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Abstract. In the first part of the paper we give a characterization of groups generated by

elements of fixed prime order p. In the second part we study the group G
(p)
n of n×n matrices

with the p-th power of the determinant equal to 1 over a field F containing a primitive p-th

root of 1. It is known that the group G
(2)
n of n × n matrices of determinant +

−1 over a field

F and the group SLn(F ) are generated by their involutions and that each element in these

groups is a product of four involutions. We consider some subgroups G of G
(p)
n and study the

following problems: Is G generated by its elements of order p ? If so, is every element of G a

product of k elements of order p for some fixed integer k ? We show that G
(p)
n and SLn(F )

are generated by their elements of order p and that the bound k exists and is equal to 4. We
show that every universal p-Coxeter group has faithful two-dimensional representations over
many fields F (including R and C). For a universal p-Coxeter group of rank ≥ 2 for p ≥ 3 or
of rank ≥ 3 for p = 2 there is no bound k.
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1. Introduction

The purpose of this paper is twofold. We first give a characterization of general groups
generated by elements of fixed prime order p and discuss the consequences for simple,
solvable and nilpotent groups. In section 3 we study universal Coxeter groups [H, §5.1]
and their generalization to universal p-Coxeter groups, i.e. groups G generated by a set X
subject only to relations xp = 1 for all x ∈ X. We show that every universal p-Coxeter group
G, of finite or infinite rank r, has a two-dimensional faithful representation over many fields
(including R and C). Note that the standard geometric representation of Coxeter groups
is on an r-dimensional vector space [H, §5.4]. Our two-dimensional faithful representation
of G for r ≥ 2 is of minimal dimension since G is not commutative.

In the rest of the paper we concentrate on matrix groups generated by elements of
order p. Let G

(p)
n be the subgroup of the general linear group GLn(F ) consisting of all

matrices A with (det A)p = 1. The case of matrix groups G
(2)
n generated by involutions, i.e.

matrices J with J2 = I, has been studied previously. In [GHR] the authors show that G
(2)
n is

generated by its involutions; moreover, every element in G
(2)
n is a product of four involutions
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but not always a product of three involutions. In [KN] it is shown that the special linear
group SLn(F ) is generated by its involutions and that every element is a product of four
involutions, but not always a product of three involutions. We further remark that if the
underlying space is an infinite dimensional Hilbert space H then the group of all invertible
linear operators on H is generated by involutions and every invertible linear operator on H
is a product of at most seven involutions [R]. It is an open problem whether each element
can be expressed as a product of six involutions; however, four involutions do not suffice in
general.

In this paper we consider the following general problem for a subgroup G of G
(p)
n : Is G

generated by its elements of fixed prime order p ? If it is, does there exist an integer k such
that every member of G is expressible as a product of k elements of order p from G ? If so,
what is the minimal number k ? Not every subgroup of G

(p)
n is generated by its elements of

order p, of course, as the example of all upper-triangular unipotent matrices (i.e. matrices
of the form I + N with N nilpotent) shows. Also, even when the group G is generated by
its elements of order p, no finite k may exist. We show that this is the case for universal
p-Coxeter groups of rank ≥ 2 for p ≥ 3 and of rank ≥ 3 for p = 2.

Our main subjects of study in sections 4 and 5 are the group G
(p)
n and two well-known

subgroups, namely the group T
(p)
n of all upper-triangular matrices with diagonal entries in

the set {1, θ, θ2, . . . , θp−1}, where θ (6= 1) is a p-th root of 1, and the special linear group
SLn(F ). We prove that these groups are generated by their elements of order p, and we
show that each element is a product of 4 elements of order p in the group. It remains an
open problem if, in general, this bound can be improved.

2. General Remarks on Groups Generated
by Elements of Fixed Prime Order

Let p be a fixed prime number. The category of groups generated by elements of order
p is closed under quotients, coproducts and finite products. Moreover, it is obvious that
a semi-direct product G = N n Q of groups generated by elements of order p is itself
generated by elements of order p.

2.1. Theorem. Let G be a group and let p be a prime number. Then G is generated by
elements of order p if and only if η∗ : Hom(ZZZp, G) → Hom(ZZZp, Q) is non-trivial for every
non-trivial quotient group Q = G/H with η : G → Q the quotient map.

Proof. First assume that η∗ : Hom(ZZZp, G) → Hom(ZZZp, Q) is non-trivial for every non-trivial
quotient map η : G → Q. If N is the subgroup of G generated by all elements of order
p then N 6= 1, since Hom(ZZZp, G) has at least two elements, and N is a normal subgroup
of G. Suppose that the quotient group Q = G/N is not trivial. Then by hypothesis
η∗ : Hom(ZZZp, G) → Hom(ZZZp, Q) is not trivial, so that there is an element x of order p in G
such that η(x) is an element of order p in Q. But then x is not in N , in contradiction to
the assumption that N contains all elements of order p. Conversely, if G is generated by
elements of order p, then so is every non-trivial quotient map η : G → Q. Hence η∗(x) 6= 1
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for some x ∈ Hom(ZZZp, G), so that η∗ : Hom(ZZZp, G) → Hom(ZZZp, Q) is non-trivial. ¤

2.2. Corollary. A solvable group G is generated by elements of order p if and only if Gab

is an elementary abelian p-group and every epimorphism ρ : G → ZZZp splits.

Proof. If G is generated by elements of order p then, invoking Theorem 2.1, we see that
ρ∗ : Hom(ZZZp, G) → Hom(ZZZp,ZZZp) is non-trivial for every epimorphism ρ : G → ZZZp. Hence,
there is a homomorphism κ : ZZZp → G such that ρ ◦ κ = 1. Moreover, Gab is generated
by elements of order p, since every quotient of G is. But an abelian group is generated
by elements of order p if and only if it is an elementary abelian p-group. Conversely, if
η : G → Q is a non-trivial quotient then Q is solvable, Qab is not trivial and the square of
epimorphisms

G
η−−−−→ Q

y
y

Gab
ηab−−−−→ Qab

commutes. Moreover, Qab is an elementary abelian p-group, since Gab is, and every epimor-
phism ρ : G → Q → Qab → ZZZp splits, which implies that ρ∗ : Hom(ZZZp, G) → Hom(ZZZp, Q)
is not trivial. By Theorem 2.1 the group G is generated by elements of order p. ¤

2.3. Corollary. Let G be a solvable group such that the canonical epimorphism η : G →
Gab splits. Then G is generated by elements of order p if and only if Gab is an elementary
abelian p-group.

Proof. Every epimorphism ρ : G → ZZZp has a factorization of the form ρ = σ ◦ η : G →
Gab → ZZZp. The epimorphism σ splits, since Gab is an elementary abelian p-group. More-
over, the composite of split epimophisms splits. ¤

2.4. Corollary. If a finite nilpotent group G is generated by elements of order p then G
is a p-group.

Proof. The unique Sylow p-subgroup P of G is not trivial and contains all elements of order
p, so that P = G. ¤

2.5. Proposition. A simple group G is generated by elements of order p if and only if it
contains an element of order p.

Proof. The subgroup N of G generated by all elements of order p is not trivial and normal
in G. Thus, N = G, since G is simple. ¤

In the following result we assume that p = 2.
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2.6. Theorem. If G is generated by involutions then G2 = G′.

Proof. The identity (xy)2 = [x, y]yx2y holds in every group. If G is generated by involutions
then every element is of the form z = x1x2 . . . xn, where x2

i = 1 for i = 1, 2, . . . , n. The
identity (zxn+1)2 = [z, xn+1]xn+1z

2xn+1 now shows by induction that every square in G is a
product of commutators. To prove the converse, we use the identity [x, y] = x2(x−1y)2y−2,
which holds in every group, and thus we see that every commutator is a product of squares.
¤

2.7. Examples. Here are some groups generated by involutions. We do not list groups,
such as reflection groups or Coxeter groups, that are ‘by their very definition’ obviously
generated by involutions.

(1) An abelian group is generated by involutions if and only if it is an elementary
abelian 2-group.

(2) Every non-abelian finite simple group has even order, hence contains an involution.
It is therefore generated by involutions by Proposition 2.5.

(3) The symmetric groups Sn are generated by involutions for n ≥ 2 and so are the
alternating groups An for n ≥ 5. The group A3

∼= ZZZ3 is abelian and A4/V ∼= ZZZ3,
so that neither A3 nor A4 is generated by involutions.

(4) All the dihedral groups, including the infinite dihedral group, are generated by
involutions.

2.8. Examples. Next we list some groups that are generated by their elements of order
p. Groups in (2) and (3) will be studied in more detail in the second part of our paper.

(1) An abelian group is generated by elements of order p if and only if it is an elementary
abelian p-group.

(2) The projective special linear group PSLn(F ) is a simple group if the characteristic
of F is not 2 and F has at least seven elements. Moreover,

PSLn(F ) ∼= SLn(F )/Z

is the quotient of the special linear group SLn(F ) by its center Z, and Z is the cyclic
group of n-th roots of unity in F . Every proper normal subgroup N of SLn(F ) is
contained in the center Z since PSLn(F ) is simple and SLn(F ) is perfect.

The authors in [GHR] and [KN] show that G
(2)
n
∼= SLn(F )nZ2 and SLn(F ) are

generated by involutions, i.e. elements of order p = 2. Using our results we now
give a different proof of their results and moreover we show that PSLn(F ), SLn(F )
and G

(p)
n
∼= SLn(F )nZp are generated by elements of order p for any prime p. For

n ≤ p we assume there is θ ∈ F such that θp = 1 but θ 6= 1.
If p = 2 then the two elements S, T ∈ GLn(F )

S =




1
1

1
. . .

1
1




and T =




1
1

1
. . .

1
1




are involutions with detS = (−1)(n−2)(n−1)/2 and det T = (−1)(n−1)n/2. Now
T ∈ SLn(F ) if n = 4k, S ∈ SLn(F ) if n = 4k+1 or 4k+2 and −S ∈ SLn(F ) if n =



ON GROUPS GENERATED BY ELEMENTS OF PRIME ORDER 5

4k+3, but they are not in the center Z of SLn(F ). It follows from Theorem 2.1 and
Proposition 2.5 that PSLn(F ) and SLn(F ) are generated by involutions. Moreover,
the semi-direct product G

(2)
n
∼= SLn(F )n Z2 is also generated by involutions.

For p ≥ 3 and n ≥ p the matrix

S =
(

P 0
0 I

)
, where P =




1
1

1
. . .

1
1




is a p× p cyclic matrix, is an element of SLn(F ) of order p and is not in the center
Z. If 2 ≤ n < p and there is θ ∈ F such that θp = 1 but θ 6= 1 then the matrix

T =




θ
θ−1

1
. . .

1
1




is in SLn(F ) and T /∈ Z. In all of the above cases it follows from Theorem 2.1
and Proposition 2.5 that PSLn(F ) and SLn(F ) are generated by their elements of
order p. Moreover, the semi-direct product G

(p)
n

∼= SLn(F ) n Zp is also generated
by elements of order p. In section 5 we will show for both groups G

(p)
n and SLn(F )

that every element is the product of 4 elements of order p from the group.
(3) Let T

(p)
n be the subgroup of GLn(F ) consisting of upper-triangular matrices with

spectrum in the set {1, θ, . . . , θp−1}, where θp = 1 and let T
(p)+
n = T

(p)
n ∩ SLn(F ).

Here we assume that θ ∈ F , θ 6= 1. These groups have the same commutator
subgroup, the upper-triangular unimodular group Un(F ), which is nilpotent, and
they are therefore solvable. The abelianizations T

(p)
n ab and T

(p)+
n ab are elementary

abelian p-groups of rank n and n− 1, respectively, and the correponding projection
maps split. By Corollary 2.3 both groups are generated by elements of order p. In
section 4 we will consider the group T

(p)
n again and show that each of its elements

is a product of 4 of its elements of order p.

3. The Universal Coxeter Groups

A group G generated by a set X, subject only to the relations x2 = 1 for all x ∈ X, is
called a universal Coxeter group of rank |X| [H, Chapter 5]. More generally, for a fixed
prime p, we call a group G a universal p-Coxeter group if it is generated by a set X, subject
only to the relations xp = 1 for all x ∈ X. Such a group is isomorphic to the free product
of |X| copies of the cyclic group of order p, or equivalently, a semi-direct product of a free
group of rank |X| − 1 and a cyclic group of order p. If |X| = 2 and p = 2 then G is the
infinite dihedral group, and every element is a product of two involutions. However, we
will show that when |X| ≥ 2 for p ≥ 3 or |X| ≥ 3 for p = 2 there is no upper bound on the
number of factors required to express each element of G as a product of elements of order
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p. If p = 2 the group G has a faithful representation of degree |X| over R (see [H, p. 113]).
But we shall see below that every universal Coxeter group has a faithful representation of
degree 2 over many fields (including R and C).

Let (G,X) be a universal p-Coxeter group. Consider X as an alphabet. A word w =
xj1

1 xj2
2 . . . xjk

k , with xi ∈ X and k ≥ 1, is called reduced if xi 6= xi+1 for i = 1, 2, . . . , k − 1,
and 1 ≤ ji ≤ p − 1 for i = 1, 2, . . . , k. We call l(w) = k the length of w. Let lx(w)
be the number of indices i such that xi = x in the reduced word w, and lxkyk(w) the
number of occurances of the word xkyk in w, i.e. the number of indices i such that xi = x,
xi+1 = y and ji = ji+1 = k. It is an easy observation that each element g in G has a
unique presentation which is a reduced word w. We define l(g) = l(w), lx(g) = lx(w) and
lxkyk(g) = lxkyk(w).

Lemma 3.1. A reduced word w = xj1
1 xj2

2 . . . xjk

k is an element of order p if and only if k is
odd, say k = 2l + 1 for some integer l, xi = xk+1−i and ji + jk+1−i = p for i = 1, 2, . . . , l.

Proof. Suppose that w = xj1
1 xj2

2 . . . xjk

k is a reduced word. Since the generators x ∈ X
are subject only to relations xp = 1 the relation wp = 1 holds if and only if x1 = xk,
x2 = xk−1, . . . , xl = xk+1−l and j1 + jk = p, j2 + jk−1 = p, . . . , jl + jk+1−l = p, where l is
the integer part of k/2. Since w is reduced k has to be odd. ¤

Lemma 3.2. Let (G, X) be a universal Coxeter group. If w = q1q2 . . . qm ∈ G, where each
qi is an involution, then

|lxy(w)− lyx(w)| ≤ m− 1

for each pair x, y ∈ X. If (G, X) is a universal p-Coxeter group, where p ≥ 3, and
w = q1q2 . . . qm ∈ G, where each qi is an element of order p, then

|lxy(w)− lyp−1xp−1(w)| ≤ 2m− 1

for each pair x, y ∈ X.

Proof. Suppose (G, X) is a universal p-Coxeter group. If p = 2 then it is easy to observe
using Lemma 3.1 that lxy(q) = lyx(q) for every involution q ∈ G. Also, if p ≥ 3 then it
is not difficult to show that

∣∣lxy(q)− lyp−1xp−1(q)
∣∣ ≤ 1 for every element q ∈ G of order

p. Suppose that w ∈ G can be expressed in the form w = q1q2 . . . qm, where each qi is an
element of order p. We want to bring w to reduced form. A pair xy is cancelled completely
only by a pair yp−1xp−1, since (xy)−1 = yp−1xp−1. The number of subwords xy can change
without the number of subwords yp−1xp−1 changing, or conversely, only when just one of
the letters x or y is cancelled. This can happen in w at most once for each pair qiqi+1

of consecutive elements of order p. There are m − 1 such pairs. If p = 2 it follows that
|lxy(w)− lyx(w)| ≤ m−1 and if p ≥ 3 it follows that

∣∣lxy(w)− lyp−1xp−1(w)
∣∣ ≤ 2m−1. ¤

Theorem 3.3. If G is a universal p-Coxeter group with p ≥ 3 and rank ≥ 2 or p = 2 and
rank ≥ 3 then there is no bound on the number of elements of order p required to express
each element of G as a product of elements of order p.
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Proof. Assume first that p = 2. Since elements in X are subject only to relations x2 = 1
for all x ∈ X it suffices to prove the assertion for a universal Coxeter group of rank 3.
Namely, if |X| ≥ 4 then any triple of elements of X generates a subgroup of G which is
a universal Coxeter group of rank 3. So let X = {x, y, z} be the alphabet. Now for each
positive integer n consider the word wn = (xyz)n. If wn = q1q2 . . . qm, where each qi is an
involution, then Lemma 3.2 implies that n ≤ m− 1, i.e. m ≥ n + 1, since lxy(wn) = n and
lyx(wn) = 0.

If p ≥ 3 then it suffices to consider the universal p-Coxeter group of rank 2. So let
X = {x, y}. For each positive integer n consider the word wn = (xy)n. If wn = q1q2 . . . qm,
where each qi is an element of order p, then Lemma 3.2 implies that n ≤ 2m − 1, i.e.
m ≥ n+1

2 , since lxy(wn) = n and lyp−1xp−1(wn) = 0. ¤

For p = 2 a (universal) Coxeter group of rank r has a faithful linear representation in
GLr(RRR) (see [H]). The next result shows that every universal p-Coxeter group has faithful
two-dimensional representations over various fields, including R and C.

Theorem 3.4. Every universal p-Coxeter group (G, X) has faithful two-dimensional ma-
trix representations over any field F containing a subset of cardinality |X| which is alge-
braically independent over the prime subfield (e.g. F = R or C).

Proof. First we consider the case p = 2. Let Ω be a subset of F of cardinality |X| = rank(G)
which is algebraically independent over the prime subfield. Let H be the subgroup of
GL2(F ) generated by the set of involutions

S =
{(

ω 1− ω2

1 −ω

)
|ω ∈ Ω

}
.

Choose a bijection φ : X → S. We will show that the induced group homomorphism
Φ : G → H, determined by Φ(x) = φ(x) for x ∈ X, is bijective. We prove that Φ(g)
cannot be upper-triangular for any reduced word g ∈ G\{1}, so in particular Φ(g) 6= 1.
Proceed by induction on the length l(g) of the reduced word g. The assertion is obvious if
l(g) = 1. Let g = x1x2 . . . xm in G be a reduced word with l(g) = m and let si = φ(xi).
Then Φ(g) = s1s2 . . . sm in H. We may write g = x1w1x1w2 . . . x1wk if xm 6= x1 or
g = x1w1x1w2 . . . x1wkx1 if xm = x1, where each wi is reduced, lx1(wi) = 0 and 1 ≤
l(wi) < l(g). Let bi = Φ(wi) for i = 1, 2, . . . , k. If we write

s1 =
(

ω 1− ω2

1 −ω

)
and bi =

(
bi
11 bi

12

bi
21 bi

22

)

then by the induction hypothesis none of the bi is upper-triangular, i.e. bi
21 6= 0 for i =

1, 2, . . . , k. Moreover, it follows by induction on k that the entries p11(ω) and p21(ω) of the
matrix

h = s1b1s1b2 . . . s1bk =
(

p11(ω) p12(ω)
p21(ω) p22(ω)

)

are polynomials in ω of degree 2k and 2k − 1, respectively, both with leading coefficient
(−1)kb1

21b
2
21 . . . bk

21, while the polynomials p12(ω) and p22(ω) have at most degree 2k and
2k − 1, respectively. Thus, neither the matrix h nor the matrix hs1 is upper-triangular. It
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follows that Φ(g) = 1 only for g = 1.
Suppose next that p ≥ 3. Let Ω be a subset of F of cardinality |X| = rank(G) which

is algebraically independent over the prime subfield. Let H be the subgroup of GL2(F )
generated by the set

S =
{(

ω ω2 − tω + 1
−1 t− ω

)
|ω ∈ Ω

}
,

where θ (6= 1) is a p-th root of 1 and t = θ+θ−1. Observe that the characteristic polynomial
of the matrix

s =
(

ω ω2 − tω + 1
−1 t− ω

)

is equal to λ2 − tλ + 1, so the eigenvalues are θ and θ−1, and s is an element of order p.
Furthermore, we find for k = 2, 3, . . . , that

sk =
(

tkω − tk−1 tkω2 − (tk+1 + tk−1)ω + tk
−tk −tkω + tk+1

)
,

where tk =
∑k−1

i=0 θ2i−k+1. Note that t = t2 and that tk 6= 0 for k = 1, 2, . . . , p − 1.
Choose a bijection φ : X → S. We will show that the induced group homomorphism
Φ : G → H, determined by Φ(x) = φ(x) for x ∈ X, is bijective. We prove that Φ(g)
cannot be upper-triangular for any reduced word g ∈ G\{1}, so in particular Φ(g) 6= 1.
Proceed by induction on the length l(g) of the reduced word g. The assertion is obvious if
l(g) = 1. Let g = xj1

1 xj2
2 . . . xjm

m in G be a reduced word with l(g) = m and let si = φ(xi).
Then Φ(g) = sj1

1 sj2
2 . . . sjm

m in H. We may write g = xl1
1 w1x

l2
1 w2 . . . xlk

1 wk if xm 6= x1

or g = xl1
1 w1x

l2
1 w2 . . . xlk

1 wkx
lk+1
1 if xm = x1, where each wi is reduced, lx1(wi) = 0 and

1 ≤ l(wi) < l(g). Let bi = Φ(wi) for i = 1, 2, . . . , k. If we write

sli
1 =

(
tliω − tli−1 tliω

2 − (tli+1 + tli−1)ω + tli
−tli −tliω + tli+1

)
and bi =

(
bi
11 bi

12

bi
21 bi

22

)

then by the induction hypothesis none of the bi is upper-triangular, i.e. bi
21 6= 0 for i =

1, 2, . . . , k. Moreover, it follows by induction on k that the entries p11(ω) and p21(ω) of the
matrix

h = sl1
1 b1s

l2
1 b2 . . . slk

1 bk =
(

p11(ω) p12(ω)
p21(ω) p22(ω)

)

are polynomials in ω of degree 2k and 2k−1, with leading coefficient tl1tl2 . . . tlk b1
21b

2
21 . . . bk

21

and −tl1tl2 . . . tlk b1
21b

2
21 . . . bk

21, respectively, while the polynomials p12(ω) and p22(ω) have
degrees at most 2k and 2k − 1, respectively. Thus, neither the matrix h nor the matrix
hs

lk+1
1 is upper-triangular. It follows that Φ(g) = 1 only for g = 1. ¤

4. Upper-Triangular Groups

Let p be a fixed prime number and let θ (6= 1) be a p-th root of 1. We denote by T
(p)
n the

group of all upper-triangular matrices over the field F with spectrum contained in the set
{1, θ, θ2, . . . , θp−1}. In the rest of the paper we assume that θ ∈ F . In Example 2.8(3) we
showed that the group T

(p)
n is generated by its elements of order p. We now consider some

special elements of the group that are products of 2 elements of order p from the group.
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Example 4.1. Let

J =




1 1
1 1

. . . . . .
1 1

1




be the n× n Jordan cell with eigenvalue 1. Then we claim that J = J1J2, where the n× n
upper-triangular matrices

J1 =




1 θ θ2 θ3 . . .
(
n−1

0

)
θn−1

θ 2θ2 3θ3 . . .
(
n−1

1

)
θn−1

θ2 3θ3 . . .
(
n−1

2

)
θn−1

θ3 . . .
(
n−1

3

)
θn−1

. . .
...(

n−1
n−1

)
θn−1




with (i, j)-entry
(
j−1
i−1

)
θj−1, and

J2 =




1 0 0 0 . . . 0
θ−1 −θ−1 θ−1 . . . (−1)n+2θ−1

(
n−2

0

)

θ−2 −2θ−2 . . . (−1)n+3θ−2
(
n−2

1

)

θ−3 . . . (−1)n+4θ−3
(
n−2

2

)
. . .

...
θ−n+1

(
n−2
n−2

)




with (i, j)-entry (−1)i+jθ−i+1
(
j−2
i−2

)
, are elements of order p. The relation J = J1J2 is

proved by straightforward calculation if we note that

J1 =
n−1∑
m=0

θmJmEm+1 and J2 =
n−1∑
m=0

θ−m(I − θN)m−1Em+1,

where I is the n × n identity matrix, N = J − I and Ei is the projection on the i-th
component, i.e. the n × n matrix with the only nonzero entry on the i-th place on the
diagonal equal to 1. Next we show by induction on k that

Jk
1 =

n−1∑
m=0

θm
(
θk−1I + (1 + θ + . . . + θk−1)N

)m
Em+1

and

Jk
2 =

n−1∑
m=0

θ−km
(
I − θ(1 + θ + . . . + θk−1)N

)m−1
Em+1.

Relations Jp
1 = I and Jp

2 = I follow for k = p.
In a similar way, for j = 1, 2, . . . , p− 1, the Jordan matrix

J(θj) =




θj 1
θj 1

. . . . . .
θj 1

θj
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with eigenvalue θj is a product of upper-triangular matrices

K1j = GjJ1G
−1
j and K2j = θjGjJ2G

−1
j ,

where Gj is the diagonal matrix

Gj =




1
θj

θ2j

. . .
θ(n−1)j




.

Note that K1j and K2j are also matrices of order p and thus all the Jordan matrices J(θj),
j = 0, 1, . . . , p− 1, are products of two upper-triangular matrices of order p. ¤

Theorem 4.2. Every element in T
(p)
n is a product of four elements of order p from T

(p)
n .

(Here and later we assume that the identity matrix I is an element of order p for any
prime p.)

Proof. We use the matrices from Example 4.1. Let A be an arbitrary element of T
(p)
n . For

any given set {x1, x2, . . . , xn−1} of nonzero elements of F there is a matrix L diagonally
similar to the matrix J1 from 4.1 and such that the entries on the first diagonal above
the main diagonal of L are equal to x1, x2, . . . , xn−1. This can be checked directly if we
conjugate J1 by the diagonal matrix




1
y1

y2

. . .
yn−1




,

where yi = (i + 1)! θ(
i+1
2 )(x1x2 · · ·xi)−1. As soon as the field has more then 2 elements

we can choose the set {x1, x2, . . . , xn−1} of nonzero elements so that all the entries on the
first diagonal above the main diagonal of the product AL are also nonzero. This can be
observed easily by direct calculation. Let D denote the diagonal matrix with the diagonal
entries equal to the diagonal entries of AL. Then the product ALD−1 is similar via an
upper-triangular similarity to the matrix J of 4.1. Therefore it is a product of 2 upper-
triangular matrices of order p. Our Theorem now follows since L and D are also elements
of order p. ¤

4.3. Question. We do not know whether the bound 4 in Theorem 4.2 is best possi-
ble. It follows easily from example 4.1 that each matrix with the spectrum in the set
{1, θ, . . . , θp−1} is product of 2 elements of order p. However it is not clear whether for
A ∈ T

(p)
n these 2 elements can be chosen to be upper-triangular.
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5. The Group G
(p)
n and the Special Linear Group

Theorem 5.1. The group G
(p)
n is generated by elements of order p. Moreover each element

of G
(p)
n is a product of 4 elements of order p from G

(p)
n .

Proof. The theorem for p = 2 is proved in [GHR]. Let p ≥ 3. We first assume that A ∈ G
(p)
n

is not a scalar matrix. By [S, Thm. 1] we can find a lower-triangular matrix L and an
upper-triangular matrix U such that A is similar to LU , L is unipotent and

U =




det A
1 ∗

1 ∗
. . .

1
1




.

By Example 4.1 (and its counter-part for lower-triangular matrices) it follows that each of
the two matrices L and U is a product of two matrices of order p from G

(p)
n . The spectra

of L and U are contained in {1, detA} and in their Jordan canonical form all the blocks of
sizes greater than 1 correspond to the eigenvalue 1. By 4.1 each of these blocks is a product
of two blocks of the same size and order p.

It remains to consider the scalar case A = αI, where αnp = 1 as ω = det A = αn is such
that ωp = 1. Observe that for a ∈ F, a /∈ {0, 1,−1}, the matrix

(
a 0
0 a−1

)

is the product of two matrices

J1(a) =

(
at

a+1 a−
(

at
a+1

)2

− 1
a

t
a+1

)
and J2(a) =

(
at

a+1 a
(

t
a+1

)2

− 1

1 t
a+1

)
,

where t = θ + θ−1, θp = 1 and θ 6= 1. Note that J1(a)p = J2(a)p = I, since both J1(a) and
J2(a) have the characteristic polynomial equal to λ2 − tλ + 1, and thus θ and θ−1 are the
eigenvalues. Now if n is even then

αI =




α
α−1

α3

. . .
αn−1

α−n+1







1
α2

α−2

. . .
α−n+2

ω




and if n is odd then

αI =




α
α−1

α3

. . .
α−n+2

ω







1
α2

α−2

. . .
αn−1

α−n+1




.
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Each 2× 2 block of the form (
αi 0
0 α−i

)

is the product of 2 matrices J1(αi) and J2(αi) of order p. Since ωp = 1 it follows for both
cases n even and n odd that A = αI is a product of 4 matrices of order p. ¤

Lemma 5.2. Suppose that A ∈ SLn(F ) is unipotent. If n is odd or divisible by 4 then A
is a product of two involutions from SLn(F ). If n = 4k + 2 for some integer k ≥ 1 then A
is a product of 3 involutions from SLn(F ). If p ≥ 3 then A is a product of two elements of
order p from SLn(F ).

Proof. Without loss we may assume that

A =




J1

J2

. . .
Jk




is in Jordan canonical form. By Example 4.1 each Ji is a product of 2 elements Ji1 and Ji2

of order p. Then A is a product of two upper-triangular elements H1 and H2 of order p.
Suppose that p = 2. Since det A = 1 it follows that detH1 = det H2 = ±1. If the

latter is equal to 1 then H1,H2 ∈ SLn(F ). It remains to consider the case det Hi = −1
for i = 1, 2. If n is odd then det(−Hi) = 1 and therefore A = (−H1)(−H2) is a product
of two involutions −H1,−H2 ∈ SLn(F ). If n = 4k for some k ≥ 1 then observe that in
the proof one can choose the (1, 1) entry in each Ji1 so that the diagonal entries in H1 are
alternating 1 and −1. This is achieved by multiplying some of the pairs Ji1, Ji2 by −1.
Now det H1 = 1 and since det A = 1, we have det H2 = 1. So A = H1H2 is a product of
two involutions H1,H2 ∈ SLn(F ).

Consider next the case n = 4k + 2 for some k ≥ 1. First assume that one of the blocks,
say Jl, is of odd size. By multiplying both Jl1 and Jl2 by −1, if necessary, we are able to
change H1 so that det H1 = 1. If all of the blocks in A are of even size then multiply A by

G =




−1 1
1

. . .
1

−1 1
1




which is an involution of determinant 1. The product

GA =




−1 0 1
1 1

. . .
1 1 0

−1 0
1
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has a Jordan chain of length 1 corresponding to 1 and hence it is a product of two upper-
triangular involutions K1,K2 with det Ki = 1 as shown above if one block is of odd size.
Then it follows that A is a product of 3 involutions G, K1 and K2 from SLn(F ).

To conclude the proof consider the case p ≥ 3. Fix an integer k. Observe that by
multiplying the (1, 1) entries of the blocks J1i and J2i by θji and θ−ji , respectively, for
an appropriate integer ji we can assume that the diagonal entries of H1 form a sequence
θk, θk+1, . . . , θk+n−1. Note that after these multiplications the new matrices H ′

1 and H ′
2

are still elements of order p. The proof will be complete if we choose the integer k in such
a way that det H ′

1 = 1. Then also det H ′
2 = 1 since detA = 1. If n is odd, say n = 2l + 1,

then for k = −l it follows that det H ′
1 = 1. If n is even, say n = 2l, then for some integers

a and b we have −2a + pb = n− 1, since 2 and p are relatively prime. For k = a it follows
that det H ′

1 = Πn−1
i=0 θn+i = θl(2a+n−1) = θlpb = 1. ¤

Remark 5.3. If p = 2 and n = 4k+2 then the number 3 in Lemma 5.2 cannot, in general,
be replaced by 2. For example if n = 6 and A is the 6 × 6 Jordan cell with eigenavalue
1, then A has a 1-dimensional eigenspace at the eigenvalue 1. Consider a product J1J2 of
two involutions J1, J2 ∈ SL6(F ). Since det Ji = 1, it follows that both dim ker(Ji − I) and
dimker(Ji + I) are even, equal to 0, 2, 4 or 6. If we assume that 1 is the only eigenvalue
of J1J2 then it is easy to observe that at least one of dim(ker(J1 − I) ∩ ker(J2 − I)) and
dim(ker(J1 + I)∩ker(J2 + I)) is ≥ 2. This is a consequence of the fact that the intersection
of two subspaces of dimension ≥ 4 has dimension at least 2. Therefore the eigenspace at 1
for J1J2 is always of dimension ≥ 2, i.e. it is never 1-dimensional. So A is not a product
of two involutions from SL6(F ). ¤

Theorem 5.4. The special linear group SLn(F ) is generated by elements of order p. More-
over each element of SLn(F ) is a product of 4 elements of order p from SLn(F ).

Proof. The case p = 2, i.e. the case of generation of SLn(F ) by involutions, is proved
in [KN]. Suppose that p ≥ 3. We first assume that A ∈ G

(p)
n is not a scalar matrix and

we argue as in the first part of the proof of Theorem 5.1. By [S, Thm. 1] we can find a
lower-triangular matrix L and an upper-triangular matrix U such that A is similar to LU ,
and both L and U are unipotent. By Lemma 5.2 it follows that each of the matrices L and
U is a product of two matrices from SLn(F ) of order p.

It remains to consider the scalar case A = αI, where αn = 1. We argue as in the second
part of the proof of Theorem 5.1. We use the same notation as in that proof. Note that
now ω = 1. Since the matrices J1(αi) and J2(αi) both have determinant 1, it follows that
A = αI is a product of 4 elements of order p from SLn(F ). ¤

Remark 5.5. If n ≤ p then each non-scalar matrix in SLn(F ) is a product of two elements
of order p in SLn(F ). This follows from the fact that in [S, Thm. 1] we can choose
the diagonal entries in L and U to be all different powers of ω. If n = p then each
matrix in SLn(F ) is a product of two elements of order p in SLn(F ). If n < p then each
matrix in SLn(F ) is a product of three elements of order p, since αI = D(αD−1), where
D = diag(ω, 1, . . . , 1, ω−1). We can adapt the above remark to the case of G

(p)
n and show

that for n ≤ p each non-scalar matrix in G
(p)
n is a product of two matrices of order p in

G
(p)
n and that αI ∈ G

(p)
n is a product of three elements of order p in G

(p)
n .
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Questions 5.6. Several questions arise naturally at this point. We indicate some but do
not pursue them further.

One can study the problems of our paper under fewer assumptions. First, what if F

does not contain a primitive p-th root of 1. Then G
(p)
n (F ) = SLn(F ). The case p = 2 was

studied in [KN]; for p ≥ 3 we do not know whether Theorem 5.4 holds for such a field. Even
more generally, one can drop the assumption that p is a prime and study these problems
for p an arbitrary integer ≥ 2.

Acknowledgement. The authors wish to thank Professor Carlos A.M. André for pointing
out an error in an earlier draft of the paper.
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