On commuting compact self-adjoint operators on a Pontryagin space^{*}

Tirthankar Bhattacharyya[†] Poorna Prajna Institute for Scientific Research, 4 Sadshivnagar, Bangalore 560080, India. e-mail: tirtha@math.iisc.ernet.in

and

Tomaž Košir Department of Mathematics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia. e-mail: tomaz.kosir@fmf.uni-lj.si

July 20, 2000

Abstract

Suppose that A_1, A_2, \ldots, A_n are compact commuting self-adjoint linear maps on a Pontryagin space K of index k and that their joint root subspace M_0 at the zero eigenvalue in \mathbb{C}^n is a nondegenerate subspace. Then there exist joint invariant subspaces H and F in K such that $K = F \oplus H$, H is a Hilbert space and F is finite-dimensional space with $k \leq \dim F \leq (n+2)k$. We also consider the structure of restrictions $A_j|_F$ in the case k = 1.

1 Introduction

Let K be a Pontryagin space whose index of negativity (henceforward called *index*) is k and A be a compact self-adjoint operator on K with non-degenarate root subspace at the eigenvalue 0. Then K can be decomposed into an orthogonal direct sum of a Hilbert subspace and a Pontryagin subspace both of which are invariant under A and this Pontryagin subspace has dimension at most 3k. This has many applications among which we mention the study of elliptic multiparameter problems [2]. Binding and Seddighi gave a complete proof of this decomposition in [3] and in fact proved that non-degenaracy of the root subspace at 0 is necessary and sufficient for such a decomposition. They show

^{*} Research was supported in part by the Ministry of Science and Technology of Slovenia and the National Board of Higher Mathematics, India.

[†] Present address: Department of Mathematics, Indian Institute of Science, Bangalore 560012, India.

that the bound 3k can be attained. We refer to the books [1, 4] for general theory of operators on a Pontryagin space.

We present a generalization of the decomposition to encompass a tuple of commuting compact operators on a Pontryagin space. Such tuples occur naturally in applications to boundary value problems for partial differential equation, say of Sturm-Liouville type, that are coupled by several parameters. When such multiparameter boundary value problems are of so-called elliptic type, their analysis leads to an *n*-tuple of commuting compact self-adjoint operators on a Pontryagin space that is not a Hilbert space. We shall not elaborate on the multiparameter aspects here. They can be found, for example, in [2] and [5]. In this paper, our aim is to obtain a decomposition of K and also classify tuples of commuting compact operators when k = 1. A compact normal operator can be thought of as a pair of commuting compact self-adjoint operators. In the case of finite-dimensional Pontryagin space of index 1, normal operators are completely classified in [8]. Thus the classification of *n*-tuples of commuting compact self-adjoint operators on a Pontryagin space of index 1 is a natural question.

There are two main results in this paper. The first one of them, Theorem 2.7 gives a decomposition of the entire space into joint invariant subspaces one of which is a Hilbert space H and the other, say F, is a Pontryagin space of index k and its dimension is at most (n+2)k. We give an example to show that this bound is indeed sharp. The structure of F in the decomposition of Theorem 2.7 is described in further detail. The subspace F is equal to a direct sum $F_1 \oplus F_2$, where F_1 is spanned by all joint root subspaces at nonreal eigenvalues and the spectra of restrictions to F_2 are real. Furthermore, the dimension of F_1 is exactly twice the index of F_1 , while the dimension of F_2 is bounded below by the index of F_2 and above by n + 2 times the index of F_2 . In particular, the bound (n + 2)k above can be achieved only if all the eigenvalues are real. In Theorem 3.1 we classify the n-tuples of commuting compact self-adjoint operators on a Pontryagin space of index 1.

2 Splitting of an invariant finite-dimensional subspace with an invariant complement that is a Hilbert space

Let $\mathbf{A} = \{A_1, A_2, \dots, A_n\}$ be a set of commuting compact self-adjoint linear maps on K. If L is a subspace of K then $L^{[\perp]} = \{u \in K; [u, v] = 0 \text{ for all } v \in L\}$ is its orthogonal complement. Here $[\cdot, \cdot]$ is the inner product on K. The subspace L is called nondegenerate if $L \cap L^{[\perp]} = 0$. Any nondegenerate subspace of K is a Pontryagin space in its own right and we denote by $\kappa(L)$ its index. A subspace L is called ortho-complemented if $L + L^{[\perp]}$ is equal to K. If $A : K \to K$ is a linear operator then we denote by $A^{[*]}$ its adjoint. One has $[Au, v] = [u, A^{[*]}v]$ for all $u, v \in K$.

If $X \subset K$ is a nonempty set we denote by $\mathcal{L}(X)$ the closed linear span of X in K. For $\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{C}^n$ we write

$$L_{\boldsymbol{\alpha}}(\mathbf{A},j) = \bigcap_{\sum_{s=1}^{n} t_s = j, \ t_s \ge 0} \mathcal{N}\left((A_1 - \alpha_1 I)^{t_1} \cdots (A_n - \alpha_n I)^{t_n} \right)$$

 $L_{\boldsymbol{\alpha}}(\mathbf{A}) = \bigcup_{j=1}^{\infty} L_{\boldsymbol{\alpha}}(\mathbf{A}, j).$

Here $\mathcal{N}(A)$ is the nullspace of a linear map A. Note that $L_{\alpha}(\mathbf{A})$ is the joint root subspace of \mathbf{A} at α . We use the notation $L_{\alpha}(A, j)$ and $L_{\alpha}(A)$ if $\mathbf{A} = \{A\}$. The tuple $\overline{\alpha}$ denotes the *n*-tuple obtained from $\alpha \in \mathbb{C}^n$ by conjugating all its components. We define

$$M_{\alpha}(A) = \begin{cases} L_{\alpha}(A) \text{ if } \alpha \in \mathbb{R} \\ L_{\alpha}(A) + L_{\overline{\alpha}}(A) \text{ if } \alpha \notin \mathbb{R}. \end{cases}$$

For $\alpha \in \mathbb{C}^n$ we define $M_{\alpha}(\mathbf{A}) = \bigcap_{j=1}^n M_{\alpha_j}(A_j)$. We remark that for $\alpha \in \mathbb{R}^n$ we have $L_{\alpha}(\mathbf{A}) = M_{\alpha}(\mathbf{A})$. If $\alpha, \beta \notin \mathbb{R}^n$ then it follows from Lemma 2.1 below that $M_{\alpha}(\mathbf{A}) = M_{\beta}(\mathbf{A})$ if and only if $\alpha_j \in \{\beta_j, \overline{\beta}_j\}$ for all j. To avoid duplication when considering the subspaces $M_{\alpha}(\mathbf{A})$, we assume that the imaginary parts of components $\alpha_j, j = 1, \ldots, n$, of α are nonnegative.

In this paper we assume that the joint root subspace $M_0 = M_0(\mathbf{A})$ at $\mathbf{0} = (0, 0, \dots, 0) \in \mathbb{C}^n$ is a nondegenerate subspace.

We say that an eigenvalue α of \mathbf{A} is *normal* if $L_{\alpha}(\mathbf{A})$ is finite-dimensional and it has a closed complement that is invariant for \mathbf{A} . If $\alpha \in \mathbb{C}$ is a nonzero eigenvalue of a compact linear map then it is a normal eigenvalue (see e.g. [10, p.190]). It follows that a nonzero eigenvalue $\alpha \in \mathbb{C}^n$ of \mathbf{A} is a normal eigenvalue.

A subspace $L \subset K$ is invariant for \mathbf{A} if $A_i L \subset L$ for all *i*. A closed invariant subspace L for \mathbf{A} is called *decomposable* if there exist nonzero closed subspaces L_1 and L_2 , invariant for \mathbf{A} , such that $L = L_1 \oplus L_2$. If such L_1 and L_2 do not exist we call L an *indecomposable subspace* for \mathbf{A} . Observe that subspaces $L_{\alpha}(\mathbf{A})$ for $\alpha \neq \mathbf{0}$, and the closure \overline{M}_0 of M_0 are closed and invariant for \mathbf{A} . Then it follows that if L is an indecomposable subspace for \mathbf{A} the restrictions $A_i|_L$ have only one eigenvalue. Moreover, each subspace $L_{\alpha}(\mathbf{A})$ and \overline{M}_0 are direct sums of indecomposable subspaces for \mathbf{A} . If L is an indecomposable subspace for \mathbf{A} and $L \subset L_{\alpha}(\mathbf{A})$ then we say that L is an indecomposable subspace for \mathbf{A} and c is the eigenvalue corresponding to L. If n = 1 then an invariant subspace is indecomposable if and only if it is a linear span of a single Jordan chain.

Now we prove a few auxiliary results that lead to the proof of our main results.

Lemma 2.1 If $\alpha \neq 0$ is an eigenvalue of **A** then $M_{\alpha}(\mathbf{A})$ is nondegenerate.

Proof. Since $\alpha \neq \mathbf{0}$ there is an index l such that $\alpha_l \neq 0$. We may assume without loss of generality that l = 1. Then $M_{\alpha_1}(A_1) = \bigoplus_{\beta \in \Sigma_1} M_{\beta}(\mathbf{A})$, where Σ_1 is the set of all the eigenvalues $\boldsymbol{\beta} = (\beta_1, \beta_2, \ldots, \beta_n)$ of \mathbf{A} such that imaginary parts of β_j are nonnegative and $\beta_1 = \alpha_1$. We know by [3, Lemma 1] that $M_{\alpha_1}(A_1)$ is nondegenerate. For each eigenvalue $\boldsymbol{\beta} \in \Sigma_1$ and $\boldsymbol{\beta} \neq \alpha$ there exists an index j such that $\alpha_j \neq \beta_j$. Then $M_{\beta_j}(A_j) \subset M_{\alpha_j}(A_j)^{[\perp]}$. By the fact that $L_2^{[\perp]} \subset L_1^{[\perp]}$ if $L_1 \subset L_2$, we have $M_{\boldsymbol{\beta}}(\mathbf{A}) \subset M_{\beta_j}(A_j) \subset M_{\alpha_j}(A_j)^{[\perp]} \subset$ $M_{\boldsymbol{\alpha}}(\mathbf{A})^{[\perp]}$. Therefore $M_{\boldsymbol{\alpha}}(\mathbf{A})$ is an ortho-complemented subspace of $M_{\alpha_1}(A_1)$. An orthocomplemented subspace is nondegenerate (see [4, Cor. I.9.5]).

The following result is a consequence of the assumption that M_0 is nondegenarate.

and

Corollary 2.2 For each j the subspace $M_0(A_j)$ is nondegenarate and the closure of the linear span of Jordan chains of A_j is equal to K.

Proof. Observe that $M_0(A_j)$ is a direct sum of M_0 and the subspaces $M_{\alpha}(\mathbf{A})$, $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n)$, such that $\alpha_j = 0$. By [1, Cor. 3.14] it follows that $M_{\alpha}(\mathbf{A}) \subset M_0^{[\perp]}$. By our assumptions and Lemma 2.1 all the subspaces $M_{\alpha}(\mathbf{A})$ are nondegenerate. Therefore $M_0(A_j)$ is nondegenerate. Theorem 1 of [3] implies the second part of the statement. \Box

Theorem 2.3 If $\alpha \notin \mathbb{R}^n$ is an eigenvalue of **A** then $\kappa(M_{\alpha}(\mathbf{A})) = \frac{1}{2} \dim M_{\alpha}(\mathbf{A})$.

Proof. Since α is normal it follows that $M_{\alpha}(\mathbf{A})$ is finite-dimensional. By Lemma 2.1 it is also nondegenerate. Suppose α_j is a nonreal component of α . Then the restriction of A_j to $M_{\alpha}(\mathbf{A})$ has a conjugate pair $\alpha_j, \overline{\alpha}_j$ for its spectrum. The lemma then follows by [6, Thm. I.3.3].

Let α be an eigenvalue for a compact self-adjoint operator A on a Pontryagin space and let $J = \{v_0, v_1, \ldots, v_l\}$ be a Jordan chain at α . Then we follow [3] and call J negative if $[v_0, v_0] \leq 0$ and positive if $[v_0, v_0] > 0$. Note that if $\alpha \notin \mathbb{R}$ or if $l \geq 1$ then $[v_0, v_0] = 0$ and J is negative.

If L is an indecomposable subspace for a set $\mathbf{A} = \{A_1, A_2, \dots, A_n\}$ of compact commuting self-adjoint operators then L is called *positive* if it contains only positive Jordan chains for each A_i , otherwise it is called *negative*. Observe that if L is a positive indecomposable subspace for \mathbf{A} then it is one-dimensional, spanned by a joint eigenvector of A_i , and the corresponding eigenvalue is real.

Lemma 2.4 Let K be a Pontryagin space of index k. Given a compact self-adjoint operator A on K with nondegenerate root subspace $M_0(A)$, the whole space K can be written as an orthogonal direct sum $K = H \oplus F$ where H is a Hilbert space and F is a finitedimensional Pontryagin space of index k such that both F and H are invariant for A and $k \leq \dim F \leq 3k$. Moreover, the Jordan canonical form of the restriction of A to F has at most k blocks. In particular, there are at most k negative Jordan chains in a Jordan basis for A.

Proof. A maximal nonpositive subspace of K has dimension equal to k (see [1, 4]). Since we assume that $M_0(A)$ is nondegenerate it follows by [3, Thm. 1] that root vectors of A are complete. By [1, Thms. 2.26 and 3.4] or [4, Thms. 4.6 and 4.9] it follows that a Jordan chain J of A at a real eigenvalue has length $l \leq 2k + 1$ and the dimension of a maximal nonpositive subspace in $\mathcal{L}(J)$ is equal to $\frac{l}{2}$ if l is even and to $[\frac{l}{2}]$ or $[\frac{l}{2}] + 1$ if l is odd. A Jordan chain J of A at a nonreal eigenvalue α has length $l \leq k$. For Jthere is a chain \overline{J} for A at $\overline{\alpha}$ such that J and \overline{J} are of equal length and $\mathcal{L}(J \cup \overline{J})$ is a nondegenerate subspace (see [6, Thm. I.3.3]). Moreover, a maximal nonpositive subspace of $\mathcal{L}(J \cup \overline{J})$ has the dimension equal to l. It follows now that the subspace F spanned by the union of all negative Jordan chains is a Pontryagin space. The subspace H spanned by the remaining Jordan chains is a Hilbert space. Since Jordan chains are complete it follows that $K = F \oplus H$ and therefore F has index k. Since the linear span of each chain in F always contains a one-dimensional nonpositive subspace, it follows that the restriction A to F has at most k Jordan blocks. It also follows by the above discussion that $k \leq \dim F \leq 3k$. The former inequality holds since F contains a k dimensional nonpositive subspace. The latter inequality is an equality if and only if $A|_F$ has real spectrum and each corresponding Jordan chain J is of length equal to 3 and such that a maximal nonpositive subspace of $\mathcal{L}(J)$ has dimension equal to 1.

Lemma 2.5 Suppose that $\mathbf{A} = \{A_1, A_2\}$ is a pair of commuting compact self-adjoint nilpotent operators on a Pontryagin space K of index k and that $M_0(\mathbf{A}) = K$. Further, suppose a finite-dimensional Pontryagin space F_1 of index k and a Hilbert space H_1 are such that both F_1 and H_1 are invariant for A_1 , $K = F_1 \oplus H_1$, and the restriction of A_1 to F_1 has l negative Jordan blocks. Then there exist a finite-dimensional Pontryagin space Fof index k and a Hilbert space H such that both F and H are invariant for \mathbf{A} , $K = F \oplus H$, $F_1 \subset F$, $H \subset H_1$ and dim $F \leq \dim F_1 + l$. The restrictions of A_1 and A_2 to H are equal to 0.

Proof. By [6, Thm. I.3.3] it follows that in an appropriate basis for F_1 we have

$$A_1|_{F_1} = \begin{bmatrix} J_1 & 0 & \cdots & 0 & 0\\ 0 & J_2 & \cdots & 0 & 0\\ \vdots & & \ddots & \vdots & \vdots\\ 0 & 0 & \cdots & J_l & 0\\ 0 & 0 & \cdots & 0 & 0 \end{bmatrix},$$

where J_j are nilpotent Jordan blocks, and the inner product is given by the matrix

$\int P_1$	0	•••	0	0	
0	P_2	•••	0	0	
1 :		·	÷	÷	,
0	0	•••	P_l	0	
0	0	• • •	0	Ι.	
	0		0	1]
P = +	_ 0		1	0	
<i>1</i>	- :			÷	.
	[1	• • •	0	0	

where

Note that $A_1|_{H_1} = 0$. By analogy, if we replace A_1 by A_2 , there are a finite-dimensional Pontryagin space F_2 of index k and a Hilbert space H_2 such that both F_2 and H_2 are invariant for A_2 and $K = F_2 \oplus H_2$. Next we denote by E the subspace of K spanned by F_1 and F_2 . It follows that E is a finite-dimensional subspace for \mathbf{A} . It is invariant for A_j , j = 1, 2, since for $v \in E$ there exist $f_j \in F_j$ and $h_j \in H_j$ such that $v = f_j + h_j$ and $A_jv = A_jf_j \in F_j$. Observe that there is a complement G of E in K such that $K = G \oplus E$ and $G \subset H_1$ is a Hilbert space. Since A_2 commutes with A_1 the restriction $A_2|_E$ is of the form

$$A_2|_E = \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1l} & W_1 \\ B_{21} & B_{22} & \cdots & B_{2l} & W_2 \\ \vdots & \vdots & & \vdots & \vdots \\ B_{l1} & B_{l2} & \cdots & B_{ll} & W_l \\ U_1 & U_2 & \cdots & U_l & C \end{bmatrix},$$

where each block B_{ij} is an upper-triangular Toeplitz matrix, $W_j = \begin{bmatrix} w_j^* \\ 0 \end{bmatrix}$, $U_j = \begin{bmatrix} 0 & u_1 \end{bmatrix}$ and w_j , u_j are column vectors (see [7, Thm. 9.1.1]). Blocks B_{ij} , $i, j = 1, 2, \ldots, l$, correspond to the negative Jordan chains of A_1 . Since A_2 is self-adjoint in K it follows that $B_{ij}^*P_i = P_jB_{ji}$, $u_j = \pm w_j$, $j = 1, 2, \ldots, l$ and $C = C^{[\perp]}$. Note that C is an operator on a Hilbert space, therefore $C = C^*$. Then we can assume that C is a diagonal matrix without changing the structure of other blocks of A_2 . Next let E_1 be the linear span of the set

$$\left\{ \left[\begin{array}{c} 0\\ u_1 \end{array} \right], \left[\begin{array}{c} 0\\ u_2 \end{array} \right], \dots, \left[\begin{array}{c} 0\\ u_l \end{array} \right] \right\}$$

and F the linear span of F_1 and U. It is clear that dim $U \leq l$ and thus dim $F \leq \dim F_1 + l$. Since C is diagonal there is a complement E_2 of F in E that is spanned by eigenvectors of A_2 . With respect to the decomposition $E = F_1 \oplus U \oplus E_2$ the matrix for $A_2|_E$ is of the form

$$A_2|_E = \begin{bmatrix} B & W & 0 \\ U & C_1 & 0 \\ 0 & 0 & C_2 \end{bmatrix}.$$

But A_2 is nilpotent and C_2 diagonal, hence it follows that $C_2 = 0$. Furthermore, F is invariant for **A** and since $F_1 \subset F$ it follows that F is a Pontryagin space of index k. Observe that we can now choose a complement E'_2 of F in E so that $E'_2 \subset H_1$. Finally, we conclude that $H = G \oplus E'_2$ is a Hilbert space such that H is invariant for **A** and $H \subset H_1$. \Box

Theorem 2.6 If $\alpha \in \mathbb{R}^n$ is an eigenvalue of **A** then there exist a finite-dimensional subspace F_{α} and a Hilbert space H_{α} such that both F_{α} and H_{α} are invariant for **A**, $M_{\alpha}(\mathbf{A}) = F_{\alpha} \oplus H_{\alpha}$ and $\kappa(M_{\alpha}(\mathbf{A})) \leq \dim F_{\alpha} \leq (n+2) \kappa(M_{\alpha}(\mathbf{A})).$

Proof. We prove the theorem by induction on n. For brevity we write $M_{\alpha} = M_{\alpha}(\mathbf{A})$ and $k_{\alpha} = \kappa(M_{\alpha})$. Assume first that n = 1. Applying Lemma 2.4 to $A|_{M_{\alpha}}$, we get a finite-dimensional Pontryagin space F_1 of index k_{α} and a Hilbert space H_1 satisfying $M_{\alpha} = F_1 \oplus H_1$, both F_1 and H_1 are invariant for A_1 and $k_{\alpha} \leq \dim F_1 \leq 3k_{\alpha}$. The Jordan canonical form of the restriction of A_1 to F_1 has at most k_{α} negative blocks. The restriction of A_1 to H_1 is equal to $\alpha_1 I_{H_1}$, where I_{H_1} is the identity operator on H_1 .

Assume for $n \geq 2$ that we already have a finite-dimensional subspace F_{n-1} and a Hilbert space H_{n-1} satisfying $M_{\alpha} = F_{n-1} \oplus H_{n-1}$, both F_{n-1} and H_{n-1} are invariant for $A_1, A_2, \ldots, A_{n-1}$ and $k_{\alpha} \leq \dim F_{n-1} \leq (n+1)k_{\alpha}$. Moreover, the restriction of A_1 to F_{n-1} has at most k_{α} negative Jordan chains and $A_j|_{H_{n-1}} = \alpha_j I_{H_{n-1}}, j = 1, 2, ..., n-1$. Applying Lemma 2.5 to the pair $A_1 - \alpha_1 I$, $A_n - \alpha_n I$ we get a finite-dimensional Pontryagin space F_n of index k_{α} and a Hilbert space H_n such that both F_n and H_n are invariant for A_1 and A_n , $M_{\alpha} = F_n \oplus H_n$, $F_{n-1} \subset F_n$, $H_n \subset H_{n-1}, A_n|_{H_n} = \alpha_n I_{H_n}$ and $k_{\alpha} \leq$ $\dim F_n \leq \dim F_{n-1} + k_{\alpha} \leq (n+2)k_{\alpha}$. It is clear that H_n is invariant for \mathbf{A} , moreover $A_j|_{H_n} = \alpha_j I_{H_n}, j = 1, 2, \ldots, n$. Since the intersection $F_n \cap H_{n-1}$ is a subspace in H_{n-1} it is also invarint for $A_1, A_2, \ldots, A_{n-1}$. Then it follows that F_n is invariant for \mathbf{A} . This concludes the proof.

Theorem 2.7 Suppose that \mathbf{A} is an n-tuple of commuting compact self-adjoint operators on a Pontryagin space K of index k such that $M_0(\mathbf{A})$ is nondegenerate. Then there exist a finite-dimensional subspace F and a Hilbert space H such that both F and H are invariant for \mathbf{A} , $K = F \oplus H$ and

$$k \le \dim F \le (n+2)k.$$

This F need not be unique. But if $K = \bigoplus_{j \in J} K_j$ is a decomposition of K into a direct sum of indecomposable subspaces K_j for **A** and F_1 is spanned by all subspaces K_j at nonreal eigenvalues and F_2 is spanned by the all remaining negative subspaces at real eigenvalues then a minimal one among such F is given by $F_1 \oplus F_2$. Moreover, dim $F_1 = 2 \kappa(F_1)$ and $\kappa(F_2) \leq \dim F_2 \leq (n+2) \kappa(F_2)$.

Proof. Since $M_0(\mathbf{A})$ is nondegenerate it follows that $K = \bigoplus_{\alpha} M_{\alpha}(\mathbf{A})$, where the direct sum is over all eigenvalues of \mathbf{A} with nonnegative imaginary parts. There are at most k eigenvalues with a negative Jordan chain since a maximal nonpositive subspace has dimension equal to k. The theorem then follows by Theorems 2.3 and 2.6, and remarks on indecomposable subspaces for \mathbf{A} preceeding Lemmas 2.1 and 2.4.

The bounds in Theorem 2.7 coincide for n = 1 with those in [3]. For n = 2 observe that $A = A_1 + iA_2$ is a normal operator on K. The bounds in Theorem 2.7 then coincide with those given for a normal operator in [9, Thm. 1]. A normal operator A on a Pontryagin space can be considered as a pair $A_1 = \frac{1}{2} \left(A + A^{[*]} \right)$ and $A_2 = \frac{1}{2i} \left(A - A^{[*]} \right)$ of commuting self-adjoint operators. It is obvious that pairs $A, A^{[*]}$ and A_1, A_2 have the same joint invariant subspaces. Moreover, a subspace is invariant for the pair $A, A^{[*]}$ if and only if it is a sum of indecomposable invariant subspaces for A (see [8, 9]). Compare also the case n = 2 in Theorem 3.1 below and [8, Thm. 1].

Example 2.8 The bounds $(n + 2)k_{\alpha}$ and (n + 2)k in Theorems 2.6 and 2.7 cannot, in general, be improved. The proof of Lemma 2.5 suggests how to find examples where the bound is achieved. It is clear that the bound n + 2 for the dimension of F is attained if and only if there is no non-real eigenvalues. For example, if k = 1 and n = 3 then the

matrices

Γ0	1	0	0	0	0 -		[0	0	0	1	0	0 -		Γ0	0	0	0	1	0 -
0	0	1	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0
0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0
0	0	0	0	0	0	,	0	0	1	0	0	0	,	0	0	0	0	0	0
0	0	0	0	0	0		0	0	0	0	0	0		0	0	1	0	0	0
0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0

commute and are self-adjoint with respect to the inner product $[u, v] = \langle Pu, v \rangle$, where $\langle u, v \rangle$ is the standard scalar product in \mathbb{C}^6 and

 $P = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$

Note that the linear span of the first 5 coordinate vectors is the minimal invariant subspace of the matrices that contains all their negative Jordan chains. Observe that 5 = (n+2)k. \Box

3 Reduced form for commuting compact self-adjoint operators on a Pontryagin space of index 1

If K is a Potryagin space of index 1 and **A** is an n-tuple of commuting compact self-adjoint operators on K such that $M_0(\mathbf{A})$ is nondegenerate, then Theorem 2.7 gives the existence of a finite-dimensional Pontryagin subspace F of index 1 and a Hilbert space H satisfying $K = F \oplus H$, both F and H are invariant for **A** and $1 \leq \dim F \leq n+2$. Assume that F is a minimal subspace with the required properties.

The restrictions $A_j|_H$ are compact commuting self-adjoint operators on a Hilbert space and thus by the spectral theorem, they can be simultaneously diagonalised. We are interested in structure of restrictions $A_j|_F$. In the following theorem, $\langle \cdot, \cdot \rangle$ denotes a definite inner product.

Theorem 3.1 Suppose that **A** and *F* are as above. Then the spectrum of the restrictions of **A** to *F* contains a single real eigenvalue or a pair of complex conjugate eigenvalues. Assume that $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ is an eigenvalue. Then one and only one of the following is true:

1. If $\alpha \notin \mathbb{R}^n$ then

$$A_j|_F = \begin{bmatrix} \alpha_j & 0\\ 0 & \overline{\alpha}_j \end{bmatrix} \tag{1}$$

and the inner product on $F \cong \mathbb{C}^2$ is given by $[u, v] = \langle Pu, v \rangle$, where $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

- 2. If $\alpha \in \mathbb{R}^n$ and dim F = 1 then $A_j|_F = \begin{bmatrix} \alpha_j \end{bmatrix}$ and the inner product is given by $[u, u] = -|u|^2$ for $u \in F \cong \mathbb{C}$.
- 3. If $\alpha \in \mathbb{R}^n$ and $f = \dim F \ge 2$ then

$$A_j|_F = \left[\begin{array}{ccc} \alpha_j & a_j^* & x_j \\ 0 & \alpha_j I & a_j \\ 0 & 0 & \alpha_j \end{array} \right],$$

where I is the identity matrix of order f - 2, $a_j \in \mathbb{C}^{f-2}$, $\{x_j, a_i^* a_j\} \subset \mathbb{R}$ for i, j = 1, 2, ..., n and $a_1, a_2, ..., a_n$ are linearly independent. The inner product on $F \cong \mathbb{C}^f$ is given by $[u, v] = \langle Pu, v \rangle$, where $P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & I & 0 \\ 1 & 0 & 0 \end{bmatrix}$.

Proof. Note that the linear span of each negative Jordan chain contains at least one nonpositive subspace of dimension one. It follows by minimality of F that the spectrum of the restrictions of \mathbf{A} to F contains a single real eigenvalue $\boldsymbol{\alpha}$ or a pair of complex conjugate eigenvalues $\boldsymbol{\alpha}, \overline{\boldsymbol{\alpha}}$. If $\boldsymbol{\alpha} \notin \mathbb{R}^n$ then one of its components is nonreal, without loss we may assume that $\alpha_1 \notin \mathbb{R}$. Since F has index 1 it follows that

$$A_1|_F = \left[\begin{array}{cc} \alpha_1 & 0\\ 0 & \overline{\alpha}_1 \end{array} \right]$$

and the inner product on $F \cong \mathbb{C}^2$ is given by $[u, v] = \langle Pu, v \rangle$, where $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Since A_j commute it follows that they are all diagonal, and thus of the form (1) (where some of α_j may be real).

Next assume that $\alpha \in \mathbb{R}^n$. If dim F = 1 then we obtain case 2. So suppose that $f = \dim F \ge 2$. By the minimality of F it follows that at least one of the operators $A_j|_F$ is not diagonalizable. Without loss we may assume that A_1 is such. Then there are nonzero vectors v_0, v_1 such that $A_j v_0 = \alpha_j v_0, j = 1, 2, \ldots, n$ and $A_1 v_1 = \alpha_1 v_1 + v_0$. Then it follows that $[v_0, v_0] = 0$. Since F is nondegenerate there exists a vector $u \in F$ such that $[u, v_0] \neq 0$. Then $w = \frac{1}{[u, v_0]}u - \frac{[u, u]}{2|[u, v_0]|^2}v_0$ is such that $[w, v_0] = 1$ and [w, w,] = 0. Now let $V = \mathcal{L}(v_0, w)^{[\perp]}$. Here and later in the proof the orthogonal complement is taken in F. We write $W = \mathcal{L}(w)$ and $V_i = \mathcal{L}(v_i)$ for i = 0, 1. It is easy to verify that $V_0^{[\perp]} = V_0 \oplus V$ and $F = V_0 \oplus V \oplus W$. We want to show that $V_0 \oplus V$ is an invariant subspace for all A_j . To do so choose $z \in V_0 \oplus V$. Then $[A_j z, v_0] = [z, A_j v_0] = \alpha_j [z, v_0] = 0$ and thus $A_j z \in V_0^{[\perp]} = V_0 \oplus V$. Then it follows that with respect to the decomposition $F = V_0 \oplus V \oplus W$ we have

$$A_{j}|_{F} = \begin{bmatrix} \alpha_{j} & b_{j}^{*} & x_{j} \\ 0 & B_{j} & a_{j} \\ 0 & 0 & \alpha_{j} \end{bmatrix}, \quad j = 1, 2, \dots, n,$$

and that the inner product on $F \cong \mathbb{C}^f$ is given by $[y, z] = \langle Py, z \rangle$, where

$$P = \left[\begin{array}{rrr} 0 & 0 & 1 \\ 0 & Q & 0 \\ 1 & 0 & 0 \end{array} \right]$$

and Q is a positive definite matrix. Since A_j commute and are self-adjoint it follows that B_j are commuting linear maps on a Hilbert space. Thus $B_j = \alpha_j I$ and we can assume that Q = I. The conditions $b_j = a_j$ and $x_j, a_j^* a_i \in \mathbb{R}$ hold because A_j are commuting and self-adjoint.

In the paragraph preceding Example 2.8 we explained how the case n = 2 is related to a single normal operator on a Pontryagin space. Then an improvement of Theorem 3.1 for n = 2 can be deduced from the canonical form for a normal operator on a Pontryagin space of index 1 given by Gohberg and Reichstein [8, Thm. 1].

Acknowledgement

The authors wish to thank Prof. Paul Binding for suggesting the topic studied in the paper.

References

 T. Ya. Azizov and I.S. Iokhvidov. Linear Operators in Spaces with an Indefinite Metric, John Wiley & Sons, 1989.

preprint.

- [2] P.A. Binding and K. Seddighi. Elliptic Multiparameter Eigenvalue Problems. Proc. Edinburgh Math. Soc. 30 1987, 215–228.
- [3] P.A. Binding and K. Seddighi. On Root Vectors of Self-Adjoint Pencils, J. Funct. Anal. 70 (1987), 117–125.
- [4] J. Bognár. Indefinite Inner Product Spaces, Springer-Verlag, 1974.
- [5] M. Faierman. Two-parameter Eigenvalue Problems in Ordinary Differential Equations, volume 205 of Pitman Research Notes in Mathematics, Longman Scientific and Technical, 1991.
- [6] I. Gohberg, P. Lancaster, and L. Rodman. *Matrices and Indefinite Scalar Products*, Birkhäuser, 1983.
- [7] I. Gohberg, P. Lancaster, and L. Rodman. *Invariant Subspaces of Matrices with Applications*. Wiley-Interscience, 1986.
- [8] I. Gohberg and B. Reichstein. On Classification of Normal Matrices in an Indefinite Scalar Product, Int. Equat. Oper. Theory 13 (1990), 364–394.

- [9] O.V. Holtz. On Indecomposable Normal Matrices in Spaces with Indefinite Scalar Product. *Lin. Alg. Appl.* 259 (1997), 155–168.
- [10] F. Riesz and B. Sz-Nagy. Functional Analysis. Dover Publ., 1990, (a reprint of the 1955 original published by Frederick Ungar).