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Abstract. We characterize the matrices that are products of two (or more)
commuting square-zero matrices and matrices that are products of two commuting
nilpotent matrices. We also give a characterization of operators on an infinite di-
mensional Hilbert space that are products of two (or more) commuting square-zero
operators and operators on an infinite-dimensional vector space that are products of
two commuting nilpotent operators.

1. Introduction. Is every complex singular square matrix a product of two
nilpotent matrices? Laffey [5] and Sourour [8] proved that the answer is positive:
any complex singular square matrix A (which is not 2 x 2 nilpotent with rank 1) is a
product of two nilpotent matrices with ranks both equal to the rank of A. Earlier Wu
[9] studied the problem. (Note that [9, Lem. 3] holds but the decomposition given in
its proof on [9, p. 229] is not correct since the latter matrix given for the odd case is
not always nilpotent.) Novak [6] characterized all singular matrices in M, (IF), where
F is a field, which are a product of two square-zero matrices. Related problem of
existence of k-th root of a nilpotent matrix was studied by Psarrakos in [7].

Similar results were proved for the set B(H) of all bounded (linear) operators
on an infinite-dimensional separable Hilbert space H. Fong and Sourour [3] proved
that every compact operator is a product of two quasinilpotent operators and that
a normal operator is a product of two quasinilpotent operators if and only if 0 is
in its essential spectrum. Drnovsek, Miiller, and Novak [2] proved that an operator
is a product of two quasinilpotent operators if and only if it is not semi-Fredholm.
Novak [6] characterized operators that are products of two and of three square-zero
operators.

Here we consider similar questions for products of commuting square-zero or
commuting nilpotent operators on a finite dimensional vector space or on a infinite-
dimensional Hilbert or vector space. The commutativity condition considerably re-
stricts the set of operators that are such products. Namely, if A = BC and B, C
are commuting nilpotent operators then A is nilpotent as well and it commutes with
both B and C. If in addition B and C' are square-zero then so is A.

In the paper we characterize the following sets of matrices and operators:

e Matrices that are products of k& commuting square-zero matrices for each
k> 2.

e Matrices that are products of two commuting nilpotent matrices.

e Operators on a Hilbert space that are products of k& commuting square-zero
operators for each k > 2.
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e Operators on an infinite-dimensional vector space that are products of two
commuting nilpotent operators.

2. When is a matrix a product of commuting square-zero matrices?.
First we consider the following question:

QUESTION 1. Which matrices A € M,,(F) can be written as a product A = BC,
where B> = C? =0 and BC = CB?

Observe that if A, B and C are as above then B and C' commute with A.
EXAMPLE 2.1. It can be easily seen that

0 0 1 0 1 00 0 O
Ei3=(0 0 0| =1]0 0 0|0 O 1},
0 0 0 0 0 00 0 O

but E13 cannot be written as a product of two commuting square-zero matrices. There-
fore the set of matrices that can be written as a product of two commuting square-zero
matrices is not the same as the set of matrices that are products of two square-zero
matrices.

Next, we have that

0 0 0 1 [0 1 0 0] o 0 1 0]
E_OOOO_OOOOOOOl
=10 0 0 0/ |0 00 1[0 0 0 O
0000 00000000
[0 0 1 0o][o 1 0 0]
10 0 0 1110 0 0 O
10 0 0 O[O0 O O 1
000 0/[0 0 0 0
and
010 0> [oo 1 0]
000 00f _foo0o0 1 _/
0 00 1] o0 0 Of
0 0 0O 0 0 0O
Thus E4 is a product of two commuting square-zero matrices. O

We denote by J, = Jiu, uayeipe) = Juy © Jpy @ ... & Jy, the upper triangular
nilpotent matrix in its Jordan canonical form with blocks of order py > s > ... >
pe > 0. If A is similar to J,, then we call p4 the partition corresponding to A. We also
say that u is the Jordan canonical form of A. For a finite sequence of natural numbers
A= (,\1,X2, ..., At) we denote by ord(A) = p the ordered sequence py > o > ... > .
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Let ¢(A) denote the index of nilpotency of matrix A. For a nilpotent matrix A,
define a sequence

J(A) = (o1, az,... o a)) = (0,02, o)

where «; is the number of Jordan blocks of the size ¢ and «; = 0 for j > ¢(A4). Note
that Y7 joj = n.

If C commutes with J,, it is of the form C' = [Cj;], where Cj; € M, x,; and Cj;
are all upper triangular Toeplitz matrices (see e. g. [4, p. 297]), i.e. for 1 <i<j <t
we have

P 1 pi—17
Cii Ci --- Cji
0
0 1 pi—1 Ji
0 0 Cij  Cij Cif X
0 & i
_ ij g
Ci = and Cj; = 0 C?i
0 c}j
0
0 0 & 0
0o ... ... 0
(2.1)

If 1; = p1j then we omit the rows or columns of zeros in Cj; or C;; above.

PROPOSITION 2.2. A matriz A is a product of two commuting square-zero ma-
trices if and only if it has a Jordan canonical form (2%,1"=2%) for some v < 2

1 Le
if and only if J(A) = (n — 2x,x) for some v < 7.

Proof. Since A%2 = B2C? = 0, it follows that also A is a square-zero matrix. Since
B? = 0, the Jordan canonical form of matrix B is equal to u = (2%,1%72%) for some
0<a< % Suppose that B = J,, is in its Jordan canonical form. Since C' commutes
with B it is of the form C' = [Cy;], where Cy; are given in (2.1). Following Basili [1,
p. 60, Lemma 2.3], the matrix C is similar to

U, X Y
o U, 0],
0 W U

where UlaX € Maxm Y e Max(n72a)7 W e M(n72a)><a7 Us € M(n72a)><(nf2a) and
Uy and U, are strictly upper triangular matrices. Note that B is transformed by the
same similarity to

ool
I
coo
o o~
coo
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Take an invertible matrix P; such that PyU; P, 1= Jy and denote

[P0 o] X Y][PFY 0 0 Jy X' Y
C=|0 P 0|0 U 0 0 Ptol=]0 Jy 0
0 0 IJ|[0 W U0 0 I 0 W U

Note that B does not change under the above similarity. Since C? = 0, also C2=0
and thus Ji = 0. Therefore, A = (2%,1972%), where 0 < z < ¢ < %. We see that

o o] X Y] o0 g
BC=10 00/ |0 Ju 0[=1{00 0
00 o0f|l0 W U |00 0

Now, it easily follows that rk(A4) = rk(BC) = z. Since A% = 0, we see that A must
have Jordan canonical form (2%,1"~2*) for some z < Z.

Now, take a nilpotent matrix A with its Jordan canonical form (2%,1%~2%), where
x < 7. Then there exists an invertible matrix () such that

00 0 1 000 1 000 1
~1_10 0 0 O 0 0 00 0000
QAR =10 0 0 0ol ®lo 0 0 ol®®log 0 o ol ®2E0D...B0.
0000 00 0 0 0000 n—dz

x

In Example 2.1 we observed that the matrix Fi4 is a product of two commuting
square-zero matrices. Then it follows that QAQ ' and A are also products of two
commuting square-zero matrices. We have proved the proposition. O

THEOREM 2.3. A matrix A is a product of k pairwise commuting square-zero
matrices if and only if it has a Jordan canonical form (2%,1"~2%) for some x < 5F s
i.e. if and only if J(A) = (n — 2x,x) for some v < 5.

Proof. Let A be a matrix with Jordan canonical form (2%, 1"~%*) for some z < k.
Then it is similar to a matrix

A/:E12k @Elzk@@E12k@0®0@@o,

z n—2kg

where E)or € Myx(C) is a matrix with only nonzero element (equal to 1) in the
upper-right corner. To prove that A is a product of k pairwise commuting square-
zero matrices it is sufficient to show, that E; o+ is a product of k pairwise commuting
square-zero matrices.

We define matrices

02i—1 Izi—l
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for every i = 1,2, ...,k and let

B,=C;aC;®...0C; € My (C).

ok—i

It is easy to check that B2 = 0 and B;B; = B;B; for every i, j and that
E12k = B]B2 e Bk.

To prove the converse we have to show that every product of k pairwise commuting
square-zero matrices has rank at most Jr. We will show this by induction. The
assertion is true for k = 2 by the previous proposition. Suppose that every product

of k pairwise commuting square-zero matrices has rank at most gr and let

A=B1By...Bpy1
where By, B, ... By are pairwise commuting square-zero matrices. Denote by m

the rank of B;. Since B% = 0 we have that m < % Now the matrix B is similar to
a matrix

Om  Im 0
B, =|0m 0, 0
0 0 02n7m

Again following Basili [1, p. 60, Lemma 2.3], we transform the matrices B; simulta-
neously by similarity to the matrices

Xs Yy Z;
Bl=|0 X, 0
0 U v

Here matrices X; are square-zero and they pairwise commute. Now

A= BBy Bl =

07 0][Xo Y2 2o Xit1 Yier  Zim 0 Xo...Xp41 O
=100 0[]0 X, O|...] 0 Xex 0 |=1]0 0 0
000/|0 U Vi 0 U Vin 0 0 0

and the matrix Xs ... Xj11 is a product of k pairwise commuting square-zero matrices,

so it has the rank at most g and thus the rank of A is at most 4. O

3. When is a matrix a product of two commuting nilpotent matrices?.
In this section we study the following question:

QUESTION 2. Which matrices A € My (F) can be written as A = BC = CB,
where B and C' are nilpotent matrices?
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Clearly, A must be nilpotent. Thus, not every singular matrix is a product of two
commuting nilpotent matrices.

Moreover, suppose that rk(A) = n—1and A = BC = CB with B and C nilpotent.
Then also rk(B) = 1k(C) = n—1 and thus B = P.J,,P~! and P~'CP = p(J,,), where
p is a polynomial such that p(0) = 0. Then A = BC = PJ,p(J,)P~! and thus
rk(A) < n — 1, which is a contradiction. Hence not every nilpotent matrix is a
product of two commuting nilpotent matrices (for example J,, is not).

Jm 0
0 o
a product of two commuting nilpotent matrices? Assume that A = BC is such a

g Wpg _
Ve UB} and C =

ExamMpPLE 3.1. Suppose A = { where m > 3. Can A be written as

product. Since B and C commute with A it follows that B = [

Te We
[VC Uc
Ug,Uc € My(F) are nilpotent matrices (see Basili [1]), Wg, W € My« (F) have
the only nonzero entries in the first row and Vi, Vo € Mpxm(F) have the only nonzero
entries in the last column.

Since A = BC it follows that J,, = TgTc + WgVe. The product WgVe has
the only nonzero entry in the first row and the last column, and Tp and To are
strictly upper-triangular. The assumption that m > 3 is needed to conclude that
TTe + WeVe is upper triangular Toeplitz matriz with zero superdiagonal. This
contradicts the fact that J,, has nonzero superdiagonal and implies that A is not a
product of two commuting nilpotent matrices. ]

} , where Tp, Tc € M, (F) are (strictly) upper triangular Toeplitz matrices,

What is the Jordan canonical form of JfL for t > 27 It is an easy observation that
the partition of n corresponding to J¢ is equal to (A1, Aa, ..., Ar), where Ay — Ay < 1.
We denote this partition by r(n,t). If n = kt + r, where 0 < r < ¢, then r(n,t) =
((k+1)",k'="). Note that k = [%2]. It follows that J(J.) = (0,...,0,t —r,7).
——

ProOPOSITION 3.2. If a nilpotent matriz A has a Jordan canonical form
ord(r(ni,t1),7(n2,t2), . .., (s tm ), 17),

where n = k + 2111 n; and t; > 2 for all i, then A can be written as a product of two
commuting nilpotent matrices.

Proof. Since the Jordan canonical form of JY is 7(n;,t;), matrix A is similar to
JreJze.. . e Jm @060 ...60, which is obviously equal to the product of
m —_—

no

k
two commuting nilpotent matrices

J @ Jn, @ ... 0 J,, ®0000...00
—_—
k
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and

Jileele. el le0000...00
k

Thus also A can be written as a product of two commuting nilpotent matrices. O

In the following we show that the converse is true as well.

THEOREM 3.3. For a nilpotent matriz A the following are equivalent:
(a) A can be written as a product of two commuting nilpotent matrices,
(b) A has a Jordan canonical form

ord(r(ni,t1),r(ne,ta), ..., (N, tm), 1’“),

where n =k + Y. n; and t; > 2 for all i,

(c) J(A) does not include a subsequence (0,1,1,...,1,0) for any 1 > 1.
—_———
211

We first prove the following lemma and propositions.

LeEmMA 3.4. If J7(A) = (0,...,0,1,...,1), where l > 1 and m > 2I, then A is
—_——— ——
m—2i+1  2i—1

not a product of two commuting nilpotent matrices.

Proof. Suppose that A = BC = CB is nilpotent matrix with J(A) as in the
statement of the lemma. Let us denote s = 2] — 1 and let us assume that A =
J(m,mfl,...,mfs+1)~ Then

By Bz ... Bis Cii Ci2 ... Cy
By Bay ... DBy Co Co ... O

B = . . ) and C = . . ) o,
Bsi Bsa ... Bgg Cy1 Cso ... Cgs

where all B;; and C; are upper triangular Toeplitz and we use the notation introduced
in (2.1).

Since Jy, = B11C11 + B12Co1 + ... + B1,Cs1 = C11B11 + C12B21 + ... + C1sBy
and the only possible summands with nonzero superdiagonal are B13C5; and C12Bo1,
it follows that 95c9; = 503, = 1. Since J,,,—1 = B21C12 + B22Cas + ... + BoCyo =
C1B12+ Co9Bos + ...+ (o5 Byo and the only possible summands with nonzero super-
diagonals are 321012 +B23031 and C21B12 +023331, it follows that b810?2 +b336(3)2 =
9,695 + 9509, = 1 and therefore b95c3, = 9509, = 0.

Similarly, we show by induction, that b?ﬁi_‘_lcgﬂﬁ = c?7i+1b?+1,i = 0 for all even

1 and b?’iﬂcgﬂ)i = C?,i+1b?+1,i = 1 for all odd i. In particular, it follows that
0 0 _ 0 0 —
bs—l,scs,s—l - Cs—17sbs7s—1 =0.

Furthermore, Jm—s+1 = leCls+Bs2C'23—|—. . .—|—BSSC’SS = 31B13+052B23+- .o+
CssBss and the only possible summands with nonzero superdiagonals are Bs s_1Cs_1 s
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and C5s-1Bs_1,. It follows that the superdiagonal of J,,_s41 is equal to 1 =

b o 1) o=, 1b) | . =0, which is a contradiction. O
ProposiTION 3.5. If J(A) = (a1, .., Qm—21,0,1,...,1,0, pmyo,...,qn), where
——

2l—1
l>1, then A is not a product of two commuting nilpotent matrices.

Proof. Denote = (n®, (n —1)*-1 ... (m+2)*+2) A= (m,m—1,...,m—

21 +2) and g/ = ((m — 20)%m=21 (m — 2] — 1)@m-2-1 191,
Suppose that A = BC = CB with J(A) as in the statement. Then we can

Bi1 Bia Bis Cn Ci2 Ci3
assume that 4 = Jg@ JA D JH/’ B = |By1 By DBo3z| and C = [Cy; Cay Cos
Bs1 Bsy DBss Cs31 Cza Css

in the same block partition, where all B;;, C;; are block upper triangular Toeplitz.

We compute that JA = B91C12 + Boy(Cas + Bo3(Cs3o = C1B1g + Co9Bos + Cy3Bss.
Since m — 2l +2 > m — 2] 41, it follows that superdiagonals of all blocks of J, must
be equal to superdiagonals of BsyCss and by symmetry to superdiagonals of Cas Bas.
We have already seen in the proof of Lemma 3.4 that this is not possible. O

PROPOSITION 3.6. If J(A) does not include a subsequence (0,1,1,...,1,0) for
—————
21

any 1 > 1, then the Jordan canonical form of a matriz A is equal to
ord(r(ny,t1),7(n2,t2), . ., (N, tm ), 1%),

where n =k + Y .~ n; and t; > 2 for all i.
Proof. It J(A) does not include a subsequence of the form (0,1,1,...,1,0), then
~—_———

2l—1
for any subsequence of J(A) of the form

(O,Oét7at+1,.-.,0és,0), (31)

for some 2 <t < s <mn, where a; #0 for i =¢,t+1,...,s holds either

(a) s—t+1is even or

(b) s —t+1is odd and there exists j, ¢t < j < s, such that a; > 2.
So, the matrix A can be written as a direct sum A, & As & ... P A,, where each A;
has one of the following forms:

(i) J(A;) = (a1) and the Jordan canonical form of A; is equal to (11).

(ii) J(A4:) =(0,...,0,q4,), where oy, > 2 and the Jordan canonical form of A,

——

gi—1
is equal to r(g;ag;, o, )-
(i) J(A4;) = (0,...,0,cy,,aq,+1) and the Jordan canonical form of A; is equal
——
qi—1

to r(qiaqi + (Qi + 1)aqi+1a Qg + O‘qi+1)~
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(iv) J(A4;) =(0,...,0,aq—1,Qq, g +1), Wwhere ay, > 2 and the Jordan canonical

qi—2
form of A; is equal to

ord(r((gi—1)ag,—1+Gi(ag, —1), g —1+ag, —1),7(qi+(gi+1)ag+1, 1+ag+1)).

In case (a) we can write each block corresponding to subsequences of the form (3.1)
as a direct sum of blocks of type (iii). In the case (b) we use types (ii) and (iii) if
there is an odd ¢ > 1 such that ay_14+; > 2 and types (iii) and (iv) otherwise. If
a1 > 1 then the block corresponding to the subsequence (aq,ao, ..., as,0), a; > 1,
is decomposed as a direct sum of blocks of type (iii) if s is even and a combination of

types (i) and (iii) if s is odd. This proves the proposition. O

Proof. (of Theorem 8.3) Since Proposition 3.5 holds also for m = n, the implica-
tion (a) = (c) follows from Proposition 3.5. The implication (c) = (b) is the statement
of Proposition 3.6 and the implication (b) = (a) is the statement of Proposition 3.2.
O

4. When is an operator a product of commuting square-zero opera-
tors?. In this section we assume that H is an infinite-dimensional, separable, real or
complex Hilbert space. We denote by B(H) the algebra of all operators (i.e., bounded
linear transformations) on H.

QUESTION 3. Which operators A € B(H) can be written as a product of two
commuting square-zero operators?

Similarly as in the finite-dimensional case we notice that also A is square-zero.
Therefore im A C ker A. So the space im A + ker A is closed.

THEOREM 4.1. Let A € B(H). Then A = BC = CB, where B> = C? = 0, if
and only if dim(ker A Nker A*) = oo and A? = 0.

Proof. 1If A is a product of two square-zero operators it follows by [6] that
dim(ker A © im A) = oo. Since ker A © im A = ker A N (M)L = ker A N ker A*
we have that dim(ker A Nker A*) = co and A2 = 0.

It remains to prove the converse. We can choose a decomposition of H as a direct
sum of infinite-dimensional subspaces H; and Hs such that Ho C ker ANker A*. The

D 0 . 9

0 0}. Since A% = 0 also
D? = 0. Therefore we can find a decomposition of space H; = Hi1 ® Hia2, where
both subspaces are infinite-dimensional and im D C Hy1. The matrix of D relative to

matrix of A relative to this decomposition is of the form [

. .. . |0 D . e . .
this decomposition is {0 01}. Since Hs is infinite-dimensional space, we can write
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it as a direct sum of two infinite-dimensional subspaces Ho; and Hos. The form of A
relative to the decomposition H11 @ Hiz @ Ha1 @ Haa is

0 Dy 0 O

0 0 0 0

0 0 00

0 0 00

Define operators B and C' on ‘H by

0 0 Dy 0 0 0 0 I
0 O 0 O 00 0 O
B=1o 0 o of ™ %=|o 100
0 Dy 0 O 0 00O

It is evident that A = BC = CB and B?> = C? =0. O

The factorization in the proof above is based on the factorization in the finite-
dimensional case. Since H, is an infinite-dimensional space, we can write it as a
direct sum of k£ infinite-dimensional subspaces. Using the factorization in the proof
of Theorem 2.3 we get the following result.

COROLLARY 4.2. An operator A is a product of two commuting square-zero
operators if and only if A is a product of k square-zero operators.

5. When is an operator a product of two commuting nilpotent oper-
ators?. Let V be an infinite-dimensional vector space and A : V. — V a nilpotent
operator with index of nilpotency n. We proceed to define the sequence

J(A) = (a1, a,...,ap),

where now «a; € NU {0, co}.
For £k =0,1,...,n — 1 we choose subspaces V,,_; such that:
1. For k =0 we have V = ker A® = ker A"~ @ V/,,.
2. For k > 0 we have ker A" % = ker A" %=1 @ AW,,_p,1 © V,,_, where
Wh—kt1 = AW, g0 @ Vy_gy1 and Wy1q = 0.
Then we define o; = dimV;, ¢ = 1,2,...,n. Observe that if dimV < oo then this
definition of J(A) coincides with the one given in §2.

Observe that if an operator A is a product of two commuting nilpotent operators,
then A is also a nilpotent operator.

THEOREM 5.1. A nilpotent operator A with J(A) = (a1,aa,...,ay) is a prod-
uct of two commuting nilpotent operators if and only if a matriz B with J(B) =
(81,52, -, Bn), where B; = min{«;, 2}, is a product of two commuting nilpotent ma-
trices.
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Before we prove the theorem let us show the following two lemmas.

LEMMA 5.2. If J(A) = (0,...,0,00), then A is a product of two commuting
nilpotent operators.

Proof. Since «; = 0 for i # n, it follows that all the indecomposable blocks are of
size n. Then A is similar to &2,y n = %21 (Jok—1.n ® Jok,n), Where J ,, k € N,
are indecomposable blocks of A each of them similar to .J,,. Since Jag_1,, B Jok n is a
product of two commuting nilpotent matrices by Theorem 3.3, the assertion follows.
|

LEMMA 5.3. Let A be a nilpotent matriz with J(A) = (a1, qz,...,an), where
there exists an index j such that a; > 2. Suppose that B is a matriz with J(B) =
(B1,0B2,-..,0n), where B; = oy for i # j and B; = a; + 1. Then A is a product of
two commuting nilpotent matrices if and only if B is a product of two commuting
nilpotent matrices.

Proof. By Theorem 3.3 a matrix A is a product of two commuting nilpotent
matrices if and only if J(A) is not of the form

(a1, 0,0, 1, 000,10,y ..o ai). (5.1)
——

2[—-1

It follows easily that matrices A and B are simultaneously the products of two com-
muting nilpotent matrices. O

Proof. (of Theorem 5.1) Suppose that A is a product of two commuting nilpotent
operators. Similarly as in the finite-dimensional case we can show that J(A) can not
be of the form (5.1). Hence also J(B) is not of that form and therefore B is a product
of two commuting nilpotent matrices.

To prove the converse write A as a direct sum of A; and A with

j(Aj) = (Oélj,Oégj, e ;anj)

so that a;1 = a; and ays = 0 if «; is finite, and ;1 = 2 and a;9 = 0o otherwise. It
suffices to show that A; and Ay are the products of commuting nilpotent operators,
which follows from the lemmas above. O
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