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Abstract

A finite set A of N x N nilpotent commutative matrices that
have one-dimensional joint kernel is considered. The theorem (due
to Suprunenko and Tyshkevich) that the algebra A, generated by A
and the identity matrix, has the dimension equal to N is proved. A
canonical basis for A is given, and related structure constants are dis-
cussed.

0 Introduction

In this article we continue to study the structure of commutative matrices
that we began in [11]. Now, our main results are extensions of results of
Kravchuk, Suprunenko, and Tyshkevich (see [18, §2.6-7]). Our motivation
comes from multiparameter spectral theory [1]. In a similar way as results
of [11, §2] are used to construct bases for root subspaces of nonderogatory
eigenvalues in [12] the results of this paper are used to find the corresponding
bases for simple eigenvalues (see [10]). We will present this application to
multiparameter spectral theory separately.

In [11] we considered an n-tuple A = {4;, i =1,2,...,n} of commu-
tative nilpotent N X N matrices over the complex numbers. Now we also
consider the algebra A generated by A and the identity matrix. In the most
part we make a further assumption that A is simple, i.e., that the joint
kernel of matrices in A is one-dimensional. Then we show that the algebra



A has the (vector space) dimension equal to N. This result is found in [18,
p. 62, Thm. 13]. We also describe a canonical basis 7 for the algebra A.
When n = 2 the basis 7 coincides (possibly after a change of basis for C")
with bases given in [2, 13, 20].

In [11] we viewed A also as a cubic array. The matrices in an array were
brought by a simultaneous similarity to a special block upper-triangular
form called the reduced form. The reduced form has two important proper-
ties : the column-cross sections of the blocks on the first upper diagonal are
linearly independent and the products of row and column cross-sections are
symmetric. (See Proposition 1 and Corollary 1 of [11].) The main result of
[11] tells us how to reconstruct a commutative array from two sets of matri-
ces, one of which is a set of symmetric matrices. Now we show, that when A
is simple then the symmetric matrices are determined by the canonical basis
and their entries are precisely the structure constants for multiplication in
A.

We proceed with a brief overview of the setup of the paper. In the
next section we recall notations from [11] and in §2 we discuss some further
properties of the general commutative array A. We also obtain an upper
bound for the dimension of the algebra A in terms of N and the dimension
of the joint kernel of matrices in A. In the remaining sections 3-5 we study
the simple case. In §3 we show that the dimension of A is equal to N. Next,
in §4, we introduce a canonical basis for algebra A and the associated set
of structure constants. We show that a simple array A is determined by
the structure constants and a set of coefficients that depend only on the
joint kernel of A;. This is a minimal set required to describe A. In §5 we
illustrate the discussion with two examples, and we consider the relation of
our results with [2, 13, 20].

We conclude the introduction with a brief overview of some of the related
literature. Finite sets of commutative matrices, algebras they generate, and
their reduced forms under simultaneous similarity were studied, among oth-
ers, by Trump [19] and Rutherford [17]. (See [14] for earlier references.) It
was shown by Gel'fand and Ponomarev [5] that to find a canonical form
for general n-tuple of commuting matrices is as hard as to find a canon-
ical form for an arbitrary n-tuple of matrices. In §4 we briefly touch on
this problem in the case when A is simple. While elementary properties of
(nilpotent) commutative matrices are usually exhibited in monographs on
linear algebra (e.g. [4, 6, 15]) our main reference is the book by Suprunenko
and Tyshkevich [18].

It was pointed out by the referee that the results of Corollary 1 and



Theorem 2 are related to the problem of finding good bounds for the dimen-
sion of algebra A. A satisfactory solution to this problem has not yet been
found. Most authors have attempted to get a bound as a function of n and
N. For instance, there are now several proofs (e.g. [2, 13, 20]) that if n <2
the dimension of A is at most N and that, if the algebra A is maximal com-
mutative subalgebra of the full matrix algebra, it has dimension exactly N.
(This is the case in our setup when A is simple.) Our Corollary 1 provides a
bound of a different type which involves N and the dimension d; of the joint
kernel of A; more precisely, we show that dim A < 1+ d; (N —dy). This is
closer to a result of Gustafson [8] who used the joint cokernel (rather then
the joint kernel) of matrices in A. The approach in [8] is module theoretic;
in the language of linear algebra the fact that 0 in [8, §2] is a monomorphism
implies that dim A <1+ 7y (N —r1), where 1 (n in [8]) is the dimension
of the joint cokernel.

After the paper had been submitted we came across another module
theoretic paper [16] by Neubauer and Saltman, where the structure of two
generated commutative matrix algebras was studied and several characteri-
zations of algebras for which dim. A = N were given.

1 Commutative Arrays

We first recall notations and definitions from [11]. In addition, we now de-
note the set of integers {1,2,...,n} by n. A set of commutative nilpotent
N x N matrices A = {A4;, s € n} is viewed also as a cubic array of di-
mensions N X N X n. Such an array is called commutative. For ¢ > 1 we
write

ker A" = - Ok iker (A]flAIZCZ . --Aﬁ”) .
Lotk =

Suppose that M = min {ker Al = CN}. Then
2
{0} CkerA' CkerA?2 C--- Cker AM = ¢V (1)
is a filtration of the vector space CV. Further we write
D; =dimker A’ and d; = D; — D;_; (2)
for i € M. Here Dy = 0. Then there exists a basis

R O 1, .2 .2 2 . .M M M
B—{zl,zQ,...,zdl, R IR R ,...,zdm}



for C such that for every i € M the set

_ 1 1. .2 2 2, Y A i
Bi—{zl,zQ,...,zdl, I Iy S zl,zz,...,zdi}
is a basis for ker A’. Such a basis B is said to be filtered. A set of com-

mutative nilpotent matrices A is then simultaneously reduced to a special
upper-triangular form and viewed as a cubic array

0 A12 A13 .. AI,M
0 0 A23 ... A2M
0 O 0o ... AM-LM
0 O o - 0
where
kil kl kil
ajy  aypy o Ay,
kl kl kl
a1 axn o Ay
A= . - (4)
kl kl kl
A1 a2 T A4

kl = ™. The row and column

is a cubic array of dimensions d x d; x n. and aj)

cross-sections of A*! are
Kl _ [kl Kl kl :
R =[aj] aj - ajg |, 1 € dg, (5)

and -
kl _ kl kl kl :
(cF) =lafl aff - afl ), jed (6)
These are matrices of dimensions n X d; and n X di, respectively.

The array A in the form (3) is called reduced if the matrices C;-c’kﬂ,
j € dg1 are linearly independent for k € M — 1.

By [11, Prop. 1] it follows that the array (3) is reduced. Furthermore,
a commutative cubic array (3) is reduced if and only if it is written in a
filtered basis.

We call a matrix A symmetric if A = AT. In [11, Cor. 1] we observed
that A is commutative if and only if certain products of row and column
cross-section are symmetric. The main result of [11], Theorem 3, tells us how
to construct the column cross-sections of A%? from the row cross-sections of
A'? and a set of symmetric matrices.



2 Kravchuk Type Theorem for a Set of Commu-
tative Matrices

For k =2,3,..., M we denote by Sy the linear span of the set
{ all, 1=2,3,.. .k i € d; je@}.

Proposition 1 Fork—2 3., M—1,l=k+1,k+2,... ., M, i€dy, j€
dy, it follows that a be S it

Proof. By the construction of column cross sections of the array A2?3 in
the proof of [11, Thm. 3] (in particular see the first displayed formula in [11,
p. 176]) it follows that a23 € Ss. In a similar way, we apply the construction

of [11, Thm. 3] to the arrays A*~1* and ARK+! & =23, ..., M—1 to obtain

that

1
kk)-i— ESQ,

where Sy = Span {al?-fl’k

FE e dp, g€ dk+1}. Then it follows that

kk+1€82kC82k 1 C-- C 891 =8

11 13
Next we apply the construction of [11, Thm. 3] to the arrays ( 0 223 )

24
and A3 (see [11, p. 177]). This shows that a24 € Ss. As in the case
a1 we show inductively that a]c k2 ¢ Sy for k > 2. Proceeding in the

ij
above manner for | —k +1 = 3,4,...,M — 1 we obtain that a b e Si_pat

for all possible choices of , 7, k and [. a

Suppose that My (C) is the algebra of all N x N matrices over C and
that A is the subalgebra generated by the set of commutative matrices A
and the identity matrix I = Iy. As a vector space, A is spanned by I and
all the products of elements of A, and in particular every element in A is of
the form A = al + N, where o € C and N is nilpotent. Furthermore, A has

M
a block upper triangular form A = [Akl} Lt where A* is a dj, x d; matrix

)

block, A* = alg, , and AL =0 for k > 1.
The following is a version of Kravchuk’s Theorem (see [18, p. 57]).



Theorem 1 If A = [Akl]M

A=0.

ooy € A is such that AY = 0 for 1 € M then

Proof. Since A" = 0 it follows that ARk = 0 for all k € M, and so
A is nilpotent. Let A, = A and A = {4;, i€n+1}. Then A can
be viewed as a commutative cubic array of dimensions N x N X (n + 1).

~ M
Since A, 41 € A it follows that A = [Akl] is in the reduced form (3).

)

Proposition 1 applied to A implies that each entry of the block arrays AH
is in the linear span of the entries of All. Since A\ | = A =0 it follows
that Aﬁlﬂ =0 for all k£ and [, and so A,,;1 = A=0. O

The next result follows immediately from Theorem 1.

M
Corollary 1 Fach element A = [Akl}kl_l in A is uniquely determined
by its first (block) row, i.e. by the entries in AV, | € M. Furthermore,

dimA < 1+d;, (N —dy).

3 The Simple Case

As we already mentioned in §1, we view A as a set of commutative matrices
and also as a commutative array. A commutative array A is called simple
ifdy =1, ie., if dim;, ker 4; = 1.

The results of this and the next section are a generalization of results
in [18, §2.7]. The authors in [18] study maximal commutative algebras of
nilpotent matrices, while we arrive at these results while studying n-tuples
of nilpotent matrices. Also we work with the complete filtration (1).

Theorem 2 If the array A is simple then dimA = N.
Proof. Since d; = 1 it follows by Corollary 1 that
dimA < N. (7)

To prove the converse inequality, we consider, for j € M — 1, the set A; of

M
all products of j elements of A as a cubic array A; = [Ag’?l] . Then it

follows that A;’?l =0fork > [—j. Sincedimker A7 = D; = Zgzl d; it follows
that the nonzero column cross-sections of A; are linearly independent, in

)



particular, the column cross-sections of A}’]H are linearly independent.

. . i [gkllM
Thus, it follows that we can find in A elements T} = [Th }

T}Zklzofork>l—jand

, such that

U=

T}{IJHZ[O i 0010 .- 0]’

where 1 is in Ath position. The elements T}Z, JE€EM—1, h €djq1, together
with the identity matrix I, are clearly linearly independent, and there are

M-—1
1+ Z d]'+1 =N
Jj=1

of them. Therefore dim.A > N, and so together with (7) we have that
dimA = N. O

Corollary 2 Algebra A is a mazimal commutative subalgebra of My (C).

Proof. Suppose that B € My (C) is such that AB = BA for all A € A.
Write B = [Bij]%zl and By = [bi1]. Let matrices T}, j € M —1, h € dj41,
be defined as in the proof of Theorem 2. Because Tf{B = BT}{ for all j and
h we first obtain that B is upper-triangular, and furthermore, we see that

Bjj = bi11y;. (8)

Now, let A1 = B —b11] and A’ = {A;; s€n+1}. Then A’ is a com-
mutative array, and it is simple. Thus Theorem 2 implies that the algebra
A" generated by A’ and I has the dimension equal to N. Since A C A’ and
dim A = N, it follows that A = A’. Then B = A,y1 + b1 is in A, and
hence A is maximal. |

Corollary 3 If a set A of N X N commutative matrices is such that the
etgenspace at each joint eigenvalue is one-dimensional, then the dimension
of the algebra generated by A (and the identity matriz) is N.

Proof. Since CV is the direct sum of all joint spectral subspaces of
matrices of A, the result follows if we show it for each joint spectral subspace.
For each joint eigenvalue A = (A1, Ao,...,A,) of A let Ay be the algebra
generated by the restrictions of elements of A and the identity to the joint
spectral subspace V) of A at A. The algebra A generated by A and I is
a direct sum of the algebras A, as X ranges over all the joint eigenvalues
of A. But then it follows by Theorem 2 that dim.A), = dim V), and thus
dimA =3}y dimAy =3, dimVy = N. O



4 Canonical Basis and Structure Constants for Al-
gebra A in the Simple Case

Here we still assume that A is simple. Then Corollary 1 and Theorem 2 im-
M
ply that for g € M — 1 and h € dg41 there exist matrices T} = [Tfl’kl] €

k=1
A such that
T+ =0 (9)

if either k <l —gork=1andl#g+1, and
Tgl,g+1:[0 i 0010 .- 0], (10)

where 1 is in the hth position. Moreover, matrices T are uniquely deter-
mined by the conditions (9) and (10), and

T={ {1 g€ M—1,h € dyy1}

d
is a (canonical) basis for A. We write Tgkl [tgkl] "' . Then we have

hij i=1,j=1
that
M-1 ngrl Kl M-1 ngrl Ik
kil
TiTy = 32 > tgdTi= 32 > Ty (11)
g=k+1 h=1 g=k+Il h=1
Since T} are linearly independent the relation (11) implies that tfjl J= ty:i

Note also that (11) implies that constants tklg are the structure constants
for multiplication in A expressed in basis 7.

ldg 1

Since T is a basis for A it follows that A; = Z E a}fnTg Then we
9=
obtain that
M1 e klg 1
9,19
Z Z tzyh ayp-
g=1 h=1

Thus we proved the first of the following two theorems. The second then
follows easily.

Theorem 3 If tklg are the structure constants for the multiplication in A

M-—1 dg+1

expressed in basis T then ak]l = El hz tfjl,f leg
9=1 h=



Theorem 4 A simple commutative array A in the reduced form (3) is
uniquely determined by the arrays A, 1 = 2,3,..., M, and structure con-
stants for A, the algebra generated by A.

d
Note that if we write X; = [tllcllyg];l_lv j € ds, then X; are symmetric

and such that C’]23 = R}?X;, where matrices R}? and C]23 are defined in (5)
and (6). Thus it follows that the entries of the symmetric matrices X; in
[11, Thm. 2] are precisely the structure constants for multiplication in A.
A similar construction can be obtained also for the column cross-sections of
arrays

Ak2

Ak3

for k > 3.
Ak,.k—i—l

Because tfjlhg are the structure constants for multiplication in a commu-
tative algebra A they satisfy higher order symmetries. These symmetries
arise since the products of three or more matrices in 7 do not depend on the
order of multiplication. We include the precise statement since it is needed
in the application to multiparameter spectral theory. First we introduce
some further notation.

For m = 2,3,...,M and 2 < ¢ < m we denote by ®,, , the set of mul-
tiindices {(k‘l, ko, ... ,kq) sk > 1, Z;']:l ki < m} For k = (k‘l, ko, ... ,k'q) S
®,, , we define a set xx = dg, X dg, X -+ X d,. The set of all permutations
of the set ¢ is denoted by II,;. For a permutation o € II; and multiindices

k € ®pnq and i = (i1,ia, ..., ig) we write ky = (kig(1), ko(2), - bi(g) ) and
i, = (ig—(l),ig(Z), e ,ig(q)). Then we define recursively numbers si‘hg : for

k € ®,,2 and i € xyx we write s?hg = tfllilzzhg and for ¢ > 2 and k € ®,, , and
i € xx we write

m—k3z—...—kq d

kg k1kal _(Lk3,ka,....kq)g
Sih = Z Ztlllzj S (fyitsiyeensiq)h °
I=ki+ke j=1

Corollary 4 For k € ®,,, and i € xi the constants s;{hg are symmetric in
k and i, i.e.

k ko

Sih = Sich (12)

for any permutation o € I,.



We remark that the relations (12) are the matching conditions (in the
simple case) mentioned at the end of §4 in [11].

A canonical form for a simple commutative array would be obtained if
we replaced the basis B by another filtered basis B, so that the matrix

R=[RP? R{¥ ... RIM|

is in a canonical form. This reduces to finding a canonical form for R
when acting by permutation matrices on the left (if A is considered as a
set only, i.e. the matrices A; are not considered in any particular order)
and by invertible block upper-triangular matrices on the right. The first
immediate reduction we can achieve is that the nonzero columns in R are
linearly independent.

Then in a particular case di = n we can assume that R%l =0forl > 3.
If we substitute vectors z]2 by vectors 232 = ZZ:1 a}?kz,% in basis B then
R =1, and A, = T} for h € n, is a canonical form for A. In the general
simple case a block version of the row reduced echelon form (see [9, §2.5] for
the standard version and [3, §1] for some generalized versions) applied to R
yields toward a canonical form for A. However, this requires an extensive
case by case analysis and we do not proceed with it. Rather we consider

some examples.

5 Examples

Example 1 Suppose n = 2. Then sets of matrices that span the algebra
A, generated by a pair of matrices A = {A;, A2} and the identity matrix
I, are described in [2, 13] (see also [7, 20]). In general the sets of matrices
given there are not a basis; their elements may be linearly dependent. For
example, if

A1 = and A2 = (13)

o O O O
o O O
o O O O
O = O O
o O O O
o O O O
o O O O
o O O

then mneither {I, A1; A, Aj Ao} nor {I, Ay; Ag; A%} are linearly indepen-
dent since A; Ay = A? = 0.

10



However, if A is simple then dim A = N by Theorem 3, and so the sets
given in [2, 13] are a basis. For instance, if

A

and A2 (]_4:)

o O O O
o O O
o O = O
o O O O
o O O O
o O O O
o O O O
o O O

then A = Sp{I, Ay, A?, Ay}. Furthermore, if {e;; i € 4} is the standard
basis for C* then in basis B = {e1; ea,eq; e3} the reduced form for the

array A is

OO OO OO OO

OO OO OO O+

OO OO OO —~= O

OO OO o+ OO

Next we find that Tf} = Ap, h=1,2 and T? = A2, and so

T ={I,41,43, 45}

is a basis for A. O
Example 2 We consider a commutative array A
(0 1 0 0 ]
0 1 2 1
0 0 0 0
0 0 0 2
A= ; (15)
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

which is already in the reduced form (3). The columns of the first row of the
array (15) are not linearly independent. To make them so, we substitute

11



the vector eq4 — %63 for the vector e4 in basis B. (Here we assume that
B = {e;, i € 4} is the standard basis of C*.) Note that the new basis is still
filtered. The array A in the new basis is

e

OO OO O o O
OO OO OO ==
OO OO OO0 N O
OO O NO OO

To find a canonical form for A we finally substitute vectors z? and 22 by
22 + 23 and 223, respectively. The new basis is still filtered and we find that

i

0

) |

1

)

0

)

)

0 0 1
0 0 0 0
0 0 0 1

A= (16)
0 0 0 ( 1 )
0 0 0 —1
0 0 0

i

0

) |

0

)

0

)

J

So we have that T} = Ay, h = 1,2, T = A? and (16) is a canonical form

for A.
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