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Abstract: We investigate the zero–patterns that can be created by unitary
similarity in a given matrix, and the zero–patterns that can be created by
simultaneous unitary similarity in a given sequence of matrices. The latter
framework allows a “simultaneous Hessenberg” formulation of Pati’s tridiag-
onal result for 4×4 matrices. This formulation appears to be a strengthening
of Pati’s theorem. Our work depends at several points on the simplified proof
of Pati’s result by Davidson and Djoković. The Hessenberg approach allows
us to work with ordinary similarity and suggests an extension from the com-
plex to arbitrary algebraically closed fields. This extension is achieved and
related results for 5× 5 and larger matrices are formulated and proved.
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1. Introduction What patterns of zeros can be created in an arbitrary
n × n matrix by means of unitary similarity? This question is perhaps too
general to have a satisfactory solution. Nevertheless something of interest
can be said and the present note deals with results, conjectures (supported
to various extents by computer experiment), and more specific problems sug-
gested by the general question.

This work was inspired in part by the recent paper of Davidson and Djoković
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[DD]; they provide a new and simpler proof of the theorem of Pati [P]: every
4× 4 complex matrix is unitarily similar to a tridiagonal matrix. Note that
a 4 × 4 tridiagonal matrix has a particular pattern of six zeros, the same
number as in the more familiar Schur upper–triangular form. We may say,
in this case, that the zeros of the upper–triangular form can be moved (by a
unitary similarity) into the positions corresponding to tridiagonal form. See
section 2 for a discussion of this and related results such as the “simultaneous
Hessenberg” conjecture.

In the upper–triangular form of an n × n matrix we have the triangular
number ∆n = n(n − 1)/2 of zeros below the diagonal. This form and the
upper-Hessenberg form are examples of “upper–forms”, ie forms in which
the required zeros are in positions {(i, j) : i ≥ z(j)} and z(j) ≤ z(j + 1).
Thus for upper–triangular form z(j) = j + 1 and for upper–Hessenberg form
z(j) = j +2. Equivalently, a pattern of zeros defines an upper–form if, when-
ever (i, j) is the position of a required zero, so is (i′, j′) provided i′ ≥ i and
j′ ≤ j. We shall say a pattern of zeros in a sequence of 0–1 n× n matrices
A1, A2, . . . , Am is feasible if every sequence B1, B2, . . . , Bm of n× n complex
matrices can be transformed simultaneously via similarity by a unitary U
into the given pattern: (∀k) (Ak)ij = 0 ⇒ (UBkU

∗)ij = 0. In this note we
focus on zero patterns where each Ak is an upper–form (which may depend
on k).

Remark 1: For upper–forms any similarity is as good as unitary similarity:
if S is invertible and SBS−1 has a given upper–form, then UBU∗ also has
that form, where S = UT factors S into a unitary U and an upper–triangular
T (U is obtained by applying the Gram–Schmidt process to the columns of
S). Note that S−1 = T−1U∗, that T−1 is also upper–triangular, and that an
upper–form is preserved by right or left multiplication by upper–triangular
matrices. This remark means that we need only deal with ordinary similarity
and that the problems of feasible forms become simply a matter of complex
algebraic geometry.

In section 3 we consider some feasibility problems that may be answered
by means of some standard results on the dimensions of complex projective
varieties. In section 4 we survey some more challenging problems, includ-
ing certain conjectures about feasible zero patterns and the experimental
evidence that supports them. We also mention problems that arise when
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commutativity of the matrix sequence is assumed.

An appendix by Tomaž Košir and B. A. Sethuraman establishes several of
our conjectures, and greatly extends the range of such results.

Much of this work stems from discussions during the Conference in Honor of
Heydar Radjavi’s 70th Birthday and the 4th Linear Algebra Workshop held
in Bled, Slovenia in May 2005. We are grateful to all the participants for
their input but particularly to Rajendra Bhatia, Charles Johnson, and Roy
Meshulam for very helpful comments. This work was supported in part by
NSERC of Canada.

2. Tridiagonal and simultaneous Hessenberg forms

It appears that Longstaff [L] first introduced the problem of tridiagonalizing
arbitrary matrices via unitary similarities. While this is easy for any 3 × 3
matrix, Longstaff and Sturmfels [St] used a dimensional argument to show
that among matrices 6× 6 and larger there must be some that are not uni-
tarily similar to tridiagonals. Fong and Wu [FW] modified this approach to
show that not all 5 × 5 matrices are unitarily similar to tridiagonal forms.
This left the apparently challenging question of whether the tridiagonal form
was feasible (in our sense) for 4 × 4 matrices. Fong and Wu guessed that it
was not, but computer experiments designed by Holbrook and Schoch [Sch]
strongly suggested that it was feasible. Finally Pati proved this via a rather
formidable argument in algebraic geometry [P].

Holbrook and Schoch had also considered an (apparently) stronger conjecture
which they called the “simultaneous Hessenberg” conjecture. This claims
that the zero pattern consisting of two upper–Hessenberg 4 × 4 matrices is
feasible, ie that given any pair B1, B2 of 4 × 4 complex matrices there is an
invertible S such that both SB1S

−1 and SB2S
−1 are upper–Hessenberg. In

view of Remark 1, this would immediately imply the tridiagonal result for
any 4× 4 B by applying it to the pair B, B∗. While numerical experiments
reported in [Sch] provided considerable support for the simultaneous Hessen-
berg conjecture, it did not seem clear how to apply Pati’s technique to settle
that conjecture. Recently it was observed by Košir and Sethuraman that the
new approach to Pati’s result developed in [DD] can be adapted to establish
the “stronger” conjecture.
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Proposition 2: The zero pattern determined by two 4×4 upper–Hessenberg
0–1 matrices is feasible. A fortiori, any 4 × 4 B can be (unitarily) tridiago-
nalized.

Proof: Most of the arguments in section 2 of [DD], which deal with a pair
A,B of Hermitian 4 × 4s, apply without change to arbitrary 4 × 4 matrices
B1, B2. Of course, the subspace chains V1 ⊂ V2 ⊂ V3 with dim(Vk) = k and
BjVk ⊂ Vk+1 imply upper–Hessenberg forms in this general case, rather than
tridiagonal forms. Note that the matrix pairs that are simultaneously similar
to upper–Hessenbergs form a closed space; here Remark 1 plays a role: we
may assume the similarities involved are unitary, and the unitary 4×4s form a
compact space. Thus we need only prove the result for a dense subset of pairs
B1, B2; we may thus assume that B1 has distinct eigenvalues α1, α2, α3, α4.
Since we can deal with ordinary similarity (Remark 1 again), we assume that
B1 is diagonal, with B1ei = αiei. We also assume the analogue of condition
(ii) in the proof of [DD, Theorem 2.1]:

{ei, B2ei, B
2
2ei, B1B2ei} are linearly independent (1 ≤ i ≤ 4). (1)

We observe, as in Remark 2.3 of [DD], that if one of the conditions (1) fails we
immediately obtain a chain V1 ⊂ V2 ⊂ V3 with dim(Vk) = k and BjVk ⊂ Vk+1.
For example, if V = span{ei, B2ei, B

2
2ei, B1B2ei} has dimension 2, then V is

invariant for B1 and B2, so that the chain defined by V1 = Cei, V2 = V , and
any three–dimensional V3 (containing V2) allows us to put B1, B2 in upper–
Hessenberg form (with an extra zeros in the (3,2) position). The rest of the
argument is just as in [DD] (with B1 in place of A, B2 in place of B). In par-
ticular, (1) allows us to check the multiplicities of the extraneous solutions
as in Lemma 2.2 of [DD]. QED

Expressed visually, this proposition says that, along with the upper–triangular
zero pattern 



1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1


 ,
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the following pattern is also feasible:



1 1 1 1
1 1 1 1
0 1 1 1
0 0 1 1


 ,




1 1 1 1
1 1 1 1
0 1 1 1
0 0 1 1


 .

Note that the simultaneous Hessenberg formulation of the result may suggest
further simplifications in the arguments: since ordinary similarity is all we
require the problem becomes purely algebraic and we can set aside the more
troublesome unitary (or Hermitian) conditions.

Note that a version of Proposition 2 may be given for matrices over any
algebraically closed field; the appendix by Košir and Sethuraman takes this
point of view and includes extensions to 5× 5 and larger matrices. See also
section 4.

In [FW] Fong and Wu show that a 4× 4 matrix B can be unitarily tridiago-
nalized iff there exists a nonzero vector v such that

rank[v,Bv,B∗v, B2v, (B∗)2v, BB∗v, B∗Bv] ≤ 3,

an observation that the authors attribute to Heydar Radjavi. In [Sch] the
corresponding result for a pair B, C of 4×4 matrices is established: B and C
can be put simultaneously into upper–Hessenberg form by a similarity iff the
“joint Radjavi condition” is satisfied, namely, there exists a nonzero vector
v such that

rank[v, Bv, Cv, B2v, C2v, BCv, CBv] ≤ 3.

Thus another way of expressing Proposition 2 is to say that every pair of
4× 4 matrices satisfies the joint Radjavi condition.

3. First–column zero patterns

We are indebted to Roy Meshulam for pointing out that certain zero–pattern
problems can be resolved using standard results from algebraic geometry.
The key result (see for example Proposition 12.2 of [H]) is that the complex
projective variety M(n,m, k) consisting of n×m nonzero complex matrices of
rank at most k has codimension (n−k)(m−k), assuming that k ≤ max(n,m).
Thus any linear subspace of the n × m matrices having dimension greater
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than (n − k)(m − k) contains a (nonzero) matrix in M(n,m, k), whereas if
d ≤ (n−k)(m−k) there is a subspace of dimension d that does not intersect
M(n, m, k). The following two examples illustrate these ideas.

Example 3: The ∆3 = 3 zeros in the upper–triangular form of a 3×3 matrix
can be moved to the lower left corners of any three 3×3 matrices B1, B2, B3, ie
there exists nonsingular S such that each of SB1S

−1, SB2S
−1, SB3S

−1 has a
zero in position (3,1). Using our notion of feasible zero patterns, this says that
the pattern determined by three upper–Hessenberg 3× 3 matrices A1, A2, A3

is feasible. We need only find v 6= ~0 such that rank[v, B1v, B2v,B3v] ≤ 2;
then choose a basis {v, u, t} such that each Bkv ∈ span{v, u} so that with
respect to this basis the matrix of each Bk is upper–Hessenberg. Consider the
map ϕ : C3 → M(3, 4) (where M(n,m) denotes the space of n×m complex
matrices) defined by

ϕ(v) = [v,B1v, B2v, B3v].

Since ϕ is linear (and evidently injective) the dimension of ϕ(C3) is 3. This
exceeds the codimension of M(3, 4, 2): (3− 2)(4− 2) = 2. Hence there exists
v 6= ~0 such that ϕ(v) ∈ M(3, 4, 2). Expressed visually, the zero pattern




1 1 1
1 1 1
0 1 1


 ,




1 1 1
1 1 1
0 1 1


 ,




1 1 1
1 1 1
0 1 1




is feasible, as ∆3 = 3 might suggest.

Example 4: The ∆4 = 6 zeros in the upper–triangular form of a 4 × 4
matrix cannot in general be moved to the 6 positions (2,1), (3,1) of B1, B2, B3.
Expressing this visually: although the upper–triangular zero pattern




1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1




is, as always, feasible, the pattern



1 1 1 1
1 1 1 1
0 1 1 1
0 1 1 1


 ,




1 1 1 1
1 1 1 1
0 1 1 1
0 1 1 1


 ,




1 1 1 1
1 1 1 1
0 1 1 1
0 1 1 1


 (2)
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is not feasible. To see this, note that if {v, u, t, s} is a basis with respect to
which B1, B2, B3 assume the proposed zero pattern we have B1v,B2v,B3v ∈
span{v, u}. Defining ϕ : C4 → M(4, 4) by ϕ(x) = [x,B1x,B2x,B3x], we see
that v is such that ϕ(v) ∈ M(4, 4, 2). Since the codimension of M(4, 4, 2) is
(4− 2)(4− 2) = 4 there exists a 4–dimensional linear subspace L of M(4, 4)
such that L ∩M(4, 4, 2) = ∅. Let C1, C2, C3, C4 be any basis for L and let
D0, D1, D2, D3 ∈ M(4, 4) be defined by setting Djek = Ckej+1, where ek is
the k–th standard basis vector in C4; that is, the k–th column of Dj is column
j+1 of Ck. Let ψ : C4 → M(4, 4) be defined by ψ(x) = [D0x,D1x,D2x,D3x].
We see that ψ(ek) = Ck so that ψ(C4) = L. Since M(4, 4, 2) is closed we
can “wiggle” D0, if necessary, so that D0 is invertible and we still have
ψ(C4) ∩ M(4, 4, 2) = ∅. Let Bk = D−1

0 Dk (k = 1, 2, 3). Now we cannot
have ϕ(v) ∈ M(4, 4, 2) for then also D0ϕ(v) ∈ M(4, 4, 2), yet D0ϕ(v) =
D0[v,D−1

0 D1v, D−1
0 D2v, D−1

0 D3v] = ψ(v).

Experiment 5: The existence of L, as in Example 4, follows on general
principles, but in this setting we can (as Roy Meshulam pointed out) con-
struct an appropriate L explicitly. It will be convenient to do so as follows.
Let L consist of matrices of the form




a c 0 0
b a + d c 0
c b a + 2d c
d 0 b d


 ,

where a, b, c, d ∈ C. It is easy to see that such a matrix has rank greater
than 2 unless it is 04, ie a = b = c = d = 0. Indeed, looking at the upper
right 3 × 3 submatrix we see it has rank 3 unless c = 0; if c = 0 then the
matrix has rank at least 3 unless unless some two of the diagonal elements
are 0, implying a = d = 0; but the remaining matrix has rank 3 unless b = 0.
Thus L ∩M(4, 4, 2) = ∅. Furthermore, using again the notation of Example
4, we have L = ϕ(C4) where

B1 =




0 0 1 0
1 0 0 1
0 1 0 0
0 0 0 0


 , B2 =




0 0 0 0
0 0 1 0
1 0 0 2
0 1 0 0


 , B3 =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


 .

Thus B1, B2, B3 are three explicit matrices that cannot be transformed by a
similarity to the zero pattern (2); this may seem unlikely in view of the fact
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that these matrices already have zeros in all but one of the required positions!

A computational experiment may be performed to test this explicit exam-
ple and to determine, in a certain sense, how close we can come to the zero
pattern (2). The techniques described here may also be instructive because
they amount to toy versions of the techniques that earlier led to our belief
in the tridiagonal result (proved, in time, by Pati) and in the simultaneous
Hessenberg conjecture, as well as those that support the conjectures we shall
discuss in section 4.

We claim that if a unitary U is such that UB1U
∗ and UB2U

∗ have zeros
in positions (3,1) and (4,2), and UB3U

∗ has zero in position (4,1), then the
minimum possible value of |(UB3U

∗)31| is about 0.1975. An orthonormal ba-
sis v, u, t, s with respect to which B1 and B2 have the required zeros must be
such that B1v, B2v ∈ span{v, u}, so that v, B1v,B2v are linearly dependent.
Thus v must be a unit eigenvector of B(z) = zB1 + (1 − |z|)B2 for some
z ∈ D, the closed unit disc in C. The corresponding u is then the (essentially
unique) vector such that v, u are orthonormal in span{v, B1v, B2v}. A simple
MATLAB program searches over a fine grid of z–values in D to determine
the possible pairs v, u. If, in addition, B3 has 0 in position (4,1) with respect
to v, u, t, s we must have B3v ∈ span{v, u, t}, ie t is obtained by orthonor-
malizing v, u,B3v. For B3, the entry in position (3,1) becomes (B3v, t) and
must have modulus

√
‖B3v‖2 − |(B3v, v)|2 − |(B3v, u)|2. The minimum of

this value over a fine grid on D turns out to be about 0.1975. Perversely,
if we interchange the roles of B2 and B3 so that we start with the required
zeros in B1 and B2, the minimum modulus of the (3,1) entry in UB3U

∗ is
larger, about 0.68.

Based on the ideas of Examples 3 and 4, we may establish the following more
general result.

Proposition 6: A zero pattern of n × n matrices A1, A2, . . . , Aq requiring
zeros (for each matrix) in the first column positions (i,1) for i > k is feasible
iff n > (q + 1− k)(n− k), assuming k ≤ q + 1, n.

Proof: We must have n greater than the codimension of M(n, q + 1, k).
QED
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Remark 7: It follows easily that the total number of required zeros in such
a pattern, namely (n − k)q, cannot exceed ∆n, the number in the upper–
triangular form of a single n × n matrix. In fact the inequality of Propo-
sition 6 shows that the total number of zeros cannot even attain ∆n for
n ≥ 4. We have seen an instance of this in Example 4; similarly, we cannot
move 6 = ∆4 zeros into the lower left corners of 6 arbitrary 4 × 4 matrices
(n = 4, q = 6, k = 3).

From Charles Johnson we learned of a related issue: it seems that among
matrix analysts there is a folklore problem that asks whether there is some
n such that every n × n matrix is unitarily similar to one with more than
∆n zeros, where the pattern is allowed to change with the matrix. This is
easy to rule out directly for very small n but otherwise requires an indirect,
dimension–counting argument. Of course, Proposition 6 deals with fixed (and
very special) zero patterns.

4. Further results, experiments, conjectures, and questions

Computer experiments (similar to that outlined in Experiment 5) with pairs
of 5 × 5 matrices, attempting to put them in something like simultaneous
Hessenberg form, supported conjectures that certain upper–forms are feasi-
ble for pairs of 5× 5 matrices but that others are not. There is a connection
with the examples in [DD] of 5 × 5 matrices that cannot be tridiagonalized
(and with examples of that phenomenon found computationally in [Sch], and
earlier suggestions in [Cam]). For example, computations suggested that the
zero pattern 



1 1 1 1 1
1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1




,




1 1 1 1 1
1 1 1 1 1
0 1 1 1 1
0 1 1 1 1
0 0 1 1 1




(3)

is feasible. Note the 10 = ∆5 zeros in total. This conjecture is verified in
the appendix below, and in fact there is a nice n × n generalization of (the
simultaneous Hessenberg version of) Pati’s result: any two n×n matrices are
(unitarily) similar to an upper–Hessenberg matrix and a matrix with zeros
in positions (3, 1)− (n, 1), and (n, 2).
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Other experiments suggested that the patterns




1 1 1 1 1
1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1




,




1 1 1 1 1
1 1 1 1 1
0 1 1 1 1
0 1 1 1 1
0 1 0 1 1




(4)

and 


1 1 1 1 1
1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1




,




1 1 1 1 1
1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 1 1 1 1




(5)

are feasible, via unitary similarity. Since these last two are not upper–forms,
the distinction between similarity and unitary similarity must be addressed.
The appendix deals with patterns like (4) and (5) as well.

The fact that commuting matrices can be simultaneously triangularized sug-
gests a host of questions about zero patterns. For example, given commuting
n × n matrices, can we move the 2∆n zeros that seem to be available to
other positions? It seems unclear whether significant results of this type are
available. For example, if S is the shift




0 0 0
1 0 0
0 1 0


 , (6)

then S and S2 cannot even be put simultaneously in tridiagonal form!
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Appendix: Upper-Forms for Pairs of Matrices

by Tomaž Košir and B. A. Sethuraman 2

Holbrook and Schoch asked whether any pair of matrices in M4(C) is unitar-
ily similar to a pair of matrices in the upper-Hessenberg form. The purpose
of this appendix is to show that by simply restating the results and reword-
ing some of the arguments used by Davidson and Djoković to prove Pati’s
theorem [DD], that question can be answered affirmatively. While in [DD]
the results are over the field of complex numbers and for a pair of hermitian
matrices we restate them over an algebraically closed field and for a general
pair of matrices. Moreover, using a slight generalization of Davidson and
Djoković’s arguments, we can obtain a more general “upper-form” result for
n× n matrices; we sketch the proof of this result as well.

Let us first introduce some notation. We denote by F an algebraically closed
field and by Mn(F ) the set of all n× n matrices over F . A pair of matrices
(A, B) is simultaneously similar to a pair of matrices (C,D) if there is an
invertible matrix S such that C = S−1AS and D = S−1BS. If F = C and
S−1 = S∗ is a unitary matrix then we say that (A,B) is unitarily similar
to (C,D). A matrix A = [aij] ∈ Mn(F ) is in the upper-Hessenberg form if
aij = 0 whenever i − j > 1. We denote the projective space of dimension k
over F by Pk(F ). We view the space of all nonzero pairs of matrices, mod-
ulo simultaneous multiplication by a nonzero scalar, as the projective space
P2n2−1(F ), so that nonzero pairs of matrices act as homogeneous coordinates
for P2n2−1(F ).

First we state the result over a general F . It was essentially proved by David-
son and Djoković in [DD].

2Addresses: T. Košir, Department of Mathematics, University of Ljubljana, Jadran-
ska 19, 1000 Ljubljana, Slovenia.
B. A. Sethuraman, Department of Mathematics, California State University Northridge,
Northridge CA 91330, U.S.A.
e-mail: tomaz.kosir@fmf.uni-lj.si, al.sethuraman@csun.edu.
The authors were supported in part by US–Slovenian bilateral research grants from the
National Science Foundation, USA, and the Ministry of Higher Education, Science and
Technology, Slovenia.
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Theorem A.1. A pair of matrices (A,B) in M4(F ) is simultaneously sim-
ilar to a pair of matrices in the upper-Hessenberg form.

Proof. We outline a proof which is in essence the same as the proof of
Davidson and Djoković in [DD, §2].

We need to establish the existence of a complete flag of subspaces

F : 0 ⊂ V1 ⊂ V2 ⊂ V3 ⊂ V4 = F 4, dim Vj = j,

such that
AVj ⊂ Vj+1, BVj ⊂ Vj+1; j = 1, 2. (7)

We denote the projective variety of all complete flags F by F. The conditions
such as (7) can be expressed as polynomial conditions in the Plücker coor-
dinates of various Grassmannians (see, for instance, Part III of [Fu] or [H]).
Thus the set of triples (A,B;F) in the projective variety P31(F ) × F that
satisfy the conditions (7) is closed (in the Zariski topology) and therefore
also its projection to the first component is closed (see [Sh, p. 58]). It is irre-
ducible since it is the image of the irreducible variety of all triples (A,B; S)
under the morphism (A,B; S) 7→ (S−1AS, S−1BS), where A and B are ma-
trices in the upper-Hessenberg form and S is invertible. It is enough to show
that a generic pair of matrices is in the projection to the first component
to conclude that every pair of matrices is in the projection, i.e., to conclude
that every pair of matrices is simultaneously similar to a pair of matrices in
the upper-Hessenberg form. Following [DD] we make the following generic
assumptions:

1. A has four distinct eigenvalues α1, α2, α3, α4 and it is diagonal in a basis
{e1, e2, e3, e4}.

2. Vectors ej, Bej, B
2ej, ABej are linearly independent for each j.

We briefly outline an argument that shows that these indeed are generic as-
sumptions.

Consider map ϕ : Gl4(F ) × U × V → F 16 × F 16, where ϕ(G,A, B) =
(GAG−1, GBG−1), U ⊂ F 4 is the open set of all tuples

(
α1 α2 α3 α4

)
,

where the αi are all distinct and nonzero (we want to think of this 4-tuple
as the diagonal of the matrix A) and V ⊂ F 16 is the set of all matrices B
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such that for each j, the j-th column of I, the j-th column of B, the j-th
column of B2, and the j-th column of AB are linearly independent. Since
we are using a fixed basis these are open set conditions on diagonal matrix
A and matrix B. We want to show that the closure of the image of ϕ is F 32.
To compute the dimension of the image of ϕ, note that the domain space
has dimension 36. The fiber over a typical point (GAG−1, GBG−1) consists
of all triples (GM,M−1AM, M−1BM), where M is an invertible monomial
matrix, i.e., M is a product of a permutation matrix and a diagonal matrix.
Thus, the fiber is 4-dimensional. It follows that the dimension of the image
of ϕ is 32, as needed.

Next we consider the system of equations

(sA + tB − λI)u = 0 and det
(
u Au A2u BAu

)
= 0 (8)

for ([s : t : λ]; u) ∈ P2(F )×P3(F ). The key ideas that lead to these equations
are the following: Observe that the generic assumptions imply that matrices
A and B have no common eigenvector. Then we consider solutions of the
system (8). If the second component u of a solution ([s : t : λ]; u) is different
from all ej then it gives a chain of distinct subspaces 0 ⊂ V1 = span(u) ⊂
V2 = span(u,Au) such that AV1 ⊂ V2 and BV1 ⊂ V2. If the dimension of
the subspace V3 = span(u,Au, A2u) is equal to 3 the subspaces Vj induce
a required flag of subspaces. Otherwise the dimension of V3 is equal to 2
and we consider the subspace V ′

3 = span(u,Au,BAu). If it is of dimension
3 we have a required flag. If dim V3 = dim V ′

3 = 2 then any 3-dimensional
subspace V ′′

3 such that V2 ⊂ V ′′
3 will give us a required flag. Next, we observe

that ([1 : 0 : αj], ej) for each j is also a solution of the system (8) but it
does not yield a required flag F . It is called an extraneous solution. We
need to establish the existence of a non-extraneous solution. It follows from
Bezout’s Theorem for a product of projective spaces (see [Sh, p. 237]) that if
the system (8) has finitely many solutions then it has generically 24 solutions
(counting multiplicities). Exactly the same proof as that of Lemma 2.2 in
[DD] shows that each extraneous solution has multiplicity three and so all of
them account for 12 of the solutions. Hence, there is at least one flag which
gives the upper-Hessenberg form for (A,B). QED

Remark. From [DD, Example 5.1] it follows that if the characteristic of F
is 0 there are generically exactly 12 flags that give upper-Hessenberg form
for (A,B). Here note that all the entries of both matrices in the example are
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integers.

The following is a simple consequence of Theorem A.1. It was essentially
proved in [DD].

Corollary A.2. A pair of matrices (A,B) in M4(C) is unitarily similar
to a pair of matrices in the upper-Hessenberg form.

Proof. By Theorem A.1 there is an invertible matrix S such that S−1AS
and S−1BS are in the upper-Hessenberg form. Let S = QR be a QR-
decomposition of S, i.e., a decomposition where Q is a unitary matrix and
R is an invertible upper-triangular matrix. Since R is upper-triangular it
follows that (RS−1ASR−1, RS−1BSR−1) = (Q∗AQ,Q∗BQ) is a pair of ma-
trices in the upper-Hessenberg form. QED

As another consequence of Theorem A.1 and Corollary A.2 we have a proof
of Pati’s Theorem [P]:

Corollary A.3. Every matrix A ∈ M4(C) is unitarily similar to a tridiag-
onal matrix.

Proof. Apply Corollary A.2 to a pair (A,A∗). QED

The Davidson-Djoković arguments can be generalized further for n ≥ 5. It
follows from results of Longstaff [L], Sturmfels [St] and Fong and Wu [FW] on
tridiagonalization of a matrix that not all pairs of n×n matrices for n ≥ 5 are
simultaneously similar to a pair of matrices in the upper-Hessenberg form.
However a less restrictive upper-form is possible.

Theorem A.4. A pair of matrices (A,B) in Mn(F ) is simultaneously sim-
ilar to a pair (C,D), where C is in the upper-Hessenberg form and D is a
matrix with zeros in positions (i, 1), i = 3, 4, . . . , n and (n, 2).

Proof. The proof is a slight generalization of the arguments in [DD]. We
sketch a proof following the arguments of the proof of Theorem A.1.
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For a pair of n×n matrices (A,B) we have to find a complete flag of subspaces

F : 0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = F n, dim Vj = j,

such that

AVj ⊂ Vj+1, j = 1, 2, . . . , n− 1; BV1 ⊂ V2, BV2 ⊂ Vn−1. (9)

As in the proof of Theorem A.1 we show that the set of all pairs of matrices
(A, B) that satisfy conditions (9) for a complete flag F is an irreducible
variety in P2n2−1(F ). Then it is enough to show that the statement of the
theorem is true for a generic pair of matrices. We make the following generic
assumptions:

1. A has n distinct eigenvalues α1, α2, . . . , αn and the corresponding eigen-
vectors are e1, e2, . . . , en.

2. The set of vectors {ej, Bej, B
2ej, A

kBej k = 1, 2, . . . , n− 3} is linearly
independent for each j.

The system of equations to consider is

(sA + tB − λI)u = 0 and det
(
u Au · · · An−2u BAu

)
= 0 (10)

for ([s : t : λ]; u) ∈ P2(F ) × Pn−1(F ). As in [DD] we see that there are
either infinitely many solution or there are (n3 − n2)/2 solutions counting
multiplicities; here we apply Bezout’s Theorem for a product of projective
spaces (see [Sh, p. 237]). We have n extraneous solutions ([1 : 0 : αj], ej),
which do not give a flag satisfying conditions (9). To find the multiplicity
of an extraneous solution we use similar arguments to those in the proof
of Lemma 2.2 in [DD]. Let us briefly outline them for ([1 : 0 : α1], e1).
In the local ring at this point we set s = 1 and u1 = 1, where we write

u =
(
u1 u2 · · · un

)T
. The unique maximal ideal is generated by {α1 −

λ, t, u2, u3, . . . , un}. Then the lowest degree terms of the equations in the
system (A + tB− lλI)u = 0 are α1− λ, u2, . . . , un. Modulo the ideal J0 that
these terms generate we have

det
(
u Au · · · An−2u BAu

)

≡ det
(
u (A− λI)u · · · (An−2 − λn−2I)u BAu

)

≡ det
(
u −tBu · · · − (An−3 + λAn−4 + · · ·+ λn−3I) tBu BAu

)

≡ (−t)n−2 det
(
u Bu · · · An−3Bu B(A− λI)u

)

≡ (−t)n−1 det
(
u Bu · · · An−3Bu B2u

)
.
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By our generic assumption the latter determinant is nonzero and we see
that the extraneous solution has multiplicity n − 1. Then it follows that
all the extraneous solutions account for n2 − n solutions and that there are
(n3 − 3n2 + 2n)/2 ’good’ solutions. We still have to show that a ’good’
solution gives a required flag. Given a ’good’ solution one considers the flag
V1 = span(u), V2 = span(u,Au), . . . , Vn−1 = span(u,Au, ..., An−2u). Observe
that if ([s : t : λ]; u) is a ’good’ solution then u is different from all ej, t 6= 0
and therefore V1 and V2 are distinct and such that AV1 ⊂ V2 and BV1 ⊂ V2.
If all the subspaces Vi are distinct it follows from the second of equations
(10) that conditions (9) hold and we are done. Otherwise Vi = Vi+1 for some
i ≥ 2. In this case we extend the flag V1, . . . , Vi by adding suitable vectors
ek to obtain Vi+1, ..., Vn−2. If BAu is not in Vn−2 then add it to obtain Vn−1,
otherwise just add a suitable ek. This shows the existence of a required flag.
QED

Remark. To show that generically the ‘good’ solutions in the above proof
correspond to distinct flags one would have to prove the existence of at least
one example with all distinct flags. Holbrook ran a computer experiment
which indicates that for F = C and n = 5 there are 30 distinct solutions.

Remark. The extra zero entry in the second column of D in Theorem A.4
can be moved into some other position (p, r) with p− r ≥ 2. We discuss the
two remaining cases when n = 5. One could try to generalize the arguments
for some other small n > 5. However, the case by case analysis is not suitable
for general n.

When n = 5 there remain two cases to consider: (a) (p, r) = (4, 2) and (b)
(p, r) = (5, 3). To show that the extra zero can be moved to these (p, r)
positions we have to adjust the proof of Theorem A.3 appropriately. Let us
explain all the necessary changes.

We discuss both cases simultaneously. We are looking for a complete flag of
subspaces

F : 0 ⊂ V1 ⊂ · · · ⊂ V4 ⊂ V5 = F 5, dim Vj = j,

such that

AVj ⊂ Vj+1, j = 1, 2, 3, 4; BV1 ⊂ V2, BVr ∩ Vp ⊂ Vp−1. (11)
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Since these are all algebraic conditions it follows that the set of all pairs
(A, B) satisfying (11) is closed and irreducible. We keep the first generic
assumption that A has distinct eigenvalues with corresponding eigenvectors
ej while we replace the second one by the assumption that the set of vectors
{ej, Bej, B

2ej, ABej, A
3Bej} and {ej, Bej, BABej, ABej, A

2Bej}, in cases
(a) and (b) respectively, is linearly independent for each j. The system of
equations we consider is now changed to

(sA + tB − λI)u = 0 and det
(
u Au A2u A4u BAu

)
= 0 (12)

and

(sA + tB − λI)u = 0 and det
(
u Au A2u A3u BA2u

)
= 0, (13)

in cases (a) and (b) respectively. Now the same arguments as in the proof
of Theorem A.3 show that if the above systems have finitely many solutions
then they have 50 solutions counting multiplicities. To find the multiplicity
of each extraneous solution ([1 : 0 : αj], ej) one has to adjust the proof of
Lemma 2.2 of [DD]. Following the arguments there we take the extraneous
solution ([1 : 0 : α1], e1) and view the local ring over that point. We may set

s = 1 and u1 = 1, where u =
(
u1 u2 · · · u5

)T
. The unique maximal ideal

m in the local ring is generated by λ − α1, u2, u3, u4, u5 and t. Let Ja ⊂ m
and Jb ⊂ m be the ideals generated by equations (12) and (13), respectively.
In both cases, the minimal terms of the 5 polynomials of bidegree (1, 1) are
−λ + α1, u2, u3, u4 and u5. We denote by J0 the ideal that they generate.
Modulo the ideal J0 we have in the case (a):

det
(
u Au A2u A4u BAu

)

= det
(
u (A− λI)u (A2 − λ2I)u (A4 − λ4I)u BAu

)

≡ det
(
u −tBu −(A + λI)tBu −(A3 + λA2 + λ2A + λ3I)tBu BAu

)

= −t3 det
(
u Bu ABu (A3 + λA2)Bu B(A− λI)u

)

= −t3 det
(
u Bu ABu (A3 + λA2)Bu −tB2u

)

= t4 det
(
u Bu ABu (A3 + λA2)Bu B2u

)
.

The degree 4 term of the latter expression is equal to

t4 det
(
e1 Be1 ABe1 A3Be1 B2e1

)
,
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which is nonzero because of our generic assumption. Similarly, we compute
in the case (b):

det
(
u Au A2u A3u BA2u

)

= det
(
u (A− λI)u (A2 − λ2I)u (A3 − λ3I)u BA2u

)

≡ det
(
u −tBu −(A + λI)tBu −(A2 + λA + λ2I)tBu BA2u

)

= −t3 det
(
u Bu ABu A2Bu B(A2 − λ2I)u

)

= −t3 det
(
u Bu ABu A2Bu −tB(A + λI)Bu

)

= t4 det
(
u Bu ABu A2Bu (BAB + λB2)u

)
.

The degree 4 term of the latter expression is equal to

t4 det
(
e1 Be1 ABe1 A2Be1 BABe1

)
.

It is nonzero because of the generic assumption. This shows that the ex-
traneous solutions account for 20 solutions in both cases. Thus there are
30 ’good’ solutions counting multiplicities. Given a ’good’ solution one con-
siders the flag V1 = span(u), V2 = span(u,Au), V3 = span(u,Au, A2u),
V4 = span(u,Au, A2u,A3u), V5 = F 5. If these subspaces are all distinct we
are done. Otherwise Vi = Vi+1 for i = 2 or i = 3. In these cases we have
to consider some further subcases. We list all the different cases and give
a required flag F in each case. Vectors ej and ek below are always chosen
so that the corresponding subspace is of appropriate dimension. No other
condition is imposed on their choice. Such a choice is always possible since
vectors ej form a basis.

Case (a), i = 2, BAu /∈ V2 and ABAu /∈ span(u,Au, BAu):

F : V1 ⊂ V2 ⊂ span(u,Au, BAu) ⊂ span(u,Au, BAu, ABAu) ⊂ F 5

Case (a), i = 2, BAu /∈ V2 and ABAu ∈ span(u,Au, BAu):

F : V1 ⊂ V2 ⊂ span(u,Au, BAu) ⊂ span(u,Au, BAu, ek) ⊂ F 5

Case (a), i = 2 and BAu ∈ V2:

F : V1 ⊂ V2 ⊂ span(u,Au, ek) ⊂ span(u,Au, ek, el) ⊂ F 5

Case (a), i = 3 and BAu /∈ V3:

F : V1 ⊂ V2 ⊂ V3 ⊂ span(u,Au, A2u,BAu) ⊂ F 5
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Case (a), i = 3 and BAu ∈ V3:

F : V1 ⊂ V2 ⊂ V3 ⊂ span(u,Au,A2u, ek) ⊂ F 5

Case (b) and i = 2: We can find a vector w /∈ V2 such that either w is
an eigenvector of B or {w,w′} or {w,w′, w′′} is a Jordan chain for B with
w′, w′′ ∈ V2. In all cases Bw ∈ span(u,Au, w). Case Aw /∈ span(u, Au,w):

F : V1 ⊂ V2 ⊂ span(u,Au, w) ⊂ span(u,Au, w,Aw) ⊂ F 5

Case Aw ∈ span(u, Au,w):

F : V1 ⊂ V2 ⊂ span(u,Au, w) ⊂ span(u,Au, w, ek) ⊂ F 5

Case (b), i = 3 and BA2u /∈ V3:

F : V1 ⊂ V2 ⊂ V3 ⊂ span(u,Au, A2u,BA2u) ⊂ F 5

Case (b), i = 3 and BA2u ∈ V3:

F : V1 ⊂ V2 ⊂ V3 ⊂ span(u,Au, A2u, ek) ⊂ F 5.

References

[Cam] M. Camarri, Tridiagonalization and triangularization of linear opera-
tors, Honours Dissertation, University of Western Australia, 1993.

[DD] K. R. Davidson and D. Z. Djoković, Tridiagonal forms in low dimen-
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