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Abstract

We study stability of (joint) invariant subspaces of a finite set of commuting
matrices. We generalize some of the results of Gohberg, Lancaster, and Rodman for
the single matrix case. For sets of two or more commuting matrices we exhibit some
phenomena different from the single matrix case. We show that each root subspace
is a stable invariant subspace, that each invariant subspace of a root subspace of
a nonderogatory eigenvalue is stable, and that, even in the derogatory case, the
eigenspace is stable if it is one-dimensional. We prove that a pair of commuting ma-
trices has only finitely many stable invariant subspaces. At the end, we discuss the
stability of invariant subspaces of an algebraic multiparameter eigenvalue problem.

1 Introduction

In the paper we study stability of invariant subspaces of k-tuples (k ≥ 2) of commuting
matrices. The problem of stability arose in applications to multiparameter eigenvalue
problems [1]. The stability is crucial when numerical calculations are performed to find a
basis of an invariant subspace [16]. In this paper, an invariant (resp. root) subspace of a
k-tuple of commuting matrices always refers to a joint invariant (resp. root) subspace of
the k-tuple.

In the single matrix case (i.e., if k = 1) Gohberg, Lancaster, and Rodman [4] charac-
terized all stable invariant subspaces. They showed that each root subspace is stable, each
invariant subspace of a root subspace of a nonderogatory eigenvalue is stable, and that
direct sums of these two types of subspaces are the only stable invariant subspaces. We
generalize most of these results. We show that each root subspace is stable, and that each
invariant subspace of a root subspace of a nonderogatory eigenvalue is stable. Moreover,
if there is only one invariant subspace of a root subspace of a given dimension then it is
stable. In particular, if the eigenspace is one-dimensional then it is stable. We show that
also direct sums of these types of subspaces are stable. However, we do not know if these
are the only possible stable invariant subspaces of a k-tuple of commuting matrices.
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We obtain some further results for pairs of commuting matrices. We show that a pair
of commuting matrices has only finitely many stable invariant subspaces. We consider a
few examples and state a number of open problems. We conclude with some results on the
stability of invariant subspaces of an algebraic multiparameter eigenvalue problem. Such a
problem has an associated k-tuple of commuting matrices. (See §5 for a brief introduction
and [1] for details.) Plestenjak [16] studied a numerical algorithm for computing a basis
of a root subspace at a nonderogatory eigenvalue of an associated k-tuple of commuting
matrices. Since each invariant subspace of a root subspace of a nonderogatory eigenvalue
is stable there is no problem of stability in the algorithm presented in [16].

2 Preliminaries

Let A = (A1, . . . , Ak), (k ≥ 2), be a set of commuting n × n matrices over C. We say
that a subspace N of Cn is A–invariant if

AlN ⊂ N , l = 1, . . . , k.

The set of all A–invariant subspaces is denoted by Inv(A).
A k-tuple λ = (λ1, . . . , λk) ∈ Ck is an eigenvalue of a set of commuting matrices A if

Ker(A− λI) :=
k⋂

l=1

Ker(Al − λlI) 6= {0}.

A nonzero vector z ∈ Ker(A− λI) is an eigenvector for λ and A. The root subspace for
an eigenvalue λ is denoted by Rλ(A) and is equal to

⋂

l1+···+lk=n

Ker
[
(A1 − λ1I)l1 · · · (Ak − λkI)lk

]

An eigenvalue λ is called geometrically simple if dim Ker(A − λI) = 1. It is called
nonderogatory if

dim
k⋂

l=1

Ker(Al − λlI)j = j,

for j = 1, 2, . . . , dimRλ(A). We say that an eigenvalue is derogatory if it is not non-
derogatory. We remark that an eigenvalue is nonderogatory if it is geometrically simple
and dim

⋂k
l=1 Ker(Al − λlI)2 ≤ 2 (see [12, Cor. 2] and [13, Thm. 7]). If the eigenvalue is

nonderogatory then, in Rλ(A), there is exactly one A-invariant subspace of dimension
j for each j = 0, 1, . . . , dimRλ(A). This follows from the definition of a nonderogatory
eigenvalue.

If a simple rectifiable contour γl splits the spectrum of Al for l = 1, . . . , k, then the
Riesz projectors are defined by

P (Al, γl) :=
1

2πi

∫

γl

(λI − Al)
−1dλ,
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l = 1, . . . , k. They commute and we define

P (A; γ) := P (A1; γ1) · · ·P (Ak; γk).

The gap between the subspaces L and M in Cn is defined by

θ(L,M) = ‖PL − PM‖,

where PL and PM are the orthogonal projectors on L and M, respectively. If L,M 6= {0}
then

θ(L,M) = max



 sup

x∈M
‖x‖=1

d(x,L), sup
x∈L
‖x‖=1

d(x,M)



 (1)

(see Theorem 13.1.1 in [4, p. 388]).

We say that an A–invariant subspace N is stable if for every ε > 0 there exists δ > 0
such that if B = (B1, . . . , Bk) is a set of commuting matrices with ‖Al − Bl‖ < δ for
l = 1, . . . , k, then there exists a B–invariant subspace M such that

θ(N ,M) < ε.

For comparison with our results we state Theorem 15.2.1 of [4, p. 448] that charac-
terizes stable invariant subspaces for a single matrix.

Theorem 2.1 (Gohberg, Lancaster, and Rodman) Suppose that λ1, . . . , λr are all
the distinct eigenvalues of an n×n matrix A over C. A subspace N of Cn is A–invariant
and stable if and only if N = N1+̇ · · · +̇Nr, where for each j the subspace Nj is an
arbitrary A–invariant subspace of Rλj

(A) if dim Ker(λjI − A) = 1, and either Nj = {0}
or Nj = Rλj

(A) if dim Ker(λjI − A) ≥ 2.

3 Stability and root subspaces

In this section we show that it suffices to study the stability of invariant subspaces of root
subspaces of A. The main result is that an A–invariant subspace N of Cn is stable if and
only if N is a direct sum N1+̇ · · · +̇Nr, where each Nj is a stable A–invariant subspace
of a root subspace of A. The following two lemmas are generalizations of Lemmas 15.3.2
and 15.3.3 of [4, pp. 452-454]. The proofs are almost identical and therefore omitted.

Lemma 3.1 Let γi ⊂ C be a simple rectifiable contour that splits the spectrum of Ai for
i = 1, . . . , k. Let

P (A; γ) = P (A1; γ1) · · ·P (Ak; γk)

be the Riesz projector for A and γ = (γ1, . . . , γk) and let A0 = (A10, . . . , Ak0) be the
restriction of A to Im P (A; γ). Let N be a subspace of Im P (A; γ). Then N is a stable
invariant subspace for A if and only if N is a stable invariant subspace for A0.
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Lemma 3.2 Let N ⊂ Cn be an invariant subspace of A = (A1, . . . , Ak) and assume that
the contour γi ⊂ C splits the spectrum of Ai for i = 1, . . . , k. If N is stable for A then
P (A; γ)N is a stable invariant subspace for the restriction A0 = (A10, . . . , Ak0) of A to
Im P (A; γ).

Lemmas 3.1 and 3.2 imply the following theorem.

Theorem 3.3 Let λ1 = (λ11, . . . , λ1k), . . . , λr = (λr1, . . . , λrk) be all the different eigen-
values of a set of commuting matrices A = (A1, . . . , Ak). A subspace N of Cn is A–
invariant and stable if and only if N = N1+̇ · · · +̇Nr, where Nj is a stable Aj–invariant
subspace of the restriction Aj = (Aj1, . . . , Ajk) of A to Rλj

(A) for j = 1, . . . , r.

Proof. Suppose that N is a stable A–invariant subspace. It is easy to see that
N = N1+̇ · · · +̇Nr, where Nj = N ∩Rλj (A) for j = 1, . . . , r. It follows from Lemma 3.2

that Nj is a stable invariant subspace of the restriction Aj for j = 1, . . . , r.
Next assume that each Nj is a stable Aj–invariant subspace. Lemma 3.1 implies that

Nj is a stable invariant subspace for A and therefore the direct sum N = N1+̇ · · · +̇Nr is
a stable invariant subspace for A.

Theorem 3.3 is similar to but weaker than Theorem 2.1 as it does not characterize the
stable invariant subspaces. In particular, it is not yet clear which invariant subspaces of a
root subspace at a derogatory eigenvalue are stable. Nevertheless, it enables us to study
only the restriction of a set of commuting matrices to a root subspace.

Now we are able to show that as it is the case for a single matrix a root subspace is a
stable invariant subspace for a set of commuting matrices.

Theorem 3.4 If λ = (λ1, . . . , λk) is an eigenvalue of a set of commuting matrices A =
(A1, . . . , Ak) then the root subspace Rλ(A) is a stable invariant subspace.

Proof. Let γi ⊂ C be such closed contour that λi lies inside γi and all the other
eigenvalues of Ai lie outside γi for i = 1, . . . , k. It follows that the root subspace Rλ(A)
is equal to the image of the Riesz projector P (A; γ) = P (A1; γ1) · · ·P (Ak; γk).

Let B = (B1, . . . , Bk) be a set of commuting matrices. If ‖Bi−Ai‖ is sufficiently small
then the matrix λI −Bi is invertible for every λ ∈ γi and the Riesz projector P (Bi; γi) is
well defined. For each ε > 0 there exists δ > 0 such that if ‖Bi − Ai‖ < δ then it follows
‖P (Bi; γi)− P (Ai; γi)‖ < ε (see [4, p. 448] for details).

The subspace Im P (B; γ), where P (B; γ) = P (B1; γ1) · · ·P (Bk; γk), is invariant for B.
It is easy to see that for each η > 0 there exists ε > 0 such that if ‖P (Bi; γi)−P (Ai; γi)‖ < ε
for i = 1, . . . , k then it follows that

θ(Im P (B; γ), Im P (A; γ)) < η.

As a consequence Im P (A; γ) is a stable invariant subspace.

Theorem 3.3 implies that it is enough to treat only sets of nilpotent commuting matri-
ces. First we show that invariant subspaces of root subspaces of nonderogatory eigenvalues
are stable. This also coincides with the theory for the single matrix case.
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A chain of subspaces

{0} = M0 ⊂M1 ⊂ · · · ⊂ Mn = Cn

is called complete if dimMi = i for i = 0, 1, . . . , n. It is well known fact that a set
of commuting matrices is simultaneously similar to a set of upper-triangular commuting
matrices. It follows then that for every set of commuting matrices there exists a complete
chain of invariant subspaces. Furthermore, we claim that if M is A-invariant subspace
then there exists a complete chain of invariant subspaces that contains M. Suppose that
Cn = M⊕N is a direct sum decomposition and that with respect to this decomposition

Ai =

[
Bi Ci

0 Di

]
, i = 1, . . . , k. Then (B1, . . . , Bk) and (D1, . . . , Dk) are k-tuples of

commuting matrices and they are simultaneously similar to upper-triangular matrices.
The claim now follows easily.

The following theorem is a generalization of Theorem 15.2.3 of [4, p. 449]. The proof
is very similar and it is omitted.

Theorem 3.5 Let A = (A1, . . . , Ak) be a set of commuting matrices. For a given ε > 0,
there exists δ > 0 such that the following holds: if B = (B1, . . . , Bk) is such a set of
commuting matrices that ‖Ai−Bi‖ < δ for i = 1, . . . , k and {Mj} is a complete chain of
B–invariant subspaces, then there exists a complete chain {Nj} of A–invariant subspaces
such that θ(Nj,Mj) < ε for j = 1, . . . , n− 1.

Corollary 3.6 If 0 = (0, . . . , 0) is a nonderogatory eigenvalue of a set of nilpotent com-
muting matrices A = (A1, . . . , Ak) then each A–invariant subspace is stable.

Proof. Since the eigenvalue 0 is nonderogatory the set A has only one j-dimensional
invariant subspaceNj for j = 0, 1, . . . , n. (See the definition of a nonderogatory eigenvalue
and the remark following it.) Subspaces N0, . . . ,Nn form a complete chain and we can
apply Theorem 3.5.

Corollary 3.7 Let A = (A1, . . . , Ak) be a set of nilpotent commuting matrices. If N is
the only A–invariant subspace of the dimension dimN , then N is a stable A–invariant
subspace.

Proof. Recall that there always exists a complete chain of invariant subspaces for A.
Suppose that A has only one invariant subspace N of the dimension dimN . It follows
then that the subspace N is a part of all complete chains of invariant subspaces. The
result now follows from Theorem 3.5.

A simple consequence of Corollary 3.7 is stability of the eigensubspace of a geometri-
cally simple eigenvalue. The eigenvalue need not be nonderogatory and this result differs
from the single matrix case. Namely, in the single matrix case, it follows that if an
eigenspace is one-dimensional then the eigenvalue is nonderogatory and the stability fol-
lows by Theorem 2.1. On the other hand, in the case of a set of commuting matrices there
exist eigenvalues that are geometrically simple and derogatory (see Example 3.9).
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Corollary 3.8 If λ = (λ1, . . . , λk) is a geometrically simple eigenvalue of a set of com-
muting matrices A = (A1, . . . , Ak) then the eigenspace Ker(A− λI) is a stable invariant
subspace.

Example 3.9 Suppose that n = 3 and that ei, i = 1, 2, 3, are the standard basis vectors
for C3. Then

A =




0 1 0
0 0 0
0 0 0


 , B =




0 0 1
0 0 0
0 0 0




is a pair of nilpotent commuting matrices for which 0 is a geometrically simple and deroga-
tory eigenvalue. By Corollary 3.8 the eigenspace L(e1) is a stable invariant subspace. Here
L(X) is the linear span of the set of vectors X.

Assume that ε is a small positive number. Consider now two commuting perturbations:




0 1 0
0 0 ε
0 0 0


 ,




0 0 1
0 0 0
0 0 0


 and




0 1 0
0 0 0
0 0 0


 ,




0 0 1
0 0 0
0 ε 0


 .

It is easy to observe that L(e1, e2) is the only two-dimensional invariant subspace for the
first perturbation and that L(e1, e3) is the only two-dimensional invariant subspace for
the second perturbation. Therefore the pair (A,B) has no stable invariant subspace of
dimension 2.

If we take the transposed matrices

AT =




0 0 0
1 0 0
0 0 0


 , BT =




0 0 0
0 0 0
1 0 0




then L(αe2 +βe3), for (α, β) ∈ C2\ (0, 0), are all the one-dimensional invariant subspaces
of

(
AT , BT

)
, while L(e2, e3) is the only two-dimensional invariant subspace. It follows by

Corollary 3.6 that L(e2, e3) is stable. The above analysis of pair (A,B) also shows that
there is no stable one-dimensional invariant subspace for

(
AT , BT

)
.

The example L(e2, e3), which is a two-dimensional eigenspace for
(
AT , BT

)
, shows that

eigenspaces of dimension more than one can be stable invariant subspaces for sets of two
or more commuting matrices. This differs from a single matrix case where it follows from
Theorem 2.1 that all the eigenspaces of dimension two or more that are proper subspaces
of a root subspace are unstable invariant subspaces.

Problem 3.10 The main problem that remains open is to characterize all stable invariant
subspaces of a k-tuple of nilpotent commuting matrices.

Question 3.11 It is known that for a fixed dimension d the variety of d-dimensional
invariant subspaces of a single nilpotent matrix is connected [8, 17]. Is the variety of
d-dimensional invariant subspaces of a k-tuple of nilpotent commuting matrices still con-
nected?
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4 A pair of commuting matrices

If the set contains only two commuting matrices, then we are able to show some additional
results. First we show that although a pair of commuting matrices A and B may have
infinitely many invariant subspaces, it has only finitely many stable invariant subspaces.
We use the fact that the set of pairs of commuting matrices where one of the matrices
is nonderogatory is dense in the set of all pairs of commuting matrices. It was pointed
out to us by one of the referees that this was an old result proved first by Motzkin and
Taussky [15] and rediscovered several times. (See [6].) We reproduce here a proof given by
Guralnick [6]. We do so for the convenience of the reader and to facilitate the discussion
on commuting triples of matrices.

We say an n× n matrix is generic if it has n distinct eigenvalues.

Theorem 4.1 If (A,B) is a pair of commuting n×n matrices over C then it has finitely
many stable invariant subspaces. More precisely, it has at most 2n − 1 nonzero stable
invariant subspaces.

Proof. It follows from Theorem 3.3 that it is enough to consider only a commuting
pair of nilpotent matrices. If (0, 0) is a nonderogatory eigenvalue for (A,B), then there
are only finitely many invariant subspaces which are all stable as a result of Corollary 3.6.
Thus we assume that (0, 0) is a derogatory eigenvalue.

Let A = XJX−1, where
J = diag(Jn1 , . . . , Jnr)

is the Jordan canonical form for A. Since (0, 0) is a derogatory eigenvalue for (A,B), 0 is
a derogatory eigenvalue for A and r ≥ 2. For distinct λ1, . . . , λr the matrix

R = X diag(λ1In1 + Jn1 , . . . , λrInr + Jnr)X
−1

is nonderogatory and commutes with matrix A.
The matrix

Bε = B + εR (2)

commutes with A for arbitrary ε ∈ C. Matrix Bε is nonderogatory except for finitely
many values of ε. Therefore it is possible to choose arbitrary small ε > 0 such that Bε is
nonderogatory.

Assume now that Bε is nonderogatory. Then there exists a polynomial p such that
A = p(Bε). For an arbitrary δ > 0 we can approximate Bε with a generic matrix G such
that ‖Bε − G‖ < δ. Since A = p(Bε), there exists δ > 0 such that ‖A − p(G)‖ < η for
‖B −G‖ < δ, i.e. pair (p(G), G) is close to pair (A,B).

Since G is a generic matrix, it has only finitely many invariant subspaces and it follows
that the pair (A,B) has only finitely many stable invariant subspaces. Namely, if G is
generic then pair (G, p(G)) has 2n − 1 nonzero invariant subspaces. For ε > 0 but small,
these subspaces can be close to at most 2n − 1 invariant subspaces of (A,B).

Observe that in the above proof the polynomial p can be chosen so that both G and
p(G) are generic. Also note that, in general, the bound 2n − 1 is best possible. If A (or
B) is generic then pair (A,B) has precisely 2n − 1 nonzero stable invariant subspaces.



STABILITY OF INVARIANT SUBSPACES OF COMMUTING MATRICES 8

The following lemma shows that for a pair of commuting matrices stable invariant
subspaces are determined by invariant subspaces of nearby generic commuting pairs.

Lemma 4.2 Let (A,B) be a pair of commuting nilpotent matrices and let N be an (A,B)–
invariant subspace. Then N is stable if and only if for every ε > 0 there exists δ > 0 such

that if
(
Ã, B̃

)
is a pair of generic commuting matrices with ‖Ã− A‖, ‖B̃ −B‖ < δ then

there exists a
(
Ã, B̃

)
–invariant subspace M such that θ(N ,M) < ε.

Proof. We only need to show that the condition is sufficient for the stability of N .

Suppose that for every ε > 0 there exists δ > 0 such that if
(
Ã, B̃

)
is a pair of generic

commuting matrices with ‖Ã − A‖, ‖B̃ − B‖ < δ then there exists a
(
Ã, B̃

)
–invariant

subspace M such that θ(N ,M) < ε.
Let N be an unstable invariant subspace for (A,B). Then for each m = 1, 2, . . . there

exist commuting pair (Am, Bm) and ηm > 0 such that ‖Am−A‖, ‖Bm−B‖ < 1/m and that
θ(N ,Mm) ≥ ε+ηm for all invariant subspaces Mm of (Am, Bm). It follows from Theorem

3.5 that there exists ϑm > 0 such that ϑm < 1/m and that if
(
Ãm, B̃m

)
is a commuting

pair that satisfies ‖Ãm − Am‖, ‖B̃m − Bm‖ < ϑm then for each
(
Ãm, B̃m

)
–invariant

subspace P̃ there exist (Am, Bm)–invariant subspace P such that θ(P , P̃) < ηm/2.
Since it is possible to find a generic commuting pair arbitrarily close to the original

commuting pair (see the proof of Theorem 4.1), for each m = 1, 2, . . . this implies the

existence of a generic commuting pair
(
Ãm, B̃m

)
such that ‖Ãm −A‖, ‖B̃m −B‖ < 2/m

and that θ(N ,Mm) > ε for all invariant subspaces Mm of
(
Ãm, B̃m

)
. This contradicts

the initial assumption and thus it follows that N has to be a stable invariant subspace.

Question 4.3 Is the set of stable invariant subspaces of any k-tuple (k ≥ 3) of commuting
matrices finite?

Question 4.4 For a single matrix an invariant subspace is stable if and only if it corre-
sponds to an isolated point of the variety of invariant subspaces. Is this the case also for
a pair (or more generally for a k-tuple, k ≥ 3) of commuting matrices? (See also Example
4.6.)

Remark 4.5 If a set contains three or more commuting matrices then, in general, it is
not possible to construct a nearby generic commutative set as it is done for pairs in the
proof of Theorem 4.1. Suppose that we have a set of commuting matrices (A,B,C). If
we follow the proof of Theorem 4.1 then it fails in the moment when we want to use the
matrix Bε. This matrix commutes with A but not necessarily with C. Guralnick [6] has
even shown that in the general case of three or more commuting matrices it is not possible
to approximate the set with a set of generic commuting matrices (see also [7, 9, 10]).
For this reason it is not possible, in general, to extend the proof of Theorem 4.1 to the
commutative sets with more than two matrices. It follows from the results of Guralnick [6]
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that the approximation for commuting k-tuples, k ≥ 4, is possible if the size n of matrices
is at most 3 and is not possible in general if n ≥ 4. For triples of commuting matrices,
it follows by results of Holbrook and Omladič in [10] that the approximation is possible if
the size n is at most 5 and is not possible if n ≥ 30. For the remaining n, it is not known
if the approximation is possible. The bounds for n in [10] are an improvement of bounds
given earlier by Guralnick [6] and Guralnick and Sethuraman [7]. We conclude that the
same arguments as in the proof of Theorem 4.1 show that if k = 3 and n ≤ 5 or k ≥ 4 and
n ≤ 3 then a k-tuple of commuting n×n matrices has only finitely many stable invariant
subspaces.

Note that Lemma 4.2 can not be generalized to the arbitrary sets of three or more
commuting matrices for the same reasons as Theorem 4.1.

Example 4.6 Suppose that n = 4 and that ei, i = 1, 2, 3, 4, are the standard basis vectors
for C4. Then

A =




0 1 0 0
0 0 0 1
0 0 0 1
0 0 0 0


 and B =




0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 0




is a pair of nilpotent commuting matrices. The eigenvalue 0 is geometrically simple and
derogatory. By Corollary 3.8 the eigenspace L(e1) is a stable invariant subspace. Recall
that L(X) is the linear span of the set of vectors X. It is easy to show that two-dimensional
invariant subspaces form the family L(e1, αe2 +βe3) and three-dimensional invariant sub-
spaces form the family L (e1, e2 + e3, αe4 + β(e2 − e3)) , where (α, β) ∈ C2\ ((0, 0)).

Assume that ε is a small positive number. Consider now two commuting perturbations
of (A,B): 



0 1 0 0
0 0 0 1
0 0 0 1
0 ε −ε 0


 ,




0 0 1 0
0 0 0 1
0 0 0 1
0 ε −ε 0




and 


0 1 0 0
0 0 0 1
ε8 0 0 1
0 −ε4 ε4 0


 ,




0 0 1 0
ε8 0 0 1
2ε8 0 0 1 + ε4

0 −ε4 + ε8 ε4 0


 .

The first perturbed pair is nilpotent and nonderogatory. Its complete chain of invariant
subspaces is {0} ⊂ L(e1) ⊂ L(e1, e2 + e3) ⊂ L(e1, e2 + e3, e4) ⊂ C4. The second perturbed
pair has four distinct eigenvalues. Corresponding joint eigenvectors are:




1
−ε3

−ε3 − ε5

ε6


 ,




1
−iε3

−iε3 + iε5

−ε6


 ,




1
iε3

iε3 − iε5

−ε6


 ,




1
ε3

ε3 + ε5

ε6


 .

All its two-dimensional invariant subspaces are near the subspace L(e1, e2 + e3) and all its
three-dimensional subspaces are near the subspace L(e1, e2, e3). These perturbations show
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that there is no three-dimensional stable invariant subspace for the pair (A,B). It also
follows that two-dimensional invariant subspaces other than L(e1, e2 + e3) are not stable.
However, neither were we able to find a commuting perturbation that would show that
L(e1, e2 + e3) is not stable, nor were we able to show that it is a stable invariant subspace.

Remark 4.7 We observe that the subspace L(e1, e2 +e3) in the above example is the only
joint marked two-dimensional invariant subspace [4, p. 83] for matrices A and B. Before
we discuss this statement we give the definition of a marked invariant subspace.

Let A be a n× n matrix over C. The sequence of vectors x1, . . . , xk, xk 6= 0, such that

(A− λI)xi =

{
xi+1 , i = 1, 2, . . . , k − 1
0 , i = k,

is a Jordan chain of matrix A for the eigenvalue λ. Let N ⊂ Cn be an invariant subspace
of A ∈ Cn×n. We say that N is marked if there is a basis

B = {x11, x12, . . . , x1n1 ; x21, . . . , x2n2 ; . . . ; xr1, . . . , xrnr} (3)

for Cn, such that it consists of Jordan chains of A and some subset of it is a basis for N .
In other words, N is a marked invariant subspace of A if it is possible to choose its

basis in such a way that it is extendable to a basis for Cn consisting of Jordan chains
of A. The notion of marked invariant subspace was first defined by Gohberg, Lancaster,
and Rodman [4, p. 83]. See [3] for an interesting characterization of marked invariant
subspaces.

Now we return to Example 4.6. Observe that the subspaces L(e1, e3) and L(e1, e2 + e3)
are the only two-dimensional marked invariant subspaces of A and that L(e1, e2) and
L(e1, e2 + e3) are the only two-dimensional marked invariant subspaces of B. (See also
[4, Example 2.9.1, pp. 83-84].)

More generally, suppose that (A,B) is a pair of commuting nilpotent matrices. Suppose
further that B is a Jordan basis for A given in (3) and that nj are chosen so that n1 ≥
n2 ≥ · · · ≥ nr ≥ 1. The Jordan basis B for A can be further chosen in such a way that
vector Bxij is in the span of vectors xkl with either l > j or l = j and k > i (see e.g. the
proof of Lemma 3 in [2]). Suppose that B′ is the basis obtained from B when we use the
lexicographic ordering on xij with j > i instead of i > j, i.e.,

B′ = {x11, x21, . . . , xr1, . . . , x1n1 , x2n1 , . . . , xsn1},
where s = max{i; ns = n1}. Then it follows that the matrices for A and B with respect
to B′ are both lower-triangular. Let Bε be the matrix (2) defined in the same way as in
the proof of Theorem 4.1. Recall from the proof there that for ε > 0 but small enough
the matrix Bε is nonderogatory. It follows from our particular choice of the Jordan basis
B that the spectrum of Bε is equal to {ελ1, ελ2, . . . , ελr} and that the multiplicity of the
eigenvalue ελj is equal to nj. This is easily observed from the fact that the matrices for
A and B with respect to the basis B′ are both lower-triangular.

Recall from the proof of Theorem 4.1 that A = p(Bε) for some polynomial p. Then
it follows that each invariant subspace of Bε, and therefore also of the commuting pair



STABILITY OF INVARIANT SUBSPACES OF COMMUTING MATRICES 11

(A,Bε), is a marked invariant subspace of A. Thus, better understanding of the set of
joint marked invariant subspaces of A and B might shed some light on problem of char-
acterization of the set of stable invariant subspaces for pair (A,B).

The above observation leads us to pose the following question.

Question 4.8 Is a stable invariant subspace of a pair of commuting matrices marked
invariant subspace for each of the matrices?

5 Connection to algebraic multiparameter spectral

theory

In this section we study the stability of invariant subspaces of an algebraic multiparameter
eigenvalue problem. We consider an algebraic multiparameter system W:

Wi(λ) =
k∑

j=1

Vijλj − Vi0, i = 1, 2, . . . , k, (k ≥ 2),

where λ = (λ1, . . . , λk) are parameters and Vij are ni × ni matrices over C.
The tensor product space Cn1 ⊗ Cn2 ⊗ · · · ⊗ Cnk is isomorphic to CN , where N =

n1n2 · · ·nk. Linear transformations V †
ij on CN are induced by Vij, i = 1, 2, . . . , k; j =

0, 1, . . . , k, and defined by

V †
ij(x1 ⊗ x2 ⊗ · · · ⊗ xk) = x1 ⊗ · · · ⊗ Vijxi ⊗ · · · ⊗ xk

and linearity. On CN we also define operator determinants

∆0 =

∣∣∣∣∣∣∣∣

V †
11 V †

12 · · · V †
1k

V †
21 V †

22 · · · V †
2k

...
...

...
V †

k1 V †
k2 · · · V †

kk

∣∣∣∣∣∣∣∣

and

∆i =

∣∣∣∣∣∣∣∣∣

V †
11 · · · V †

1,i−1 V †
10 V †

1,i+1 · · · V †
1k

V †
21 · · · V †

2,i−1 V †
20 V †

2,i+1 · · · V †
2k

...
...

...
...

V †
k1 · · · V †

k,i−1 V †
k0 V †

k,i+1 · · · V †
kk

∣∣∣∣∣∣∣∣∣
for i = 1, . . . , k.

A multiparameter system W is called nonsingular if the corresponding operator de-
terminant ∆0 is invertible. In the case of a nonsingular multiparameter system W, we
associate with W a k-tuple of commuting linear transformations Γ = (Γ1, . . . , Γk), where
Γi = ∆−1

0 ∆i, i = 1, . . . , k (see [1, Thm. 6.7.1]).
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An k-tuple λ ∈ Ck is called an eigenvalue of the multiparameter system W if all Wi(λ)
are singular. If

Ker(Γ− λI) :=
k⋂

i=1

Ker(Γi − λiI) 6= {0},

then λ is an eigenvalue of Γ. Let σ(W) and σ(Γ) denote the set of all the eigenvalues of
W and Γ, respectively. It was shown by Atkinson [1, Thm. 6.9.1] that σ(W) = σ(Γ) and
that

Ker(Γ− λI) = Ker W1(λ)⊗Ker W2(λ)⊗ · · · ⊗Ker Wk(λ).

An eigenvalue λ of a multiparameter system W is called nonderogatory [13] if λ is a
nonderogatory eigenvalue of the associated system Γ.

We say that M⊂ CN is an invariant subspace for W if

ΓiM⊂M, i = 1, . . . , k.

We say that an invariant subspace N of the multiparameter system (5) is stable if for a
given ε > 0 there exists δ > 0 such that the following holds: if a nonsingular multiparam-
eter system W′:

W ′
i (λ) =

k∑
j=1

V ′
ijλj − V ′

i0, i = 1, 2, . . . , k, (4)

is such that
‖Vij − V ′

ij‖ < δ

for all (i, j) then there exists an invariant subspace M of W′ such that

θ(N ,M) < ε.

The stability is very important for the numerical calculation, for example, for the
calculation of a basis for the root subspace of a nonderogatory eigenvalue [13, 16]. If the
invariant subspace is not stable then we can not expect stable numerical calculation.

Since Γi for i = 1, . . . , k commute the stability of invariant subspaces for the alge-
braic multiparameter problem is closely related to the stability of invariant subspaces for
commuting matrices. Multiparameter system W′ is equivalent to the associated system

Γ′ix = λix, x 6= 0, i = 1, . . . , k. (5)

It is obvious that for each η > 0 there exists δ > 0 such that if

‖Vij − V ′
ij‖ < δ

for all (i, j) then
‖Γi − Γ′i‖ < η, i = 1, . . . , k.

As a result we can apply a part of the theory on the stability of invariant subspaces
of commuting matrices to the stability of invariant subspaces of multiparameter systems.
The problems of stability are connected but not identical since in the study of stability
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for multiparameter eigenvalue problems we have to restrict the set of commuting matrices
only to the matrices that form associated systems of multiparameter systems.

For instance, let N be an invariant subspace of a multiparameter system W. If N is a
stable invariant subspace for the commuting set Γ = (Γ1, . . . , Γk), then N is also a stable
invariant subspace of W. The converse is not necessarily true since an arbitrary set of
commuting matrices is not necessarily an associated system of a multiparameter system.
If we take for example matrices

Γ1 =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 , Γ2 =




0 0 0 1
0 0 0 2
0 0 0 3
0 0 0 0


 ,

then Γ1 and Γ2 are not associated with any multiparameter system (see [11, Example
2.13]).

Summary of results that can be applied to the multiparameter eigenvalue problems
is as follows. It follows from Theorem 3.4 that the complete root subspace is a stable
invariant subspace. Corollary 3.6 yields that all invariant subspaces of root subspace
of a nonderogatory eigenvalue are stable. This means that it is possible to numerically
stable compute the basis for the root subspace of a nonderogatory eigenvalue [13, 16]. It
also follows from Corollary 3.8 that the eigenspace of a geometrically simple eigenvalue is
stable.

New answers on the stability of invariant subspaces of multiparameter systems are
connected with a study of conditions a set of commuting matrices Γ = (Γ1, . . . , Γk) must
satisfy in order that there exists a multiparameter system W such that Γ is its associated
system. Some of the conditions are given in the preprint [14].

Acknowledgement. We wish to thank both referees for helpful suggestions. Spe-
cially, we wish to thank one of them for pointing out an error in an earlier version of the
paper.
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[11] T. Košir, Commuting Matrices and Multiparameter Eigenvalue Problems, Ph.D. the-
sis, University of Calgary, Calgary, 1993.
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