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Abstract

A �nite set A of N � N nilpotent commutative matrices that
have one�dimensional joint kernel is considered� The theorem �due
to Suprunenko and Tyshkevich� that the algebra A� generated by A

and the identity matrix� has the dimension equal to N is proved� A
canonical basis for A is given� and related structure constants are dis�
cussed�

� Introduction

In this article we continue to study the structure of commutative matrices
that we began in ����� Now� our main results are extensions of results of
Kravchuk� Suprunenko� and Tyshkevich �see ���� x	�
���� Our motivation
comes from multiparameter spectral theory ���� In a similar way as results
of ���� x	� are used to construct bases for root subspaces of nonderogatory
eigenvalues in ��	� the results of this paper are used to �nd the corresponding
bases for simple eigenvalues �see ����� We will present this application to
multiparameter spectral theory separately�

In ���� we considered an n�tuple A � fAi� i � �� 	� � � � � ng of commu�
tative nilpotent N � N matrices over the complex numbers� Now we also
consider the algebra A generated by A and the identity matrix� In the most
part we make a further assumption that A is simple� i�e�� that the joint
kernel of matrices in A is one�dimensional� Then we show that the algebra

�



A has the �vector space dimension equal to N � This result is found in ����
p� 
	� Thm� ���� We also describe a canonical basis T for the algebra A�
When n � 	 the basis T coincides �possibly after a change of basis for CN 
with bases given in �	� ��� 	���

In ���� we viewed A also as a cubic array� The matrices in an array were
brought by a simultaneous similarity to a special block upper�triangular
form called the reduced form� The reduced form has two important proper�
ties � the column�cross sections of the blocks on the �rst upper diagonal are
linearly independent and the products of row and column cross�sections are
symmetric� �See Proposition � and Corollary � of ����� The main result of
���� tells us how to reconstruct a commutative array from two sets of matri�
ces� one of which is a set of symmetric matrices� Now we show� that when A
is simple then the symmetric matrices are determined by the canonical basis
and their entries are precisely the structure constants for multiplication in
A�

We proceed with a brief overview of the setup of the paper� In the
next section we recall notations from ���� and in x	 we discuss some further
properties of the general commutative array A� We also obtain an upper
bound for the dimension of the algebra A in terms of N and the dimension
of the joint kernel of matrices in A� In the remaining sections ��� we study
the simple case� In x� we show that the dimension of A is equal to N � Next�
in x�� we introduce a canonical basis for algebra A and the associated set
of structure constants� We show that a simple array A is determined by
the structure constants and a set of coe�cients that depend only on the
joint kernel of Ai� This is a minimal set required to describe A� In x� we
illustrate the discussion with two examples� and we consider the relation of
our results with �	� ��� 	���

We conclude the introduction with a brief overview of some of the related
literature� Finite sets of commutative matrices� algebras they generate� and
their reduced forms under simultaneous similarity were studied� among oth�
ers� by Trump ���� and Rutherford ����� �See ���� for earlier references� It
was shown by Gel�fand and Ponomarev ��� that to �nd a canonical form
for general n�tuple of commuting matrices is as hard as to �nd a canon�
ical form for an arbitrary n�tuple of matrices� In x� we brie�y touch on
this problem in the case when A is simple� While elementary properties of
�nilpotent commutative matrices are usually exhibited in monographs on
linear algebra �e�g� ��� 
� ��� our main reference is the book by Suprunenko
and Tyshkevich �����

It was pointed out by the referee that the results of Corollary � and

	



Theorem 	 are related to the problem of �nding good bounds for the dimen�
sion of algebra A� A satisfactory solution to this problem has not yet been
found� Most authors have attempted to get a bound as a function of n and
N � For instance� there are now several proofs �e�g� �	� ��� 	�� that if n � 	
the dimension of A is at most N and that� if the algebra A is maximal com�
mutative subalgebra of the full matrix algebra� it has dimension exactly N �
�This is the case in our setup when A is simple� Our Corollary � provides a
bound of a di�erent type which involves N and the dimension d� of the joint
kernel of A� more precisely� we show that dimA � � � d� �N � d�� This is
closer to a result of Gustafson ��� who used the joint cokernel �rather then
the joint kernel of matrices in A� The approach in ��� is module theoretic�
in the language of linear algebra the fact that � in ��� x	� is a monomorphism
implies that dimA � � � r� �N � r� � where r� �n in ��� is the dimension
of the joint cokernel�

After the paper had been submitted we came across another module
theoretic paper ��
� by Neubauer and Saltman� where the structure of two
generated commutative matrix algebras was studied and several characteri�
zations of algebras for which dimA � N were given�

� Commutative Arrays

We �rst recall notations and de�nitions from ����� In addition� we now de�
note the set of integers f�� 	� � � � � ng by n� A set of commutative nilpotent
N � N matrices A � fAs� s � ng is viewed also as a cubic array of di�
mensions N � N � n� Such an array is called commutative� For i � � we
write

kerAi �
�

k������kn�i

ker
�
Ak�
� Ak�

� � � �Akn
n

�
�

Suppose that M � min
i

n
kerAi � CN

o
� Then

f�g � kerA� � kerA� � � � � � kerAM � CN ��

is a �ltration of the vector space CN � Further we write

Di � dimkerAi and di � Di �Di�� �	

for i �M � Here D� � �� Then there exists a basis

B �
n
z�� � z

�
� � � � � � z

�
d�
� z�� � z

�
� � � � � � z

�
d�
� � � � � zM� � zM� � � � � � zMdm

o
�



for CN such that for every i �M the set

Bi �
n
z�� � z

�
� � � � � � z

�
d�
� z�� � z

�
� � � � � � z

�
d�
� � � � � zi�� z

i
�� � � � � z

i
di

o
is a basis for kerAi� Such a basis B is said to be �ltered� A set of com�
mutative nilpotent matrices A is then simultaneously reduced to a special
upper�triangular form and viewed as a cubic array

A �

�������
� A�� A�� � � � A��M

� � A�� � � � A��M

���
���

� � �
� � �

���
� � � � � � AM���M

� � � � � � �

������	 � ��

where

Akl �

������
akl�� akl�� � � � akl��dl
akl�� akl�� � � � akl��dl
���

���
���

akldk�� akldk�� � � � akldk�dl

�����	 ��

is a cubic array of dimensions dk�dl�n and aklij � Cn� The row and column

cross�sections of Akl are

Rkl
i � �akli� akli� � � � akli�dl � � i � dk� ��

and �
Ckl
j

�T
� � akl�j akl�j � � � akldk�j � � j � dl� �


These are matrices of dimensions n� dl and n� dk� respectively�

The array A in the form �� is called reduced if the matrices C
k�k��
j �

j � dk�� are linearly independent for k �M � ��

By ���� Prop� �� it follows that the array �� is reduced� Furthermore�
a commutative cubic array �� is reduced if and only if it is written in a
�ltered basis�

We call a matrix A symmetric if A � AT � In ���� Cor� �� we observed
that A is commutative if and only if certain products of row and column
cross�section are symmetric� The main result of ����� Theorem �� tells us how
to construct the column cross�sections of A�� from the row cross�sections of
A�� and a set of symmetric matrices�

�



� Kravchuk Type Theorem for a Set of Commu�

tative Matrices

For k � 	� �� � � � �M we denote by Sk the linear span of the setn
a�lij � l � 	� �� � � � k� i � d�� j � dl

o
�

Proposition � For k � 	� �� � � � �M��� l � k��� k�	� � � � �M� i � dk� j �
dl� it follows that aklij � Sl�k���

Proof� By the construction of column cross sections of the array A�� in
the proof of ���� Thm� �� �in particular see the �rst displayed formula in ����
p� ��
� it follows that a��ij � S�� In a similar way� we apply the construction

of ���� Thm� �� to the arraysAk���k andAk�k��� k � 	� �� � � � �M�� to obtain
that

a
k�k��
ij � S�k�

where S�k � Span
n
a
k���k
ij � i � dk��� j � dk��

o
� Then it follows that

a
k�k��
ij � S�k � S��k�� � � � � � S�� � S��

Next we apply the construction of ���� Thm� �� to the arrays



A�� A��

� A��

�

and



A��

A��

�
�see ���� p� ����� This shows that a��ij � S�� As in the case

a
k�k��
ij we show inductively that ak�k��ij � S� for k � 	� Proceeding in the

above manner for l � k � � � �� �� � � � �M � � we obtain that aklij � Sl�k��
for all possible choices of i� j� k and l� �

Suppose that MN �C is the algebra of all N � N matrices over C and
that A is the subalgebra generated by the set of commutative matrices A
and the identity matrix I � IN � As a vector space� A is spanned by I and
all the products of elements of A� and in particular every element in A is of
the form A � �I�N � where � � C and N is nilpotent� Furthermore� A has

a block upper triangular form A �
h
Akl

iM
k�l��

� where Akl is a dk � dl matrix

block� Akk � �Idk � and Akl � � for k � l�
The following is a version of Kravchuk�s Theorem �see ���� p� ����

�



Theorem � If A �
h
Akl

iM
k�l��

� A is such that A�l � � for l � M then

A � ��

Proof� Since A�� � � it follows that Akk � � for all k � M� and so
A is nilpotent� Let An�� � A and bA � fAi� i � n� �g� Then bA can
be viewed as a commutative cubic array of dimensions N � N � �n� ��

Since An�� � A it follows that bA �
h bAkl

iM
k�l��

is in the reduced form ���

Proposition � applied to bA implies that each entry of the block arrays bAkl

is in the linear span of the entries of bA�l� Since A�l
n�� � A�l � � it follows

that Akl
n�� � � for all k and l� and so An�� � A � �� �

The next result follows immediately from Theorem ��

Corollary � Each element A �
h
Akl

iM
k�l��

in A is uniquely determined

by its �rst �block� row� i�e� by the entries in A��l� l � M � Furthermore�

dimA � � � d� �N � d��

� The Simple Case

As we already mentioned in x�� we view A as a set of commutative matrices
and also as a commutative array� A commutative array A is called simple

if d� � �� i�e�� if dim
Tn
i�� kerAi � ��

The results of this and the next section are a generalization of results
in ���� x	���� The authors in ���� study maximal commutative algebras of
nilpotent matrices� while we arrive at these results while studying n�tuples
of nilpotent matrices� Also we work with the complete �ltration ���

Theorem � If the array A is simple then dimA � N �

Proof� Since d� � � it follows by Corollary � that

dimA � N� ��

To prove the converse inequality� we consider� for j � M � �� the set Aj of

all products of j elements of A as a cubic array Aj �
h
Akl

j

iM
k�l��

� Then it

follows thatAkl
j � � for k � l�j� Since dimkerAj � Dj �

Pj
i�� dj it follows

that the nonzero column cross�sections of Aj are linearly independent� in






particular� the column cross�sections of A��j��
j are linearly independent�

Thus� it follows that we can �nd in A elements T j
h �

h
T
jkl
h

iM
k�l��

� such that

T
jkl
h � � for k � l � j and

T
j��j��
h �

h
� � � � � � � � � � �

i
�

where � is in hth position� The elements T j
h � j �M � �� h � dj��� together

with the identity matrix I� are clearly linearly independent� and there are

� �
M��X
j��

dj�� � N

of them� Therefore dimA � N � and so together with �� we have that
dimA � N � �

Corollary � Algebra A is a maximal commutative subalgebra of MN �C�

Proof� Suppose that B �MN �C is such that AB � BA for all A � A�
Write B � �Bij�

M
i�j�� and B�� � �b���� Let matrices T j

h � j �M � �� h � dj���

be de�ned as in the proof of Theorem 	� Because T j
hB � BT

j
h for all j and

h we �rst obtain that B is upper�triangular� and furthermore� we see that

Bjj � b��Idj � ��

Now� let An�� � B � b��I and A� � fAs� s � n� �g� Then A� is a com�
mutative array� and it is simple� Thus Theorem 	 implies that the algebra
A� generated by A� and I has the dimension equal to N � Since A � A� and
dimA � N � it follows that A � A�� Then B � An�� � b��I is in A� and
hence A is maximal� �

Corollary � If a set A of N � N commutative matrices is such that the

eigenspace at each joint eigenvalue is one�dimensional� then the dimension

of the algebra generated by A �and the identity matrix� is N �

Proof� Since CN is the direct sum of all joint spectral subspaces of
matrices ofA� the result follows if we show it for each joint spectral subspace�
For each joint eigenvalue ��� � ���� ��� � � � � �n of A let A��� be the algebra
generated by the restrictions of elements of A and the identity to the joint
spectral subspace V��� of A at ���� The algebra A generated by A and I is
a direct sum of the algebras A��� as ��� ranges over all the joint eigenvalues
of A� But then it follows by Theorem 	 that dimA��� � dimV���� and thus
dimA �

P
��� dimA��� �

P
��� dimV��� � N � �

�



� Canonical Basis and Structure Constants for Al�

gebra A in the Simple Case

Here we still assume that A is simple� Then Corollary � and Theorem 	 im�

ply that for g �M � � and h � dg�� there exist matrices T g
h �

h
T
gkl
h

iM
k�l��

�

A such that
T
gkl
h � � ��

if either k � l � g or k � � and l 	� g � �� and

T
g��g��
h �

h
� � � � � � � � � � �

i
� ���

where � is in the hth position� Moreover� matrices T g
h are uniquely deter�

mined by the conditions �� and ���� and

T � fIg
�n

T
g
h � g �M � �� h � dg��

o
is a �canonical basis for A� We write T gkl

h �
h
t
gkl
hij

idk dl

i���j��
� Then we have

that

T k
i T

l
j �

M��X
g�k�l

dg��X
h��

t
kl g
ijhT

g
h �

M��X
g�k�l

dg��X
h��

t
lkg
jihT

g
h � ���

Since T g
h are linearly independent the relation ��� implies that tkl gijh � t

lkg
jih�

Note also that ��� implies that constants tkl gijh are the structure constants
for multiplication in A expressed in basis T �

Since T is a basis for A it follows that Ai �
M��P
g��

dg��P
h��

a
�g
�hiT

g
h � Then we

obtain that

aklij �
M��X
g��

dg��X
h��

t
kl g
ijha

�g
�h�

Thus we proved the �rst of the following two theorems� The second then
follows easily�

Theorem � If tkl gijh are the structure constants for the multiplication in A

expressed in basis T then aklij �
M��P
g��

dg��P
h��

t
kl g
ijha

�g
ij �

�



Theorem � A simple commutative array A in the reduced form �� is

uniquely determined by the arrays A�l� l � 	� �� � � � �M� and structure con�
stants for A� the algebra generated by A�

Note that if we write Xj �
h
t���klj

id�
k�l��

� j � d�� then Xj are symmetric

and such that C��
j � R��

� Xj � where matrices R��
� and C��

j are de�ned in ��
and �
� Thus it follows that the entries of the symmetric matrices Xj in
���� Thm� 	� are precisely the structure constants for multiplication in A�
A similar construction can be obtained also for the column cross�sections of
arrays ������

Ak�

Ak�

���
Ak�k��

�����	 for k � ��

Because tkl gijh are the structure constants for multiplication in a commu�
tative algebra A they satisfy higher order symmetries� These symmetries
arise since the products of three or more matrices in T do not depend on the
order of multiplication� We include the precise statement since it is needed
in the application to multiparameter spectral theory� First we introduce
some further notation�

For m � 	� �� � � � �M and 	 � q � m we denote by �m�q the set of mul�
tiindices f�k�� k�� � � � � kq � ki � ��

Pq
i�� ki � mg� For k � �k�� k�� � � � � kq �

�m�q we de�ne a set 	k � dk� � dk� � � � � � dkq � The set of all permutations
of the set q is denoted by �q� For a permutation 
 � �q and multiindices

k � �m�q and i � �i�� i�� � � � � iq we write k� �
�
k���	� k���	� � � � � k��q	

�
and

i� �
�
i���	� i���	� � � � � i��q	

�
� Then we de�ne recursively numbers skg

ih � for

k � �m�� and i � 	k we write skg
ih � t

k�k�g
i�i�h

and for q � 	 and k � �m�q and
i � 	k we write

s
kg
ih �

m�k������kqX
l�k��k�

dlX
j��

tk�k�li�i�j
s
�l�k��k������kq	g
�j�i��i������iq	h

�

Corollary � For k � �m�q and i � 	k the constants skg
ih are symmetric in

k and i� i�e�

s
kg
ih � s

k�g
i�h

��	

for any permutation 
 � �q�

�



We remark that the relations ��	 are the matching conditions �in the
simple case mentioned at the end of x� in �����

A canonical form for a simple commutative array would be obtained if
we replaced the basis B by another �ltered basis B�� so that the matrix

R �
h
R��
� R��

� � � � R�M
�

i
is in a canonical form� This reduces to �nding a canonical form for R

when acting by permutation matrices on the left �if A is considered as a
set only� i�e� the matrices Ai are not considered in any particular order
and by invertible block upper�triangular matrices on the right� The �rst
immediate reduction we can achieve is that the nonzero columns in R are
linearly independent�

Then in a particular case d� � n we can assume that R�l
� � � for l � ��

If we substitute vectors z�j by vectors bz�j �
Pd�

k�� a
��
�jkz

�
k in basis B then

R��
� � I� and Ah � T �

h for h � n� is a canonical form for A� In the general
simple case a block version of the row reduced echelon form �see ��� x	��� for
the standard version and ��� x�� for some generalized versions applied to R
yields toward a canonical form for A� However� this requires an extensive
case by case analysis and we do not proceed with it� Rather we consider
some examples�

� Examples

Example � Suppose n � 	� Then sets of matrices that span the algebra
A� generated by a pair of matrices A � fA�� A�g and the identity matrix
I� are described in �	� ��� �see also ��� 	��� In general the sets of matrices
given there are not a basis� their elements may be linearly dependent� For
example� if

A� �

�����
� � � �
� � � �
� � � �
� � � �

����	 and A� �

�����
� � � �
� � � �
� � � �
� � � �

����	 ���

then neither fI�A�� A�� A�A�g nor

I�A�� A�� A

�
�

�
are linearly indepen�

dent since A�A� � A�
� � ��

��



However� if A is simple then dimA � N by Theorem �� and so the sets
given in �	� ��� are a basis� For instance� if

A� �

�����
� � � �
� � � �
� � � �
� � � �

����	 and A� �

�����
� � � �
� � � �
� � � �
� � � �

����	 ���

then A � Sp

I�A�� A

�
�� A�

�
� Furthermore� if fei� i � �g is the standard

basis for C� then in basis B � fe�� e�� e�� e�g the reduced form for the
array A is

A �

����������������



�
�

� 

�
�

� 

�
�

� 

�
�

�



�
�

� 

�
�

� 

�
�

� 

�
�

�



�
�

� 

�
�

� 

�
�

� 

�
�

�



�
�

� 

�
�

� 

�
�

� 

�
�

�

���������������	
�

Next we �nd that T �
h � Ah� h � �� 	 and T �

� � A�
�� and so

T �
n
I�A�� A

�
�� A�

o
is a basis for A� �

Example � We consider a commutative array A

A �

����������������



�
�

� 

�
�

� 

�
	

� 

�
�

�



�
�

� 

�
�

� 

�
�

� 

�
	

�



�
�

� 

�
�

� 

�
�

� 

�
�

�



�
�

� 

�
�

� 

�
�

� 

�
�

�

���������������	
� ���

which is already in the reduced form ��� The columns of the �rst row of the
array ��� are not linearly independent� To make them so� we substitute

��



the vector e� �
�
�e� for the vector e� in basis B� �Here we assume that

B � fei� i � �g is the standard basis of C�� Note that the new basis is still
�ltered� The array A in the new basis is

A �

����������������



�
�

� 

�
�

� 

�
	

� 

�
�

�



�
�

� 

�
�

� 

�
�

� 

�
	

�



�
�

� 

�
�

� 

�
�

� 

�
�

�



�
�

� 

�
�

� 

�
�

� 

�
�

�

���������������	
�

To �nd a canonical form for A we �nally substitute vectors z�� and z�� by
z�� � z�� and 	z�� � respectively� The new basis is still �ltered and we �nd that

A �

����������������



�
�

� 

�
�

� 

�
�

� 

�
�

�



�
�

� 

�
�

� 

�
�

� 

�
�

�



�
�

� 

�
�

� 

�
�

� 

�
��

�

�



�
�

� 

�
�

� 

�
�

� 

�
�

�

���������������	
� ��


So we have that T �
h � Ah� h � �� 	� T �

� � A�
� and ��
 is a canonical form

for A� �
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