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Abstract

It is shown that a representation by tensor products of degree n? exists for every

pair of commuting linear maps on an n-dimensional vector space, but in general, not
a representation of degree less than n?2.

1 Introduction

In his paper [4] Chandler Davis introduced a representation of a pair of commuting linear
operators by tensor products. When the underlying Hilbert space has finite dimension,
say n, then the tensor product operators constructed in [4] act on a vector space of
dimension n?. Davis asked whether a representation by tensor products in dimension less
than n3 is possible. In general we cannot expect that this dimension, called the degree
of representation, is less than n? (see [7, Example 1.28] and our Example below). Here
we show that a pair of commuting linear maps on an n-dimensional vector space can be
represented by tensor products on a vector space of dimension n?. Thus it follows that,
in general, n? is the minimal possible degree for such a representation which answers
Davis’ question. Our construction is similar to the one given originally in [4]. However
coalgebraic techniques enable us to reduce the degree of the representation. We remark
that this construction has a direct generalizations for a k-tuple of commuting linear maps
on V. The representation we obtain then has degree less than or equal to n*, also best
possible in general.

We introduce the notion of a representation by tensor products and discuss the above
mentioned Example in §2. In §3 we introduce coalgebras and comodules and in §4 we
present some of the properties of the coalgebra of representative functionals on polynomial
algebras. Comodules associated to a pair of commuting linear maps are studied in §5. The
main result is proved in §6. We only outline the properties of coalgebras and comodules
needed. For details we refer to [1, 6, 8, 9].



Representations by tensor products for commuting operators on Hilbert spaces were
also studied by Fong and Sourour [5, Theorem 3.2], while De Boor and Rice [2] considered
special pairs of commuting matrices that have a representation by tensor products on the
original vector space.

2 Preliminaries

We assume throughout that V' is a vector space of dimension n over a field F'. We consider
a pair Aj, Ay of commuting linear maps on V. Suppose that there exist vector spaces W1
and Ws, an injective linear map 7' : V — W, where W = W; ® W5, and linear maps
B; : W; — W; (i =1,2) such that the diagram
v o4y
Tl W (1)
B!
Wi@Ws = Wi W,

commutes. Here
Bl =B, ®I and B} = I ® B,. (2)

Such a construction is called a representation of the pair Ay, As by tensor products and
the dimension of the vector space W is the degree of the representation.

If we already have A; = B;r (1 = 1,2) for some B;r as in (2) then the pair A;, As has
a representation by tensor products already on the original space and hence the smallest
degree of a representation by tensor products for Ay, As is n. In general this is not the
case. We consider next an example of a pair of commuting matrices for which the smallest
degree of a representation by tensor products is n2. It is a special case of [7, Example

1.28].
Example Suppose that V = F™ and that
01 0 - 0]
0 0 1 0
A=Ay = | ¢
o0 0 .1
00 0 --- 0]

Now choose the vector space W = F" ® F" and the subspace M C W spanned by
- n
the set B = {:ch = Z‘Z;& Vit1 ® vj_i} - where v; (i=1,2,...,n), denote the standard

basis vectors in F", i.e., v; = [0,...,0, 1,0,...,0]T where 1 is in the i-th position. For
j=1,2,...,n we have ngj = xj_1, where zy = 0, BI =A; ®1 and B; =1 ® As. Next
define a linear map T :F" — W by T (v;) = z;. Then TA; = B;T is a representation
by tensor products for A;. It is of the smallest degree possible because for the tensor
product space F? ® F'? where p < n or ¢ < n there do not exist two n X n matrices C
and Cy such that both C; ® I and I ® C5 have a Jordan chain of length n. (This is a
consequence of the Aitken-Roth theorem, see e.g. [3, Theorem 4.6].) O



3 Coalgebras and Comodules

A coalgebra C is a vector space with a structure dual to that of an algebra, i.e., with a
counit ¢ : C — F and a comultiplication § : C — C ® C, which are linear maps such that
the diagrams

0

FoC = C ~  CQF c %  cec
r\€®lc JL Ic®e/\ and 5¢ ¢Ic®5
cec ceoc % cecec

commute. We call the pair of maps € and ¢ also the structure maps of C. The first of
the above diagrams is the counit law and the second is coassociativity. Here we use the
symbol I¢ to denote the identity map of C. If C; and Cs are two coalgebras with structure
maps €1, 01 and €9, 02, respectively, then C; ® Cs is a coalgebra with structure maps 1 ® €2
and 093 (01 ® d2), where o;; switches the i-th and the j-th tensor factor. All the coalgebras
considered in this paper are cocommutative, i.e., § = 0120.

A notion dual to the notion of a module over an algebra is the notion of a comodule
over a coalgebra. Suppose that C is a coalgebra. Then a vector space N is a C-comodule
if there is a linear map o : N'— N ® C, called a coaction of C on N, such that

N o N®F N Y N®C
a| Iy®e and al JIv®@o (3)
N®cC Nec ‘Y Necec

commute. If V' is a vector space and C a coalgebra then the comultiplication ¢ of C induces
a coaction « = Iy ® 6 on V ® C. Such a comodule V ®C is called cofree. If M and N are
C-comodules then a linear map ¢ : M — N is a comodule homomorphism if the diagram

M 4 N

am | lov
Mec %Y Nec

commutes. For further details on the theory of coalgebras, comodules and Hopf algebras
we refer to the books of Abe [1] and Sweedler [9].

4 The Coalgebra of Functionals on Polynomials

A linear functional f : F'[x] — F is called a representative functional if its kernel contains
an ideal of finite codimension. The vector space F'[z]° of all representative functionals on
the polynomial ring F' [z] has a (topological) basis {e,}~_,, where ey, (™) = 0, and
Omn 1s the Kronecker symbol. An element f € F [z]° has an infinite series representation
[ = X0 gamem, where {an},._, forms a linearly recursive sequence. The canonical
coalgebra structure on F [z]° is defined by

£(em) = dom and 6 (ep) = Z er @ es. (4)

r+s=m



The structure maps (4) are extended on the whole of F[z]° by (infinite) linearity, for
example 6 (37— mem) = Do —g Wm0 (em)-
The linear map D : F [z]° — F [z]°, defined by

Df (p) = f (zp) (5)

for p € F [z] is dual to the map M, : F' [z] — F [z] given by M,p = zp.

Next suppose next that p (z) = 2¢ — ag_12% " — ag_ox?2 — ... — ap is an arbitrary

monic polynomial and that (p) is the ideal generated by p in F'[z]. The dual space

Cp = (Fz]/ (p))" (6)

is a subcoalgebra of F'[z]°, called the subcoalgebra associated with p. If f, € Cp is defined
by fr (z°) = 0ps (r,s=0,1,...,d — 1), where d = deg p, then

{H1, (7)
is a basis for C,. Furthermore we have
Dfo = a,()fd,1 and Df,« = f,«_1 + a,«fd,l (7“ =1,2,...,d— 1) . (8)

The interested reader will find more information about the structure of F [z]° in [6, 8].

5 Comodules Associated with Linear Maps

Now we turn our attention to a pair of commuting linear maps A;, As. Suppose that p;
is the minimal polynomial of A; (i =1,2). Let C; be the coalgebra associated with the
polynomial p;, of degree d;, as in (6) and C = Cy ® C2. Then we have

dimC; = d; < n. (9)

The restriction of the map (5) to the coalgebra C; is denoted by D;. We write DI =
D; ® I¢, and D; = I¢, ® Dy for the induced maps on C. But for the map induced by D;
(resp. Dg ) on the cofree comodules V' ® C; and V' ® C we use the same symbol D; (resp.
DZT ). Similarly the map induced by A; on V ® C; and V ® C is still denoted by A;.

Because (4; — D;) : V®C; — V ®C; and (Ai — DZ) :V®C —V ®C are comodule
homomorphisms it follows that their kernels r; and R; are subcomodules of V ® C; and
V ® C, respectively. Moreover,

Ri=r1®Cs and Ry =C1 Q 5. (10)

If visin Ria = Ri{ N Ry then A;v = ng (1 =1,2), and so the diagram

Aj
Ri2 = Ri2
D:
Iv®8\l/ ‘ iIV@E (11)
1% A 1%



commutes.

Lemma Let R be either ri,79 or Ria, and let €: R — V be the restriction of Iy ® € to
R in each case. Then  is invertible. Moreover, dimR = n and dimR; = nd; for i = 1, 2.

Proof. The second part of the lemma follows from the first part and (10). We prove
the first part of the lemma for R = R12. The proof for 1 and ro is similar.

Suppose that v = 0. Because (11) commutes it follows that 0 = A7 Ajev = D]" D}*v
(r=0,1,...,dy —land s =0,1,...,dy — 1). By the induction on r and s one shows that
v =0, and so £ is one-to-one.

Now choose v € V and consider v = Edl ! EdQ AT ASv ® fl® f2 eV ®C, where

{fr} _0 is the basis for C; given by (7). We write p; (z ) =a% —a;q,_13% " — . —a;p,
and then using (8), we see that
di—1ds—1 di—1dsx—1
1V— Z ZAT 00 fi1®f7+ Z ZAT{ 50 ® air fi, 1 ® f1. (12)
r=1 s=0 r=0 s=0
Since p;(A;) = 0, the right-hand side of (12) is equal to
di—2do—1 do—1
> D AT fi e f + Z AT A0 @ fi, 1 ® f7 = Awv.
r=0 s=0

Hence v € R;. Similarly we show that v € Rs. Because €v = v it follows that ¢ is also
surjective. O

6 Representation by Tensor Products

The following is our main theorem.

Theorem FEvery pair of commuting linear maps A1 and As on 'V has a representation

by tensor products of degree less than or equal to n®.

representation of degree n - min{dy,da} .

In particular, there exists such a

Proof. By the lemma  : Ri2 — V is invertible. Define T : V — 1, ® Co by T = 108!,
where ¢ : R12 < r; ® Cs is the inclusion. The diagram

v A& vy
Ty I (13)
Df
rneC = nedi

commutes for 7 = 1,2 because diagram (11) commutes. Then (13) is a representation by
tensor products for Ay, As as defined in (1). The analog of diagram (13), where r; ® Co
is replaced by C; ® ry also commutes. By our Lemma it follows then that there exists a
representation of the required degree. O

We remark that T is as in [4]. However our approach reveals further structure of
Davis’ construction and this enables us to find a representation of best possible degree.
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