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Abstract

We consider a smooth cubic surfageand its determinantal representations. The equivalence
classes of determinantal representations correspond to sixes of skew lirtes Dimere are

72 such sixes of lines o' and thus there arg2 nonequivalent determinantal representations

of S. The aim of our paper is to provide two procedures for computation of determinantal
representations of cubic surfaces. For smooth real cubic surface we also construct self-adjoint
and definite determinantal representations when they exist. For the first procedure we assume
that S is given as a blow-up of six points in a projective plane and for the second that we are
given equations of a line o8 or an equation a tritangent plane 8f The key step in the
constructions is computation of explicit equations of all 2idines onS. Exact computations

are possible if5 is given as a blow-up of six points or if we are given an equation of a tritangent
plane. It is known that if we are given a defining polynomial$athen, in general, computation

of a line or a tritangent plane requires transcendental methods since the Galois group of the
corresponding equation is not solvable. One can then use transcendental methods introduced
by Klein and Coble or use numerical methods and approximate computations instead of exact
ones.
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1 Introduction Fi,i=1,...,4has exactl2(i— 1) nonequivalent self-
adjoint determinantal representations none of which is
definite, while a surface of typé; has24 nonequiv-
alent self-adjoint determinantal representatiotts of
which are definite [2].

We consider a smooth cubic surfagen P3 = P3(C)
given by equation

F(zo0, 21,22, 23) = 0,
The main topic of our current presentation is ex-
whereF is a homogeneous cubic polynomial oleor  plicit construction of determinantal representations of a
C. If Fisreal then we say thatis a real cubic surface. smooth cubic surface and in particular of all self-adjoint
It is well known that a smooth cubic surfaSecontains and definite representations when they exist. We dis-
27 lines. A plane intersecting in three lines is called cuss two procedures. In the first, we assume that we
atritangent plane. Every line onS lies exactly on5  are given six points in the plane such tiais blow-
tritangent planes and there afetritagent planes fof.  up at these six points. In the second, we assume that
We refer to Henderson [9] or Reid [13] for the geometrywe are given equations of a line ¢hor an equation
of the27 lines. A great source for the geometry of realbof a tritangent plane t&. It is known that if we are
cubic surfaces is Segre [16]. One can find chapters @jiven a defining polynomial” then in general it is not
cubic surfaces also in Shafarevich [17] and Dolgacheyossible to express a line ¢hby radicals since the cor-
[6]. responding Galois group is not solvable. We refer to
Hunt [10] for a nice review of the classical construction
of a line onS using transcendental methods of Klein
nd Coble. One could use Coble’'s hexahedral form of
(see Coble’s original papers [4] or Hunt [10]) to find
explicit equations of a line.

The most elegant way to study curves®four partic-
ular interest will be in lines) is by defining as a blow
up of 6 points in the plane, no three collinear and not o
a conic. Every nonsingular cubic surfacefit(C) can
be obtained this way [8].
Our motivation to study explicit constructions of deter-
minantal representations comes from possible applica-
tion to multiparameter spectral theory [11]. Important
motivation to study self-adjoint and definite determi-
M = M{z0, 21,22, 23) = Zo Motz Mit2e Motz My b representati)gns is prévided by Vinnikov [19, 20].
satisfyingdetM = cF, where My, My, My, M3 € Su_ch represent_ati_ons appear as_determinantal represen-
M;(C) ande € C, ¢ # 0. Two determinantal rep- tations of discriminant varieties in the theory of com-

resentationsM and M’ are equivalentif there exist muting nonselfadjoint operators in a Hilbert space [12].
X,Y € GL3(C) such thatM’ = X MY. Cubic surfaces are used also in modeling with algebraic

surfaces [1, 15, 18].

A determinantal representatioof a smooth cubic sur-
face is a3 x 3 matrix of linear forms

Itis known that a smooth cubic surfaSellows exactly
72 nonequivalent determinantal representations. In fa

there is a one-to-one correspondence between: 02 Algorithms if given six points of a blow-

up
e equivalence classes of determinantal representa- possible construction of a cubic surface is by
tions of S, blowing-up of six points in general position in a pro-
] ) ) jective planeP? (see e.g. [7, 8, 17]). Suppose that
¢ linear systems of twisted cubic curves 8n X = {P,P,,..., P} is a set of six points ifP2, no

three collinear and not on a conic. Denotelgy 1,
the homogeneous coordinates®f. Then it is easy
to see that the vector space of all cubic forghsn
xo,x1,x2 Such thatf(P;) = 0fori = 1,2,...,6,is
This was most likely known in the 19th century (se€our dimensional. Assume thd, f1, f2, f5 form a ba-

[3, 5, 14]). Since it is hard to find a modern refer-ss for this vector space. Then we consider the rational
ence we provided a proof in [2]. There we also studie¢happing

self-adjoint and definite determinantal representations d:P? - P3
of smooth real cubic surfaces.

e sets of six lines orS that do not intersect each
other.

given by
A determinantal representatidd = zqgMy + 21 M1 +
2 My + z3Ms is self-adjointif M = M; for all j. O(Q) = [fo(Q), f1(Q), [2(Q), f3(Q)].
Two self-adjoint determinantal representatiavisand ) ] _ _
M’ areequivalentf there existX € GL3(C) such that It is well defined at every point away fro. It gives
M' = XM X*. A self-adjoint determinantal represen-2a blow-up constructions at points K. The closure
tation is definiteif there existco, c1, ¢, c5 € R such Of its image is a smooth cubic surface We refer to
that the matrixo Mo +c1 M +co Ma+c3 Ms is positive- Geramita [7] fo_r elementary proofs of the ab_ove state-
definite. All smooth cubic surfaces are divided into Snents. The27 lines on.S are then the following (see
types according to the geometry of the corresponding-9- [8, Theorem V.4.8.]):
27 lines (see Segre [16]). The number of nonequivalent
self-adjoint determinantal representations depends one ay,...,ag are the exceptional lines of the blow-up
the Segre typé;, i = 1,...,5, of S. A surface of type D,



e ¢;; = c¢;; is the strict transform of the line through by (a, b) the plane spanned by two intersecting lines
P;andP; in P2 wherel <i < j <6. andb in P3.

e by, ..., bs, with b; being the strict transform of the The procedure to find all the nonequivalent determinan-
plane conic through the five;, i # j. tal representations of a surface given by the blow-up of
points inX is then the following:

Observe thati, ..., ag are mutually skewby, ..., bg, . .
are mutually skew and, intersectsh; if and only if Algorithm 2.1 GivenX = {Py, P, ...
i # j. Every configuration ofi2 lines onS with this  Fing a basisfy, f1, fa, f5.

property is called &chhfli’'s double-six.Every smooth . o ] )
cubic surfaces contains36 double-sixes of lines. The For all pairs of distincti, j parametrise the line through
27 lines have a high degree of symmetry: for any sef: and P;. Compute equations for the lirg;.

byl 02f mutually skew lines onS' there exist6  ring jinear factorsmy,;; and compute equations for the
points inP* and a blow-up for whicliy, .. ., I are the linesa..

exceptional lines. Proof of this can be found in [8, '

Proposition V.4.10.]. These lines then uniquely deFind equations for 45 tritangent planes. The lines that
termine another set of mutually skew lines to form span them are given in (4).

together a double-six. Using the above notation th

Ps).

double-sixes orb are:

ai ag 1
(5 e). ®
a; bz Ckl Ckm Ckn Ckp (2)
a bk Cil Cim Cin Cip ’
a; ag aj Cmn  Cmp Cnp (3)
cel Ci Cik by by by

Herei, k, 1, m,n,p are all distinct.

The 27 lines lie in triples ond5 tritangent planes. The

coplanar triples of lines are

a; bj Cij and cix  cim Cnp (4)

for distincti, j andi, k, [, m, n, p, respectively.

Next we give an explicit procedure to find equations

for the 27 lines given a set of six poinis in general
position.

Suppose that
Lij = Lij(s,t) = [loij(s,t),11i5(8, 1), l2ij (s, 1)],

wherel;; are linear forms irs andt, is a parametriza-
tion of line throughP; and P;, i # j, in P2. Assume
that

(5)

, f3(Li;)] is a parametrization of;;

Li;(1,0) = P;andL;;(0,1) = P;.
Then[fo(Lij), - -

s\mong the equations of the tritagent planes find equa-
tions for the lines;.

For each of the double-sixes in the list (1)-(3) do: If

aq Qg

b1 bg
is a double-six, then consider the tritangent planes
)

wherer;; = (b;,a;). Use a point outside the lineg
andb; to determine\ such that

(8)

12,723,731, 13, 721, 732,

F = mama3ms1 + ATi13m21T32. (10)

Modify one of the equations; so that = 1. Then
0 ma2 mi3
R=| m1 0 23
w31 w32 0
0 w21 31
R = m2 0 3
w3 w23 O

are two nonequivalent determinantal representations
corresponding to (8).

11)

and

12)

Example 2.2 We used Mathematica 5.0 (soft-
ware for symbolic computations) to compute the steps
of the above procedure. Since a complete list of equa-

in P2, From this it is easy to find explicit equationstions of lines, tritangent planes and determinantal rep-

of the ¢;;. The assumption (5) and the choice fof
imply that eachfy, (L;; (s, t)) is divisible by boths and
t. Denote by

Miij(s,t) (6)
the remaining linear factor of;,(L;;(s,t)). Observe
that

mkij(l, 0) andm;ﬂ-j (0, 1) (7)

are points on lines; anda;, respectively. Using these
points for various: we can determine the equations for _
the linesa;. Sinceb; is the intersection of the planes

(@i, cij) N {ag, cx;) for two distinct; andk we can ob-

tain equations for the linels; as well. Here we denote

resentations is large we include only a small sample.
Suppose thaX = { Py, P», ....Ps} is the set of points
{[1,0,0],[0,1,0],[0,0,1],[1,1,1],[1,2,3],[1,3,7]}.

It is easy to verify that these points are in general posi-
tion. We choose the cubic forms

fo = 41‘%561 — 6373@ + .13033% + roT1T2
fi = onxf + 15131’1 — 25:&31'2 + xoxg
fo = 10m0x% + 19x(2)x1 — 3036(2);102 + x?wz
fa = 40x¢x} + 55132, — 9622wy + 123



determined by
fi(P)) =0, for i=0,1,2,3, j=1,2,...,6,
which define a blow uf®? — P3. The line through

P, and P, in P? is parametrized bys, ¢, 0]. Its direct
transform is the line;5 = co; parametrized by

st[ds + t,15s + 9t, 19s + 10¢, 555 + 40¢].

Let 2o, 21, 22, 23 be the coordinates &°. Itis now easy
to calculate the equations ofs:

z1+ 22 — 23
521 — Dzo + 24

Similarly,
the line P, P; is parametrized bis, 0, ¢],
the line P, P; is parametrized b0, s, t],

and the line P,Ps is parametrized by[s + ¢,s +
2t,s 4+ 3t]. Their direct transforms:s, ca3, c45 are
parametrized by

st[—6s, —25s 4+ t, —30s, —965],
st[0, 0, s, ],
st[—3(s +1), —13(s +t), —17s — 19t, =525 — 56t],
respectively. The corresponding equation®¥rare

c13 : 521 —23 = 0
1621 —Z4 = O7

Co3 zZ21 = 0
2o = O7

Cy5 1321 — 32’2 =0
6z1 +223 — 24 = 0.

From the parametrisations of; we can read the linear

It is easy to check that the poifg, 13, —6, 6] lies on
c45 and on no other line of5. This determines\
in (10). Indeed = —1 is the solution ofryoma3ms; +
Ami3mo1mae = 0 evaluated af3, 13, —6, 6].

Then the two nonequivalent determinantal representa-
tions corresponding to

0 521 — Dzo + 24 —H21 + 23
4z1 — 629 + 23 + 24

ay
by

aeg
bs

are

0 —Z21
2921 — 923 + 24 —921 + 29 0
and
0 4z1 — 629 4+ 23 + 24 2921 — 923 + 23
5z1 — Dzo 4+ 24 0 921 — 29
52:1 — Z3 —2Z1 0

both defining

F = 352} + 1452225 — 302122 — 542323
—8z12023 + 62323 + 9zlz§ — 22232,

—11z%z4 — 292324 + zlzf

as their determinant.

In the same way all 45 tritangent planes, 27 lines, 36
double-sixes and 72 determinantal representations on
the surface given by’ can be computed. |

Next we recall from [2] the results on existence and
number of self-adjoint and definite determinantal rep-

formsm;,;; defined in (6) and calculate points given by,asentations of real cubic surfaces.

(7) that lie on various:;. Therefore
[4,15,19,55] and[6, 25, 30, 96] are points omy,
[1,9,10,40] and[0,0, 1, 0] are points oo,
[0,1,0,0] and[0, 0,0, 1] are points orus.

Thenay, as, az are given by the equations

a1 :  25z14+620—10z3 = 0
652’1 — 5422 + 1024 = 0,

as : 921 — 20 = 0
4021 —z4 = 0,

as : z17 = 0
23 = 0.

A double-six ‘gll ‘gg’ is calledmutually self-
conjugateif {b1,...,b5} = {a7,...,as} as sets. Here

a is the line obtained from line by conjugation of all
points ofa. After a suitable permutation of indexes, a
mutually self-conjugate double-six is one of the follow-
ing 4 kinds: a double-sixf the I-st kindis of the form

( )

a double-sixof the I1-nd kind is of the form

( )

ai
ap

a2
az

as
az

aq
ay

as
as

ae
ag

ay
az

a2
ay

as
az

aq
ay

as
as

ae
ag

Recall the tritangent planes listed in (9). From the lines

constructed above we find that their equations are
4z1 — 620+ 23 +24 =0
2921 — 923+ 24 =0

921 — 29 =0

521 — bz + 24 =0

52’1 — Z3 = 0

mo1 =< a1,C12 >
m31 =< a1,C13 >

T32 =< A2,C23 >

T2 =< a2,C12 >

T3 =< a3, C13 >

o3 =< ag, €23 > z1 = 0.

a double-sixof the IlI-rd kind is of the form

( )

and a double-sixf the IV-th kindis of the form

( )

ai
az

az
ay

as
ay

aq
az

as
as

ae
ag

ai
az

a2
ap

as
ay

aq
az

as
ag

ae
as



All mutually self-conjugate double-sixes are specifiedjeneral position. We choose the cubic forms
by

fo = —4373331 — 37%.’1]2 + 23001‘% + 3xgx129,
Type R Iy F, s i = 1‘31‘1 - x%xz — xox% + afox%
Numbeﬁﬁnd 0 17 250 31 125y f2 = 72%%1’1 - 21’01’% + LL’%%Q + Sx%xg
. . . _ 2 2 2 2
The four kinds of mutually self-conjugate double-sixes f3 = —ZoT1 + Tor] — 2pT2 + 7125

were introduced by Cremona [5]. See [16] for further, . . .
details on double-sixes and types of real cubic surface{%;? basis of cubic forms defining the blow-up and such

Every mutually self-conjugate double-six induces ) )
two nonequivalent self-adjoint determinantal repre- fi(F;) =0, for i =0,1,2,3, j =1,2,...,6.
sentations. A real cubic surface has the followin

number of nonequivalent self-adjoint determinantacgr?.uczfzgzg?;_‘sgixcwuﬁi'ghSigrcf)?fgesctoﬂﬂnlst ig”e self-
representations: Jug .

<a5 bs cis c26 C36 C46>
9

Type of the surface] F; F, F3 F; Fj ag bg c15 c25 C35 a5

Numberofs.a.reps 0 2 4 6 24

. . whereag = @5, bg = bs andc;g = ¢ fori = 1,2, 3.
Only real cubic surfaces of typ; have definite deter- 46 = 45, %6 ° ci6 = Cis DT

minantal representations. Each surface of typehas The line throughP; and P5 in P* is parametrized
up to equivalence 16 definite determinantal represently [s + ¢,it, (1 — 4)t] and its direct transforna, s is
tions (among the 24 nonequivalent self-adjoint determiparametrized by

nantal representations).

st[(—=1—=3d)(s+1t),(—142i)(s+ 1),
The procedure to determine self-adjoint and definite de- (1 — 3i)s + (4 — 6i)t, —s — 3¢t].
terminantal representations (when they exits) of a real ’
cubic surface is an extension of the procedure to conjts equations are
pute all nonequivalent determinantal representations.
For each of mutually self-conjugate double-six we find —20+22:2+(3—3i)z3 = 0
two nonequivalent self-adjoint determinantal represen- 204+ (1—i)zn = 0.
tations. Given a determinantal representatidncor-
responding to a mutually self-conjugate double-six asimilarly, we see that linesP,P; and P;Ps are
in Algorithm 2.1 one has to additionally find a matrix parametrized as follows:
X € GL4(C) such thatX M = M*X*. SuchX al-
ways exists. Py, Ps by [t, s +it, (1 —14)t],

A cubic surface given by a blow-up of a S&tin P? is P3P5 byt it, s + (1 —9)t].

real if X is invariant under complex conjugation. TheT
type of a real cubic surface then depends on the numbe
of complex conjugate pairs . Itis F;, ¢ = 1,2,3, st[2s—(1—i)t, —s+(1—24)t, (1—3i) s+ (4+2i)t, s—t]
if there are; — 1 pairs of complex conjugate points in

X, and eitherF} or Fj if X consists of three complex and

conjugate pairs of points. This follows from the number

of real lines on real cubic surfaces of various types [16]. st[(—1 + 3i)t,s + (1 — 2i)t, (—2t,is + (1 + 20)t],

rr1eir direct transforms,s, c35 are parametrised by

Since the seK in Example 2.2 consists of real pointsrespectively. The corresponding equation®trare
the corresponding surface is of typg and it has no

self-adjoint representations. Next we give an example ca5: —520 + (3 —9i)z1 + (4 +3i)22 = 0
of a surface of typel, to illustrate the procedure of (3—1d)z0 + (1 —2i)zy — 523 = O,
finding self-adjoint determinantal representations.

C35 20+ (14+2i)z +(-2+4)z3 = 0

221 — (1 + Z)Zg + 2@23 = O
Example 2.3 Suppose thaK contains the following ) ] ] ] ]
six points: We will also use a point on a line;s. It is a direct
transform of the lineP; P,, which is parametrized by
[17 0, O]7 [0, 17 0]’ [0’ 0, 1], [17 1, 1]7 [1, i, 1— Z] [S, t, 0] ThenC12 IS paramet“zed by
and st[—4s+2t, s —t,—2(s+t),—s + t].
[1,—i,1 4. Its equations are

It is obvious that it is invariant under complex conju- 220 + 621 —22 = 0

gation. One can easily check that these points are in z14+23 = 0



and[3,—1,0, 1] is a point on it.

The tritangent planes are listed in (4). We need th

tritangent planesr;; = (c¢j5,Gi5) = {(c¢j5,cig) fOr
i,7 € {1,2,3}. From the lines constructed above w
find that their equations are

019 : (2—2’i)2’0+321 +(—1+i)22—3Z3 =0,
013 : (1 — Qi)ZO + 321 + (—1 + i)Zz + 3iz3 = 0,
0923 : 20+ 3121 + 29 — 323 = 0.

An equation of the corresponding cubic surfages
then of the form

012023013 + A012023013 = 0.

We use a point or to determineX. Note that we
always have\| = 1. If § is such tha)? = ) then

0—1 =6 and

012093 (0013) + T12023(0013) = 0

is an equation of our surface that gives two self—adjoin?

determinantal representations

0 J12 90’13
o2 0 o923
013 023 O
and
0 &1z 053
o2 0 o923
0013 023 0

Using the poin{3, —1, 0, 1] we find that\ = 1 and we

If we are given an equation of a line then we still need
to solve an equation of degrédo find an equation of a

Fritangent plane. Once we have an equation of a tritan-
gent plane it is possible to compute exactly equations

€or all 27 lines and 45 tritangent planes.

Suppose we know the tritangent plang and the lines
a1, bs andeys. Since all the tritangent planes that con-
tain a given line onS can be computed explicitly by
solving a quintic equation [13, pp. 106-107] we can
explicitly find the remaining four tritangent planes that
contain either ofiy, by Or ¢15 Since we knowry;. Con-
tinuing in this manner we can explicitly compute equa-
tions for all 45 tritangent planes and 27 lines$n

For real cubic surfaces we can compute self-adjoint and
definite determinantal representations once we know
equations of lines and tritangent planesSof

To conclude, we briefly discuss two examples taken
from [2].
Example 3.1 Consider Fermat surface given by the
quation

F=z+224+25+2=0.
We represent a line

Q2o + 121 + iozo + 323
Bozo + 121 + Baza + B3z3

by a2 x 4 matrix
Qg (1 G2 Q3 )

<ﬂo Pr B2 B3

Because of the symmetry df it is easy to obtain the

chooseff = 1. We compute the determinant and find27 lines onS:

that the polynomial (1 1.0 0 110 0 110 0
- 5 ) ) ) 00 1 1>’<0 0 1 w)’(O 0 w 1)*
F= 220 9207 43252 — 9223 1 w 00 (1 wo0| (1L w00
-‘1-272021 — 72202122 — 92022 + 9ZQZ3 o o 1 1)°\o 0 1 w/’\0 0 w 1)°
—812%2’2 + 1082123 + 27z12023 w 1 0 0 w 1 0 0 w 1 0 0
f' ‘ 0 01 1)°\0 0 1 w/’\0 0 w 1)
defines our surface. O 1010 101 0 10 1 0
010 1/°\0 1 0 w/’\0O w 0 1)°
3 Algorithms if given a line or a tritangent 1 0w 0 (1 0w 0 1 0 w 0
p|ane OnS 01 0 1/)°’\0 1 0 w/’\0 w 0 1)
w 0 1 0 w 0 1 0 w 0 1 0
The problem of computing equations of alineonacu- {o 1 o 1)°\0 1 0 w/)'\0 w 0 1)’
bic surface if given a defining polynomial is, in gen- 100 1 100 1 10 0 1
eral, not solvable by radicals. Transcendental meth- (0 11 0) , (0 1 w O) , (O w1 0) ,
ods for finding equations of a line were described by
Klein and Coble [4, 10]. Numerical methods to com- (1 00 “’) <1 0 0 "J) (1 00 ‘*’)
pute equations of a line are given by %y in her 011 0/°\0 1 w 0/°\0 w 1 0"
Ph.D. thesis [18]. (w 00 1) (w 0 0 1 ) (w 0 0 1>
. . . 0 11 0/)’\0 1 w 0 )’\0 w 1 0)°
The procedure to find all nonequivalent determinantal
representations from an equatiéh= 0 for S is there- wherew is a primitive third root of unity.
fore not as direct as it was for their construction fron#:onsider determinantal representation
the six points of the blow-up. However, once we obtai P
an equation of a tritangent plane $owve can explicitly 0 20+21 23+ 23
compute equations of all tritangent planes. Then we s — ( wzs + 23 0 20 + w21 ) )
proceed as in Algorithm 2.1. W2+ 21 22 +wes 0



TogetherM andM? correspond to the double six

w100y (1100) (1w00\ (1001\ (100w) (w001 tion at
(OOwl)’(0010.1)’(0011)7(0110)’(01w0)a(0w10)

is definite. Indeed, for example evaluate the representa-

20 =002, 21 =0, 20 = —1.2, z3 = 0.3

(6011): (0001) Gore): (670 (0w 10)- (6710

Observe that determinantal representatiddisis not are all

and see that its eigenvalues0013, 1.17540, 0.00293

positive.

equivalent to a self-adjoint one, since the double-si®p the other hand, determinantal representation

contains real lines.

20 —3.0033325+6.00499z3

2.04124z0—iz1 —0.0067923

Consider next

2.04124zp+iz1 —0.00679z3

0 0.49979(1—1)
323—2z2  (144)(220—i %8 21)

—0.12000
0

|

0 29 +wzs 2o +wzy
M = wzo + 21 0 Zz9 + 23 . )
wzo + 23 20+ 21 0 IS non-

and can be found in [2].

The determinantal representatioht and (M)t cor-
respond to the double-six

(G0 Go10)s (6510) (0100): (5170): (603%)
(001)> (5011) (oo 1): (6196) (0w0)- (61w 0)
which is mutually self-conjugate of thél7-rd kind.

ThereforeM’ is equivalent to a self-adjoint determinan-
tal representation. Indeed,

[1]

(2]

3]

w2 0 0
0 0 1 M =
0 1 0
[4]
0 Wlze + 23 wizo+ 21
w2z + 23 20+ 21 0
wzo + 21 0 Zz2 + 23

[5]
We conclude that Fermat surface is of the Segre type

F, and thus it ha$ nonequivalent self-adjoint and no
definite determinantal representations. O

[6]

Example 3.2 Let S be a surface defined by equation

100
<2423 + Z%) (20 + 22)

1
—Z3 | 23 — <X2 zZ3 —
2

Itis easy to check théff is of typeF5. It has 3 real lines
on the planey + z; = 0. Through the line

[7]
2

ZQ>

0.

3
(8]

Z(]+22:323—222:0

[9]
there are 4 real tritangent planes, each containing two
intersecting complex conjugate lines: [10]

2o + 0.9898725 + 0.0151923
zo + 0.0134525 + 1.4798225
zo — 3.0033329 + 6.0049923

[11]

0.49979(1+1)

(1-d)(A204+i¥82) 0.0066623

definite. The proof of non-definiteness is longer
O
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