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Abstract. We review some of the current research in multiparameter
spectral theory. We prove a version of the Cayley-Hamilton Theorem for
multiparameter systems and list a few inverse problems for such systems.
Some consequences of results on determinantal representations proved
by Dixon, Dickson, and Vinnikov for the inverse problems are discussed.

1. Introduction

If w(x) is a homogeneous polynomial of degree d in the polynomial algebra
F [x] = F [x0, x1, . . . , xn] do there exist matrices Aj , such that

det




n∑

j=0

Ajxj


 = w(x)?

Dixon [9] and Dickson [8] were the first to consider the question. Dixon
showed that the answer is positive for all w(x) if n = 2 and Dickson showed
that the answer is generically no if n ≥ 3 and d ≥ 2 except when n = 3 with
d = 2 or 3 and n = 4 with d = 2. The case n = 2 was studied in detail
by Vinnikov [22, 23] (see also Fiedler’s paper [12]). The cases n ≥ 3 have
not yet been studied in detail. An exception is work by Giacobazzi [13] on
some special cases of n = 3. In addition, there is a ’curious fact’ known
in the theory of generalized Clifford algebras and linear maximal Cohen-
Macaulay modules that for each homogeneous polynomial w(x) there is a
number k ∈ IN such that the answer is positive for the power w(x)k (see
[4, 17]).

Here we propose a more general question. Given a regular sequence
w1, w2, . . . , wn of homogeneous polynomials in F [x] when do there exist
matrices Aij such that

det




n∑

j=0

Aijxj


 = wi(x), i = 1, 2, . . . , n?
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The motivation to propose this problem comes from multiparameter spec-
tral theory [3]. A recent attempt [6] to answer the conjecture of Faierman
[11, pp. 122-123] led us to study the inverse problem proposed above for
n = 2. Faierman works with coupled boundary value problems for ordinary
differential equations of Sturm-Liouville type and so the linear maps Aij in
his setup act on infinite dimensional vector spaces. Although we have not
been successful in resolving the conjecture it might be interesting for a wider
readership to present finite-dimensional results. In particular, we hope that
techniques of [3, 5, 6] might help in ’translating’ algebraic results into the
setup of differential equations. We discuss details later in the paper.

Let us conclude the introduction with a brief overview of the paper. In
the second section we introduce Faierman’s setup and explain the motiva-
tion for our discussion. In §3 we introduce Atkinson’s abstract algebraic
setup and in §4 we rephrase it in the language of commutative algebra. In
the process we prove a version of the Cayley-Hamilton Theorem for multipa-
rameter systems. In §4 we introduce several forms of the inverse problem for
multiparameter systems and discuss some consequences of results of Dickson
[8] and Vinnikov [22] for these problems.

2. Motivation

Faierman [11] considers a two-parameter eigenvalue problem involving a
class of coupled Sturm-Liouville boundary value problems
(1)

d

dtj

(
pj (tj)

dyj

dtj

)
+

(
(−1)j+1µ1aj1 (tj) + (−1)jµ2aj2 (tj)− qj (tj)

)
yj = 0,

(2) yj (0) cosαj − pj (0)
dyj

dtj
(0) sinαj = 0, 0 ≤ αj < π,

(3) yj (1) cosβj − pj (1)
dyj

dtj
(1) sinβj = 0, 0 < βj ≤ π,

for j = 1, 2, where µ = (µ1, µ2) are parameters and tj ∈ I := [0, 1]. Follow-
ing [11, pp. 2 and 10] we assume that :

(i) for j = 1, 2 the functions pj , qj , ajk, k = 1, 2 are real valued, pj , ajk

are Lipschitz continuous, pj is positive and qj is essentially bounded,
(ii) the function ω(t1, t2) = a11(t1)a22(t2) − a12(t1)a21(t2) on I2 is not

identically 0,
(iii) aj1(tj) > 0 for tj ∈ I and j = 1, 2.
It is easily seen that Aj0yj = −y′′j + qjyj is a self-adjoint operator with

domain D = {y; y is C1 on I, y is absolutely continuous on I, y′′ ∈
L2(I), y(0) = y(1) = 0}. We denote by Ajk the operator of multiplica-
tion by ajk. Then we associate with (1)–(3) an abstract two-parameter
system

(4) Aj0yj = λAj1yj + (−1)jµAj2yj , j = 1, 2,
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for yj ∈ D. There is an infinite number of nonzero eigenvalues of (1), each
with finite multiplicity (see for example [3, 5, 11, 21, 24]). In general, there
is possibly a finite number of nonreal eigenvalues and a finite number of
nonsemisimple eigenvalues [11, 24].

The above two-parameter Sturm-Liouville example shows that even for
self-adjoint cases there is need for a general theory that will include un-
derstanding of the behavior of root subspaces (i.e. subspaces spanned by
eigenfunctions and generalized eigenfunction) at nonsemisimple eigenvalues.
Faierman [11, Conj. 6.1, p. 122] conjectured a precise form of generalized
eigenfunctions at nonreal nonsemisimple eigenvalues. It is not known if the
conjecture holds. In [6] we give a different basis of eigenfunctions and gener-
alized eigenfunction. Bases of eigenfunctions and generalized eigenfunctions
are used to get a Fourier type expansion of the general solution of (1)–(3).

3. Abstract Setup

The attempts to formulate an abstract setup to study two and more
parameter systems go back at least to Carmichael [7]. It was Atkinson
(see [1, 3]) who introduced the abstract setup which has been studied since
by a number of mathematicians (see for example books and lecture notes
[11, 18, 21, 24]). We give a brief introduction to Atkinson’s setup. For details
we refer to [3]. To avoid a number of technical difficulties we assume that the
underlying vector spaces are finite-dimensional. In the infinite-dimensional
setup various additional assumptions are made (see [5]). These are natural
when treating Sturm-Liouville boundary value problems. It is our experience
that, under the uniform ellipticity condition (iii) or under the Fredholmness
condition on eigenvalues [6, Assumpt. III], the bases construction in the
finite-dimensional situation can be transferred to the infinite dimensional
situation. Therefore there is hope that answers to our problems in finite
dimensions can be of use when treating Faierman’s construction in [11, Conj.
6.1, p. 122].

Consider an n-parameter system (n ≥ 2) of the form

(5) Wj (x) =
n∑

k=0

Ajkxk, j = 1, 2, . . . , n,

where Ajk (k = 0, 1, 2, . . . , n) are linear maps acting on a finite-dimensi-
onal vector space Vj (j = 1, 2, . . . , n) over an algebraically closed field F
(in applications F = C) and x = (x0, x1, . . . , xn) are variables (also called
parameters).

The linear maps Ajk, k = 0, 1, 2, . . . , n, induce linear maps A†jk on the
tensor product V = V1 ⊗ V2 ⊗ · · · ⊗ Vn by means of

A†jk (v1 ⊗ v2 ⊗ · · · ⊗ vn) = v1 ⊗ · · · ⊗ vj−1 ⊗Ajkvj ⊗ vj+1 ⊗ · · · ⊗ vn

3



on decomposable tensors, extended by linearity and continuity to the whole
of V . The operator ∆0 on V is defined by

(6) ∆0 = det
[
A†jk

]n

j,k=1

and operators ∆k (k = 1, 2, . . . , n) are obtained by replacing the k-th column
in (6) by

[
−A†j0

]n

j=1
.

We say that a multiparameter system (5) is regular if there are scalars αj ,
j = 0, 1, . . . , n such that the linear map

∑n
j=0 αj∆j : V → V is invertible.

Henceforth, we consider only regular multiparameter systems. Without
loss we also assume that the operator ∆n is invertible. This can be achieved
by an invertible linear substitution of variables x. We define operators
Γj : V → V by Γj = ∆−1

n ∆j , j = 0, 1, . . . , n.

Theorem 1. [3, Thms. 6.7.1 and 6.7.2] The operators Γj commute and

(7)
n∑

k=0

A†jkΓk = 0.

4. Connections with Commutative Algebra

We write wj(x) = detWj(x) and Γ = (Γ0, Γ1, . . . ,Γn). The polynomials
wj , j = 1, 2, . . . , n are elements of the polynomial ring R = F [x]. We
denote the multiindex (k1, k2, . . . , kn) by k and write xk = xk1

1 xk2
2 · · ·xkn

n .
We denote by er the multiindex (0, . . . , 0, 1, 0, . . . , 0) with the 1 on the r-th
place.

The following is a generalization of the Cayley-Hamilton Theorem.

Theorem 2. If wj and Γ are as above then

wj(Γ) = 0

for j = 1, 2, . . . , n.

Proof. Suppose that adjWj(x) =
∑

k Bkxk is the adjoint matrix of Wj(x).
Here the summation is over all the multiindices k = (k1, k2, . . . , kn) such
that

∑n
l=1 kl = dim Vj . Then it follows that

(adjWj(x))†Wj(x)† = wj(x)I,

where I is the identity map on V . We see that

wj(x)I =
∑

k

B†
k

(
n∑

r=0

A†jrxr

)
xk =

∑

l

(∑
r

Bl−erAjr

)†
xl,

where the latter summation is over all r such that lr ≥ 1. Note also that
the matrix in the brackets is a scalar matrix. Now Cramer’s rule (7) implies
that

wj(Γ) =
∑

k

B†
k

(
n∑

r=0

A†jrΓr

)
Γk = 0.
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¤
Next we define the notions of eigenvalues and spectra. It is custom-

ary in multiparameter spectral theory to consider the nonhomogeneous sit-
uation. Therefore, we set x0 = 1. In the rest of the paper we write
x = (x1, x2, . . . , xn), Γ = (Γ1,Γ2, . . . , Γn), etc., unless stated otherwise.

An n-tuple α ∈ Fn is called an eigenvalue of a multiparameter system (5)
if all Wi (α) are singular. The set of all eigenvalues is called the spectrum of
(5) and denoted by σ(W). An eigenvalue α ∈ σ(W) is called geometrically
simple if dim kerWi(α) = 1 for i = 1, 2, . . . , n.

An n-tuple α = (α1, α2, . . . , αn) ∈ Fn is called an eigenvalue of the system
of commuting linear transformations Γ if

Mα =
n⋂

i=1

ker (Γi − αiI) 6= {0} .

The set of all these eigenvalues is called the spectrum of Γ and denoted by
σ(Γ). The subspace Mα is called the eigenspace of W at α.

Theorem 3. [3, Thm. 6.9.1] The spectrum σ(W) of a multiparameter
system W and the spectrum σ(Γ) of its associated system Γ coincide. For
a given eigenvalue α we have that

(8) Mα = kerW1 (α)⊗ kerW2 (α)⊗ · · · ⊗ kerWn (α) .

Theorem 4. [3],[16, Thm. 5.1] The following are equivalent:
(1) multiparameter system (5) is regular,
(2) the spectrum σ(W) is finite,
(3) polynomials w1, w2, . . . , wn form a regular sequence in R.

We denote by I the ideal in R generated by the polynomials wj , j =
1, 2, . . . , n. Then the quotient A = R/I is an artinian algebra. Since wj ,
j = 1, 2, . . . , n form a regular sequence it is a complete intersection, and
therefore also a Gorenstein and a Cohen-Macaulay algebra (see e.g. [10]
for definitions). It is well known that an artinian and noetherian algebra
is a direct product of local artinian algebras. Then A =

∏
α∈σ(W)Aα,

where Aα is the localization of A at the maximal ideal generated by the
polynomials xj − αj , j = 1, 2, . . . , n. Consult [10] for details. Note that
Aα ∼= Rα/Iα. We will often omit the subscript and write A = Aα.

Each Wj(x) induces an R-module map of the free module R ⊗ Vj . Since
detWj(x) = wj(x) is nonzero this map is injective. We denote by Mj

its cokernel. In a similar way, we denote by Mj(α) the cokernel of the
Aα-module map induced by Wj(x) on the free module Aα ⊗ Vj . Each
map Γj − xj induces a module map of the free R-module R ⊗ V and of
the free A-module A ⊗ V . We denote by M the cokernel of the module
map [Γj − xj ]

n
j=1 : (R ⊗ V )n → R ⊗ V and by M the cokernel of the map

[Γj − xj ]
n
j=1 : (A⊗ V )n → A⊗ V . Then

M ∼= M1 ⊗R M2 ⊗R · · · ⊗R Mn and M∼= M1 ⊗AM2 ⊗A · · · ⊗AMn.
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See [16] for details. The discussion of this paragraph can also be set in the
language of coalgebras [14, 15, 16].

Theorem 5. If α is a geometrically simple eigenvalue then M is a free
A-module of rank one. The algebra B generated by the restrictions Γj |M,
j = 1, 2, . . . , n, is isomorphic to A.

Proof. The first part of the theorem is proved in [16, Cor. 3.1]. By Theorem
2 the restrictions Γj |M satisfy the relations defining the ideal I. Thus the
algebra B that they generate is a quotient of A. But by [20, Cor. 3] the
dimensions of B and M∼= A (as vector spaces over F ) are equal. Therefore,
B ∼= A. ¤

It is important to study geometrically simple eigenvalues because of the
application to the Sturm-Liouville problems. The eigenvalues of a multipa-
rameter system that is induced by a Sturm-Liouville boundary value problem
are all geometrically simple.

5. Inverse Problems

The inverse problem for multiparameter systems is a problem of existence
of multiparameter systems that satisfy some given data. We discuss the
following problems:

(1) Given a regular sequence (w1, w2, . . . , wn) in F [x] is there a multipa-
rameter system (5) such that detWj(x) = wj(x) for j = 1, 2, . . . , n?

(2) Given an ideal I in F [x] such that the quotient A = F [x]/I is an
artinian complete intersection is there a multiparameter system (5)
such that detWj(x) = wj(x), j = 1, 2, . . . , n is a regular sequence of
generators for I?

(3) Given an ideal I in F [x] such that the quotient A = F [x]/I is an
artinian complete intersection and a faithful A-module M is there
a multiparameter system (5) such that detWj(x) = wj(x), j =
1, 2, . . . , n is a regular sequence of generators for I and V ∼= M
as A-modules?

(4) Given an n-tuple (Γ1,Γ2, . . . , Γn) of commuting matrices is there
a multiparameter system (5) such that the given matrices form its
associated system of commuting matrices?

(5) Given a local artinian complete intersection A is there a Sturm-
Liouville problem (1) with an eigenvalue α such that A ∼= Mα as
A-modules.

In all the problems we may also, in addition to the existence of solutions,
ask for the parameterization of all solutions, when there are any. In the
first four problems, one can also ask for the existence of a symmetric (or
self-adjoint, if F = C) multiparameter system. This might be of interest
when trying to answer the last problem. Partial answers to Problems 1-4
follow from results on determinantal representations proved by Dixon [9],
Dickson [8], and Vinnikov [22, 23].
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The problems 1.–5. are set for not necessarily homogeneous polynomials,
i.e. geometrically they are set in the affine situation. In order to discuss them
in the light of the above mentioned results on determinantal representations
we have to homogenize all the polynomials. That is, we substitute xi by
xi
x0

and multiply a polynomial of degree d by xk
0 for k ≥ d. Since we get a

polynomial for each k ≥ d this might give some additional freedom in the
search for answers to our problems.

We denote by Fd[x] the set of all homogeneous polynomials of degree d
together with the polynomial 0. Here x = (x0, x1, . . . , x). A determinantal
representation of a polynomial w(x) ∈ Fd[x] is a linear matrix polynomial
W (x) =

∑n
j=0 xjAj such that w(x) = detW (x). Dickson [8, Thm. 2]

proved that a general polynomial w ∈ Fd[x0, x1, . . . , xn] has a determinantal
representation if and only if either

(1) n = 2,
(2) n = 3, 4 and d = 2,
(3) n = d = 3.

In addition, he proved that for n = 2, and n = 3, 4 with d = 2 every
polynomial w ∈ Fd[x0, x1, . . . , xn] has a determinantal representation. If
none of the conditions (1)-(3) on n and d hold then a general polynomial
in Fd[x0, x1, . . . , xn] does not have a determinantal representation. Using
Dickson’s result we have the following partial answer to Problem 1. Here
we denote by d the largest of the degrees of the polynomials wj(x).

Theorem 6. Let F be any field and assume that (w1(x), w2(x), . . . , wn(x))
is a regular sequence in F [x]. If either n = 2, or n = 3, 4, d = 2, then there
exists a multiparameter system Wj(x), j = 1, 2, . . . , n such that wj(x) =
detWj(x) for all j.

If n = 2 and F is an algebraically closed field then a parameterization of all
determinantal representations of a nonsingular irreducible polynomial w ∈
F [x] is given in Vinnikov’s paper [22, p. 129]. Namely, the determinantal
representations are parameterized by points on the Jacobian variety of the
curve w(x) = 0 that are not on the exceptional subvariety.

Some results are known about self-adjoint and symmetric determinantal
representations. Vinnikov [23, Cor. 3.2] proved that each real nonsingular
curve w(x0, x1, x2) = 0 has a self-adjoint (over C) determinantal represen-
tation. He also conjectured in [22, p. 134] that a nonsingular irreducible
curve has a symmetric determinantal representation.

Theorem 6 gives a partial answer to Problem 2 as well. If n = 2, or
n = 3, 4 and m3 ⊂ I ⊂ m2 then there is a multiparameter system Wj ,
j = 1, 2, . . . , n, such that the determinants detWj are a regular sequence
of generators for I. (Here m is the ideal in R generated by the variables
x1, x2, . . . , xn.) The answer to the remaining cases depends on the answer
to the following problem:
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6. If I is an ideal F [x] such that the quotient F [x]/I is an artinian
complete intersection is there a regular sequence (w1, w2, . . . , wn) of
generators for I that all have determinantal representations?

We do not know an answer to Problem 3 if M is arbitrary. If M ∼= A
then Theorem 6 gives a partial answer.

If Γ is a geometrically simple n-tuple of commuting maps then the answer
to Problem 4 is no unless the algebra B generated by Γ in Mn(F ) is a
complete intersection. If so then Problem 4 is equivalent to the Problem 3
with A = B and M = Fn. If Γ is not geometrically simple then no answer
to Problem 4 is known. Then B is a proper quotient of A.
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