1
0

]
,

z3
1 =




0
0
1
0


⊗




0
0
1


⊗

[
0
−1

]
, z1

2 =







0
−15
0
4


⊗




0
0
1


 +




0
−1
0
1


⊗




0
1
0





⊗

[
1
0

]
,

z2
2 =




0
−4
0
2


⊗




0
0
1


⊗

[
0
−1

]
, z3

2 = 2







0
−1
0
1


⊗




0
0
1


 +




0
0
1
0


⊗




0
−1
0





⊗

[
0
−1

]
,

z1
3 =







0
54
0
−10


⊗




0
0
1


 +




0
30
0
−8


⊗




0
−1
0





⊗

[
1
0

]
+




0
−4
0
2


⊗




0
1
0


⊗

[
0
1

]
.

Since d0 + d1 + d2 + d3 = 8 it follows that the root subspace R is equal to R3, i.e., the ascent is
M = 3, and that the above vectors z0, z

1
1 , z

2
1 , z

3
1 , z

1
2 , z

2
2 , z

3
2 , z

1
3 form a basis for the root subspace

at the eigenvalue (0, 0, 0). 2

Example 6.2. Consider a separable Hilbert space H with an orthonormal basis {em}∞m=0. We
define a two-parameter system on H1 = H2 = H by:

1
2
A10em = A21em =

{
em, m even,

−em, m odd,
A11em = A20em =

{
0, m = 0, 1,

em, m ≥ 2,

A12em = A22em =





e0 − e1, m = 0,
−e0 + e1, m = 1,

e2 − e3, m = 2,
em+1, m ≥ 3.

Then the operators ∆2 = A10 ⊗A21 −A11 ⊗A20 : H → H and

A2 =

[
A†10 A†11

A†20 A†21

]
: H2 → H2
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are given by

∆2em ⊗ ek =

{
(−1)m+k 2em ⊗ ek, if m ≤ 1 or k ≤ 1,(

(−1)m+k 2− 1
)

em ⊗ ek, if m, k ≥ 2,

and

A2

[
er ⊗ es

em ⊗ en

]
=





[
(−1)r 2er ⊗ es

(−1)n em ⊗ en

]
, if m, s ≤ 1 and n, r ≥ 0,

[
(−1)r 2er ⊗ es

(−1)n em ⊗ en + er ⊗ es

]
, if m ≤ 1, s ≥ 2 and n, r ≥ 0,

[
em ⊗ en + (−1)r 2er ⊗ es

(−1)n em ⊗ en

]
, if s ≤ 1, m ≥ 2 and n, r ≥ 0,

[
em ⊗ ek + (−1)r 2er ⊗ es

(−1)n em ⊗ en + er ⊗ es

]
, if m, s ≥ 2 and n, r ≥ 0.

It is easy to verify that ∆2 is bounded, one-to-one and onto, and that A2 is onto. Hence
Assumptions I and III follow. We choose λλλ = (0, 0, 1). Then Wi (λλλ) = Ai2 for i = 1, 2.
Since N (Ai2) = L (e0 + e1) and N (A∗i2) = L (e0 + e1, e2 + e3), where L (S) is the linear span
of the set S, it follows that λλλ is a geometrically simple eigenvalue and that both Wi (λλλ) are
Fredholm operators (of index −1). So Assumption II follows as well. For i = 1, 2 we choose

xi0 = y1
i0 = e0 +e1 and y2

i0 = e2 +e3. Then A0
ij =

[
0
0

]
for i = 1, 2 and j = 0, 1, so B0 is a 4×2

zero matrix and d1 = 2. We choose a1 =

(
1
0

)
and a2 =

(
0
1

)
. To find the corresponding

root vectors z1
1 and z2

1 we need to find vectors xk
i1, i, k = 1, 2, such that

Ai2x
1
i1 + Ai0xi0 = 0 and Ai2x

2
i1 + Ai1xi0 = 0.

We choose x1
11 = 2e1, x2

11 = x1
21 = 0 and x2

21 = e1. To find a basis for the root subspace R2 we
follow the construction in §4 and we find that

S2 =




−4 0 0
0 0 0
0 0 −1
0 0 0


 .

Hence d2 = 1 and we choose t =
(

0 1 0
)T

to span the kernel of S2. Then

T = ψ−1 (t) =

[
0 1
1 0

]
.

A possible choice for a02 ∈ C2 and x12, x22 ∈ H that solve the corresponding equations (4.11)
and (4.3) are a02 = 0 and x12 = x22 = 0. To continue with the computations of possible basis
vectors for the root subspace R3 observe that the corresponding matrix T 2

3f is a 2× 1 matrix,

21



say T 2
3f =

[
t
z

]
. Then relation (5.3) with h1 = h3 = 1 and h2 = 2 implies t = 0 and relation

(5.3) with h1 = h3 = 2 and h2 = 1 implies z = 0. Hence there is no nonzero solution for the
matrix T 2

3f . So d3 = 0 and R = R2. From the previous discussion it follows that

B = {(e0 + e1)⊗ (e0 + e1) , 2e1 ⊗ (e0 + e1) , (e0 + e1)⊗ e1, 2e1 ⊗ e1}

is a basis of R. 2

Appendix: Proof of Lemma 5.3

The proof is similar to the proof of Proposition 4.2. We use a direct calculation to show (5.14).
We set i = 0. The calculation for other i is similar.

First we have

(−1)n (∆0 − λ0∆n) z1
3 =

n∑

j=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 A11x10 · · · A1,n−1x10
...

...
...

0 Aj−1,1xj−1,0 · · · Aj−1,n−1xj−1,0

−Wj (λλλ) x1
j3 Aj1x

1
j3 · · · Aj,n−1x

1
j3

0 Aj+1,1xj+1,0 · · · Aj+1,n−1xj+1,0
...

...
...

0 An1xn0 · · · An,n−1xn0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊗

+

+
n∑

j,k=1
j<k

d1∑

h1,h2=1

t31
1h1h2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 A11x10 · · · A1,n−1x10
...

...
...

−Wj (λλλ) xh1
j1 Aj1x

h1
j1 · · · Aj,n−1x

h1
j1

...
...

...
−Wk (λλλ) xh2

k1 Ak1x
h2
k1 · · · Ak,n−1x

h2
k1

...
...

...
0 An1xn0 · · · An,n−1xn0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊗

+

+
n∑

j,k=1
j 6=k

d1∑

h1=1

d2∑

h2=1

t32
1h1h2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 A11x10 · · · A1,n−1x10
...

...
...

−Wj (λλλ) xh1
j1 Aj1x

h1
j1 · · · Aj,n−1x

h1
j1

...
...

...
−Wk (λλλ) xh2

k2 Ak1x
h2
k2 · · · Ak,n−1x

h2
k2

...
...

...
0 An1xn0 · · · An,n−1xn0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊗

+
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+
∑

j∈n3

d1∑

h∈d1
3




d2∑

g=1

t2gh1h2
t32
1h3g




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 A11x10 · · · A1,n−1x10
...

...
...

−Wj1 (λλλ) xh1
j11 Aj11x

h1
j11 · · · Aj1,n−1x

h1
j11

...
...

...
−Wj2 (λλλ) xh2

j21 Aj21x
h2
j21 · · · Aj2,n−1x

h2
j21

...
...

...
−Wj3 (λλλ) xj31 Aj31x

h3
j31 · · · Aj3,n−1x

h3
j31

...
...

...
0 An1xn0 · · · An,n−1xn0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊗

. (A.1)

By virtue of (3.1), (4.3), (5.13) and column operations it follows that (A.1) is equal to

n∑

j=1




d2∑

g=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 A11x10 · · · A1,n−1x10
...

...
...

0 Aj−1,1xj−1,0 · · · Aj−1,n−1xj−1,0

Uj

(
a23

g1

)
xg

j2 Aj1x
g
j2 · · · Aj,n−1x

g
j2

0 Aj+1,1xj+1,0 · · · Aj+1,n−1xj+1,0
...

...
...

0 An1xn0 · · · An,n−1xn0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊗

+

+
d1∑

g=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 A11x10 · · · A1,n−1x10
...

...
...

0 Aj−1,1xj−1,0 · · · Aj−1,n−1xj−1,0

Uj

(
a13

g1

)
xg

j1 Aj1x
g
j1 · · · Aj,n−1x

g
j1

0 Aj+1,1xj+1,0 · · · Aj+1,n−1xj+1,0
...

...
...

0 An1xn0 · · · An,n−1xn0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊗


+

+

∣∣∣∣∣∣∣∣∣∣

U1
(
a03

1

)
x10 A11x10 · · · A1,n−1x10

U2
(
a03

1

)
x20 A21x20 · · · A2,n−1x20

...
...

...
Un

(
a03

1

)
xn0 An1xn0 · · · An−1,nxn0

∣∣∣∣∣∣∣∣∣∣

⊗

+

+
n∑

j,k=1
j<k

d1∑

h1,h2=1

t31
1h1h2




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 A11x10 · · · A1,n−1x10
...

...
...

Uj

(
a01

h1

)
xj0 Aj1xj0 · · · Aj,n−1xj0

...
...

...
0 Ak1x

h2
k1 · · · Ak,n−1x

h2
k1

...
...

...
0 An1xn0 · · · An,n−1xn0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊗

+
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+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 A11x10 · · · A1,n−1x10
...

...
...

0 Aj1x
h1
j1 · · · Aj,n−1x

h1
j1

...
...

...
Uk

(
a01

h2

)
xk0 Ak1xk0 · · · Ak,n−1xk0

...
...

...
0 An1xn0 · · · An,n−1xn0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊗


+

+
n∑

j,k=1
j 6=k

d1∑

h1=1

d2∑

h2=1

t32
1h1h2




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 A11x10 · · · A1,n−1x10
...

...
...

Uj

(
a01

h1

)
xj0 Aj1xj0 · · · Aj,n−1xj0

...
...

...
0 Ak1x

h2
k2 · · · Ak,n−1x

h2
k2

...
...

...
0 An1xn0 · · · An,n−1xn0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊗

+

+
d1∑

g=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 A11x10 · · · A1,n−1x10
...

...
...

0 Aj1x
h1
j1 · · · Aj,n−1x

h1
j1

...
...

...
Uk

(
a12

gh2

)
xg

k1 Ak1x
g
k1 · · · Ak,n−1x

g
k1

...
...

...
0 An1xn0 · · · An,n−1xn0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊗

+

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 A11x10 · · · A1,n−1x10
...

...
...

0 Aj1x
h1
j1 · · · Aj,n−1x

h1
j1

...
...

...
Uk

(
a02

h2

)
xk0 Ak1xk0 · · · Ak,n−1xk0

...
...

...
0 An1xn0 · · · An,n−1xn0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊗


+
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+
∑

j∈n3

d1∑

h∈d1
3




d2∑

g=1

t2gh1h2
t32
1h3g







∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 A11x10 · · · A1,n−1x10
...

...
...

Uj1

(
a01

h1

)
xj10 Aj11xj10 · · · Aj1,n−1xj10

...
...

...
0 Aj21x

h2
j21 · · · Aj2,n−1x

h2
j21

...
...

...
0 Aj31x

h3
j31 · · · Aj3,n−1x

h3
j31

...
...

...
0 An1xn0 · · · An,n−1xn0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊗

+

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 A11x10 · · · A1,n−1x10
...

...
...

0 Aj11x
h1
j11 · · · Aj1,n−1x

h1
j11

...
...

...
Uj1

(
a01

h2

)
xj20 Aj21xj20 · · · Aj2,n−1xj20

...
...

...
0 Aj31x

h3
j31 · · · Aj3,n−1x

h3
j31

...
...

...
0 An1xn0 · · · An,n−1xn0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊗

+

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 A11x10 · · · A1,n−1x10
...

...
...

0 Aj11x
h1
j11 · · · Aj1,n−1x

h1
j11

...
...

...
0 Aj21x

h2
j21 · · · Aj2,n−1x

h2
j21

...
...

...
Uj3

(
a01

h3

)
xj30 Aj31xj30 · · · Aj3,n−1xj30

...
...

...
0 An1xn0 · · · An,n−1xn0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊗


. (A.2)

Next we apply all the conclusions of Theorem 3.2. In addition, note that the symmetry of
matrices T2g and Theorem 3.2(iii) imply that

d2∑

g=1

t2gh1h2
t32
1h3g =

d2∑

g=1

t2gh3h1
t32
1h2g =

d2∑

g=1

t2gh2h3
t32
1h1g

for any h = (h1, h2, h3) ∈ d1
3. Then (A.2) is equal to

∣∣∣∣∣∣∣∣∣∣

U1
(
a03

1

)
x10 A11x10 · · · A1,n−1x10

U2
(
a03

1

)
x20 A21x20 · · · A2,n−1x20

...
...

...
Un

(
a03

1

)
xn0 An1xn0 · · · An−1,nxn0

∣∣∣∣∣∣∣∣∣∣

⊗

+
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+
n∑

j=1

d1∑

h1,h2=1

t31
1h1h2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U1

(
a01

h1

)
x10 A11x10 · · · A1,n−1x10

...
...

...
Uj

(
a01

h1

)
xh2

j1 Aj1x
h2
j1 · · · Aj,n−1x

h2
j1

...
...

...
Un

(
a01

h1

)
xn0 An1xn0 · · · An,n−1xn0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊗

+

+
n∑

j=1

d1∑

h1=1

d2∑

h2=1

t32
1h1h2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U1

(
a01

h1

)
x10 A11x10 · · · A1,n−1x10

...
...

...
Uj

(
a01

h1

)
xh2

j2 Aj1x
h2
j2 · · · Aj,n−1x

h2
j2

...
...

...
Un

(
a01

h1

)
xn0 An1xn0 · · · An,n−1xn0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊗

+

+
n∑

j=1

d1∑

h1=1

d2∑

h2=1

t32
1h1h2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U1

(
a02

h2

)
x10 A11x10 · · · A1,n−1x10

...
...

...
Uj

(
a02

h2

)
xh1

j1 Aj1x
h1
j1 · · · Aj,n−1x

h1
j1

...
...

...
Un

(
a02

h2

)
xn0 An1xn0 · · · An,n−1xn0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊗

+

+
n∑

j1,j2=1
j1<j2

d1∑

h∈d1
3

d2∑

g=1

t2gh1h2
t32
1h3g

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U1

(
a01

h3

)
x10 A11x10 · · · A1,n−1x10

...
...

...
Uj1

(
a01

h3

)
xh1

j11 Aj11x
h1
j11 · · · Aj1,n−1x

h1
j11

...
...

...
Uj2

(
a01

h3

)
xh2

j21 Aj21x
h2
j21 · · · Aj2,n−1x

h2
j21

...
...

...
Un

(
a01

h3

)
xn0 An1xn0 · · · An,n−1xn0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊗

. (A.3)

Finally, by Theorem 3.2(ii) and column operations, it follows that (A.3) is equal to

(−1)n ∆n


a03

10x10 ⊗ x20 ⊗ · · · ⊗ xn0 +
d1∑

h1=1

a13
h110

n∑

j=1

x10 ⊗ · · · ⊗ xh1
j1 ⊗ · · · ⊗ xn0 +

+
d2∑

h2=1

a23
h210

n∑

j=1

x10 ⊗ · · · ⊗ xh2
j2 ⊗ · · · ⊗ xn0+

+
d2∑

g=1

a23
g10

d1∑

h1,h2=1

t2gh1h2

n∑
j1,j2=1
j1<j2

x10 ⊗ · · · ⊗ xh1
j11 ⊗ · · · ⊗ xh2

j21 ⊗ · · · ⊗ xn0


 =
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= (−1)n ∆n


a03

10z0 +
d1∑

h=1

a13
h10 zh

1 +
d2∑

h=1

a23
h10z

h
2


 .

2
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