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Abstract

Suppose that A1, A2, . . . , An are compact commuting self-adjoint linear maps on a
Pontryagin space K of index k and that their joint root subspace M0 at the zero eigen-
value in Cn is a nondegenerate subspace. Then there exist joint invariant subspaces
H and F in K such that K = F ⊕H, H is a Hilbert space and F is finite-dimensional
space with k ≤ dim F ≤ (n + 2)k. We also consider the structure of restrictions Aj |F
in the case k = 1.

1 Introduction

Let K be a Pontryagin space whose index of negativity (henceforward called index) is
k and A be a compact self-adjoint operator on K with non-degenarate root subspace
at the eigenvalue 0. Then K can be decomposed into an orthogonal direct sum of a
Hilbert subspace and a Pontryagin subspace both of which are invariant under A and this
Pontryagin subspace has dimension at most 3k. This has many applications among which
we mention the study of elliptic multiparameter problems [2]. Binding and Seddighi gave
a complete proof of this decomposition in [3] and in fact proved that non-degenaracy of
the root subspace at 0 is necessary and sufficient for such a decomposition. They show
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that the bound 3k can be attained. We refer to the books [1, 4] for general theory of
operators on a Pontryagin space.

We present a generalization of the decomposition to encompass a tuple of commuting
compact operators on a Pontryagin space. Such tuples occur naturally in applications to
boundary value problems for partial differential equation, say of Sturm-Liouville type, that
are coupled by several parameters. When such multiparameter boundary value problems
are of so-called elliptic type, their analysis leads to an n-tuple of commuting compact
self-adjoint operators on a Pontryagin space that is not a Hilbert space. We shall not
elaborate on the multiparameter aspects here. They can be found, for example, in [2] and
[5]. In this paper, our aim is to obtain a decomposition of K and also classify tuples of
commuting compact operators when k = 1. A compact normal operator can be thought
of as a pair of commuting compact self-adjoint operators. In the case of finite-dimensional
Pontryagin space of index 1, normal operators are completely classified in [8]. Thus the
classification of n-tuples of commuting compact self-adjoint operators on a Pontryagin
space of index 1 is a natural question.

There are two main results in this paper. The first one of them, Theorem 2.7 gives a
decomposition of the entire space into joint invariant subspaces one of which is a Hilbert
space H and the other, say F , is a Pontryagin space of index k and its dimension is at
most (n+2)k. We give an example to show that this bound is indeed sharp. The structure
of F in the decomposition of Theorem 2.7 is described in further detail. The subspace F
is equal to a direct sum F1⊕F2, where F1 is spanned by all joint root subspaces at nonreal
eigenvalues and the spectra of restrictions to F2 are real. Furthermore, the dimension of
F1 is exactly twice the index of F1, while the dimension of F2 is bounded below by the
index of F2 and above by n + 2 times the index of F2. In particular, the bound (n + 2)k
above can be achieved only if all the eigenvalues are real. In Theorem 3.1 we classify the
n-tuples of commuting compact self-adjoint operators on a Pontryagin space of index 1.

2 Splitting of an invariant finite-dimensional subspace with
an invariant complement that is a Hilbert space

Let A = {A1, A2, . . . , An} be a set of commuting compact self-adjoint linear maps on
K. If L is a subspace of K then L[⊥] = {u ∈ K; [u, v] = 0 for all v ∈ L} is its orthogonal
complement. Here [·, ·] is the inner product on K. The subspace L is called nondegenerate
if L ∩ L[⊥] = 0. Any nondegenerate subspace of K is a Pontryagin space in its own right
and we denote by κ(L) its index. A subspace L is called ortho-complemented if L + L[⊥]

is equal to K. If A : K → K is a linear operator then we denote by A[∗] its adjoint. One
has [Au, v] = [u,A[∗]v] for all u, v ∈ K.

If X ⊂ K is a nonempty set we denote by L(X) the closed linear span of X in K.
For αα = (α1, α2, . . . , αn) ∈ Cn we write

Lαα(A, j) =
⋂

∑n

s=1
ts=j, ts≥0

N
(
(A1 − α1I)t1 · · · (An − αnI)tn

)
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and

Lαα(A) =
∞⋃

j=1

Lαα(A, j).

Here N (A) is the nullspace of a linear map A. Note that Lαα(A) is the joint root subspace
of A at αα. We use the notation Lα(A, j) and Lα(A) if A = {A}. The tuple αα denotes the
n-tuple obtained from αα ∈ Cn by conjugating all its components. We define

Mα(A) =

{
Lα(A) if α ∈ IR
Lα(A) + Lα(A) if α /∈ IR.

For αα ∈ Cn we define Mαα(A) = ∩n
j=1Mαj (Aj). We remark that for αα ∈ IRn we have

Lαα(A) = Mαα(A). If αα, ββ /∈ IRn then it follows from Lemma 2.1 below that Mαα(A) =
Mββ(A) if and only if αj ∈ {βj , βj} for all j. To avoid duplication when considering the
subspaces Mαα(A), we assume that the imaginary parts of components αj , j = 1, . . . , n,
of αα are nonnegative.

In this paper we assume that the joint root subspace M0 = M0(A) at 0 = (0, 0, . . . , 0) ∈
Cn is a nondegenerate subspace.

We say that an eigenvalue αα of A is normal if Lαα(A) is finite-dimensional and it has a
closed complement that is invariant for A. If α ∈ C is a nonzero eigenvalue of a compact
linear map then it is a normal eigenvalue (see e.g. [10, p.190]). It follows that a nonzero
eigenvalue αα ∈ Cn of A is a normal eigenvalue.

A subspace L ⊂ K is invariant for A if AiL ⊂ L for all i. A closed invariant subspace
L for A is called decomposable if there exist nonzero closed subspaces L1 and L2, invariant
for A, such that L = L1⊕L2. If such L1 and L2 do not exist we call L an indecomposable
subspace for A. Observe that subspaces Lαα(A) for αα 6= 0, and the closure M0 of M0

are closed and invariant for A. Then it follows that if L is an indecomposable subspace
for A the restrictions Ai|L have only one eigenvalue. Moreover, each subspace Lαα(A)
and M0 are direct sums of indecomposable subspaces for A. If L is an indecomposable
subspace for A and L ⊂ Lαα(A) then we say that L is an indecomposable subspace for A
at αα, and αα is the eigenvalue corresponding to L. If n = 1 then an invariant subspace is
indecomposable if and only if it is a linear span of a single Jordan chain.

Now we prove a few auxiliary results that lead to the proof of our main results.

Lemma 2.1 If αα 6= 0 is an eigenvalue of A then Mαα(A) is nondegenerate.

Proof. Since αα 6= 0 there is an index l such that αl 6= 0. We may assume without loss
of generality that l = 1. Then Mα1(A1) = ⊕ββ∈Σ1

Mββ(A), where Σ1 is the set of all the
eigenvalues ββ = (β1, β2, . . . , βn) of A such that imaginary parts of βj are nonnegative and
β1 = α1. We know by [3, Lemma 1] that Mα1(A1) is nondegenerate. For each eigenvalue
ββ ∈ Σ1 and ββ 6= αα there exists an index j such that αj 6= βj . Then Mβj (Aj) ⊂ Mαj (Aj)[⊥].

By the fact that L
[⊥]
2 ⊂ L

[⊥]
1 if L1 ⊂ L2, we have Mββ(A) ⊂ Mβj (Aj) ⊂ Mαj (Aj)[⊥] ⊂

Mαα(A)[⊥]. Therefore Mαα(A) is an ortho-complemented subspace of Mα1(A1). An ortho-
complemented subspace is nondegenerate (see [4, Cor. I.9.5]). 2

The following result is a consequence of the assumption that M0 is nondegenarate.
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Corollary 2.2 For each j the subspace M0(Aj) is nondegenarate and the closure of the
linear span of Jordan chains of Aj is equal to K.

Proof. Observe that M0(Aj) is a direct sum of M0 and the subspaces Mαα(A), αα =
(α1, α2, . . . , αn), such that αj = 0. By [1, Cor. 3.14] it follows that Mαα(A) ⊂ M

[⊥]
0 . By

our assumptions and Lemma 2.1 all the subspaces Mαα(A) are nondegenerate. Therefore
M0(Aj) is nondegenerate. Theorem 1 of [3] implies the second part of the statement. 2

Theorem 2.3 If αα /∈ IRn is an eigenvalue of A then κ(Mαα(A)) = 1
2 dimMαα(A).

Proof. Since αα is normal it follows that Mαα(A) is finite-dimensional. By Lemma 2.1 it is
also nondegenerate. Suppose αj is a nonreal component of αα. Then the restriction of Aj

to Mαα(A) has a conjugate pair αj , αj for its spectrum. The lemma then follows by [6,
Thm. I.3.3]. 2

Let α be an eigenvalue for a compact self-adjoint operator A on a Pontryagin space
and let J = {v0, v1, . . . , vl} be a Jordan chain at α. Then we follow [3] and call J negative
if [v0, v0] ≤ 0 and positive if [v0, v0] > 0. Note that if α /∈ IR or if l ≥ 1 then [v0, v0] = 0
and J is negative.

If L is an indecomposable subspace for a set A = {A1, A2, . . . , An} of compact com-
muting self-adjoint operators then L is called positive if it contains only positive Jordan
chains for each Ai, otherwise it is called negative. Observe that if L is a positive indecom-
posable subspace for A then it is one-dimensional, spanned by a joint eigenvector of Ai,
and the corresponding eigenvalue is real.

Lemma 2.4 Let K be a Pontryagin space of index k. Given a compact self-adjoint oper-
ator A on K with nondegenerate root subspace M0(A), the whole space K can be written
as an orthogonal direct sum K = H ⊕ F where H is a Hilbert space and F is a finite-
dimensional Pontryagin space of index k such that both F and H are invariant for A and
k ≤ dimF ≤ 3k. Moreover, the Jordan canonical form of the restriction of A to F has
at most k blocks. In particular, there are at most k negative Jordan chains in a Jordan
basis for A.

Proof. A maximal nonpositive subspace of K has dimension equal to k (see [1, 4]). Since
we assume that M0(A) is nondegenerate it follows by [3, Thm. 1] that root vectors of
A are complete. By [1, Thms. 2.26 and 3.4] or [4, Thms. 4.6 and 4.9] it follows that
a Jordan chain J of A at a real eigenvalue has length l ≤ 2k + 1 and the dimension of
a maximal nonpositive subspace in L(J) is equal to l

2 if l is even and to [ l
2 ] or [ l

2 ] + 1
if l is odd. A Jordan chain J of A at a nonreal eigenvalue α has length l ≤ k. For J
there is a chain J for A at α such that J and J are of equal length and L(J ∪ J) is a
nondegenerate subspace (see [6, Thm. I.3.3]). Moreover, a maximal nonpositive subspace
of L(J ∪ J) has the dimension equal to l. It follows now that the subspace F spanned by
the union of all negative Jordan chains is a Pontryagin space. The subspace H spanned
by the remaining Jordan chains is a Hilbert space. Since Jordan chains are complete it
follows that K = F ⊕ H and therefore F has index k. Since the linear span of each
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chain in F always contains a one-dimensional nonpositive subspace, it follows that the
restriction A to F has at most k Jordan blocks. It also follows by the above discussion
that k ≤ dimF ≤ 3k. The former inequality holds since F contains a k dimensional
nonpositive subspace. The latter inequality is an equality if and only if A|F has real
spectrum and each corresponding Jordan chain J is of length equal to 3 and such that a
maximal nonpositive subspace of L(J) has dimension equal to 1. 2

Lemma 2.5 Suppose that A = {A1, A2} is a pair of commuting compact self-adjoint
nilpotent operators on a Pontryagin space K of index k and that M0(A) = K. Further,
suppose a finite-dimensional Pontryagin space F1 of index k and a Hilbert space H1 are
such that both F1 and H1 are invariant for A1, K = F1⊕H1, and the restriction of A1 to
F1 has l negative Jordan blocks. Then there exist a finite-dimensional Pontryagin space F
of index k and a Hilbert space H such that both F and H are invariant for A, K = F⊕H,
F1 ⊂ F , H ⊂ H1 and dimF ≤ dimF1 + l. The restrictions of A1 and A2 to H are equal
to 0.

Proof. By [6, Thm. I.3.3] it follows that in an appropriate basis for F1 we have

A1|F1 =




J1 0 · · · 0 0
0 J2 · · · 0 0
...

. . .
...

...
0 0 · · · Jl 0
0 0 · · · 0 0




,

where Jj are nilpotent Jordan blocks, and the inner product is given by the matrix



P1 0 · · · 0 0
0 P2 · · · 0 0
...

. . .
...

...
0 0 · · · Pl 0
0 0 · · · 0 I




,

where

Pj = ±




0 · · · 0 1
0 · · · 1 0
...

...
1 · · · 0 0




.

Note that A1|H1 = 0. By analogy, if we replace A1 by A2, there are a finite-dimensional
Pontryagin space F2 of index k and a Hilbert space H2 such that both F2 and H2 are
invariant for A2 and K = F2 ⊕H2. Next we denote by E the subspace of K spanned by
F1 and F2. It follows that E is a finite-dimensional subspace for A. It is invariant for
Aj , j = 1, 2, since for v ∈ E there exist fj ∈ Fj and hj ∈ Hj such that v = fj + hj and
Ajv = Ajfj ∈ Fj . Observe that there is a complement G of E in K such that K = G⊕E
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and G ⊂ H1 is a Hilbert space. Since A2 commutes with A1 the restriction A2|E is of the
form

A2|E =




B11 B12 · · · B1l W1

B21 B22 · · · B2l W2
...

...
...

...
Bl1 Bl2 · · · Bll Wl

U1 U2 · · · Ul C




,

where each block Bij is an upper-triangular Toeplitz matrix, Wj =

[
w∗j
0

]
, Uj =

[
0 u1

]

and wj , uj are column vectors (see [7, Thm. 9.1.1]). Blocks Bij , i, j = 1, 2, . . . , l, corre-
spond to the negative Jordan chains of A1. Since A2 is self-adjoint in K it follows that
B∗

ijPi = PjBji, uj = ±wj , j = 1, 2, . . . , l and C = C [⊥]. Note that C is an operator on
a Hilbert space, therefore C = C∗. Then we can assume that C is a diagonal matrix
without changing the structure of other blocks of A2. Next let E1 be the linear span of
the set {[

0
u1

]
,

[
0
u2

]
, . . . ,

[
0
ul

]}

and F the linear span of F1 and U . It is clear that dimU ≤ l and thus dimF ≤ dimF1+ l.
Since C is diagonal there is a complement E2 of F in E that is spanned by eigenvectors
of A2. With respect to the decomposition E = F1 ⊕U ⊕E2 the matrix for A2|E is of the
form

A2|E =




B W 0
U C1 0
0 0 C2


 .

But A2 is nilpotent and C2 diagonal, hence it follows that C2 = 0. Furthermore, F is
invariant for A and since F1 ⊂ F it follows that F is a Pontryagin space of index k.
Observe that we can now choose a complement E′

2 of F in E so that E′
2 ⊂ H1. Finaly, we

conclude that H = G⊕E′
2 is a Hilbert space such that H is invariant for A and H ⊂ H1.

2

Theorem 2.6 If αα ∈ IRn is an eigenvalue of A then there exist a finite-dimensional
subspace Fαα and a Hilbert space Hαα such that both Fαα and Hαα are invariant for A,
Mαα(A) = Fαα ⊕Hαα and κ(Mαα(A)) ≤ dimFαα ≤ (n + 2)κ (Mαα(A)).

Proof. We prove the theorem by induction on n. For brevity we write Mαα = Mαα(A)
and kαα = κ (Mαα). Assume first that n = 1. Applying Lemma 2.4 to A|Mαα , we get
a finite-dimensional Pontryagin space F1 of index kαα and a Hilbert space H1 satisfying
Mαα = F1 ⊕ H1, both F1 and H1 are invariant for A1 and kαα ≤ dimF1 ≤ 3kαα. The
Jordan canonical form of the restriction of A1 to F1 has at most kαα negative blocks. The
restriction of A1 to H1 is equal to α1IH1 , where IH1 is the identity operator on H1.

Assume for n ≥ 2 that we already have a finite-dimensional subspace Fn−1 and a
Hilbert space Hn−1 satisfying Mαα = Fn−1 ⊕ Hn−1, both Fn−1 and Hn−1 are invariant
for A1, A2, . . . , An−1 and kαα ≤ dimFn−1 ≤ (n + 1)kαα. Moreover, the restriction of A1 to
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Fn−1 has at most kαα negative Jordan chains and Aj |Hn−1 = αjIHn−1 , j = 1, 2, . . . , n− 1.
Applying Lemma 2.5 to the pair A1−α1I,An−αnI we get a finite-dimensional Pontryagin
space Fn of index kαα and a Hilbert space Hn such that both Fn and Hn are invariant
for A1 and An, Mαα = Fn ⊕ Hn, Fn−1 ⊂ Fn, Hn ⊂ Hn−1, An|Hn = αnIHn and kαα ≤
dimFn ≤ dimFn−1 + kαα ≤ (n + 2)kαα. It is clear that Hn is invariant for A, moreover
Aj |Hn = αjIHn , j = 1, 2, . . . , n. Since the intersection Fn ∩Hn−1 is a subspace in Hn−1

it is also invarint for A1, A2, . . . , An−1. Then it follows that Fn is invariant for A. This
concludes the proof. 2

Theorem 2.7 Suppose that A is an n-tuple of commuting compact self-adjoint operators
on a Pontryagin space K of index k such that M0(A) is nondegenerate. Then there exist a
finite-dimensional subspace F and a Hilbert space H such that both F and H are invariant
for A, K = F ⊕H and

k ≤ dimF ≤ (n + 2)k.

This F need not be unique. But if K = ⊕j∈JKj is a decomposition of K into a direct sum
of indecomposable subspaces Kj for A and F1 is spanned by all subspaces Kj at nonreal
eigenvalues and F2 is spanned by the all remaining negative subspaces at real eigenvalues
then a minimal one among such F is given by F1 ⊕ F2. Moreover, dimF1 = 2κ(F1) and
κ(F2) ≤ dimF2 ≤ (n + 2)κ(F2).

Proof. Since M0(A) is nondegenerate it follows that K = ⊕ααMαα(A), where the direct
sum is over all eigenvalues of A with nonnegative imaginary parts. There are at most
k eigenvalues with a negative Jordan chain since a maximal nonpositive subspace has
dimension equal to k. The theorem then follows by Theorems 2.3 and 2.6, and remarks
on indecomposable subspaces for A preceeding Lemmas 2.1 and 2.4. 2

The bounds in Theorem 2.7 coincide for n = 1 with those in [3]. For n = 2 observe
that A = A1 + iA2 is a normal operator on K. The bounds in Theorem 2.7 then coincide
with those given for a normal operator in [9, Thm. 1]. A normal operator A on a
Pontryagin space can be considered as a pair A1 = 1

2

(
A + A[∗]

)
and A2 = 1

2i

(
A−A[∗]

)

of commuting self-adjoint operators. It is obvious that pairs A,A[∗] and A1, A2 have the
same joint invariant subspaces. Moreover, a subspace is invariant for the pair A,A[∗] if
and only if it is a sum of indecomposable invariant subspaces for A (see [8, 9]). Compare
also the case n = 2 in Theorem 3.1 below and [8, Thm. 1].

Example 2.8 The bounds (n + 2)kαα and (n + 2)k in Theorems 2.6 and 2.7 cannot, in
general, be improved. The proof of Lemma 2.5 suggests how to find examples where the
bound is achieved. It is clear that the bound n + 2 for the dimension of F is attained if
and only if there is no non-real eigenvalues. For example, if k = 1 and n = 3 then the
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matrices



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,




0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,




0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0




commute and are self-adjoint with respect to the inner product [u, v] = 〈Pu, v〉, where
〈u, v〉 is the standard scalar product in C6 and

P =




0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




.

Note that the linear span of the first 5 coordinate vectors is the minimal invariant subspace
of the matrices that contains all their negative Jordan chains. Observe that 5 = (n + 2)k.
2

3 Reduced form for commuting compact self-adjoint oper-
ators on a Pontryagin space of index 1

If K is a Potryagin space of index 1 and A is an n-tuple of commuting compact self-adjoint
operators on K such that M0(A) is nondegenerate, then Theorem 2.7 gives the existence
of a finite-dimensional Pontryagin subspace F of index 1 and a Hilbert space H satisfying
K = F ⊕H, both F and H are invariant for A and 1 ≤ dimF ≤ n + 2. Assume that F
is a minimal subspace with the required properties.

The restrictions Aj |H are compact commuting self-adjoint operators on a Hilbert space
and thus by the spectral theorem, they can be simultaneously diagonalised. We are
interested in structure of restrictions Aj |F . In the following theorem, 〈·, ·〉 denotes a
definite inner product.

Theorem 3.1 Suppose that A and F are as above. Then the spectrum of the restrictions
of A to F contains a single real eigenvalue or a pair of complex conjugate eigenvalues.
Assume that αα = (α1, α2, . . . , αn) is an eigenvalue. Then one and only one of the following
is true:

1. If αα /∈ IRn then

Aj |F =

[
αj 0
0 αj

]
(1)

and the inner product on F ∼= C2 is given by [u, v] = 〈Pu, v〉, where P =

[
0 1
1 0

]
.
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2. If αα ∈ IRn and dimF = 1 then Aj |F =
[

αj

]
and the inner product is given by

[u, u] = −|u|2 for u ∈ F ∼= C.

3. If αα ∈ IRn and f = dimF ≥ 2 then

Aj |F =




αj a∗j xj

0 αjI aj

0 0 αj


 ,

where I is the identity matrix of order f − 2, aj ∈ Cf−2, {xj , a
∗
i aj} ⊂ IR for

i, j = 1, 2, . . . , n and a1, a2, . . . , an are linearly independent. The inner product on

F ∼= Cf is given by [u, v] = 〈Pu, v〉, where P =




0 0 1
0 I 0
1 0 0


.

Proof. Note that the linear span of each negative Jordan chain contains at least one
nonpositive subspace of dimension one. It follows by minimality of F that the spectrum
of the restrictions of A to F contains a single real eigenvalue αα or a pair of complex
conjugate eigenvalues αα, αα. If αα /∈ IRn then one of its components is nonreal, without loss
we may assume that α1 /∈ IR. Since F has index 1 it follows that

A1|F =

[
α1 0
0 α1

]

and the inner product on F ∼= C2 is given by [u, v] = 〈Pu, v〉, where P =

[
0 1
1 0

]
. Since

Aj commute it follows that they are all diagonal, and thus of the form (1) (where some
of αj may be real).

Next assume that αα ∈ IRn. If dimF = 1 then we obtain case 2. So suppose that
f = dimF ≥ 2. By the minimality of F it follows that at least one of the operators
Aj |F is not diagonalizable. Without loss we may assume that A1 is such. Then there are
nonzero vectors v0, v1 such that Ajv0 = αjv0, j = 1, 2, . . . , n and A1v1 = α1v1 + v0. Then
it follows that [v0, v0] = 0. Since F is nondegenerate there exists a vector u ∈ F such
that [u, v0] 6= 0. Then w = 1

[u,v0]u − [u,u]

2|[u,v0]|2 v0 is such that [w, v0] = 1 and [w,w, ] = 0.

Now let V = L(v0, w)[⊥]. Here and later in the proof the orthogonal complement is
taken in F . We write W = L(w) and Vi = L(vi) for i = 0, 1. It is easy to verify that
V

[⊥]
0 = V0 ⊕ V and F = V0 ⊕ V ⊕ W . We want to show that V0 ⊕ V is an invariant

subspace for all Aj . To do so choose z ∈ V0⊕V . Then [Ajz, v0] = [z, Ajv0] = αj [z, v0] = 0
and thus Ajz ∈ V

[⊥]
0 = V0 ⊕ V . Then it follows that with respect to the decomposition

F = V0 ⊕ V ⊕W we have

Aj |F =




αj b∗j xj

0 Bj aj

0 0 αj


 , j = 1, 2, . . . , n,
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and that the inner product on F ∼= Cf is given by [y, z] = 〈Py, z〉, where

P =




0 0 1
0 Q 0
1 0 0




and Q is a positive definite matrix. Since Aj commute and are self-adjoint it follows that
Bj are commuting linear maps on a Hilbert space. Thus Bj = αjI and we can assume
that Q = I. The conditions bj = aj and xj , a

∗
jai ∈ IR hold because Aj are commuting

and self-adjoint. 2

In the paragraph preceding Example 2.8 we explained how the case n = 2 is related
to a single normal operator on a Pontryagin space. Then an improvement of Theorem 3.1
for n = 2 can be deduced from the canonical form for a normal operator on a Pontryagin
space of index 1 given by Gohberg and Reichstein [8, Thm. 1].
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