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ABSTRACT

A finite set of commutative matrices is viewed as a cubic array. Its structure is considered via
a collection of related symmetric matrices.

0. INTRODUCTION

Commutative matrices have been studied (at least) since late last century (see eg. [2,3,8]).
They are not often topic of an independent study (as [9]), but usually we can find a chapter on
commutative matrices in monographs on linear algebra (eg. [4,5,6]). The authors in [9, cf. pp. 66]
noticed that commutativity implies certain symmetries in the structure of products of commutative
matrices. We consider these symmetries in further detail. Our motivation for studying commutative
matrices comes from multiparameter spectral theory [1].

A finite set of commutative matrices is considered as a cubic array. We restrict our interest to
nilpotent commutative matrices. The general commutative case is easily deduced from the nilpotent
one. In the first section we introduce some notation and define a basis in which the commutative
matrices are simultaneously reduced to a special upper triangular form and so the corresponding
cubic array is in a special upper triangular reduced form. In the non-derogatory case the cubic
array can be reduced to upper Toeplitz form. This case is considered in section 2. Some auxiliary
results concerning matrices whose products are symmetric are presented in the third section. The
two consecutive blocks on the upper-diagonal of the cubic array can be reconstructed from a special
triple. This main result is found in section 4. We illustrate the preceding discussion with an example
in the last section.

1. NOTATION

Let A = {A;; s=1,2,...,n} be a set of n commutative matrices. Each matrix A, is a
N x N complex matrix. We also consider A as a cubic array of numbers of dimensions N x N X n.
Such an array is called commutative (since A, pairwise commute). Two arrays (or two sets of
commutative matrices) A and A’ are called similar if there is an N x N invertible matrix U such
that A, = UL ALU for all s. For this collection of equations we also use the notation A = U~*A'U.
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The vector in C" consisting of all the (7, j)-th entries of matrices in A is labelled

(Al)ij
(A2),;
aj; = .
(An)ij
Then the row and column cross-sections of A are defined by

Ri:[ail a;2 aiN]

and
T
az;
C; =
T

These are n x N and N X n complex matrices, respectively, for 2 =1,2,...,Nand j=1,2,...,N.

Definition. A complex N x N matrix is called symmetric if A = AT ie. if it is equal to its
transpose (without conjugation).

Lemma 1. The array A is commutative if and only if the products R;C; are symmetric for
alli,j =1,2,...,N.
Proof. The (i, j)-th entry of the product A,Ag (r,s =1,2,...,n) is

(ATAS)ij = Z (AT)ik (As)kj = Z (Ri)rk (Cj)ks - (Ricj)rs
k=

k=1 1

Thus A, A, = A, A, if and only if (R;Cj),, = (R;Cj),,, that is, if and only if R;C; are symmetric.
%

It is well known (see eg. [5, pp.298]) that commutative linear transformations A5 on C" reduce
the space into the direct sum of invariant subspaces for all A; such that every A; has on every
direct summand exactly one eigenvalue ;. Replacing A; by A; — A1, restricted to a common
invariant subspace, that eigenvalue is 0 for all s. Therefore we will assume in what follows that the
commutative matrices A have only one eigenvalue 0, or equivalently that they are all nilpotent.

Let m be the minimal number such that A% A% ... Ak~ = 0 for all collections of k; > 0 such
n
that )  k; = m. Since the product of N upper triangular N x N matrices with zero diagonal
j=1
is 0, it follows that m < N. (This idea can be found in the proof of Theorem 2 in [7] due to
H. W. Lenstra Jr.) For i = 1,2,..., m we write

ker A’ = ﬂ ker (AlflA§2 e A'Ti”) and D; = dimker A

n
> k=i k;>0
j=1



and d; = D; — D;_, fori=1,2,...,m where Dy = 0. There exists a basis
_ 1 1 1. 2 2 2, . m . m m
B—{zl,zz,...,zdl, 2152355 gy e S zl,zz,...,zdm}

for €V such that for every i = 1,2,...,m the set

1 1, 2.2 2, Y A i
Bi—{zl,ZZ,...,Zdl, Zl’ZQ""’Zd27 3 21’22""’2011'}
is a basis for ker A’.
If we now consider A as a cubic array with slices consisting of matrices A5 (s = 1,2,...,n)

then A has the following representation on ker A” = C” in the basis B :

0 [&12 1\13 .. jxlﬂn
0 0 A28 ... A2m
A=l (1)
0 O o ... Am~Lm
0 o o .- 0
kl kl kl
ar; aj;p Ay,
kl kl kl
Kl a5y Ay Ay | ) . ) Kl n
where A% = ] ] i is a cubic array of dimensions dj X d; X n and a;; € c".
kl kl ki
Ag1 A4, T Qg4

The array (1) is block upper tringular with zero diagonal since A, (ker Ai) C ker A1 for all s.
The last relation follows from the definition of ker A%, If we expand the vector Aszé- in the basis B

then (af})s is the coefficient of z¥ in this expansion. The row and column cross-sections of a*! are

RE =[all alf - alf] =12
and T
kl
(alj)
(a5t)"
C;'Cl = J J=12, sy

These are matrices of dimensions n X d; and dj X n, respectively. In this setting we have

Proposition 1. The basis B is chosen so that for k = 1,2,...,m — 1 the matrices Cj’-ﬁ’kH,
g =1,2,...,dgy1 are linearly independent.
Proof. Let assume the contrary to obtain a contradiction. If the matrices Cj’?’kH are lin-
di41
early dependent, ie. ) ajCJ’-C’kH = 0 and not all a; equal 0, then there exists a vector
j=1
dr 41
r € ker AR\ ker AF ie. 2 = ) ajz;”l, such that A,z € ker A*~1 for all s. But this yields
j=1
z € ker A* which contradicts x ¢ ker A*. &



We will now restate Lemma 1 for the case when A is in the form (1).

Corollary 1. An array A is commutative if and only if the matrices

-1
Z kh bl
h=k+1

k=12....m—2l=k+2,k+3,...,m;t=1,2,...,di;7 =1,2,...,d;, are symmetric.

Note that there is no condition on A'™. So array A in form (1) for m = 2 is always commu-
tative.

2. UPPER TOEPLITZ FORM

Definition. Assume that di = dy = --- = d,, = 1. Then A is in upper Toeplitz form if
AR = AF=LI=1 for b =2,3,...,m;l > k, and the other A*" are 0.
Theorem 1. Assume that dy = 1 for somel > 2. Then d; = djy1y =--- =d,, = 1. By a

suitable change of basis we can assume

Al—l,l —
0
—1,1
adl,11

and the bottom right (m — [ + 1) x (m — [ + 1) block of A can be written in upper Toeplitz form.
Proof. By Corollary 1 the matrices

T
-1, LI+1 .
Sip = agy ‘(311+ ) i=1,2,...,d1
are symmetric and by Proposition 1 they are not all 0. Thus there are complex numbers €;; not all
di—1
0 such that ail_l’l = eilalﬁl’l. If we replace zéll__ll in the basis B by the vector ) eilzll._l we obtain
i=1

1’

a new basis in which the array a'~'! is of the required form

0
0

Al—l,l —

[«n BRI

where b # 0.
Now suppose that not all d; = 1 for j > [+ 1. Then say that h (> [+ 1) is the smallest number
such that dj, > 1. If h > [ 4+ 2 then for k = [,1 + 1,...,h — 2 the arrays A***1 are nonzero and
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of dimensions 1 x 1 x n, so they can be considered as n—vectors. Thus we identify A**+1 with

a’fikH and denote it a®*+1. By Corollary 1 the matrices

Si_y=b- (@) and S =akbFtl. (@bt AT B =141, h—3

are symmetric and since the vectors b and a**+! are nonzero the ranks of the S; are exactly
1. Therefore, there exist nonzero complex numbers €, such that a®**! = ¢;b for k = [, +

. T
1,...,h — 3. Further, if h = [+ 1 (resp. h > [ + 2) the matrices S} | = b - (ai’j-“) (resp.

. T
S)_,=al"2h-1. (a}fj_l’h) ) are symmetric and of rank exactly 1 for j = 1,2. They are not zero

. L. h—1,h . . . ;
since by Proposition 1 a;; are linearly independent. Hence there exist nonzero numbers € _,

such that aifj_l’h = ei_lb. The vector €2_ 2! — e} 2% is then in the subspace ker A"~1. This
contradicts the fact that the vectors z}C with index 7 < h — 1 form a basis for ker A»~1 and z}C with
index 7 < h basis for ker A". Thusd; =dj41 = -+ =d,, = 1.

Now we restrict the matrices A; to the quotient Q = ®N|Cl_1x{0}' To finish the proof it has

to be shown that there is a basis for Q such that all the restricted matrices As|g are in upper
Toeplitz form. In the first part of the proof we saw that for k = [, +1,...,m — 1 all the a®*+!
are nonzero multiples of b. Therefore there is a number r between 1 and n such that A,|o has a
Jordan chain of length m — [ 4+ 1. Then by [5, pp.296 or 6, pp.130] we can find a basis in which all
Ag|o (and thus the bottom right (m — 1+ 1) x (m — [ + 1) block of A) are in the upper Toeplitz
form. &

The following is a special case of Theorem 1

Corollary 2. Assume that dy = dy = 1. Then for j = 1,2,...,m each d; = 1 and A has
upper Toeplitz representation.

This result is a generalization of results for the nonderogatory case in [5, pp.296, 6, pp.130].

3. MATRICES WHOSE PRODUCT IS SYMMETRIC

Before describing the structure of A further we will prove the following auxiliary results which
are of interest in themselves.

Lemma 2. Let R and CT be p x q complex matrices where p > q and assume that rank R = q.

Then RC' is symmetric if and only if there is a symmetric matriz X € C?*? such that CT = RX.
The matriz X is unique.

Proof. Assume first that the product RC is symmetric. Let Y € C?*? be a left inverse for R.
Then C = YCTRT or CT = R(CYT). Denoting X = CY”, we have X7 = YCT = YRX = X,
thus X is symmetric.

Conversely, let CT = RX and X = X7 Then
RC = RXTRT = RXRT = CTRY

and thus the product RC' is symmetric.



It remains to show that X is unique. Suppose that CT = RX; = RX,. Then by left
invertibility of R it follows that X; = X5. &

The next result will generalise Lemma 2 to the case where there are k matrices R;; j =
1,2,...,k such that all the products R;C are symmetric. We assume that kp > ¢ and that

Ry

Rs
rank . =q. (2)

Ry,
Define r = rank [R; Ry --- Ry] and let the columns of the matrix R € CP*" form a basis
for the space spanned by the columns of [R; Ry -+ Rg]. Then for j = 1,2,...,k there is a

matrix S; € C"*? such that R; = ESj. Moreover (2) implies

S1
S

rank :2 =q. (3)
Sk

Since for every vector z in the intersection of the kernels of S; it follows that Rz = Eij =0

S
S2

whence z € ﬂ?:;l ker Rj = {0} and so z = 0. Property (3) implies that the matrix | . | has a left
Sk

inverse [Z1 Zy --- Zj | where all Z; are ¢ x r matrices. Using this notation we have

Lemma 3. Assume that CT and R;; j=1,2,---,k are p X q matrices, that kp > q and that
(2) holds. Then the matrices R;C are all symmetric if and only if there exist k symmetric matrices
X; € C"" such that

k k
C=1{> 7Xx;|R" and SN Z;X; | =X 1=1,2,... .k (4)
=1 j=1

Proof. Let R;C be all symmetric. Then R;C = CTR;‘F implies R(S;C) = (CTSJT) RT,
so matrices R and S;C satisfy the conditions of Lemma 2. Then there are symmetric matrices
X; € C™*" such that S;C = XjET. From the proof of Lemma 2 we see that X; = S;CY7T where

Y € C"*? is a left inverse of R. The above equations can be put together as

$1 X,
Eloo |2 &
S X,



Multiplying on the left by [Z; Zs --- Zy] we get

k k
>zis;|o={> z;x; | R
j=1 j=1

and so

k
j=1
Finally, a simple calculation gives the second part of (4), viz.
k k
S> z;x; ) =8| %S, |y =S0Y" =X,
j=1 j=1

foralll =1,2,...,k.
Let us now prove the converse. We have symmetric matrices X; which satisfy (4). Then
~ [ k ~ ~  ~ ~ n ~ ~  ~
CTRf =R (Z XngTSlT> RT = RX;RT and R,C = RS (Z Zij> RT = RX,RT. Hence the
J=1 Jj=1

products R;C are all symmetric. &

4. STRUCTURE OF COMMUTATIVE MATRICES

Proposition 2. Denote the dimension of the span of the set

{al,l—Fl; 'L — 1,2,---7dl; ] = 1,2’...,dl+1}

ij
by ry, forl=1,2,...,m —1. Then

d
% <7 < min{n, didy41}
!
forl=1,2,....m—1 and
L2 Ti41
forl=1,2,...,m—2.

Proof. The array Ab'*1 is constructed so that r; < min {n,d;d;;}. Furthermore, the rank of

Li+1
Ry
RLHL
. 2 TLledH.l . L . R l,l+1
the matrix ) e C is dj41 (cf. Proposition 1). Since r;; = rank R; < r; for
1i+1
Rdl
d d
j=1,2,...,d; and rank (> R;) < ) rank R; for any matrices R, of the same sizes it follows
j=1 j=1
d;
dip1 <Y riy < dim.
Jj=1
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By Corollary 1 the matrices RE’ZHCJZ-H’H2 are symmetric for / = 1,2,...,m—2 and by Proposition
RLIH
1
1I+1
1 the matrix 2‘ has full rank. So for every j the matrices C’]Z-H’H2 and Rﬁ’lH, 1=1,2,...,d,
Li+1
Ry
satisfy the conditions of Lemma 3. Then by (4) the rows of C]l-+1’l+2 are in the span of the columns
of RE’ZH and S0 r; > 7ri4q. O

Let us now consider the case m = 3. Then

0 A12 A13
A=|0 0 AZ|, (5)
0 0 0

Commutativity imposes conditions only on the arrays A'? and A23. So we are only interested in
these two arrays.

First we will discuss the special case when the row cross-sections of A'? span a one-dimensional

subspace in €"*%2. By a suitable change of basis B; we can assume that
a;l aj3 -+ ag,
az_ |2 0 0 (6)
0 0 - 0

Then we have a simpler version of the main result :

Theorem 2. Assume that A is commutative with m = 3 and that A'? has the form (6). Then
the array A%3 is generated by a set of ds symmetric matrices of sizes dy X ds.

Proof. By Corollary 1 the products RPC;?’ are symmetric and by Proposition 1 the matrix

R}? has full rank. Thus by Lemma 2 there exist symmetric matrices X; such that (C]Zg)T = Ri?X;
for all j. %

The above special case has some significance in the application to multiparameter spectral
theory. This will be discussed elsewhere.

Before we state the main result for the general case m = 3 let us introduce some new notions.
Proposition 2 makes the following definition sensible.

Definition. The set of integers D = {d;,ds,ds; r}, where all d; and r are positive, is called
an admissible set if

3

d
Sd;=N, r<n and %grgdldm for [ =1,2.
j=1

l

For the set of matrices X;; € C"**;i=1,2,...,d1; 7 =1,2,...,d> we introduce the matrix

X, =



and we denote by S the subspace in C*" spanned by the union of the ranges of X, for all j.

Similarly for a set of matrices {S; € C"™**; i =1,2,...,d;} we write
S1
So
S = .
S,
and
ST =[5 Sy --- Sa].

Definition. For a given admissible set D the triple (}N%, X, P), where R is a full rank n x r
matrix, X = {X;;; i =1,2,...,d1; j=1,2,...,d3} is a set of r X r symmetric matrices and P is

CUr>hT s a structure triple (for D) if it satisfies the conditions :

a projection in

(i) X;,7=1,2,...,ds are linearly independent

(ii) the rank of P is ds

(iii) S is a subspace of R =Im P.

Theorem 3. Given a structure triple we can describe (to within similarity) the arrays A2
and A?3 of a commutative cubic array A. (Commutativity does not depend on the choise of the
array A'3.)

Conversely, for a given commutative array A with m = 3 we can find a structure triple which
generates the arrays A2 and A% of A.

Proof. Suppose we are given a structure triple (é, X,P). Let ker P = K and Im P = R. The

projection P can be written in the form

S1

So
P=| |21 Z - Za] (7)
Sa

1

d
where S;, Z1 € €"*%, 21: Z;jS; =1 and Im S = R. The decomposition (7) can be obtained for
j=1

S Su
: 82 S21 rxrd;—d
example from the matrix T = . . |,S81€C 17% where the first dy columns form a
Sa, Sdi1
basis for R and the rest form basis for . Then we choose [Z; Zy --- Zg, ] to be the first ds

rows of the inverse T~1. Any other decomposition of P as in (7) is given by

S
Sz

P=| [ |\UUZ Zy - Zg]
Sa

1



for some invertible matrix U € €%*%. Then an array A is generated as follows. The rows of A2
are given by

R; = RS; i=1,2,...,d

and the columns of A23 are given by

dy

=1

First, the columns of A'? and A2 are linearly independent. The columns of A2® are linearly
independent since X; are linearly independent and the columns of A'? are linearly independent
since the columns of S are linearly independent. In order to prove that A is commutative it remains

dy
to show by Corollary 1 and Lemma 3 that .5; (Z ZiXij> = Xj; for all [ and j. Since S C R we

=1
dy
have PX; = X or written by blocks > S;Z;X;; = X;; for all [ and j, which proves commutativity.
i=1

If we take another decomposition

SU
SoU
: (U=1z, U'Z, -+ U™'Zy]
Sa

1

U

we will get a similar array Ay. The similarity transformation between A and Ay is given by

S O N

0
U
0

~N O O

Let us now explain how to obtain the structure triple from a commutative array A. Since A is
commutative the products RZ»12C]23 are symmetric for 2 = 1,2,...,dy; 7 = 1,2,...,ds by Corollary
1. For every j the matrices R}?, i = 1,2,...,d; and C’fg satisfy the conditions of Lemma 3. So
there exist matrices ﬁ, X;;,S; and Z; as in Lemma 3. We can choose the matrices E, S; and Z; to

be the same for all j since they depend only on R}2. Then the triple (}N%, X, P) is a structure triple
where X = {X;;; ¢ =1,2,...,dy; j=1,2,...,d3} and P = SZT. We need to check conditions
(¢)-(74¢). Condition (z) holds since C; are linearly independent. By the construction of S and Z the

rank of P is equal to rank S = d» and by the right-hand equations in (4) the span of the ranges of
X is a subspace of Im P. O

Theorem 3 tells us that in the case m = 3 the array (1) is commutative if the arrays A% and

A?23 are given through a structure triple. So we ensure that the row-column products of Corollary

(m—1)(m—2)
2

1 are symmetric. If m > 4 we can consider the array (1) as a collection of cases with
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m = 3. Namely, for every pair of integers (k,[); 1 <k <[ —2 < m — 2 we have the problem

- Ak,k+1 Ak,k+2 . Ak,l—l E
0 Ak+LE+2 0 AR+LI-1
0 *
0 0 L Al-2i-1
Ak+1,l (8)
Ak+2,l
0 0 :
Al;l,l
0 0 0o |

with
-2 -1
Dy = {Zdi, > diydy; Tkz} :
=k i=k+1

The number ry; is the dimension of the span of

{afl h=k+1,k+2,...,0-1;i=1,2,....di; 5 =1,2,...,dp} .

15 )

The array ARR+L  ARR+2 0 ARI-L
0 AR+LE+2 . AR+1I-1
. | | | (9)
o 0 L Al2I

is acting as the array A'? in the case m = 3 and the array

Ak+1,l
Ak+2,1
(10)

Al;l,l
as the array A2® in the case m = 3. The sizes of 0 and * in (8) are not important when we generate
the arrays (9) and (10) from a structure triple as described in Theorem 3 for A2 and A?3. The
row-column products of the arrays (9) and (10) are exactly the products in Corollary 1. So A is

commutative if and only if these products are symmetric. Then the structure triples of the above

problems (8) (subject to appropriate matching conditions), together with an array A»™, describe
A.

5. EXAMPLE

Let us consider an example similar to the one in [6 pp.130-131]. Let

010 0O
001 00
A1=1(0 0 0 0 O
0 0 0 01
00 0 00



Then the (nilpotent) matrices that commute with A; have the form

0 a1 a2 a2 ax
0 0 ai1 0 az1
Ao =10 0 0 0 0
0 a3 a3 0 aq1
0 0 as1 0 0

where all a;; are arbitrary. In order to construct the array A in the form (1) we need to look at
different cases depending if some of a;; are 0. There are two choices for m, 3 and 5. In the case
m = 3 there are two choices for admissible sets : {1,2,2; 2} and {2,2,1; 2}. If m =5 then d; = 1
for all . We here present the cubic array A as a two-dimensional array of column vectors.

(i) Let all a;; in Ay be nonzero. Then m =5 and d; = dy = d3 = d4 = ds = 1. In the basis
By ={e1,e4,€2,e5,e3} the array A is

(0) (o) () () ()
(0) (0) () () ()
= 16) ) 6 (o) (o)
(0) (o) (o) (3) ()
(o) G) G G) ()

and in the basis B} = {61,64,a62,ae5 + Bes, aes + Bes —I—'yez} where o = 221, § = %3¢ (a11 — aq1),
31

vy = % ((011 — a41)2 + agoasz; — a21a32) the array A is in the upper Toeplitz form

) (2) () (&) ()
() () (2) (3)

o le) ) () () ()

G () () () ()

) 6) @) 6 6

5— a;lim’ = Z_; (a3, + assaszi — ar1a41)

a1 a11 2
¢ = o a21012 + Q11G22 — Q22641 + o ((au —a41)” + axas; — azlaaz) .
31 31

12



(it) Suppose now that as; = 0 and the other a;; are nonzero. Then m =3 and d; = 2, dy =2

and d3 = 1. In the basis By = {e1, e4; €2, e5; e} we have

(

0
0
0
0
0
0
0
0
0

(
(
(
(

)
)
)
)

A A -

1
a1

(

(i
(6
(

) (
) (

0
0
0

) |
) |

OO OO OO OO0 o0

0

0

0

a22

1
Q41

NS N N N

) (

) |

) |

We can choose the structure triple of A to be

~ 1 0 1 a1 0 ast ]
[0 1] H [all a3 + 022a31] >t [631 asy(a11 + as1)
and

1 0

1 0O 0 0

p—szT — | %11 422 [ . ; ]

0 1 —a—; P 0 0

a31 Q41

The array A'? is

(i17) The last case we will consider is az; = 0 while the other a;; # 0. Then m =3 and dy =1,

A13 — (

0

Q12

( 0
a32

)
)

dy = 2 and d3 = 2. In the basis Bs = {ey; ea, e4; €3,e5} we find

One possible choice for the structure triple is

R=

|

10
0 1

(0) (o) () (o) ()
o) () () o) ()
= 16) ) G) () ()
(0) (o) () (o) )
(o) G) () G) ()

Jonoe|.

1
11

a1
2
aiy + 91032

x|

13

0

G21

G21
(121(011 - 041)

-]

10
0 1

|



The decomposition (7) for P is

and the array A'3 is

2= (o) (o
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