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Abstract

We consider a smooth cubic surfaceS and its determinantal representations. The equivalence
classes of determinantal representations correspond to sixes of skew lines onS. There are
72 such sixes of lines onS and thus there are72 nonequivalent determinantal representations
of S. The aim of our paper is to provide two procedures for computation of determinantal
representations of cubic surfaces. For smooth real cubic surface we also construct self-adjoint
and definite determinantal representations when they exist. For the first procedure we assume
thatS is given as a blow-up of six points in a projective plane and for the second that we are
given equations of a line onS or an equation a tritangent plane ofS. The key step in the
constructions is computation of explicit equations of all the27 lines onS. Exact computations
are possible ifS is given as a blow-up of six points or if we are given an equation of a tritangent
plane. It is known that if we are given a defining polynomial forS then, in general, computation
of a line or a tritangent plane requires transcendental methods since the Galois group of the
corresponding equation is not solvable. One can then use transcendental methods introduced
by Klein and Coble or use numerical methods and approximate computations instead of exact
ones.
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1 Introduction
We consider a smooth cubic surfaceS in P3 = P3(C)
given by equation

F (z0, z1, z2, z3) = 0,

whereF is a homogeneous cubic polynomial overR or
C. If F is real then we say thatS is a real cubic surface.
It is well known that a smooth cubic surfaceS contains
27 lines. A plane intersectingS in three lines is called
a tritangent plane. Every line onS lies exactly on5
tritangent planes and there are45 tritagent planes forS.
We refer to Henderson [9] or Reid [13] for the geometry
of the27 lines. A great source for the geometry of real
cubic surfaces is Segre [16]. One can find chapters on
cubic surfaces also in Shafarevich [17] and Dolgachev
[6].

The most elegant way to study curves onS (our partic-
ular interest will be in lines) is by definingS as a blow
up of6 points in the plane, no three collinear and not on
a conic. Every nonsingular cubic surface inP3(C) can
be obtained this way [8].

A determinantal representationof a smooth cubic sur-
face is a3× 3 matrix of linear forms

M = M(z0, z1, z2, z3) = z0M0+z1M1+z2M2+z3M3

satisfying detM = cF, where M0,M1,M2, M3 ∈
M3(C) and c ∈ C, c 6= 0. Two determinantal rep-
resentationsM and M ′ are equivalentif there exist
X, Y ∈ GL3(C) such thatM ′ = XMY.

It is known that a smooth cubic surfaceS allows exactly
72 nonequivalent determinantal representations. In fact,
there is a one-to-one correspondence between:

• equivalence classes of determinantal representa-
tions ofS,

• linear systems of twisted cubic curves onS,

• sets of six lines onS that do not intersect each
other.

This was most likely known in the 19th century (see
[3, 5, 14]). Since it is hard to find a modern refer-
ence we provided a proof in [2]. There we also studied
self-adjoint and definite determinantal representations
of smooth real cubic surfaces.

A determinantal representationM = z0M0 + z1M1 +
z2M2 + z3M3 is self-adjoint if M∗

j = Mj for all j.
Two self-adjoint determinantal representationsM and
M ′ areequivalentif there existX ∈ GL3(C) such that
M ′ = XMX∗. A self-adjoint determinantal represen-
tation isdefiniteif there existc0, c1, c2, c3 ∈ R such
that the matrixc0M0+c1M1+c2M2+c3M3 is positive-
definite. All smooth cubic surfaces are divided into 5
types according to the geometry of the corresponding
27 lines (see Segre [16]). The number of nonequivalent
self-adjoint determinantal representations depends on
the Segre typeFi, i = 1, . . . , 5, of S. A surface of type

Fi, i = 1, . . . , 4 has exactly2(i−1) nonequivalent self-
adjoint determinantal representations none of which is
definite, while a surface of typeF5 has24 nonequiv-
alent self-adjoint determinantal representations,16 of
which are definite [2].

The main topic of our current presentation is ex-
plicit construction of determinantal representations of a
smooth cubic surface and in particular of all self-adjoint
and definite representations when they exist. We dis-
cuss two procedures. In the first, we assume that we
are given six points in the plane such thatS is blow-
up at these six points. In the second, we assume that
we are given equations of a line onS or an equation
of a tritangent plane toS. It is known that if we are
given a defining polynomialF then in general it is not
possible to express a line onS by radicals since the cor-
responding Galois group is not solvable. We refer to
Hunt [10] for a nice review of the classical construction
of a line onS using transcendental methods of Klein
and Coble. One could use Coble’s hexahedral form of
S (see Coble’s original papers [4] or Hunt [10]) to find
explicit equations of a line.

Our motivation to study explicit constructions of deter-
minantal representations comes from possible applica-
tion to multiparameter spectral theory [11]. Important
motivation to study self-adjoint and definite determi-
nantal representations is provided by Vinnikov [19, 20].
Such representations appear as determinantal represen-
tations of discriminant varieties in the theory of com-
muting nonselfadjoint operators in a Hilbert space [12].
Cubic surfaces are used also in modeling with algebraic
surfaces [1, 15, 18].

2 Algorithms if given six points of a blow-
up

A possible construction of a cubic surface is by
blowing-up of six points in general position in a pro-
jective planeP2 (see e.g. [7, 8, 17]). Suppose that
X = {P1, P2, . . . , P6} is a set of six points inP2, no
three collinear and not on a conic. Denote byx0, x1, x2

the homogeneous coordinates ofP2. Then it is easy
to see that the vector space of all cubic formsf in
x0, x1, x2 such thatf(Pi) = 0 for i = 1, 2, . . . , 6, is
four dimensional. Assume thatf0, f1, f2, f3 form a ba-
sis for this vector space. Then we consider the rational
mapping

Φ : P2 → P3

given by

Φ(Q) = [f0(Q), f1(Q), f2(Q), f3(Q)].

It is well defined at every point away fromX. It gives
a blow-up constructions at points inX. The closure
of its image is a smooth cubic surfaceS. We refer to
Geramita [7] for elementary proofs of the above state-
ments. The27 lines onS are then the following (see
e.g. [8, Theorem V.4.8.]):

• a1, . . . , a6 are the exceptional lines of the blow-up
Φ,



• cij = cji is the strict transform of the line through
Pi andPj in P2, where1 ≤ i < j ≤ 6.

• b1, . . . , b6, with bj being the strict transform of the
plane conic through the fivePi, i 6= j.

Observe thata1, . . . , a6 are mutually skew,b1, . . . , b6,
are mutually skew andai intersectsbj if and only if
i 6= j. Every configuration of12 lines onS with this
property is called aSchl̈afli’s double-six.Every smooth
cubic surfaceS contains36 double-sixes of lines. The
27 lines have a high degree of symmetry: for any set
l1, . . . , l6 of mutually skew lines onS there exist6
points inP2 and a blow-up for whichl1, . . . , l6 are the
exceptional lines. Proof of this can be found in [8,
Proposition V.4.10.]. These lines then uniquely de-
termine another set of6 mutually skew lines to form
together a double-six. Using the above notation the
double-sixes onS are:

(
a1 . . . a6

b1 . . . b6

)
, (1)

(
ai bi ckl ckm ckn ckp

ak bk cil cim cin cip

)
, (2)

(
ai ak al cmn cmp cnp

ckl cil cik bp bn bm

)
. (3)

Herei, k, l,m, n, p are all distinct.

The27 lines lie in triples on45 tritangent planes. The
coplanar triples of lines are

ai bj cij and cik clm cnp (4)

for distincti, j andi, k, l, m, n, p, respectively.

Next we give an explicit procedure to find equations
for the 27 lines given a set of six pointsX in general
position.

Suppose that

Lij = Lij(s, t) = [l0ij(s, t), l1ij(s, t), l2ij(s, t)],

wherelkij are linear forms ins andt, is a parametriza-
tion of line throughPi andPj , i 6= j, in P2. Assume
that

Lij(1, 0) = Pi andLij(0, 1) = Pj . (5)

Then[f0(Lij), . . . , f3(Lij)] is a parametrization ofcij

in P3. From this it is easy to find explicit equations
of the cij . The assumption (5) and the choice offk

imply that eachfk(Lij(s, t)) is divisible by boths and
t. Denote by

mkij(s, t) (6)

the remaining linear factor offk(Lij(s, t)). Observe
that

mkij(1, 0) andmkij(0, 1) (7)

are points on linesai andaj , respectively. Using these
points for variousk we can determine the equations for
the linesai. Sincebj is the intersection of the planes
〈ai, cij〉 ∩ 〈ak, ckj〉 for two distincti andk we can ob-
tain equations for the linesbj as well. Here we denote

by 〈a, b〉 the plane spanned by two intersecting linesa
andb in P3.

The procedure to find all the nonequivalent determinan-
tal representations of a surface given by the blow-up of
points inX is then the following:

Algorithm 2.1 GivenX = {P1, P2, . . . .P6}.
Find a basisf0, f1, f2, f3.

For all pairs of distincti, j parametrise the line through
Pi andPj . Compute equations for the linecij .

Find linear factorsmkij and compute equations for the
linesai.

Find equations for 45 tritangent planes. The lines that
span them are given in (4).

Among the equations of the tritagent planes find equa-
tions for the linesbj .

For each of the double-sixes in the list (1)-(3) do: If
(

a1 . . . a6

b1 . . . b6

)
(8)

is a double-six, then consider the tritangent planes

π12, π23, π31, π13, π21, π32, (9)

whereπij = 〈bi, aj〉. Use a point outside the linesai

andbj to determineλ such that

F = π12π23π31 + λπ13π21π32. (10)

Modify one of the equationsπij so thatλ = 1. Then

< =

( 0 π12 π13

π21 0 π23

π31 π32 0

)
(11)

and

<T =

( 0 π21 π31

π12 0 π32

π13 π23 0

)
(12)

are two nonequivalent determinantal representations
corresponding to (8).

Example 2.2 We used Mathematica 5.0 (soft-
ware for symbolic computations) to compute the steps
of the above procedure. Since a complete list of equa-
tions of lines, tritangent planes and determinantal rep-
resentations is large we include only a small sample.

Suppose thatX = {P1, P2, . . . .P6} is the set of points

{[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1], [1, 2, 3], [1, 3, 7]}.
It is easy to verify that these points are in general posi-
tion. We choose the cubic forms

f0 = 4x2
0x1 − 6x2

0x2 + x0x
2
1 + x0x1x2

f1 = 9x0x
2
1 + 15x2

0x1 − 25x2
0x2 + x0x

2
2

f2 = 10x0x
2
1 + 19x2

0x1 − 30x2
0x2 + x2

1x2

f3 = 40x0x
2
1 + 55x2

0x1 − 96x2
0x2 + x1x

2
2



determined by

fi(Pj) = 0, for i = 0, 1, 2, 3, j = 1, 2, . . . , 6,

which define a blow upP2 → P3. The line through
P1 andP2 in P2 is parametrized by[s, t, 0]. Its direct
transform is the linec12 = c21 parametrized by

st[4s + t, 15s + 9t, 19s + 10t, 55s + 40t].

Letz0, z1, z2, z3 be the coordinates ofP3. It is now easy
to calculate the equations ofc12:

z1 + z2 − z3 = 0
5z1 − 5z2 + z4 = 0.

Similarly,

the lineP1P3 is parametrized by[s, 0, t],
the lineP2P3 is parametrized by[0, s, t],

and the lineP4P5 is parametrized by[s + t, s +
2t, s + 3t]. Their direct transformsc13, c23, c45 are
parametrized by

st[−6s,−25s + t,−30s,−96s],

st[0, 0, s, t],
st[−3(s + t),−13(s + t),−17s− 19t,−52s− 56t],

respectively. The corresponding equations inP3 are

c13 : 5z1 − z3 = 0
16z1 − z4 = 0,

c23 : z1 = 0
z2 = 0,

c45 : 13z1 − 3z2 = 0
6z1 + 2z3 − z4 = 0.

From the parametrisations ofcij we can read the linear
formsmkij defined in (6) and calculate points given by
(7) that lie on variousaj . Therefore

[4, 15, 19, 55] and[6, 25, 30, 96] are points ona1,

[1, 9, 10, 40] and[0, 0, 1, 0] are points ona2,

[0, 1, 0, 0] and[0, 0, 0, 1] are points ona3.

Thena1, a2, a3 are given by the equations

a1 : 25z1 + 6z2 − 10z3 = 0
65z1 − 54z2 + 10z4 = 0,

a2 : 9z1 − z2 = 0
40z1 − z4 = 0,

a3 : z1 = 0
z3 = 0.

Recall the tritangent planes listed in (9). From the lines
constructed above we find that their equations are

π21 =< a1, c12 > ≡ 4z1 − 6z2 + z3 + z4 = 0
π31 =< a1, c13 > ≡ 29z1 − 9z3 + z4 = 0
π32 =< a2, c23 > ≡ 9z1 − z2 = 0
π12 =< a2, c12 > ≡ 5z1 − 5z2 + z4 = 0
π13 =< a3, c13 > ≡ 5z1 − z3 = 0
π23 =< a3, c23 > ≡ z1 = 0.

It is easy to check that the point[3, 13,−6, 6] lies on
c45 and on no other line ofS. This determinesλ
in (10). Indeed,λ = −1 is the solution ofπ12π23π31 +
λπ13π21π32 = 0 evaluated at[3, 13,−6, 6].

Then the two nonequivalent determinantal representa-
tions corresponding to

(
a1 . . . a6

b1 . . . b6

)

are
( 0 5z1 − 5z2 + z4 −5z1 + z3

4z1 − 6z2 + z3 + z4 0 −z1

29z1 − 9z3 + z4 −9z1 + z2 0

)

and
( 0 4z1 − 6z2 + z3 + z4 29z1 − 9z3 + z4

5z1 − 5z2 + z4 0 9z1 − z2

5z1 − z3 −z1 0

)

both defining

F = −35z3
1 + 145z2

1z2 − 30z1z
2
2 − 54z2

1z3

−8z1z2z3 + 6z2
2z3 + 9z1z

2
3 − z2z

2
3

−11z2
1z4 − z2z3z4 + z1z

2
4

as their determinant.

In the same way all 45 tritangent planes, 27 lines, 36
double-sixes and 72 determinantal representations on
the surface given byF can be computed. ¤

Next we recall from [2] the results on existence and
number of self-adjoint and definite determinantal rep-
resentations of real cubic surfaces.

A double-six

(
a1 . . . a6

b1 . . . b6

)
is calledmutually self-

conjugateif {b1, . . . , b6} = {a1, . . . , a6} as sets. Here
a is the line obtained from linea by conjugation of all
points ofa. After a suitable permutation of indexes, a
mutually self-conjugate double-six is one of the follow-
ing 4 kinds: a double-sixof the I-st kind is of the form

(
a1 a2 a3 a4 a5 a6

a1 a2 a3 a4 a5 a6

)
,

a double-sixof the II-nd kind is of the form
(

a1 a2 a3 a4 a5 a6

a2 a1 a3 a4 a5 a6

)
,

a double-sixof the III-rd kind is of the form
(

a1 a2 a3 a4 a5 a6

a2 a1 a4 a3 a5 a6

)

and a double-sixof the IV-th kind is of the form
(

a1 a2 a3 a4 a5 a6

a2 a1 a4 a3 a6 a5

)
.



All mutually self-conjugate double-sixes are specified
by

Type F1 F2 F3 F4 F5

NumberKind 0 1I 2II 3III 12IV

The four kinds of mutually self-conjugate double-sixes
were introduced by Cremona [5]. See [16] for further
details on double-sixes and types of real cubic surfaces.

Every mutually self-conjugate double-six induces
two nonequivalent self-adjoint determinantal repre-
sentations. A real cubic surface has the following
number of nonequivalent self-adjoint determinantal
representations:

Type of the surface F1 F2 F3 F4 F5

Number of s.a. reps 0 2 4 6 24

Only real cubic surfaces of typeF5 have definite deter-
minantal representations. Each surface of typeF5 has
up to equivalence 16 definite determinantal representa-
tions (among the 24 nonequivalent self-adjoint determi-
nantal representations).

The procedure to determine self-adjoint and definite de-
terminantal representations (when they exits) of a real
cubic surface is an extension of the procedure to com-
pute all nonequivalent determinantal representations.
For each of mutually self-conjugate double-six we find
two nonequivalent self-adjoint determinantal represen-
tations. Given a determinantal representationM cor-
responding to a mutually self-conjugate double-six as
in Algorithm 2.1 one has to additionally find a matrix
X ∈ GL4(C) such thatXM = M∗X∗. SuchX al-
ways exists.

A cubic surface given by a blow-up of a setX in P2 is
real if X is invariant under complex conjugation. The
type of a real cubic surface then depends on the number
of complex conjugate pairs inX. It is Fi, i = 1, 2, 3,
if there arei − 1 pairs of complex conjugate points in
X, and eitherF4 or F5 if X consists of three complex
conjugate pairs of points. This follows from the number
of real lines on real cubic surfaces of various types [16].

Since the setX in Example 2.2 consists of real points
the corresponding surface is of typeF1 and it has no
self-adjoint representations. Next we give an example
of a surface of typeF2 to illustrate the procedure of
finding self-adjoint determinantal representations.

Example 2.3 Suppose thatX contains the following
six points:

[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1], [1, i, 1− i]

and

[1,−i, 1 + i].

It is obvious that it is invariant under complex conju-
gation. One can easily check that these points are in

general position. We choose the cubic forms

f0 = −4x2
0x1 − x2

0x2 + 2x0x
2
1 + 3x0x1x2,

f1 = x2
0x1 − x2

0x2 − x0x
2
1 + x0x

2
2

f2 = −2x2
0x1 − 2x0x

2
1 + x2

0x2 + 3x2
1x2

f3 = −x2
0x1 + x0x

2
1 − x2

0x2 + x1x
2
2

for a basis of cubic forms defining the blow-up and such
that

fi(Pj) = 0, for i = 0, 1, 2, 3, j = 1, 2, . . . , 6.

The corresponding cubic surface contains one self-
conjugate double-six which is of theI-st kind. It is

(
a5 b5 c16 c26 c36 c46

a6 b6 c15 c25 c35 c45

)
,

wherea6 = a5, b6 = b5 andci6 = ci5 for i = 1, 2, 3.

The line throughP1 and P5 in P2 is parametrized
by [s + t, it, (1 − i)t] and its direct transformc15 is
parametrized by

st[(−1− 3i)(s + t), (−1 + 2i)(s + t),
(1− 3i)s + (4− 6i)t,−s− 3t].

Its equations are

−z0 + 2z2 + (3− 3i)z3 = 0
z0 + (1− i)z1 = 0.

Similarly, we see that linesP2P5 and P3P5 are
parametrized as follows:

P2P5 by [t, s + it, (1− i)t],
P3P5 by [t, it, s + (1− i)t].

Their direct transformsc25, c35 are parametrised by

st[2s−(1−i)t,−s+(1−2i)t, (1−3i)s+(4+2i)t, s−t]

and

st[(−1 + 3i)t, s + (1− 2i)t, (−2t, is + (1 + 2i)t],

respectively. The corresponding equations inP3 are

c25 : −5z0 + (3− 9i)z1 + (4 + 3i)z2 = 0
(3− i)z0 + (1− 2i)z1 − 5z3 = 0,

c35 : z0 + (1 + 2i)z1 + (−2 + i)z3 = 0
2z1 − (1 + i)z2 + 2iz3 = 0.

We will also use a point on a linec12. It is a direct
transform of the lineP1P2, which is parametrized by
[s, t, 0]. Thenc12 is parametrized by

st[−4s + 2t, s− t,−2(s + t),−s + t].

Its equations are

2z0 + 6z1 − z2 = 0
z1 + z3 = 0



and[3,−1, 0, 1] is a point on it.

The tritangent planes are listed in (4). We need the
tritangent planesσij = 〈cj5, ci5〉 = 〈cj5, ci6〉 for
i, j ∈ {1, 2, 3}. From the lines constructed above we
find that their equations are

σ12 : (2− 2i)z0 + 3z1 + (−1 + i)z2 − 3z3 = 0,

σ13 : (1− 2i)z0 + 3z1 + (−1 + i)z2 + 3iz3 = 0,

σ23 : z0 + 3iz1 + z2 − 3z3 = 0.

An equation of the corresponding cubic surfaceS is
then of the form

σ12σ23σ13 + λσ12σ23σ13 = 0.

We use a point onS to determineλ. Note that we
always have|λ| = 1. If θ is such thatθ2 = λ then
θ−1 = θ and

σ12σ23(θσ13) + σ12σ23(θσ13) = 0

is an equation of our surface that gives two self-adjoint
determinantal representations




0 σ12 θσ13

σ12 0 σ23

θσ13 σ23 0




and 


0 σ12 θσ13

σ12 0 σ23

θσ13 σ23 0


 .

Using the point[3,−1, 0, 1] we find thatλ = 1 and we
chooseθ = 1. We compute the determinant and find
that the polynomial

F = 2z3
0 + 9z2

0z1 + 3z2
0z2 − 9z2

0z3
+27z0z

2
1 − 72z0z1z2 − 9z0z

2
2 + 9z0z

2
3

−81z2
1z2 + 108z1z

2
2 + 27z1z2z3

defines our surface. ¤

3 Algorithms if given a line or a tritangent
plane onS

The problem of computing equations of a line on a cu-
bic surface if given a defining polynomialF is, in gen-
eral, not solvable by radicals. Transcendental meth-
ods for finding equations of a line were described by
Klein and Coble [4, 10]. Numerical methods to com-
pute equations of a line are given by Szilágy in her
Ph.D. thesis [18].

The procedure to find all nonequivalent determinantal
representations from an equationF = 0 for S is there-
fore not as direct as it was for their construction from
the six points of the blow-up. However, once we obtain
an equation of a tritangent plane toS we can explicitly
compute equations of all tritangent planes. Then we
proceed as in Algorithm 2.1.

If we are given an equation of a line then we still need
to solve an equation of degree5 to find an equation of a
tritangent plane. Once we have an equation of a tritan-
gent plane it is possible to compute exactly equations
for all 27 lines and 45 tritangent planes.

Suppose we know the tritangent planeπ21 and the lines
a1, b2 andc12. Since all the tritangent planes that con-
tain a given line onS can be computed explicitly by
solving a quintic equation [13, pp. 106-107] we can
explicitly find the remaining four tritangent planes that
contain either ofa1, b2 or c12 since we knowπ21. Con-
tinuing in this manner we can explicitly compute equa-
tions for all 45 tritangent planes and 27 lines onS.

For real cubic surfaces we can compute self-adjoint and
definite determinantal representations once we know
equations of lines and tritangent planes ofS.

To conclude, we briefly discuss two examples taken
from [2].

Example 3.1 Consider Fermat surfaceS given by the
equation

F = z3
0 + z3

1 + z3
2 + z3

3 = 0.

We represent a line

α0z0 + α1z1 + α2z2 + α3z3 = 0
β0z0 + β1z1 + β2z2 + β3z3 = 0

by a2× 4 matrix
(

α0 α1 α2 α3

β0 β1 β2 β3

)
.

Because of the symmetry ofF it is easy to obtain the
27 lines onS:(

1 1 0 0
0 0 1 1

)
,

(
1 1 0 0
0 0 1 ω

)
,

(
1 1 0 0
0 0 ω 1

)
,

(
1 ω 0 0
0 0 1 1

)
,

(
1 ω 0 0
0 0 1 ω

)
,

(
1 ω 0 0
0 0 ω 1

)
,

(
ω 1 0 0
0 0 1 1

)
,

(
ω 1 0 0
0 0 1 ω

)
,

(
ω 1 0 0
0 0 ω 1

)
,

(
1 0 1 0
0 1 0 1

)
,

(
1 0 1 0
0 1 0 ω

)
,

(
1 0 1 0
0 ω 0 1

)
,

(
1 0 ω 0
0 1 0 1

)
,

(
1 0 ω 0
0 1 0 ω

)
,

(
1 0 ω 0
0 ω 0 1

)
,

(
ω 0 1 0
0 1 0 1

)
,

(
ω 0 1 0
0 1 0 ω

)
,

(
ω 0 1 0
0 ω 0 1

)
,

(
1 0 0 1
0 1 1 0

)
,

(
1 0 0 1
0 1 ω 0

)
,

(
1 0 0 1
0 ω 1 0

)
,

(
1 0 0 ω
0 1 1 0

)
,

(
1 0 0 ω
0 1 ω 0

)
,

(
1 0 0 ω
0 ω 1 0

)
,

(
ω 0 0 1
0 1 1 0

)
,

(
ω 0 0 1
0 1 ω 0

)
,

(
ω 0 0 1
0 ω 1 0

)
,

whereω is a primitive third root of unity.

Consider determinantal representation

M =

( 0 z0 + z1 z2 + z3

ωz2 + z3 0 z0 + ωz1

ωz0 + z1 z2 + ωz3 0

)
.



TogetherM andM t correspond to the double six



(
ω 1 0 0
0 0 ω 1

)
,
(
1 1 0 0
0 0 1 ω

)
,
(
1 ω 0 0
0 0 1 1

)
,
(
1 0 0 1
0 1 1 0

)
,
(
1 0 0 ω
0 1 ω 0

)
,
(
ω 0 0 1
0 ω 1 0

)

(
1 1 0 0
0 0 1 1

)
,
(
1 ω 0 0
0 0 ω 1

)
,
(
ω 1 0 0
0 0 1 ω

)
,
(
ω 0 0 1
0 1 ω 0

)
,
(
1 0 0 1
0 ω 1 0

)
,
(
1 0 0 ω
0 1 1 0

)




Observe that determinantal representationsM is not
equivalent to a self-adjoint one, since the double-six
contains real lines.

Consider next

M ′ =

( 0 z2 + ωz3 z0 + ωz1

ωz0 + z1 0 z2 + z3

ωz2 + z3 z0 + z1 0

)
.

The determinantal representationsM ′ and (M ′)t cor-
respond to the double-six



(
ω 1 0 0
0 0 ω 1

)
,
(
1 1 0 0
0 0 1 ω

)
,
(
1 ω 0 0
0 0 1 1

)
,
(
1 0 0 1
0 1 ω 0

)
,
(
ω 0 0 1
0 1 1 0

)
,
(
1 0 0 ω
0 ω 1 0

)

(
1 ω 0 0
0 0 1 ω

)
,
(
ω 1 0 0
0 0 1 1

)
,
(
1 1 0 0
0 0 ω 1

)
,
(
1 0 0 ω
0 1 1 0

)
,
(
1 0 0 1
0 ω 1 0

)
,
(
ω 0 0 1
0 1 ω 0

)




which is mutually self-conjugate of theIII-rd kind.
ThereforeM ′ is equivalent to a self-adjoint determinan-
tal representation. Indeed,




ω2 0 0
0 0 1
0 1 0


 ·M ′ =




0 ω2z2 + z3 ω2z0 + z1

ωz2 + z3 z0 + z1 0
ωz0 + z1 0 z2 + z3


 .

We conclude that Fermat surface is of the Segre type
F4 and thus it has6 nonequivalent self-adjoint and no
definite determinantal representations. ¤

Example 3.2 Let S be a surface defined by equation
(

100
24

z2
0 + z2

1

)
(z0 + z2)

−z3

(
z3 − 1

2
z2

) (
z3 − 2

3
z2

)
= 0.

It is easy to check thatS is of typeF5. It has 3 real lines
on the planez0 + z2 = 0. Through the line

z0 + z2 = 3z3 − 2z2 = 0

there are 4 real tritangent planes, each containing two
intersecting complex conjugate lines:

z0 + 0.98987z2 + 0.01519z3 = 0,

z0 + 0.01345z2 + 1.47982z3 = 0,

z0 − 3.00333z2 + 6.00499z3 = 0,

3z3 − 2z2 = 0.

Determinantal representation


−z0−0.98987z2−0.01519z3 0

2.04124z0−iz1+8.14425z3
28.68441(1−i)

0 3z3−2z2 (1+i)( 1
2 z0−i

√
6

10 z1)
2.04124z0+iz1+8.14425z3

28.68441(1+i) (1−i)( 1
2 z0+i

√
6

10 z1) −0.02020z3




is definite. Indeed, for example evaluate the representa-
tion at

z0 = 0.02, z1 = 0, z2 = −1.2, z3 = −0.3

and see that its eigenvalues1.50013, 1.17540, 0.00293
are all positive.

On the other hand, determinantal representation



z0−3.00333z2+6.00499z3
−0.12000 0

2.04124z0−iz1−0.00679z3
0.49979(1−i)

0 3z3−2z2 (1+i)( 1
2 z0−i

√
6

10 z1)
2.04124z0+iz1−0.00679z3

0.49979(1+i) (1−i)( 1
2 z0+i

√
6

10 z1) 0.00666z3




is non-definite. The proof of non-definiteness is longer
and can be found in [2]. ¤
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