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Abstract. Let C be a smooth curve in P2 given by an equation F = 0 of
degree d. In this paper we parametrise all linear pfaffian representations of F
by an open subset in the moduli space MC(2, KC). We construct an explicit
correspondence between pfaffian representations of C and rank 2 vector bundles
on C with canonical determinant and no sections.

1. Introduction

Let k be an algebraically closed field and C an irreducible curve in P2 defined
by a polynomial F (x0, x1, x2) of degree d. We consider the following question. For
given C (and F ) find a 2d× 2d skew-symmetric matrix

A =




0 L1 2 L1 3 · · · L1 2d

−L1 2 0 L2 3 · · · L2 2d

−L1 3 −L2 3 0
...

...
. . .

...
−L1 2d −L2 2d · · · 0




with linear forms Lij = a0
ijx0 + a1

ijx1 + a2
ijx2 such that

Pf A(x0, x1, x2) = cF (x0, x1, x2) for some c ∈ k, c 6= 0.

Such a matrix A is called a linear pfaffian representation of C. Its cokernel is a rank
2 vector bundle on C. Throughout the paper we identify vector bundles with locally
free sheaves.

Two pfaffian representations A and A′ are equivalent if there exists X ∈ GL2d(k)
such that

A′ = XAXt.

A locally free sheaf E of rank 2 is stable if for every invertible sheaf E → F → 0
holds

degF >
1
2

deg E .

It is semistable if > is replaced by ≥ .
We find all linear pfaffian representations of C (up to equivalence) and relate

them to the moduli space MC(2, KC) of semistable rank 2 vector bundles on C with
canonical determinant. An explicit construction of representations from the global
sections of rank 2 vector bundles with canonical determinant and no sections is
given.

In general the elements of A can be homogenous polynomials of various degrees.
Such pfaffian representations are considered in Theorem 3.6. A good survey of the
linear algebra of Pfaffians can be found in [8, Appendix D]. In [9, Chapter V. 2]
Hartshorne identifies the theory of rank 2 sheaves with the theory of ruled surfaces
over C.

1



2 ANITA BUCKLEY AND TOMAŽ KOŠIR

Study of pfaffian representations is strongly related to and motivated by determi-
nantal representations. A linear determinantal representation of C is a d×d matrix
of linear forms

M = x0M0 + x1M1 + x2M2

satisfying
detM = cF,

where M0, M1,M2 ∈ Matd(k) and c ∈ k, c 6= 0. Here Matd(k) is the algebra of all
d× d matrices over k. Two determinantal representations M and M ′ are equivalent
if there exist X, Y ∈ GLd(k) such that

M ′ = XMY.

There are many more pfaffian than determinantal representations. Indeed, every
determinantal representation M induces decomposable pfaffian representation[

0 M
−M t 0

]
.

Note that the equivalence relation is well defined since[
0 XMY

−(XMY )t 0

]
=

[
X 0
0 Y t

] [
0 M

−M t 0

] [
Xt 0
0 Y

]
.

Nonequivalent linear determinantal representations are in bijection with line bun-
dles on C and they can be parametrised by the non exceptional points on the Jaco-
bian variety of C. To any compact Riemann surface X one can associate the pair
(JX,Θ), the Jacobian and the Riemann theta function. The geometry of the pair
is strongly related to the geometry of X. This gives an idea that higher rank vector
bundles define a non-abelian analogue of the Jacobian called moduli space firstly due
to the mathematicians of the Tata Institute [15]. Much later physicists in Confor-
mal Field Theory introduced pairs of moduli spaces and determinant line bundles
on these moduli spaces [20]. This has made a clear analogy with the Jacobian pair.

A brief outline of the paper is the following. In Section 2 we recall the parametri-
sation of linear determinantal representations by points on the Jacobian variety due
to Vinnikov [22]. We use similar ideas in Sections 3 and 4 to parametrise all linear
pfaffian representations by points in an open subset of the moduli space MC(2, KC).
In the third section we give an explicit construction of the correspondence between
pfaffian representations and vector bundles with certain properties. In the fourth
section we relate these vector bundles to the points on MC(2,KC) not on the sub-
variety cut out by Cartier divisor Θ2,KC

. In Section 5 we consider decomposable
bundles which are parametrised by an open set on the Kummer variety. Pfaffian rep-
resentation arising from a decomposable bundle F ⊕ (F−1 ⊗OC(d− 1)

)
is exactly

the decomposable representation [
0 M

−M t 0

]
,

where M is the determinantal representation corresponding to F ∼= CokerM . We
show in Section 6 that elliptic curves only allow decomposable pfaffian represen-
tations. This is a special case of the general result that elliptic curves allow only
decomposable vector bundles [3]. In the last section we compute pfaffian represen-
tations of a genus 3 curve. To our knowledge there are not many results explicitly
describing MC(2,KC) for curves of higher genus. Methods considered in this paper
could be applied to finding all pfaffian representations and consequently the moduli
space of genus g > 3 curves.
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Let us also mention that explicit construction of elementary transformations of
pfaffian representations of smooth plane curves is given in [4].

2. Determinantal representations and the Jacobian

There is a one to one correspondence between linear determinantal representa-
tions (up to equivalence) of C and line bundles (up to isomorphism) on C with
certain properties. This well known result is summed up in the following theorem
of Beauville [2, Proposition 3.1].

Theorem 2.1. Let C be a plane curve defined by a polynomial F of degree d and
let L be a line bundle of degree 1

2d(d− 1) on C with H0(C,L(−1)) = 0. Then there
exists a d× d linear matrix M with det M = F and an exact sequence

0 →
d⊕

i=1

OP2(−1) M−→
d⊕

i=1

OP2 → L → 0.(1)

Conversely, let M be a linear d× d matrix with detM = F . Then its cokernel is
a line bundle of degree 1

2d(d− 1) and H0(C, CokerM(−1)) = 0.

Dolgachev explicitly described the above correspondence in [6].Vinnikov also gave
an explicit construction of the correspondence in [22, Theorems 2-4]. Additionally
he related determinantal representations to points on the Jacobian variety in the
following way.

It is known [5, Theorem 1.1] that representations M and M ′ are equivalent if and
only if CokerM and CokerM ′ are isomorphic sheaves. Therefore the problem of
classifying all linear representations of F (up to equivalence) it the same to finding
all line bundles L with the property degL = 1

2d(d − 1) and H0(C,L(−1)) = 0. In
order to simplify the notation we tensor the above by O(1) and consider line bundles
with degL = 1

2d(d − 1) − d = 1
2d(d − 3) and H0(C,L) = 0. We call the bundles

with this property non exceptional line bundles. Analogously, line bundles of degree
1
2d(d − 3) and H0(C,L) 6= 0 are called exceptional. Recall a fundamental result in
the theory of curves [1]:

Lemma 2.2. Let C be of genus g. The exceptional divisor classes define a g − 1
dimensional subvariety Wg−1 on the Jacobian variety J .

This proves the following theorem [22, Theorems 2-4]:

Theorem 2.3. All linear determinantal representations of F (up to equivalence)
can be parametrised by points on the Jacobian variety of C not on the exceptional
subvariety Wg−1.

3. Classification of pfaffian representations from the scratch

In this section we consider the following problem. For a given homogeneous poly-
nomial F (x0, x1, x2) of degree d find all linear pfaffian representations. The main
result of this section is an elementary proof of Theorem 3.5 and explicit construction
of representations from suitable vector bundles given in the proof of Proposition 3.4.

Following the ideas of Dolgachev [6] we formulate the problem geometrically and
coordinate free. Let U be a 2d dimensional vector space. It is well known that

∧2 U
can be identified with 2d × 2d skew-symmetric matrices. Let Ωk denote the set of
elements

∑k
i=1 vi ∧wi in

∧2 U where dim{v1, . . . , vk, w1, . . . , wk} = 2k. Elements of
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Ωk are said to have irreducible length k since they can be written as a sum of k and
not less than k decomposable tensors in

∧2 U . In [10] it is shown that

Lemma 3.1. Ωk can be identified with the set of all rank 2k skew-symmetric ma-
trices.

Proof. Specifically, let e1, . . . , e2d be a basis for U and {Eij} the standard basis for
2d× 2d matrices. Then the bijection is given by

ei ∧ ej 7→ Eij − Eji

and extends linearly to

(2)
2d∑

i=1

αiei ∧
2d∑

j=1

βjej 7→
2d∑

i,j=1

(αiβj − αjβi)(Eij − Eji).

¤

Next let E be a 3 dimensional vector space and Φ a linear embedding

Φ: P(E) −→ P(
2∧

U).

Note that Φ corresponds to a skew-symmetric matrix with linear forms as its ele-
ments. Alternatively, Φ is an element in E∗ ⊗ (

∧2 U).
Let Pd ⊂ P(

∧2 U) be the hypersurface parametrising non-invertible skew-symmetric
matrices. Choose a basis of U , then Pd is given by the pfaffian of a skew-symmetric
matrix. The inverse image of Pd under Φ is a plane curve of degree d in P(E).

Let C be a smooth plane curve defined by F . Assume that C admits a pfaffian
representation A.

Lemma 3.2. For any x ∈ C the corank of A(x) equals 2.

Proof. Assume

A = [a0
ijx0 + a1

ijx1 + a2
ijx2] and Pf A = cF, c 6= 0.

Denote by Pfij A the pfaffian of the (2d − 2) × (2d − 2) skew-symmetric matrix
obtained by removing the ith and jth rows and columns from A. Then

∂F

∂xk
(x) =

1
c

∑

i,j

ak
ij Pfij A(x).

If for some x ∈ C all 2d − 2 pfaffian minors vanish, then x must be a singular
point of F . By our assumption F is smooth, thus rankA(x) ≥ 2d − 2 for all
x ∈ C. This ends the proof because rank of skew-symmetric matrices is even and
detA(x) = F 2(x) = 0. ¤

Define the pfaffian adjoint of A to be the skew-symmetric matrix

Ã =




0
. . . (−1)i+j Pfij A

. . .
0


 .

By analogy with determinants the following holds

(3) Ã ·A = Pf A · Id2d.
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By Lemma 3.2 the cokernel of A defines a rank 2 vector bundle over C. Since
Pf A = cF the cokernel can be obtained from Ã by using identity (3). Indeed, for
any point x ∈ C every column of Ã(x) is in CokerA(x). The properties of CokerA
are described in the following proposition.

Proposition 3.3. Let A be a pfaffian representation of a smooth plane curve C
defined by a homogeneous polynomial F of degree d. Then E = CokerA is a rank 2
vector bundle on C and

(i) h0(C, E) = 2d,
(ii) H0(C, E(−1)) = H1(C, E(−1)) = 0,
(iii) det E =

∧2 E = OC(d− 1).

Proof. By definition of E we have the exact sequence

0 →
2d⊕

i=1

OP2(−1) A−→
2d⊕

i=1

OP2 → E → 0.(4)

Applying the functor H i(P2, ∗) to (4) gives

H0(P2,OP2(−1)2d) → H0(P2,O2d
P2) → H0(P2, E) → H1(P2,OP2(−1)2d) → · · ·

0 2d 0

where the bottom row denotes dimensions of the cohomology of projective space
which is computed in [9, Theorem III.5.1]. Thus dimH0(P2, E) = 2d.

Next tensor (4) by OP2(−1) and again apply the functor H i(P2, ∗). This gives a
long exact sequence

H0(P2,OP2(−2)2d) → H0(P2,OP2(−1)2d) → H0(P2, E(−1)) →
‖ ‖
0 0

H1(P2,OP2(−2)2d) → H1(P2,OP2(−1)2d) → H1(P2, E(−1)) →
‖ ‖
0 0

H2(P2,OP2(−2)2d) → · · ·
‖
0

where H2(P2,OP2(−2)2d) ∼= H0(P2,OP2(−1)2d) = 0 by Serre duality. Hence, we
obtain that H0(P2, E(−1)) = H1(P2, E(−1)) = 0.

Since E is supported on C we proved (i) and (ii).
In order to prove (iii) apply the functor HomOP2 (∗,OP2(−1)) to (4). We get

0 → Hom(E ,OP2(−1)) → Hom(O2d
P2 ,OP2(−1)) → Hom(OP2(−1)2d,OP2(−1)) →

→ Ext1(E ,OP2(−1)) → Ext1(O2d
P2 ,OP2(−1)) → · · · ,

where

Hom(O2d
P2 ,OP2(−1)) ∼= (O2d

P2)∨ ⊗OP2(−1) ∼= OP2(−1)2d,

Hom(OP2(−1)2d,OP2(−1)) ∼= (OP2(−1)2d)∨ ⊗OP2(−1) ∼= O2d
P2
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and Ext1(O2d
P2 ,OP2(−1)) = 0 by [9, Proposition III.6.3]. This implies that Exti(E ,OP2(−1)) =

0 for i 6= 1 and the above sequence is isomorphic to

0 →
2d⊕

i=1

OP2(−1) At−→
2d⊕

i=1

OP2 → Ext1(E ,OP2(−1)) → 0.(5)

Thus we obtain

E ∼= CokerA ∼= CokerAt ∼= Ext1(E ,OP2(−1)) ∼=
Ext1(E ,OP2(−3)⊗OP2(2)) ∼= Ext1(E ,OP2(−3))⊗OP2(2) ∼=
HomC(E ,OC(d− 3))⊗OP2(2) ∼= HomC(E ,OC(d− 1)) ∼=
E∨ ⊗OC(d− 1)

since by Serre duality

Ext1(E ,OP2(−3)) ∼= Ext1(E , ωP2) ∼= HomC(E , ωC) ∼= HomC(E ,OC(d− 3)).

Finally,
∧2E ∼= E ∧ (E∨ ⊗OC(d− 1)) ∼= OC(d− 1).

¤

In the sequel the reverse problem will be considered. We will give an explicit
construction of pfaffian representation from a vector bundle with properties (i)–(iii).

Proposition 3.4. Let C be a smooth plane curve of degree d. To every rank 2 vector
bundle E on C with properties

(i) h0(C, E) = 2d,
(ii) H0(C, E(−1)) = 0,
(iii) det E =

∧2 E = OC(d− 1)

we can assign a pfaffian representation AE . In particular, isomorphic bundles induce
equivalent representations.

Proof. Let U = H0(C, E) be the 2d dimensional vector space of global sections of
E . We define a map ψ from C to the space of 2d × 2d skew-symmetric matrices
with entries in the space of homogeneous polynomials of degree d − 1, such that
ψ−1(Pd) = C.

Choose a basis {s1, . . . , s2d} for U and define

C 3 x
ψ7→

∑

1≤i<j≤2d

(si(x) ∧ sj(x))(Eij − Eji) =




0
. . . si(x) ∧ sj(x)

. . .
0


 .

Since si ∧ sj ∈
∧2 U , by property (iii) the map ψ extends to

Ψ: P(E) −→ P(
2∧

U)

given by a linear system of plane curves of degree d−1. In other words, Ψ is a tensor
in Sd−1(E∗)⊗ (

∧2 U). In coordinates it equals to a 2d× 2d skew-symmetric matrix
B(x0, x1, x2) with entries from the space of homogeneous polynomials of degree d−1.

From the definition of B and isomorphism (2) in Lemma 3.1 it follows that at any
point x ∈ C rankB(x) = 2.
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Before we proceed, we prove that a different basis {s′1, . . . , s′2d} for U induces
equivalent representation B′. Indeed, since




s′1
...

s′2d


 = R ·




s1
...

s2d




for some constant invertible matrix R, it is straightforward to check that

B′ =




0
. . . s′i ∧ s′j

. . .
0




= R ·




0
. . . si ∧ sj

. . .
0


 ·R

t = R ·B ·Rt.

As before, let F be the defining polynomial for C. Denote by M a 4×4 submatrix
of B, obtained by deleting 2d − 4 rows and columns with the same indices. Then
F | Pf M since rankB(x) = 2 and therefore Pf M(x) = 0 for all x ∈ C. Consider
next a 6 × 6 skew-symmetric submatrix N of B and its pfaffian adjoint Ñ . By (3)
we get

Pf N · Pf Ñ = (Pf N)3,

Pf Ñ = (Pf N)2.

The entries of Ñ are Pfaffians of 4 × 4 submatrices, hence F 3 | (Pf N)2. Since C is
irreducible, F 2 | Pf N . By repeating this process we obtain that F d−2 divides all the
Pfaffians of (2d− 2)× (2d− 2) skew-symmetric submatrices of B. These are exactly
Pfij B defined in the proof of Lemma 3.2. This means that

(6) A =
1

F d−2
B̃

is a matrix with entries in E∗. Since rankB(x) = 2 for all x ∈ C, we get rankA(x) =
2d − 2. Therefore Pf A is a hypersurface of degree d vanishing on C unless Pf A is
identically zero. This implies Pf A = cF for some constant c.

It remains to prove that Pf A 6= 0. We consider the tautological map

σ : PE∨ → PU∗,

defined by the tautological linear system H = |OPE(1)|. Choose L such that it
intersects C in d distinct points {p1, . . . , pd}. The condition H0(C, E(−1)) = 0 is
equivalent to the following property: no H ∈ H contains the union of the projective
lines PE∨p1

∪ · · · ∪ PE∨pd
. This is equivalent to say that E∨p1

, . . . , E∨pd
are 2-dimensional

subspaces of U∗ and their sum is U∗. There is no restriction to assume that L is
given by z0 = 0. Using this equation in (6) we obtain the pencil of skew-symmetric
matrices

AL = z1A1 + z2A2.

By fixing a basis for U∗ we can consider this as a pencil of matrices associated to
a pencil of symplectic forms z1a1 + z2a2 on U∗. By the preceding part of the proof
it follows that E∨pi

is the kernel of z1(pi)a1 + z2(pi)a2. Since h0(C, E(−1)) = 0, it
follows that

U∗ = E∨p1
⊕ · · · ⊕ E∨pd

.

Hence we can take as a basis for U∗ the union of bases of the vector spaces Epi . This
basis gives the simultaneous reduction to the standard form of the skew-symmetric
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matrices of the pencil AL. In this basis we have

AL = P tJP,

where P is the change of basis matrix and

J =




J1 0 · · · 0
0 J2 · · · 0
...

. . .
...

0 0 · · · 0




is the standard form. No 2× 2 block Ji is identically equal to 0, since otherwise the
rank of AL at pi would be at most 2d− 4. Therefore detAL is not identically zero,
neither are detA and Pf(A). ¤

By the classic result of Cook and Thomas [5, Theorem 1.1] two representations
are equivalent if and only if the corresponding cokernels are isomorphic sheaves.
Together with the above considerations it implies:

Theorem 3.5. There is a one to one correspondence between linear pfaffian repre-
sentations of F (up to equivalence) and rank 2 bundles (up to isomorphism) on C
with the property

det E ∼= OC(d− 1) and H0(C, E(−1)) = 0.(7)

Proof. It remains to show that (i) in Proposition 3.4 follows from conditions (ii)
and (iii). For every rank 2 bundle E ∼= E∨ ⊗ (

∧2 E) holds. Applying (iii) gives
E ∼= E∨ ⊗OC(d− 1). Then

H1(C, E(−1))
∼= H1(C, E∨ ⊗OC(d− 2)) ∼= H0(C, E ⊗ OC(2− d)⊗OC(d− 3))

∼= H0(C, E(−1))

by Serre duality. Hence (ii) implies H1(C, E(−1)) = 0.
Let L be a section of OC(1) and consider the exact sequence

(8) 0 −→ E(−1) −→ E −→ E|L −→ 0.

Note that E|L = E ⊗ OL is supported on a finite set of points. Taking cohomology
gives a long exact sequence

H0(C, E(−1)) → H0(C, E) → H0(C, E|L) →
‖
0

H1(C, E(−1)) → H1(C, E) → H1(C, E|L) →
‖ ‖
0 0

This proves that H1(C, E) = 0.
It also proves h0(C, E) = 2d. Indeed, observe that E|L = E ⊗ OL is of rank 2

supported on the set C ∩ L of d points, hence h0(C, E|L) = 2d. ¤

Theorem 3.5 is a special case of the following Beauville’s corollary, where repre-
sentations of hypersurfaces are studied via arithmetically Cohen-Macaulay (ACM)
sheaves on Pn. One of the advantages of our elementary proof is an explicit con-
struction of representations from sheaves.
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Theorem 3.6 (Corollary 2.4 in [2]). Let X be an integral hypersurface of degree
d in Pn(x0, . . . , xn) over a field k with char k 6= 2. Moreover, let E be an ACM
vector bundle on X of rank 2 with determinant OX(d+ t). Then there exists a skew-
symmetric matrix A = (aij) ∈ Ml with aij homogeneous polynomials in x0, . . . , xn

of degree di + dj − t and an exact sequence

0 →
l⊕

i=1

OPn(t− di)
A−→

l⊕

i=1

OPn(di) → E → 0,(9)

where X is defined by Pf A = 0.
If H0(X, E(−1)) = 0 and t = −1, the entries of A are linear.

To conclude this section we recall a result of Fujita [13, Example 6.4.16].

Remark 3.7. Suppose that C has genus g ≥ 2. If E is a bundle on C such that
H1(C, E) = 0, then E is ample. Being ample is equivalent to the condition that
every quotient has strictly positive degree.

4. The moduli space M(2, 2(g − 1))

In this section we relate the set of pfaffian representations to the moduli space of
semistable vector bundles.

As before let C be a smooth plane curve of degree d and genus g. The existence
and properties of

MC(r, n),

the moduli space of semistable vector bundles on C of rank r and degree n, were
established in [15], [18] and more modern treatment can be found in [17]. It is
known that MC(r, n) is an irreducible, normal projective variety with an open subset
M s

C(r, n) corresponding to stable bundles.
If C has genus g ≥ 2 then M s

C(r, n) is not empty and its dimension is r2(g−1)+1.
The singular points of MC(r, n) are exactly MC(r, n)\M s

C(r, n).
If C is an elliptic curve then M s

C(r, n) is empty.

One can restrict the study to the moduli space

MC(r,L)

of (semistable) rank r vector bundles on C with determinant L. As described
in [3], [7] it is a closed subvariety in MC(r,degL). Moreover, M s

C(r,L) is a closed
subvariety in M s

C(r,degL). The determinant can be fixed since the moduli space
MC(r,degL) is, up to a finite étale covering, the product of MC(2,L) with the
Jacobian JC.

Drezet and Narasimhan [7] showed that Pic(MC(r,L)) ∼= Z is generated by ge-
ometrically defined Cartier divisors Θr,L in MC(r,L). For example, when degL =
r(g − 1) then

χ(E) = 0 for all E ∈ MC(r,L)

and
Θr,L =

{E ∈ MC(r,L) : h0(C, E) 6= 0
}

is naturally such a divisor.



10 ANITA BUCKLEY AND TOMAŽ KOŠIR

Theorem 4.1. Let C be a smooth curve defined by a polynomial F of degree d in
P2. There is a one to one correspondence between linear pfaffian representations of
F (up to equivalence) and rank 2 bundles (up to isomorphism) on C in the open set

MC(2,OC(d− 3)) \ Θ2,OC(d−3).

Proof. From now on we consider the moduli space

MC(2,OC(d− 3))

of (semistable) rank 2 vector bundles on C with determinant KC
∼= OC(d−3), which

is a closed subvariety in MC(2, d(d− 3)) = MC(2, 2(g − 1)).
Recall from Theorem 3.5 the one to one correspondence between the linear pfaffian

representations of C and rank 2 bundles on C with property (7). For the sake of
clearer notation, after tensoring by OC(1), condition (7) can be rewritten into

det E ∼= OC(d− 3) and H0(C, E) = 0.(10)

Condition h0(C, E) = 0 implies that E is semistable. By the above considerations,
bundles satisfying (10) can be parametrised by the points on

MC(2,OC(d− 3)) \ Θ2,OC(d−3).

This is an open subset of MC(2,OC(d− 3)) since we cut out a Cartier divisor. ¤

5. Pfaffians arising from decomposable vector bundles

In this section we find and explicitly describe linear pfaffian representations of C
(up to equivalence) arising from decomposable vector bundles. We parametrise them
by an open set in the Kummer variety. Since decomposable vector bundles are never
stable [9, Ex V.2.8], this open set lies in the singular locus of MC(2,OC(d−3)). The
proof of the fact that the moduli space of rank 2 bundles with canonical determinant
is singular along the Kummer variety can be found in [16].

Kummer variety KC of C is by definition the quotient of the Jacobian JC by the
involution L 7→ L−1 ⊗OC(d− 3).

moduli space
MC

divisor

pfaffian
representations

Θ

Figure 1. The dark boundaries represent the singular locus of MC

and decomposable Pfaffians respectively
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Recall that by Theorem 3.5 and (10) we need to find all decomposable rank 2
bundles (up to isomorphism) with the property

det E ∼= OC(d− 3) and H0(C, E) = 0.

Write E = L ⊕M. Then det E ∼= L ⊗M ∼= OC(d− 3) or equivalently

M∼= L−1 ⊗OC(d− 3).

Observe that E ∼= L ⊕ (L−1 ⊗OC(d− 3)
)

has no sections if and only if L and
L−1 ⊗ OC(d − 3) have no sections. These can be calculated by the Riemann-Roch
formula and Serre duality

h0(C,L)− h0
(
C,L−1 ⊗OC(d− 3)

)
= degL+ 1− g,

since OC(d− 3) is exactly the line bundle of the canonical divisor KC .
This proves that every decomposable rank 2 bundles with the property (10) is of

the form
E ∼= L ⊕ (L−1 ⊗OC(d− 3)

)
,

where L is a line bundle of degree g − 1 = 1
2d(d − 3) with no sections. These are

exactly the non exceptional line bundles defined in Section 2. We have seen that
they correspond to the points on the Jacobian variety of C not on the exceptional
subvariety Wg−1.

Conversely, by Section 2 a point on the Jacobian variety induces a determinantal
representation M of C. Then [

0 M
−M t 0

]

is a pfaffian representation of C with decomposable cokernel.
Thus we proved

Theorem 5.1. There is a one to one correspondence between decomposable vector
bundles in MC(2,OC(d− 3)) \ Θ2,OC(d−3) and the open subset of Kummer variety

(JC \ Wg−1) / ≡,

where ≡ is the involution L 7→ L−1 ⊗OC(d− 3).

In the sequel we explicitly construct the above correspondence from the sections
of E(1). As above, let E = L ⊕ (L−1 ⊗OC(d− 3)

)
with L of degree g − 1 and no

sections. Denote L ⊗OC(1) = L(1) by F . Then

H0(C,F(−1)) = 0 and degF =
1
2
d(d− 1) = deg

(F−1 ⊗OC(d− 1)
)
.

Let H be a section of OC(1) and consider the exact sequence

0 −→ F(−1) −→ F −→ F|H −→ 0,

where F|H is supported on a d points C ∩ H. Applying cohomology gives a long
exact sequence with dimensions

H0(C,F(−1)) → H0(C,F) → H0(C,F|H) → H1(C,F(−1)) →,
0 d 0

since h0(C,F(−1))−h1(C,F(−1)) = 0 by the Riemann-Roch theorem. This proves
that h0(C,F) = d. The same way we show h0(C,F−1 ⊗ OC(d − 1)) = d. Let
{f1, . . . , fd} and {m1, . . . , md} be bases of the complete linear system of F and
F−1 ⊗OC(d− 1) respectively. Then

{(f1, 0), . . . , (fd, 0), (0,m1), . . . , (0,md)}
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form a basis for H0(C, E(1)). Obviously (fi, 0)∧ (0,mj) = fi⊗mj , whereas (fi, 0)∧
(fj , 0) and (0,mi)∧ (0,mj) equal 0. Applying the same argument as in the proof of
Proposition 3.4, we see that the map Ψ is of the form[

0 fi ⊗mj

−fj ⊗mi 0

]
.

In coordinates it equals to a 2d×2d skew-symmetric matrix B with entries from the
space of homogeneous polynomials of degree d − 1 and zero diagonal blocks. As in
the proof of Proposition 3.4 we get that

A =
1

F d−2
B̃

is a pfaffian representation of C. In particular,

A =
[

0 M
−M t 0

]
,

where M is the determinantal representation of C corresponding to the non excep-
tional line bundle F .

6. Cubic curves

In this section C will denote a curve defined by a smooth cubic polynomial F in
P2.

Corollary 6.1 (§1 in [3]). On a cubic curve C all linear pfaffian representations
can be parametrised by the points on the Kummer variety KC − {one point}.
Proof. Recall that on an elliptic curve KC

∼= OC . Since M s
C(2, 0) is empty, there

are no stable bundles on C. On the other hand, by [3, §4] the non-stable part of
MC(2,OC) consists of decomposable vector bundles of the form L ⊕ L−1 for L in
the Jacobian JC. Obviously L ⊕ L−1 and L−1 ⊕ L are equivalent. For L ∈ JC the
following conditions are equivalent:

• h0(C,L ⊕ L−1) = 0,
• h0(C,L) = 0,
• L 6= OC .

Therefore

MC(2,OC) \ Θ2,OC
= {L ⊕ L−1; L ∈ JC} \ {OC ⊕OC}.

¤

Vinnikov [22] found an explicit one to one correspondence between the linear
determinantal representations (up to equivalence) of C and the points on an affine
piece of C:

Lemma 6.2 ([22]). Every smooth cubic can be brought into the Weierstrass form

F (x0, x1, x2) = −x1x
2
2 + x3

0 + αx0x
2
1 + βx3

1.

A complete set of determinantal representations of F is

x0 Id +x2




0 1 0
0 0 1
0 0 0


 + x1




s
2 l α + 3

4s2

0 −s −l
−1 0 s

2


 ,

where l2 = s3+αs+β. Note that the last equation is exactly the affine part F (s, 1, l).
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Recall that the Jacobian of a cubic curve C with g = 1 is the curve itself and
J − {W0} is an affine piece of C. In particular, Corollary 6.1 implies that the
complete set of pfaffian representations of F (put in the Weierstrass form) equals

[
0 M

−M t 0

]
,

where M are the determinantal representations in Lemma 6.2. Note that M and
−M t are not equivalent determinantal representations, but

[
0 M

−M t 0

]
and

[
0 −M t

M 0

]

are quivalent pfaffian representations since
[

0 I
I 0

] [
0 M

−M t 0

] [
0 I
I 0

]
=

[
0 −M t

M 0

]
.

7. Examples of higher genus

We start by an example of a genus 3 curve.

Example 7.1. Any non hyperelliptic curve C of genus 3 is isomorphic to a plane
quartic. In this case MC(2,OC(1)) ∼= MC(2,OC) embeds as a Coble quartic hy-
persurface in P7 and is singular along the Kummer variety KC . For references
check [14], [12], [3].

For a given plane quartic Vanhaecke [21] gives explicit equations of the Coble
quartic hypersurface. First he finds the equations of the Kummer variety which
represents the singular locus of the moduli space, from here the Coble quartic is
obtained by integration. For example, the moduli space of

C : x4 − yz3 − y4 = 0

is the Coble hypersurface in P7 defined by the polynomial

z4
0 − z4

2 − 2z1z
2
2z3 − z2

1z
2
3 − z0z

3
3 − 4z0z

2
2z4 − 2z2

0z
2
4 − 3z0z2z

2
4 + z4

4 − 4z0z1z2z5

+z3z4z
2
5 + z2z

3
5 − 4z0z

2
1z6 − 3z2

0z3z6 − z3z
2
4z6 − 2z2z4z5z6 + z1z

2
5z6 − z0z

3
6 − 2z2

0z1z7

−z2
3z4z7 + 2z1z

2
4z7 − z2z3z5z7 + z0z

2
5z7 − z2

2z6z7 − z1z3z6z7 − 4z0z4z6z7 + z2
1z

2
7 .

In the sequel we outline an algorithm for finding all pfaffian representations of
the given C (up to equivalence) based on canonical forms of matrix pairs. This is a
generalisation of Vinnikov’s construction of determinantal representations [22]. Let
A = xAx+zAz +yAy be a pfaffian representation of C. Observe that Ax is invertible
and Az nilpotent since C is defined by Pf A and contains x4 term and no z4 term.
Because C contains also yz3, by Lancaster and Rodman [11, Theorem 5.1] every
pfaffian representation of C can be put into the skew-symmetric canonical form

x




0 0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 1 0 0

0 1 0 0 0

0 0 0 0

0 0 0

0 0

0




+ z




0 0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0




+ y




0 c12 c13 c14 c15 c16 c17 c18

0 c23 c24 c25 c26 c27 c28

0 c34 c35 c36 c37 c38

0 c45 c46 c47 c48

0 c56 c57 c58

0 c67 c68

0 c78

0




.
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Since Pf A equals the equation of C we get

c45 = −c18 − c36 − c27,

c46 = −c28 − c37,

c47 = −c38,

c48 = 1,

c15 = c18(c18 − c27)− c2
27 + c28c35 − (c18 + c27 + c36)c36 − c26c37 − ...,

c16 = −c25 − 2(c18 + c27)c28 − (c18 + 2c27 + c36)c37 + c35c38 + c34c57 + ...,

c26 = −c17 − c2
28 − c35 − c28c37 − (2c18 + c27 + c36)c38 + c34c58 + c24c68 + c14c78.

There are 21 parameters cij left in the representation. Pfaffian representations are
equivalent under the action

A 7→ P ·A · P t,

where P is an invertible constant matrix. By a suitable P we can reduce the num-
ber of parameters in A. In other words, we will reduce the number of equivalent
representations in each equivalence class.

Lemma 7.2. The action A 7→ P · A · P t preserves the canonical form of the first
two matices in the representation if and only if P equals[

P1 P2

P3 P−1
1 + P3P

−1
1 P2

]
or

[
P2 P1

−P−1
1 + P3P

−1
1 P2 P3

]

where P1 is invertible and Pi are of the form


pi1 pi2 pi3 pi4

0 pi1 pi2 pi3

0 0 pi1 pi2

0 0 0 pi1


 , i = 1, 2, 3.

Proof. Denote

I =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 and N =




0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 0




We will need the following obvious observation, which can be proved directly by
comparing matrix elements:
Let Y, Y ′ be 8× 8 matrices for which

Y.

[
0 I
−I 0

]
=

[
0 I
−I 0

]
.Y ′ and Y.

[
0 N
−N 0

]
=

[
0 N
−N 0

]
.Y ′ hold.

Then Y ′ = Y t and Y =
[

Y1 Y2

Y3 Y4

]
, where

Yi =




yi1 yi2 yi3 yi4

0 yi1 yi2 yi3

0 0 yi1 yi2

0 0 0 yi1


 , i = 1, 2, 3, 4.

We call the specific form of the above Toeplitz matrices ”4 form”.
Now we can find all invertible

P =
[

P1 P2

P3 P4

]
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that satisfy

P.

[
0 I
−I 0

]
.P t =

[
0 I
−I 0

]
and P.

[
0 N
−N 0

]
.P t =

[
0 N
−N 0

]
.

By the above observation all Pi’s are of 4 form. Moreover, if P1 is invertible then
P4 = P−1

1 + P3P
−1
1 P2. The same way we see that P3 = −P−1

2 + P1P
−1
2 P4 when P2

is invertible.
Since P is invertible and consists of 4 blocks, at least one of P1, P2 is also invert-

ible. Note that [
P1 P2

P3 P4

]
.

[
0 − Id
Id 0

]
=

[
P2 −P1

P4 −P3

]

exchanges P1 and P2 which finishes the proof. ¤

The action of Lemma 7.2 enables us to reduce the number of parameters cij . We
can choose such P that its action eliminates

c14 = c24 = c34 = c38 = c47 = 0,

c18 = c45 = −1
2
(c27 + c36), c28 = c46 = −1

2
c37.

This computation can be easily checked by using Wolfram Mathematica.
The relations among cij then simplify to:

c15 =
1
4
(−2(c27 + c36)2 − (c27 − c36)2 + 6(c17 + c35)c37 − c3

37 + 4c23c67),

c16 + c25 = −(c27 + c36)c37,

c26 = −(c17 + c35) + c2
37/4

and

c327+4c16c35+c336+4c26(c27+c36)c37+c27c35c37+c17(4c25−(c27−c36)c37)+4c13c56+4c12c57 =

−2c23c37c57−2c13c37c67+c27c36(c27+c36)+c35c36c37+2(c16+c25)c237+4(c27+c36)(c23c67+c15),

4c15c27c36+c26c227c37+c227c35c37+2c26c27c36c37+c27c35c36c37+c26c236c37+c15c337+4c12c37c56+

c17(4c26c35+c27c36c37+c236c37+4c23c56)+4c13c26c57−c27c36(c27+c36)2−4

c23c27c37c57+c23c36c37c57+4c15c23c67+4c12c35c67+c13c27c37c67+c13c36c37c67 =

4c15c26c37+c25(c27+c36)c237+4c13c27c56+c17(4c25c36+c35c237)+4c12c36c57+

c13c237c57+c16(4c27c35−4c25c37+c27c237+c36c237+4c23c57)+4c13c25c67+c23(c27+c36)2c67,

4c16c27+4c25c36+4c15c37+c35c237+c17(−4c26−4c35+c237) =

4c26c35+2c227c37+4c27c36c37+2c236c37+4c23c56+4c13c57+4c12c67.

(11)

We are left with 12 parameters

(12)




0 c12 c13 0 c15 c16 c17 − 1
2
(c27+c36)

0 c23 0 c25 c26 c27 − c37
2

0 0 c35 c36 c37 0
0 − 1

2
(c27+c36) − c37

2 0 1
0 c56 c57 0

0 c67 0
0 0

0




.
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Note that we have chosen P to make the top right 4 × 4 corner as symmetric as
possible. We will show in the proof of Lemma 7.3 that the change of coordinates

c12 c13 c23 c16 c17 c27

l l l l l l
c56 c57 c67 c25 c35 c36

in (11) and (12) yields an equivalent representation.
Next we prove that the equivalence class of a generic pfaffian representation above

is 3 dimensional.

Lemma 7.3. Pfaffian representations

A = x

[
0 I
−I 0

]
+ z

[
0 N
−N 0

]
+ y

[
cij

]
and

A′ = x

[
0 I
−I 0

]
+ z

[
0 N
−N 0

]
+ y

[
c′ij

]

with [cij ], [c′ij ] in the form (12) are equivalent if and only if



c′12 c′13 c′23

c′16 − c′25 c′17 − c′35 c′27 − c′36

c′56 c′57 c′67

c′16 + c′25 c′17 + c′35 c′27 + c′36


 7→




p2
1 p1p2 p2

2 0
2p1p3 p2p3 + p1p4 2p2p4 0

p2
3 p3p4 p2

4 0
0 0 0 1


 .




c12 c13 c23

c16 − c25 c17 − c35 c27 − c36

c56 c57 c67

c16 + c25 c17 + c35 c27 + c36


 ,

for some p1, p2, p3, p4 ∈ k which satisfy 1 + p2p3 = p1p4.

Proof. An action A 7→ P ·A ·P t with invertible P1 preserves all 0 and 1 elements in
the above matrix if and only if

Pi =




pi 0 0 0
0 pi 0 0
0 0 pi 0
0 0 0 pi


 , i = 1, 2, 3.

This can be checked by a straightforward calculation using Lemma 7.2. Moreover,
c27 + c36, c17 + c35, c37 and therefore also c16 + c25, c15, c26 are invariant under
this action. The action on the remaining parameters can be neatly written in the
following matrix form




c12 c13 c23

c16 − c25 c17 − c35 c27 − c36

c56 c57 c67


 7→




p2
1 p1p2 p2

2

2p1p3 2p2p3 + 1 2p2

p1
(1 + p2p3)

p2
3

p3

p1
(1 + p2p3) 1

p2
1
(1 + p2p3)2


 .




c12 c13 c23

c16 − c25 c17 − c35 c27 − c36

c56 c57 c67


 .

Note that P (p1, p2, p3) has determinant 1 and that c16c25+c12c56, c17c35+c13c57, c27c36+
c23c67 is another set of invariants.
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When P1 is not invertible it is (by the proof of Lemma 7.2) enough to consider[
0 − Id
Id 0

]
.[cij ].

[
0 Id
− Id 0

]
=




0 c56 c57 0 c15 c25 c35 − 1
2
(c27+c36)

0 c67 0 c16 c26 c36 − c37
2

0 0 c17 c27 c37 0
0 − 1

2
(c27+c36) − c37

2 0 1
0 c12 c13 0

0 c23 0
0 0

0




.

which also preserves all 0 and 1 elements in (12). As before

c27 + c36, c17 + c35, c37,

c16 + c25, c15, c26,

c16c25 + c12c56, c17c35 + c13c57, c27c36 + c23c67

are invariants and 


c12 c13 c23

c16 − c25 c17 − c35 c27 − c36

c56 c57 c67


 7→




0 0 1
0 −1 0
1 0 0


 .




c12 c13 c23

c16 − c25 c17 − c35 c27 − c36

c56 c57 c67


 =




c56 c57 c67

−c16 + c25 −c17 + c35 −c27 + c36

c12 c13 c23


 .

¤

We reduced the description of our representation to 12 parameters cij modulo 3
dimensional P (p1, p2, p3, p4) action. This proves that all pfaffian representations of
C are
6 = 12− 3(action of P ) −3(relations in (11) among cij) dimensional. As described
in Theorem 4.1 they corresponds to the open set MC(2,OC(1)) \ Θ2,OC(1).

Remark 7.4. Using local parameters and implicit function theorem, it is easy to
see that

c12 = c13 = c23 = c56 = c57 = c67 = 0
is the singular locus of the space of all pfaffian representations of C. Note that
these representations are decomposable and non-equivalent to each other. In the
next paragraph will show that every such representation arises from a decomposable
vector bundle (as expected). These vector bundles correspond to an open subset in
the 3 dimensional Kummer variety.

By Theorem 5.1 there exists a one to one correspondence between the decompos-
able vector bundles in MC(2,OC(1)) \ Θ2,OC(1) and the open subset of Kummer
variety

(Jacobian variety of C \ W2)/ ≡,
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where≡ is the involution L 7→ L−1⊗OC(1). Vinnikov in [22] explicitely parametrised
the set of all determinantal representations of C (up to equivalence) by the points
on the Jacobian variety without the exceptional subvariety W2.

Thus we start by finding all determinantal representations of C up to equivalence.
Write M(x, y, z) = xMx + yMy + zMz with detM = x4 − yz3 − y4. The action
M 7→ M−1

x ·M maps to an equivalent representation since detMx 6= 0 . Additionally,
since detMz = 0 and detM contains z3 term, M 7→ R · M · R−1, R ∈ GL4(k)
preserves Mx = Id and sets

Mz =




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 .

Repeat the proof of Lemma 7.2 to show that M 7→ R·M ·S, R, S ∈ GL4(k) preserves
Mx and Mz if and only if S = R−1 and is of 4 form.

We can choose such R that its action reduces M to the following form

x Id+z




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 + y




−1
2(c27 + c36) c17 c16 c15

− c37
2 c27 c26 c25

0 c37 c36 c35

1 0 − c37
2 −1

2(c27 + c36)


 ,

where

c15 =
1
4
(−2(c27 + c36)2 − (c27 − c36)2 + 6(c17 + c35)c37 − c3

37),

c16 + c25 = −(c27 + c36)c37,

c26 = −(c17 + c35) + c2
37/4

and

2(c16−c25)(c17−c35)−4(c27+c36)(c227+c236) =

−(13c17c27+11c27c35+11c17c36+13c35c36)c37+4(c27+c36)c337,

2(c16−c25)(c27−c36)+4(c172+c17c35+c352) =

(7c272+10c27c36+7c362)c37−6(c17+c35)c372+c374,

−4(c16−c25)2c37−16+8c317+8c335+8c427+8c436 =

8((c17+c35)(5c227+6c27c36+5c236)+2(c17c227+c35c236))c37

−36(c17+c35)2c237−(17c227+30c27c36+17c236)c
3
37+6(c17+c35)c437,

(13)

which is the same as (11) for c12 = c13 = c23 = c56 = c57 = c67 = 0. Here we chose
parameters cij to be compatible with the pfaffian representations considered above.
Indeed, if we multiply M by




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



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and fold it into the skew-symmetric block matrix, then
[

0 M
−M t 0

]
= x

[
0 I
−I 0

]
+ z

[
0 N
−N 0

]
+

y




0 0 0 0 c15 c16 c17 − 1
2
(c27+c36)

0 0 0 c25 c26 c27 − c37
2

0 0 c35 c36 c37 0
0 − 1

2
(c27+c36) − c37

2 0 1
0 0 0 0

0 0 0
0 0

0




(14)

is the set of all decomposable pfaffian representations of C. The set has dimension
3 = 6(parameters c16, c17, c27, c35, c36, c37)−3(relations (13)). This is compatible
with Remark 7.4. It is easy to show that KerM is a line bundle of degree 6.
Then L = KerM ⊗ OC(−1) and Lt = KerM t ⊗ OC(−1) both have degree 2 since
degOC(1) = 4. Moreover,

L ⊕ Lt ∈ MC(2,OC(1)) \ Θ2,OC(1)

and

Lt
∼= L−1 ⊗OC(1),

which explains the involution in the Kummer variety.

We conclude the example by suggesting that explicit descriptions of the moduli
space could be used to prove its rationality.

Let C be a generic smooth plane curve of genus g ≥ 3. By [16] the moduli space
MC(2,OC(d − 3)) of rank 2 bundles with canonical determinant embeds into |2Θ|.
Its singular locus is isomorphic to the Kummer variety. Moreover, the embedding
restricts to the Kummer map on the singular locus.

There are few results in the literature explicitly describing the above moduli spaces
for smooth curves of genus g > 3. Finding all pfaffian representations of a given
curve C would provide a description of the open set MC(2,OC(d− 3)) \ Θ2,OC(d−3).

Vanhaecke’s method could be used for smooth curves of higher genus. First we
find all determinantal representations of C (which are of smaller size than Pfaffians).
Determinantal representations induce pfaffian representations of the form

[
0 ¦
−¦t 0

]
,

which by Section 5 correspond to decomposable bundles. These define the singular
locus of the moduli space. The equations of the moduli space could be then found
by integration.

It was asked by one of the referees (that found the paper not suitable to be pub-
lished in another journal) if it was possible to use similar methods for a hyperelliptic
curve of genus 3 to find explicit equations of the moduli space (the double quadric).

Acknowledgement. The authors would like to thank Emilia Mezzetti for sug-
gesting to study pfaffian representations.
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