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Abstract

A completeness theorem for nonderogatory eigenvalues of multiparameter systems
is proved in a finite-dimensional setting. Also a basis for the second root subspace of
a simple eigenvalue is given. Weakly-elliptic multiparameter systems are introduced.
It is shown that simple real eigenvalues of such systems are nonderogatory.

1 Introduction

When boundary value problems for partial differential equations are solved using the
method of separation of variables the resulting system (called a multiparameter system) of
boundary value problems for ordinary differential equations is linked linearly by separation
constants (parameters). To give a solution in terms of Fourier-type series we need to solve
completeness problems, i.e., to find a complete set of generalized eigenfunctions. These
problems have been considered since the early days of multiparameter spectral theory late
last century. For some recent presentations of multiparameter spectral theory and related
boundary value problems we refer the interested reader to [6, 7, 14].

It was Atkinson [2] who revived the theory in 1960s, introducing an abstract setting
for the study of multiparameter spectral problems. This setting involves a system of linear
multiparameter pencils

Wi(A) =D VijAj —Vio, i=1,2,...,n, (n>2), (1)
j=1

called a multiparameter system, (here A = (A1, Ag, ..., \p) is an n-tuple of parameters and
Vi; are linear transformations on a vector space H;), and a tensor product construction.



Namely, to a multiparameter system (1), which satisfies a certain regularity condition, an
n-tuple of commuting linear transformations on a tensor product space is associated. This
n-tuple of commuting linear transformations is called an associated system. We briefly
introduce this construction in the next two sections.

Completeness problems in the abstract setting involve finding bases for the root sub-
spaces of an associated system in terms of the underlying multiparameter system. Atkin-
son showed that the eigenspaces of the associated system are spanned by decomposable
tensors which are easily described by the underlying multiparameter system. The struc-
ture of root vectors other than eigenvectors is yet to be described fully. This has been so
far considered mostly for self-adjoint multiparameter systems. For example, Binding [3]
solved it for real eigenvalues of uniformly elliptic multiparameter systems. Completeness
problems for nonself-adjoint multiparameter systems have not been considered much in
the literature (Isaev’s paper [10] being an exception), even for finite-dimensional cases,
though these problems were posed in the literature, for example by Atkinson [1] and Isaev
[11].

In our presentation we study multiparameter systems on finite-dimensional vector
spaces. We assume that the multiparameter system is nonsingular, i.e., a certain linear
transformation on the tensor product space is invertible. Then we consider a class of
eigenvalues for multiparameter systems called simple eigenvalues and a subclass of simple
eigenvalues called nonderogatory eigenvalues.

The first important result is Theorem 5. It describes a basis for second root subspaces
for simple eigenvalues defined in Section 4. In Section 5 we define nonderogatory eigenval-
ues for multiparameter systems. They correspond to the equivalent notion for commuting
sets of matrices, of which associated systems are particular cases. In proving this we need
a result from [13]. Our main result is the completeness theorem for nonderogatory eigen-
values of multiparameter systems, stated and proved in Section 7. From the discussion
preceding the main theorem and from its proof we obtain a computational procedure to
find a basis for the root subspace of a nonderogatory eigenvalue. We present this proce-
dure in Section 8. We also include an example to illustrate the procedure. The structure
of vectors in the basis is the same as the structure of root vectors in [3], although the
methods used here are completely different. We briefly compare our methods with those
of [3] at the end of this article.

In general self-adjoint multiparameter systems also possess nonreal and non semi-
simple eigenvalues. Hence our results are of interest for these systems as well. We con-
sider such systems in the last section. There we introduce the notion of weakly-elliptic
multiparameter systems. These include elliptic multiparameter systems as they are usu-
ally defined in the literature. We show that simple real eigenvalues of weakly-elliptic
multiparameter systems are always nonderogatory and hence our previous results apply.



2 Multiparameter systems and their associated systems

Suppose H;, i = 1,2,...,n, are finite-dimensional vector spaces over complex numbers.
We write dim H; = n;. A multiparameter system (1) is denoted by W. We also write

Ui (A) = ZVijAj-
=

Next we form a tensor product space H = H1 ® Ho ® --- ® H,,. Then it follows that
dim H = [[;; n; and we write dim H = N. A linear transformation V;; induces a linear

transformation V;; on the vector space H. It is defined by

Vit(fE1®$2®---®xn)=£E1®---®5Ei—1®Vij$i®fﬁi+1®"'®fﬁn

on a decomposable tensor 1 @ 1o ® -+ ® x, € H, where z; € H;, and we extend this
definition to H by linearity.
The operator determinant A is defined as the determinant

‘q; ‘q% e ‘q%
ViVl o W
| >

It is a linear transformation acting on H and it is well defined because two transformations
from different rows in (2) commute. It can be written also as a ‘tensor determinant’

Ay = Z (_1)Sgng ‘/10(1) ® ‘/20(2) ®-® Vn(r(n)a
oell,

where II,, is a set of all permutations of the set {1,2,...,n} and sgno is the sign of a
permutation o € II,,. Similarly we define operator determinants

VJ;I vl;ii,l VJ;O v{;iﬂ V{n
| 7A NN VA VAR /AN eV

A= 2 2iml 720 T | fori=1,2,...,n.
Vi v vl vl vk

Ifz=21Q20® --- ®x, € H is a decomposable tensor then it follows that

Aoz =3 (=1)" Vig)m1 @ Vag()72 ® -+ @ V() Tn-
o€ell,

In determinantal form we have

Viier Vieszr -+ Vipa
Vorzo  Vooxg -+ Voo
Viizn Vioxn -+ Vanon



Fw=y1 0y ® - ®y, € H is another decomposable tensor then we write

n
* *
w*z =[] yiz (4)
i=1
and
yioViizio  vyigVierio -+ YiopVinT1o
. YaoVa1720  yoVo220 -+ YaVent2o
w*Agz = } ) )

?/Zoanﬁﬁno y;ovn%%'no Tt y;;[)vnnxno

Note that (4) is extended by linearity to a scalar product on H. Here y;z; stands for a
scalar product of vectors x; and y; in H;.

It was proved by Atkinson in [2, Theorem 6.2.1] that the operator determinant (2)
retains the usual properties of a scalar determinant when we perform column operations
on it. It is an immediate consequence of this result that the same is true when col-
umn operations are performed on vector determinant (3). We state this result for future
reference.

Lemma 1 For an operator determinant (2) and a vector determinant (3) we have the
following properties :

(1) if two columns are interchanged the sign of a determinant changes,
(ii) if columns are linearly dependent the determinant vanishes,

(iii) the determinant remains unchanged if a scalar multiple of one column is added to
another column,

(iv) the determinant is linear in every column.

Definition. A multiparameter system W is called nonsingular if the corresponding de-
terminantal transformation Ay is invertible.

We assume throughout our discussion that multiparameter systems considered are
nonsingular. With a nonsingular multiparameter system W we associate an n-tuple of
linear transformation I'; = AO_IAi, i=1,2,...,n. It is called the associated system (of
a multiparameter system W) and we write I' = {I';, e, ..., ', }. Atkinson proved in [2,
Theorem 6.7.1] that transformations I'; commute. He also proved [2, Theorem 6.7.2] that
if W is a multiparameter system and I' is its associated system then

n
ZVi}FJ:Vi](L)a fori=1,2,...,n. (5)
J=1

Note that the system of relations (5) connecting the induced transformations VJ and
the associated transformations ['; can be considered as a generalization of the standard
Cramer’s rule for a system of scalar equations.



3 Spectrum, eigenspaces and second root subspaces

Definition. Suppose that W is a multiparameter system. Then an n-tuple A € C" is
called an eigenvalue of W if all W; (X) are singular. The set of all the eigenvalues of W
is called the spectrum of W and it is denoted by o (W).
Definition. Suppose that ' = {I';, i =1,2,...,n} is a set of commuting matrices. An
n-tuple A = (A1, g, ..., Ay) € C" is called an eigenvalue of T if ﬂ ker (I —T) # {0}.
i1

The set of all the eigenvalues of T' is called the spectrum of T" and it is denoted by o (T').
The subspace ﬂ ker (\;I —T;) is called the eigenspace of T' at A and we denote it by
ker (AI -T). We also write

dop = dimker (AI-T').

Before we continue our discussion we recall another result of Atkinson.

Theorem 2 [2, Theorem 6.9.1] Suppose that W is a multiparameter system and T is its
associated system. Then we have 0 (W) = o (T'). Furthermore if A € 0 (W) then

ker (AL -TI') = ker W1 (A) @ ker W5 (A) ® - -- @ ker W, (A) .

4 A basis for the second root subspace for simple eigenval-
ues

Definition. Suppose that A € 0 (W). Then we call the subspace

ker (AI-T ﬂ ﬂker (Al = T3) (AT —Ty)]
1=1j5=1

the second root subspace of W at A. We write

d; = dimker (AI — T')? — dimker (AI - T) .

Definition. An eigenvalue A € o (W) is called simple if dimker W; (A) =1 for all 1.

In this section we assume that an eigenvalue A € o (W) is simple. Then it follows
from Theorem 2 that dy = 1, and furthermore, if z;0 € H;, i = 1,2,...,n, are nonzero
vectors such that W; (A)z;p = 0 then the vector zp = 219 ® T2 ® -+ ® T spans the
eigenspace ker (AI — T').

Next we choose nonzero vectors y;0 € H;, i = 1,2,...,n, such that W; (X)" y;0 = 0,
where W (X)? is the adjoint linear transformation of W; (X), and we form an n x n matrix

yioViiro  yioVierio - yioVinZio

YsoVo1xao  YsoVo2x20 -+ y39Venao
By = ) ) )

y;Zoanfb“no y;kLOVn2xn0 Tt y;;OVnnan



Suppose that z; € ker (AI — I')? \ ker (A\I — T"). Then we have
(NI —T%) 21 = a;z0, 1 =1,2,...,n,
where a; are complex numbers and not all of them are zero. We write
a= [al,a2,...,an]T.

Lemma 3 Let a € C" be as above. Then a € ker By.

Proof. Tt follows from relation (5) that

n n
Vihzr = D ViT 2 = Y Vi (21— ajz0)
j=1 j=1
for s = 1,2,...,n. These relations can be written as
Wi (A) 21 = U; (a) 2. (6)
Next we choose vectors v; € H;, ¢+ = 1,2,...,n, such that vfz;p = 1. The vectors

w; =01 Q- Vi1 ® Yo ® Vi1 ® -+ @ vy are such that W (A)*‘% w; = 0. Then it follows
from (6) that w}U; (a)' 20 = 0. Because zy and w; are decomposable tensors and vizip =1
it follows that y;,U; (a) z;o = 0 for all . This is equivalent to a € ker By. O

Lemma 4 Suppose that a = [al,ag,...,an]T € ker By is not zero. Then there exist
vectors z;1 € Hy, 1 =1,2,...,n, such that

Ui (a) Ti0 — Wz' (A) Ti1. (7)

Furthermore, the vector
n
z1 :Z$10®"'®$i71,0®$i1®$i+1,0®"'®$n0 (8)
i=1

18 such that
(NI —T%) 21 = a;20.

Proof. For a € ker By it follows that yj,U;(a)zj = 0 for all i. Then the vector
U; (a) z;o is orthogonal to the kernel of W; (A)* and so it is in the range of W; (A). Hence
there exists a vector x;; € H; such that (7) holds.

It follows from Lemma 1 that

V111 T VlT,i—l Wi ('\): V1I,i+1 T V1In
Vo, e Voo Wo(A Vo, RN 74

Aido — A = .21 2t 2.( ) S 2n (9)
Vrjl VrI.i—l Wy, (A)Jr Vr;r,i—l—l e Vrzrn



for any index 71 = 1,2,...,n. Suppose now that z; € H is given by (8). Applying relations
(7) and (9) we obtain
(ANl — Aj) 21 =

Viizio e Vii—1z1o 0 WV1,i+1210 e VinTio
n | Viciizi—1o - Vio1,i1Ti-10 0 Victit1zi—10 - ViciaTji—10
=>_| Vazp o Viazp Ui@zi o Vieazp o o Viezj
= Vigazieo oo Vigni-1%41,0 0 Vitrit1%j410 - Vig1,nTi41,0
Va1Zno T Vn,i—lan 0 Vn,i—l—lxno T Vin®no

(10)
The value of the determinants above remains the same if we replace the terms Vjiz;1,
k=1,...,i—1,i4+1,...,n, by the terms Vj;zo. Then it follows from Lemma 1 that (10)
is equal to

V1:1 T Vl;i—l Uy (a)Jr Vl;i-i-l T V1:n

Vor -+ V2,i—1 Uz (a)T VZ,H—I eV, o — a4 Az
. . . . 0 = ;02

VJI T Vrj,i—l Un (a)Jr VTI,i-}-I T VJn

Combining the last equality with (10) we have (A\;A¢ — A;) 21 = a;Agzp, or equivalently,
()\iI — Fi) Z1 = 4i20-

O
Now we state the main result of this section :
Theorem 5 Assume that XA € 0 (W) is a simple eigenvalue and that {zo; 2,22,
zfl} is a basis for the second root subspace ker (AI — I“)2 such that
()\iI — Fi) Z{c = CL?ZO (11)
T
fori=1,2,...,n and k=1,2,...,d;. We write a* = [a’f,a’ﬁ,...,aﬂ . Then
{al,aZ, . ,adl} is a basis for the kernel of By.
Conversely, suppose that {al,aZ, . ,ad} is a basis for the kernel of By. We write
k kE k K : k
a¥ = [al,a2, . ,an] . Then there exist vectors x;, € H; such that
U; (ak) zio = Wi (A) 2%, (12)
fori=1,2,...,n and k=1,2,...,d. Furthermore, the vectors
n
i=1



are such that
(NI —T) 28 = abz (14)

for all i and k and {zo; 222 ,z‘f} is a basis for the second root subspace
ker (AI — I')2.

In particular we have :

Corollary 6 Suppose that A € o (W) is a simple eigenvalue. Then it follows that
dimker (AI — T')? = 1 + dimker By, i.e., d; = dimker By.

Proof of Theorem 5. Suppose that {zg; 2,22, ,zfl} is a basis for the second root

subspace ker (AI —T')? such that (11) hold. Then Lemma 3 implies that a* € ker Bj.

Because the vectors z{,z7,...,z{ are linearly independent and z; # 0 it follows that

a',a? ..., a% are linearly independent, hence

d1 S dim ker B(). (15)

Conversely, suppose now that {al,aZ, . ,ad} is a basis for the kernel of By. (Here

we write dimker By = d.) Lemma 4 implies that there exist vectors xfl € H; such that
relation (12) holds and the vector (13) is such that relation (14) holds fori = 1,2,...,n and
k =1,2,...,d. Let us now show that vectors zg, 21, 2%, . .. ,z‘li are linearly independent.

d
Suppose that azg + 3 Brz¥ = 0. Then it follows that
k=1

d d
0="> (NI —Ty) Bpat = Bralz
k=1

k=1

¢ are linearly independent it follows that 3, = 0

for all i. Because zy # 0 and a',a?,...,a
for all £ and then also & = 0. Hence the vectors zg,z{,27,...,2{ are linearly inde-
pendent. This implies that dimker By < d; whence, together with (15), it follows that

dy = dimker By. O

5 Nonderogatory eigenvalues

In this section we first define nonderogatory eigenvalues for arbitrary n-tuples of com-
muting matrices and we consider some of their properties. Next we define nonderogatory
eigenvalues for multiparameter systems so that the two notions of the nonderogatory
eigenvalues coincide for associated systems of multiparameter systems.

Definition. Suppose that I' = {I';, i = 1,2,...,n} are commuting matrices. An eigen-
value A = (A, \g,..., Ay) € o (T') is called nonderogatory if there exists an integer [ > 1
such that .
dim (ﬂ ker(AiI—Fi)k> =k, fork=1,2...,1—1
i=1



and .
dim <ﬂ ker()\iI—Fi)k> =1, fork=11+1,1+2,...
i=1
The integer [ is called the ascent of the eigenvalue A.

Suppose that A is an eigenvalue of an n-tuple of commuting matrices I'. As before we
write

d() = dim (ﬁ ker ()\iI - Fz)>

1=1
and
di = dim (ﬂ [ ker (I —Ty) (AT — Fj)) — do.
i=1j=i

Then the following results follow from Corollary 2 of [13].

Theorem 7 Suppose that T is an n-tuple of commuting matrices and A € o (T'). Then
A is nonderogatory if and only if dy =1 and d; < 1.

Theorem 8 An eigenvalue X for an n-tuple of commuting matrices is nonderogatory if
and only if at least one of \; is a nonderogatory eigenvalue for I';.

We denote the set of multiindices
n
{(jhjz,---,jn); 0 <7, ij'zk} (16)
i=1
by ¥y for £k =0,1,2,... and we write j = (j1, jo2,-..,7n). Then we have as a consequence

of the previous theorem :

Corollary 9 Suppose that A = (A1, Ao, ..., An) is nonderogatory. Then

Mker (AL = T3)* = [ ker [\ —=T1)" (Aol = Do) - (Al — )"
i=1 JEW,

Jor k=1,2,3,... -

Now we define a notion of a nonderogatory eigenvalue for a multiparameter system.

Definition. An eigenvalue A € o (W) is called nonderogatory if dimker W; (A) = 1 for
all 2 and dimker By < 1.

The following result shows that the two notions of a nonderogatory eigenvalue are
consistent for an associated system of a multiparameter system. The result follows from
Theorems 5 and 7.

Corollary 10 An eigenvalue X of a multiparameter system W is nonderogatory if and
only if it is a nonderogatory eigenvalue of the associated system T.



6 Auxiliary results

Definition. A Jordan chain 2y, 21,...,2, is called mazimal for a linear transformation
I' at a nonderogatory eigenvalue \g if the vector z, does not belong to the range of the
transformation Aol — I.

The next result is a known biorthogonality property between right and left Jordan
chains. We write it for an associated transformation I'j, in the form we need later. We
assume that the index A is fixed.

Lemma 11 Suppose that zo, z1,. .., 2, is a mazimal Jordan chain for I'}, at a nonderoga-
tory eigenvalue N\, and wq is a nonzero vector such that (A\,Ag — Ap) wo = 0. Then it
follows that wiAoz, =0 for k=0,1,...,p—1 and wiAoz, # 0.

Proof. Note that vector Afwg spans ker (A, —T';)*, the orthogonal complement of
the range Ry of Al — I'j. Because vectors zx € Ry, K = 0,1,...,p — 1 it follows that
wApz = 0 and because z, ¢ Ry, it follows that wjAgz, # 0. 0

n

Lemma 12 Let {Bl = [béj] JA=0,1,...,k — 1} be a set of n X n matrices and as-

ij=1
sume that rank(By) = n — 1. Choose a nonzero vector a; € ker (By). Then there exist

-1
vectors a;, i = 2,3,...,k such that ) Bja;_; =0 for 1 =1,2,...,k if and only if
J=0

bﬁ b{IQ bJ:1
by by e by
forl=0,1,...,k— 1.
Proof. We construct a monic matrix polynomial
L(p) = Ip* + Byap" ™+ Beop" 2 4+ 4 By = [bij (W)}, -

Then
LWy =1-B,1=0,1,....k—1 (18)

and because dim (ker L(0)) = 1 the polynomial L (x) has only one elementary divisor at
p = 0. Then by [8, Corollary 1.14, p.35] it follows that p = 0 is a root of degree k for
the scalar polynomial d () = det L (i) if and only if the matrix polynomial L (1) has a

Jordan chain aj,as,...,a; at g = 0. That is, by definition, if and only if the vectors
ai,as,...,ag, a; # 0, are such that
-1 1 )
=LY (0)a,; =0, for I =1,2,... .k, (19)
—~ 41
7=0

10



or, if we use (18), if and only if

-1

> Bja_j =0, forl=1,2,...,k.
j=0

The polynomial d(u) has a root of degree (at least) k& at u = 0 if and only if d(0)

d (0) =...=d%* 1Y (0) = 0. Finally the relations
b (0) b () ) (0)
H0=3 — " b’ (0) 5 () - 05 (0) | _
B s ]1' ]2' jn' . . : -
jev, o o o
bor (0) 030 (0) o b (0)
AL
I
=i S| "
jev |
byt buy o b
hold for I =0,1,...,k — 1 and the result follows. O

7 A basis for the root subspace of nonderogatory eigenval-
ues

Definition. Suppose that A € o (W) is nonderogatory. Then we call the subspace

n
ﬂ ker ()\Z'I — Fi)N
=1

the root subspace of W at A and we write

ker (AL —T)" = () ker (\I — )V
=1

This definition of root subspace coincides with Atkinson’s [2, (6.9.4)]. We recall that
N =dimH.

In this section we assume that A € o (W) is nonderogatory. Our main objective is
to construct a basis for the root subspace corresponding to A in terms of W. We will
construct this basis by an inductive procedure. Theorem 5 gives the initial step in this
procedure. It explains how to find a basis for the second root subspace. Now we proceed
proving two lemmas yielding the general step of the inductive procedure.

11



Lemma 13 Suppose that there exist vectors x;, i1, . -

S Zip € Hy (x40 # 0) and n-tuples

of complex numbers a;,ag,...,a, (a; #0) such that
k
> Ui(ay) zip—j = Wi (A) zig, k=0,1,...,p. (20)
j=1
Then the vectors
=) T1j @ Toj @+ ® Tny, (21)
JEY
are such that
k—1
AT —T3) 2k = > ap—ji%j- (22)
j=0
(Here k=0,1,...,p,1=1,2,...,n and a, = [ag1, aka,- - ,a;m]T. We also assume that a

sum with no terms is 0.) Furthermore, vectors zg, z1, . . .

they span the subspace
n
() ker (AT —T;)P*.

,zp are linearly independent and

(23)
i=1
Proof. Relations (9) and (20) imply that
T i T T
Vl’rl VlJr,i—l Wi (/\)1 Viisi Vlan
v, v, waNT v %
(Aido — Az =| 2 a . N g =
Vi Vi Wa N v Vi
Ji—1
Viizy, Vii—121j, lz Ui (aj,—,) z1, Vi, VinTij,
1=0
Ja2—1
Z Vo112, Va,i 172, ZE Uz (aj,—1,) T21,  V2,it172j, Vonaj,
= »=0
JeEV,
Jn—l
anxnjn Vn,iflxnjn ZZ Un (ajn—ln)xnln Vn,i+1$njn Vnnxn]n
n=0
(24)
By Lemma 1 the above sum is equal to
Vii171j 0 Viiv171j,
n Jg—1 Vi-1,i-1%Tg-1,j,_1 0 Vi-1,i+1%q-1,j,_1
DD D Gty Va,i-1%4j, Viraql, Viit1%4j,
JEWL 4r=11g=0 Va+1,i-1Tg+1,j,41 0 Vot 1,i41%g41,5, 11
Vi,i—1Znjy, 0 Viit1Znj,
(25)

12



In the displayed determinant (25) the first s— 1 and the last n —i— 1 columns are the same
as in the determinant displayed in (24). The vectors Vysz4;, , s =1,...,i—1i+1,...,n,
in (25) can be substituted for Vysz,, without changing the determinant. The sum (25) is
then equal to

V1T1 T V1T,i—1 0 V1T,i+1 T ‘/lTn
n Jg—1 I/qu—]Ll,l e VqTle,ifl 0 VqTle,H»l e I/qu—l,n
Z Z Z @jg—lg,r ‘T/ql o ‘?q,i—l Vqur Vaier ‘Jr/an
Jetar=tl=o Vorg o Vo 00 Vg o Vo
VJI T VJ,i_1 0 VTI,H-I T VJn
T @ @ Tg—1,54—1 ® Zql, ® Tgt1,5q11 R+ ® Tnj,- (26)

For every multiindex j € ¥;, where [ < k, the vector z1;, ® x2, ® - - - ® ., appears exactly
n? times in the summation (26), once for every ¢,r = 1,2,...,n, and we observe that the
scalar coefficients it is multiplied by are aj_;,. Then we sum in (26) over g. Because a
determinant with two equal columns is zero it follows that the sum (26) equals

Viizy,  Viezyy, - Viezuy,
k-1 Vorwaj, Vaomwaj, -+ Vopmay, k-1
S an : : = ap—1, 002
1=0 je, 1=0

Vn1$njn Vn2$njn T Vnnxn]n

Thus relation (22) follows.
P
Suppose that ayp # 0. (It exists because a; # 0.) Assume that Y agzp = 0. Then
k=0

p
0= ()\hI — Fh)pil Z Ap 2 = a’l’glang

k=0
and therefore o, = 0. Next
p—1
0= (Ml —Tp)P 2" azi = ab;, 2 upor 20
k=0

and hence a;—1 = 0. Proceeding in the above manner we show that a; = 0 for all £ and
thus vectors (21) are linearly independent. We denote their linear span by A. In the
basis {29, 21,...,2p} we have

[N —an —aip - —ap |
0 XN  —ajp - —aGip
L |v=
0 0 0 —a;1
0 0 0 A

13



and because a1 # 0 it follows by Theorem 8 that N = N, ker (\;] — Fi)pH. O

Lemma 14 Suppose that Ay, is nonderogatory for Iy, with the ascent at least p+1. Then

there exist vectors 0, i1, ..., %ip € Hy (zi0 #0), i =1,2,...,n, and n-tuples of complex
numbers ay,ag,...,a, (a; # 0) such that
k
> Ui(aj) mip—j = Wi(A) zag, k=0,1,...,p.
j=1

Proof. This result was proven in Theorem 5 for p = 1. Assume now that we have

already found aj,ay,...,a;_1 and z;1,%i2,...,2k—1; ¢ = 1,2,...,n where & < p such
that
-1
> Ui (a—y) mij = Wi (A) 23 1=1,2,....k—1. (27)
=0
It remains to show that we can also find a; and z;4, ¢ =1,2,...,n such that
kE—1
Z Uz' (ak_j) :L‘Z'j = Wz' (A) Tik- (28)
j=0
To do so we first build vectors z; = } 1, ® 225, @ --+ ® Tpj,, | = 0,1,...,k — L
jey,;

By Lemma 13 it follows that (\I —T)z = 121 a—jizj , 1 =0,1,...,k —1. Then the

j=0
vectors u, = ()\hI—Fh)k_l_r 2k—1, 7 = 0,1,...,k — 1 form a Jordan chain for T'j, of
length k& (< p+1). Because )\, is nonderogatory every corresponding Jordan chain can
be extended to a maximal one (cf.[9, Theorem 2.9.2(b), p. 85]). Suppose that y;o € H;
are nonzero vectors such that W; (X)*y;0 = 0. Then vector wy = y10 ® Y20 @ *** & Yno
is such that (A\pA¢ — Ap)*wp = 0 and Lemma 11 implies that wiAou; = 0 for [ =
0,1,...,k—1. Because the sets {u;; [ =0,1,...,k—1} and {z; 1 =0,1,...,k — 1} both
span ker (A1 — I'y)", it also follows that

’UJSA()ZZZO,l:O,l,...,k—l. (29)
Next we form the n X n matrices B; = [bﬁ-j]:jzl, 1=0,1,...,k—1 where béj = yioVijTi.
Multiplying relations (27) by v, on the left-hand side yields
-1
S ynUi(a—j)zij =0, 1=1,2,... .k — 1.
=0

-1
This is equivalent to »° Bja;_; =0 for [ =1,2,...,k — 1. Relations (29) are equivalent

7=0
to ) . ,
5]111 112 bjﬁl
by by e by
) . =0, for 1 =0,1,...,k—1. (30)
jev; | -
by by e bk
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Since A is nonderogatory and rank By = n — 1, Lemma, 12 implies that there exists an

k—1
n-tuple a; such that )~ Bja;_; = 0 or, equivalently, such that
i=0

k—1

> yiUi (ap—j) zij =0
=0

k—1
for i =1,2,...,n. Then the vector Y U; (ay—;) z;; is orthogonal to the kernel of W; (X)*
§j=0
and so there exists a vector z;;, € H; such that (28) holds. We continue by induction until
k =p. O
Now we summarize the preceding discussion into our main result, the completeness
theorem for nonderogatory eigenvalues of a multiparameter system :

Theorem 15 Suppose X € C" is a nonderogatory eigenvalue for a multiparameter system
W and suppose that p + 1 is the corresponding ascent. Then there exist aj,as,...,a, €
C", a1 #0, and zio, i1, . .., Tip € Hi, (zj0 #0) i =1,2,...,n, such that

k—1
Y Uilap—j)zij =W N zg  fork=1,2,...,p; i=12,...,n. (31)
§=0

Moreover, the vectors
2k = Z T1j; ®$2j2 ®®xn]n7 k:()a]-a"'apa
JEY
where Uy is defined in (16), are such that

k—1

(Ail — Fi) Zk — Z ak,j,z-zj
=0

and they form a basis for the root subspace i, ker (A\;I — Fi)N.

Proof. Suppose that A € 0 (W) is nonderogatory. By Theorem 8 and Corollary 10 at
least one of the eigenvalues, say Ap, is nonderogatory for I',. Lemma 14 then implies the
existence of n-tuples aj and vectors z;; such that (31) holds. Finally, the result follows
by Lemma 13. O

Let us mention that conditions (31) can be considered as generalized Jordan chain
conditions.

8 An algorithm to construct a basis for a nonderogatory
eigenvalue of a multiparameter system

In the proofs of Lemmas 13 and 14 we can find a procedure to construct a basis for the
root subspace of a nonderogatory eigenvalue :
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Algorithm 16 Step I. For i =1,2,...,n find x;0 # 0 and y;0 # 0 such that
Wi (X) 20 = 0 and W; (X)" y;0 = 0.

Form 20 =210 ® 20 ® - - - ® Tno, a matriz By = [yz’-"UVZ-jwio]?j:l and set k = 1.
Step II. Find o matriz polynomial

Ly (p) = Ip* + Br_p* 1+ - 4+ By (32)

and its determinant dy () = det Ly (p). If
d" V) =0 (33)

then go to Step III, otherwise quit the algorithm.
Step III. Find ay, € C",a; # 0, such that

k—1
Z Blak_l = 0. (34)
=0

Fori=1,2,...,n find vectors z;; € H; such that

k-1

> Ui (ag—) mi = Wi (A) i
1=0

Form zp = Y 15, @ 25, ® -+ ® Ty, and a matriz By, = [yfovij%k]?j:l- Setk=k+1
Jevy ’
and repeat Step II.

It follows from Theorem 15 that the vectors zg, 21, ..., 2 obtained in the above algo-
rithm form a basis for the root subspace ker (AI — I‘)N , and they satisfy the relations

-1
()\iI — Fi) zZ] = Zal,j,z-zj for [ = 0, 1, ce ,k.
=0

Because relations (29) and (30) are equivalent it follows as an immediate consequence
of Lemmas 11 and 12 that :

Corollary 17 The ascent of I' at the eigenvalue X is equal to the smallest integer k such
that the condition (33) does not hold.

Let us now demonstrate Algorithm 16 with an example :

Example 18 We consider a multiparameter system

100 10 0 0 -1 0
WiA)=[0 1 0|XN+|0 1 —2]Xx—]0 0 0
01 1 01 1 0 0 0
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1 00 0 00 1 0 -1
WaA)=1]10 0 0| XM+]|0 1 1 [X—|-1 -1 -1
0 01 010 0 -1 -3
This system is nonsingular because A is invertible. Then

W) =14(1,-1), [ X2, Y2}, (2X2 Y2 U
U( ) {( Y )’ ( 2 ) 2 9’ 2 9’ 2
We consider the eigenvalue Ag = (1, —1). Then we have

W1 (Ag) = and W2 (Ao) =

o O O
O Nl =
o= O
O = O
o O O
=~ O =

We observe that dimker Wy (Ag) = dimker W5 (Ag) = 1. To complete Step I of Algorithm
16 we choose

1 0 0 4
1o = 0 , L0 = 1 s Y10 = 0 and Y20 = 0
0 0 1 -1
. 0 0 . .
The matrix By = 0 —1 has rank 1 and therefore Ay is a nonderogatory eigenvalue.
1 0 1
We have zp= | 0 | ® | 1 |. Then we go to Step III. We choose a; = [ 0 ] and
0 0
0 0
T = 1 and z91 = | O
-1 0

so that VH(IIH) = W1 (Ao)(l)u and V21x20 = W2 (Ao) 1. Then it follows that zZ1 =

0 0 00 2 0
_11 ® (Z; , By = [0 0] and Lo () = [ 0 241 . We find that dy (u) =
p? (u? +1). Because dj (0) = 0 we repeat Step III. Now we choose ay = 8 ] and
vectors
0 0
12 = 0 and Ioo = 0
2 0
[0 0
so that VH:EH = W1 (Ao) I12 and VQlfL‘Ql = W2 (Ao) xro9. We have zZ9 = 0 X 1 and
| 2 0
12 2 . . B p3 4 22 @2 - .
By = [ 00 ] . The matrix polynomial L3 () = 0 W1 has determinant
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ds (1) = p? (p +2) (1 + 1). Because dj (0) # 0 we quit the algorithm. The root subspace
at the eigenvalue Ay is three-dimensional and it has a basis

{ZOaZIaZQ}- d

9 Weakly-elliptic multiparameter systems

Definition. A multiparameter system W is called self-adjoint if all the transformations
Vij, 1=1,2,...,n, j =0,1,...,n are self-adjoint, i.e., V;; = V.

Now we denote a cofactor of V;g in the operator determinant (2) by Ag;;. It is a linear
transformation on H. We also assume that H is equipped with a scalar product that is
induced by (4).

Definition. A self-adjoint multiparameter system is called weakly-elliptic if there exists
a cofactor Ag;; of Ag that is a positive definite operator on H.

A special case of weakly-elliptic multiparameter systems is an elliptic multiparameter
system, i.e., if Ag;;, ¢ = 1,2,...,n are positive definite operators on H for some j, cf.
[3, 4, 5]. Binding [3] proved a completeness theorem for real eigenvalues of elliptic mul-
tiparameter systems while with Browne in [4] he considered the multiplicities of general
eigenvalues for two-parameter systems with two definite cofactors Ag;. In the next result
we consider simple real eigenvalues of weakly-elliptic multiparameter systems.

Theorem 19 Assume that X is a simple real eigenvalue for a weakly-elliptic multiparam-
eter system W. Then X is nonderogatory.

Proof. Suppose that x;9 € ker W; (A) are nonzero vectors. Then we only need to show
that rankBy > n — 1, where

zioViizw  xioViezio -0 2ipVinZio

x50Va1220  @50Va2x20 -0 255VonZ2o
By = ) ) }

$;0Vn1$n0 x;kLOVnZIEnO Tt x;;ovnn$n0

The result then follows from Corollary 10. By definition of a weakly-elliptic multiparam-
eter system it follows that z5Ag;jz0 # 0 for some ¢ and j. Since

. * .
* * ~1 -~
20Q0ij20 = T;nTi0 - (Zo ) AR

where 2! = 210 ® -+ ® Ti 1,0 ® Tip1,0 ® -+ ® Ty, it follows that the cofactor of z7,V;;zio
in the matrix By is nonzero and so rank By > n — 1. O

From the above theorem it follows that for simple real eigenvalues of a weakly-elliptic
multiparameter system, Theorem 15 applies and we can find a basis for the corresponding
root subspace by Algorithm 16.

A special case of Theorem 15 for elliptic multiparameter systems was proved by Bind-
ing [3, Theorem 3.1] in a more general setting with a different method. We do not,
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however, generalize his main result [3, Theorem 3.4]. We remark that the structure of
vectors zi of Theorem 15 is the same as the structure of vectors y; of [3, Theorem 3.1]. The
coefficients v, ~* of [3, (3.6)] are a counter-part of the coefficients that form our n-tuples
a;. While the coefficients 4.~% are obtained via a differentiation process our n-tuples ay
form a Jordan chain of matrix polynomials (32) and are obtained by solving (34) for ay,

k=1,2,...,p. For comparison we consider the eigenvalue A = 0 of [3, Example 4.4] :

Example 20 We have a two-parameter system

N T I A P

and
-4 1 2 0 10
WQ(A)_[ I E R 2]&_[0 0]'
The eigenvalue 0 is simple and because the above two-parameter system is elliptic it
is nonderogatory. As in [3] we choose z19 = o9 = Y10 = Y20 = [ (1) . Then By =
2 -1 Ml 1 o @®) | 5| m
4 9 ] Note that the vector l 7l ] = 26 | G (22) | T | 1| in Binding’s
1
notation, is an element of ker By. We write a; = i Then vectors x1; = T91 =
1 L
(2) are such that U; (ay) z;0 = W;(A) zj1, ¢ = 1,2, and By = | ? Nk Because
L 2
(det Lo (1)) |u=0= 2 # 0, it follows that vectors
0 0
0 1
2= and z; = %
1 0
form a basis for the root subspace of W at A = 0. O
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