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Abstract. We characterize the matrices that are products of two (or more)
commuting square-zero matrices and matrices that are products of two commuting
nilpotent matrices. We also give a characterization of operators on an infinite di-
mensional Hilbert space that are products of two (or more) commuting square-zero
operators and operators on an infinite-dimensional vector space that are products of
two commuting nilpotent operators.

1. Introduction. Is every complex singular square matrix a product of two
nilpotent matrices? Laffey [5] and Sourour [8] proved that the answer is positive:
any complex singular square matrix A (which is not 2× 2 nilpotent with rank 1) is a
product of two nilpotent matrices with ranks both equal to the rank of A. Earlier Wu
[9] studied the problem. (Note that [9, Lem. 3] holds but the decomposition given in
its proof on [9, p. 229] is not correct since the latter matrix given for the odd case is
not always nilpotent.) Novak [6] characterized all singular matrices in Mn(F), where
F is a field, which are a product of two square-zero matrices. Related problem of
existence of k-th root of a nilpotent matrix was studied by Psarrakos in [7].

Similar results were proved for the set B(H) of all bounded (linear) operators
on an infinite-dimensional separable Hilbert space H. Fong and Sourour [3] proved
that every compact operator is a product of two quasinilpotent operators and that
a normal operator is a product of two quasinilpotent operators if and only if 0 is
in its essential spectrum. Drnovšek, Müller, and Novak [2] proved that an operator
is a product of two quasinilpotent operators if and only if it is not semi-Fredholm.
Novak [6] characterized operators that are products of two and of three square-zero
operators.

Here we consider similar questions for products of commuting square-zero or
commuting nilpotent operators on a finite dimensional vector space or on a infinite-
dimensional Hilbert or vector space. The commutativity condition considerably re-
stricts the set of operators that are such products. Namely, if A = BC and B, C
are commuting nilpotent operators then A is nilpotent as well and it commutes with
both B and C. If in addition B and C are square-zero then so is A.

In the paper we characterize the following sets of matrices and operators:
• Matrices that are products of k commuting square-zero matrices for each

k ≥ 2.
• Matrices that are products of two commuting nilpotent matrices.
• Operators on a Hilbert space that are products of k commuting square-zero

operators for each k ≥ 2.

∗ The research was supported in part by the Research Agency of the Republic of Slovenia.
Date: August 6, 2007.
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• Operators on an infinite-dimensional vector space that are products of two
commuting nilpotent operators.

2. When is a matrix a product of commuting square-zero matrices?.
First we consider the following question:

Question 1. Which matrices A ∈Mn(F) can be written as a product A = BC,
where B2 = C2 = 0 and BC = CB?

Observe that if A, B and C are as above then B and C commute with A.
Example 2.1. It can be easily seen that

E13 =

0 0 1
0 0 0
0 0 0

 =

0 1 0
0 0 0
0 0 0

0 0 0
0 0 1
0 0 0

 ,

but E13 cannot be written as a product of two commuting square-zero matrices. There-
fore the set of matrices that can be written as a product of two commuting square-zero
matrices is not the same as the set of matrices that are products of two square-zero
matrices.

Next, we have that

E14 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



=


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


and 

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


2

=


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


2

= 0.

Thus E14 is a product of two commuting square-zero matrices. 2

We denote by Jµ = J(µ1,µ2,...,µt) = Jµ1 ⊕ Jµ2 ⊕ . . . ⊕ Jµt
the upper triangular

nilpotent matrix in its Jordan canonical form with blocks of order µ1 ≥ µ2 ≥ . . . ≥
µt > 0. If A is similar to Jµ then we call µ the partition corresponding to A. We also
say that µ is the Jordan canonical form of A. For a finite sequence of natural numbers
λ = (λ1, λ2, . . . , λt) we denote by ord(λ) = µ the ordered sequence µ1 ≥ µ2 ≥ . . . ≥ µt.
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Let ι(A) denote the index of nilpotency of matrix A. For a nilpotent matrix A,
define a sequence

J (A) = (α1, α2, . . . , αι(A)) = (α1, α2, . . . , αn)

where αi is the number of Jordan blocks of the size i and αj = 0 for j > ι(A). Note
that

∑n
j=1 jαj = n.

If C commutes with Jµ it is of the form C = [Cij ], where Cij ∈Mµi×µj
and Cij

are all upper triangular Toeplitz matrices (see e. g. [4, p. 297]), i.e. for 1 ≤ i ≤ j ≤ t
we have

Cij =


0 . . . 0 c0

ij c1
ij . . . cµi−1

ij
...

. . . 0 c0
ij

. . .
...

...
. . . 0

. . . c1
ij

0 . . . . . . . . . . . . 0 c0
ij

 and Cji =



c0
ji c1

ji . . . cµi−1
ji

0 c0
ji

. . .
...

...
. . . . . . c1

ji
... 0 c0

ji
... 0
...

...
0 . . . . . . 0


.

(2.1)
If µi = µj then we omit the rows or columns of zeros in Cji or Cij above.

Proposition 2.2. A matrix A is a product of two commuting square-zero ma-
trices if and only if it has a Jordan canonical form (2x, 1n−2x) for some x ≤ n

4 , i.e.
if and only if J (A) = (n− 2x, x) for some x ≤ n

4 .

Proof. Since A2 = B2C2 = 0, it follows that also A is a square-zero matrix. Since
B2 = 0, the Jordan canonical form of matrix B is equal to µ = (2a, 1n−2a) for some
0 ≤ a ≤ n

2 . Suppose that B = Jµ is in its Jordan canonical form. Since C commutes
with B it is of the form C = [Cij ], where Cij are given in (2.1). Following Basili [1,
p. 60, Lemma 2.3], the matrix C is similar toU1 X Y

0 U1 0
0 W U2

 ,

where U1, X ∈ Ma×a, Y ∈ Ma×(n−2a), W ∈ M(n−2a)×a, U2 ∈ M(n−2a)×(n−2a) and
U1 and U2 are strictly upper triangular matrices. Note that B is transformed by the
same similarity to

B̃ =

0 I 0
0 0 0
0 0 0

 .
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Take an invertible matrix P1 such that P1U1P
−1
1 = Jλ and denote

C̃ =

P1 0 0
0 P1 0
0 0 I

U1 X Y
0 U1 0
0 W U2

P−1
1 0 0
0 P−1

1 0
0 0 I

 =

Jλ X ′ Y ′

0 Jλ 0
0 W ′ U2

 .

Note that B̃ does not change under the above similarity. Since C2 = 0, also C̃2 = 0
and thus J2

λ = 0. Therefore, λ = (2x, 1a−2x), where 0 ≤ x ≤ a
2 ≤

n
4 . We see that

B̃C̃ =

0 I 0
0 0 0
0 0 0

Jλ X ′ Y ′

0 Jλ 0
0 W ′ U2

 =

0 0 Jλ

0 0 0
0 0 0

 .

Now, it easily follows that rk(A) = rk(B̃C̃) = x. Since A2 = 0, we see that A must
have Jordan canonical form (2x, 1n−2x) for some x ≤ n

4 .

Now, take a nilpotent matrix A with its Jordan canonical form (2x, 1n−2x), where
x ≤ n

4 . Then there exists an invertible matrix Q such that

QAQ−1 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⊕


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⊕ . . .⊕


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

x

⊕ 0⊕ 0⊕ . . .⊕ 0︸ ︷︷ ︸
n−4x

.

In Example 2.1 we observed that the matrix E14 is a product of two commuting
square-zero matrices. Then it follows that QAQ−1 and A are also products of two
commuting square-zero matrices. We have proved the proposition.

Theorem 2.3. A matrix A is a product of k pairwise commuting square-zero
matrices if and only if it has a Jordan canonical form (2x, 1n−2x) for some x ≤ n

2k ,
i.e. if and only if J (A) = (n− 2x, x) for some x ≤ n

2k .
Proof. Let A be a matrix with Jordan canonical form (2x, 1n−2x) for some x ≤ n

2k .
Then it is similar to a matrix

A′ = E1 2k ⊕ E1 2k ⊕ . . .⊕ E1 2k︸ ︷︷ ︸
x

⊕ 0⊕ 0⊕ . . .⊕ 0︸ ︷︷ ︸
n−2kx

,

where E1 2k ∈ M2k(C) is a matrix with only nonzero element (equal to 1) in the
upper-right corner. To prove that A is a product of k pairwise commuting square-
zero matrices it is sufficient to show, that E1 2k is a product of k pairwise commuting
square-zero matrices.

We define matrices

Ci =
[
02i−1 I2i−1

02i−1 02i−1

]
∈M2i(C)
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for every i = 1, 2, ..., k and let

Bi = Ci ⊕ Ci ⊕ . . .⊕ Ci︸ ︷︷ ︸
2k−i

∈M2k(C).

It is easy to check that B2
i = 0 and BiBj = BjBi for every i, j and that

E1 2k = B1B2 . . . Bk.

To prove the converse we have to show that every product of k pairwise commuting
square-zero matrices has rank at most n

2k . We will show this by induction. The
assertion is true for k = 2 by the previous proposition. Suppose that every product
of k pairwise commuting square-zero matrices has rank at most n

2k and let

A = B1B2 . . . Bk+1

where B1, B2, . . . Bk+1 are pairwise commuting square-zero matrices. Denote by m
the rank of B1. Since B2

1 = 0 we have that m ≤ n
2 . Now the matrix B1 is similar to

a matrix

B′
1 =

0m Im 0
0m 0m 0
0 0 02n−m


Again following Basili [1, p. 60, Lemma 2.3], we transform the matrices Bi simulta-
neously by similarity to the matrices

B′
i =

Xi Yi Zi

0 Xi 0
0 Ui Vi

 .

Here matrices Xi are square-zero and they pairwise commute. Now

A′ = B′
1B

′
2 . . . B′

k+1 =

=

0 I 0
0 0 0
0 0 0

X2 Y2 Z2

0 X2 0
0 U2 V2

 . . .

Xk+1 Yk+1 Zk+1

0 Xk+1 0
0 Uk+1 Vk+1

 =

0 X2 . . . Xk+1 0
0 0 0
0 0 0


and the matrix X2 . . . Xk+1 is a product of k pairwise commuting square-zero matrices,
so it has the rank at most m

2k and thus the rank of A is at most n
2k+1 .

3. When is a matrix a product of two commuting nilpotent matrices?.
In this section we study the following question:

Question 2. Which matrices A ∈ Mn(F) can be written as A = BC = CB,
where B and C are nilpotent matrices?
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Clearly, A must be nilpotent. Thus, not every singular matrix is a product of two
commuting nilpotent matrices.

Moreover, suppose that rk(A) = n−1 and A = BC = CB with B and C nilpotent.
Then also rk(B) = rk(C) = n−1 and thus B = PJnP−1 and P−1CP = p(Jn), where
p is a polynomial such that p(0) = 0. Then A = BC = PJnp(Jn)P−1 and thus
rk(A) < n − 1, which is a contradiction. Hence not every nilpotent matrix is a
product of two commuting nilpotent matrices (for example Jn is not).

Example 3.1. Suppose A =
[
Jm 0
0 0

]
, where m ≥ 3. Can A be written as

a product of two commuting nilpotent matrices? Assume that A = BC is such a

product. Since B and C commute with A it follows that B =
[
TB WB

VB UB

]
and C =[

TC WC

VC UC

]
, where TB , TC ∈Mm(F) are (strictly) upper triangular Toeplitz matrices,

UB , UC ∈ Mk(F) are nilpotent matrices (see Basili [1]), WB ,WC ∈ Mm×k(F) have
the only nonzero entries in the first row and VB , VC ∈Mk×m(F) have the only nonzero
entries in the last column.

Since A = BC it follows that Jm = TBTC + WBVC . The product WBVC has
the only nonzero entry in the first row and the last column, and TB and TC are
strictly upper-triangular. The assumption that m ≥ 3 is needed to conclude that
TBTC + WBVC is upper triangular Toeplitz matrix with zero superdiagonal. This
contradicts the fact that Jm has nonzero superdiagonal and implies that A is not a
product of two commuting nilpotent matrices. 2

What is the Jordan canonical form of J t
n for t ≥ 2? It is an easy observation that

the partition of n corresponding to J t
n is equal to (λ1, λ2, . . . , λt), where λ1 − λt ≤ 1.

We denote this partition by r(n, t). If n = kt + r, where 0 ≤ r < t, then r(n, t) =
((k + 1)r, kt−r). Note that k =

⌊
n
t

⌋
. It follows that J (J t

n) = (0, . . . , 0︸ ︷︷ ︸
bn

t c−1

, t− r, r).

Proposition 3.2. If a nilpotent matrix A has a Jordan canonical form

ord(r(n1, t1), r(n2, t2), . . . , r(nm, tm), 1k),

where n = k +
∑m

i=1 ni and ti ≥ 2 for all i, then A can be written as a product of two
commuting nilpotent matrices.

Proof. Since the Jordan canonical form of J ti
ni

is r(ni, ti), matrix A is similar to
J t1

n1
⊕ J t2

n2
⊕ . . . ⊕ J tm

nm
⊕ 0⊕ 0⊕ . . .⊕ 0︸ ︷︷ ︸

k

, which is obviously equal to the product of

two commuting nilpotent matricesJn1 ⊕ Jn2 ⊕ . . .⊕ Jnm
⊕ 0⊕ 0⊕ . . .⊕ 0︸ ︷︷ ︸

k
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and J t1−1
n1

⊕ J t2−1
n2

⊕ . . .⊕ J tm−1
nm

⊕ 0⊕ 0⊕ . . .⊕ 0︸ ︷︷ ︸
k

 .

Thus also A can be written as a product of two commuting nilpotent matrices.

In the following we show that the converse is true as well.
Theorem 3.3. For a nilpotent matrix A the following are equivalent:
(a) A can be written as a product of two commuting nilpotent matrices,
(b) A has a Jordan canonical form

ord(r(n1, t1), r(n2, t2), . . . , r(nm, tm), 1k),

where n = k +
∑m

i=1 ni and ti ≥ 2 for all i,
(c) J (A) does not include a subsequence (0, 1, 1, . . . , 1︸ ︷︷ ︸

2l−1

, 0) for any l ≥ 1.

We first prove the following lemma and propositions.

Lemma 3.4. If J (A) = (0, . . . , 0︸ ︷︷ ︸
m−2l+1

, 1, . . . , 1︸ ︷︷ ︸
2l−1

), where l ≥ 1 and m ≥ 2l, then A is

not a product of two commuting nilpotent matrices.

Proof. Suppose that A = BC = CB is nilpotent matrix with J (A) as in the
statement of the lemma. Let us denote s = 2l − 1 and let us assume that A =
J(m,m−1,...,m−s+1). Then

B =


B11 B12 . . . B1s

B21 B22 . . . B2s

...
...

. . .
...

Bs1 Bs2 . . . Bss

 and C =


C11 C12 . . . C1s

C21 C22 . . . C2s

...
...

. . .
...

Cs1 Cs2 . . . Css

 ,

where all Bij and Cij are upper triangular Toeplitz and we use the notation introduced
in (2.1).

Since Jm = B11C11 + B12C21 + . . . + B1sCs1 = C11B11 + C12B21 + . . . + C1sBs1

and the only possible summands with nonzero superdiagonal are B12C21 and C12B21,
it follows that b0

12c
0
21 = c0

12b
0
21 = 1. Since Jm−1 = B21C12 + B22C22 + . . . + B2sCs2 =

C21B12 +C22B22 + . . .+C2sBs2 and the only possible summands with nonzero super-
diagonals are B21C12 +B23C31 and C21B12 +C23B31, it follows that b0

21c
0
12 + b0

23c
0
32 =

c0
21b

0
12 + c0

23b
0
32 = 1 and therefore b0

23c
0
32 = c0

23b
0
32 = 0.

Similarly, we show by induction, that b0
i,i+1c

0
i+1,i = c0

i,i+1b
0
i+1,i = 0 for all even

i and b0
i,i+1c

0
i+1,i = c0

i,i+1b
0
i+1,i = 1 for all odd i. In particular, it follows that

b0
s−1,sc

0
s,s−1 = c0

s−1,sb
0
s,s−1 = 0.

Furthermore, Jm−s+1 = Bs1C1s+Bs2C2s+. . .+BssCss = Cs1B1s+Cs2B2s+. . .+
CssBss and the only possible summands with nonzero superdiagonals are Bs,s−1Cs−1,s
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and Cs,s−1Bs−1,s. It follows that the superdiagonal of Jm−s+1 is equal to 1 =
b0
s,s−1c

0
s−1,s = c0

s,s−1b
0
s−1,s = 0, which is a contradiction.

Proposition 3.5. If J (A) = (α1, . . . , αm−2l, 0, 1, . . . , 1︸ ︷︷ ︸
2l−1

, 0, αm+2, . . . , αn), where

l ≥ 1, then A is not a product of two commuting nilpotent matrices.

Proof. Denote µ = (nαn , (n− 1)αn−1 , . . . , (m + 2)αm+2), λ = (m,m− 1, . . . ,m−
2l + 2) and µ′ = ((m− 2l)αm−2l , (m− 2l − 1)αm−2l−1 , . . . , 1α1).

Suppose that A = BC = CB with J (A) as in the statement. Then we can

assume that A = Jµ ⊕ Jλ ⊕ Jµ′ , B =

B11 B12 B13

B21 B22 B23

B31 B32 B33

 and C =

C11 C12 C13

C21 C22 C23

C31 C32 C33


in the same block partition, where all Bij , Cij are block upper triangular Toeplitz.

We compute that Jλ = B21C12 +B22C22 +B23C32 = C21B12 +C22B22 +C23B32.
Since m− 2l + 2 > m− 2l + 1, it follows that superdiagonals of all blocks of Jλ must
be equal to superdiagonals of B22C22 and by symmetry to superdiagonals of C22B22.
We have already seen in the proof of Lemma 3.4 that this is not possible.

Proposition 3.6. If J (A) does not include a subsequence (0, 1, 1, . . . , 1︸ ︷︷ ︸
2l−1

, 0) for

any l ≥ 1, then the Jordan canonical form of a matrix A is equal to

ord(r(n1, t1), r(n2, t2), . . . , r(nm, tm), 1k),

where n = k +
∑m

i=1 ni and ti ≥ 2 for all i.

Proof. If J (A) does not include a subsequence of the form (0, 1, 1, . . . , 1︸ ︷︷ ︸
2l−1

, 0), then

for any subsequence of J (A) of the form

(0, αt, αt+1, . . . , αs, 0), (3.1)

for some 2 ≤ t ≤ s ≤ n, where αi 6= 0 for i = t, t + 1, . . . , s holds either
(a) s− t + 1 is even or
(b) s− t + 1 is odd and there exists j, t ≤ j ≤ s, such that αj ≥ 2.

So, the matrix A can be written as a direct sum A1 ⊕ A2 ⊕ . . .⊕ Ar, where each Ai

has one of the following forms:
(i) J (Ai) = (α1) and the Jordan canonical form of Ai is equal to (1α1).
(ii) J (Ai) = (0, . . . , 0︸ ︷︷ ︸

qi−1

, αqi
), where αqi

≥ 2 and the Jordan canonical form of Ai

is equal to r(qiαqi
, αqi

).
(iii) J (Ai) = (0, . . . , 0︸ ︷︷ ︸

qi−1

, αqi , αqi+1) and the Jordan canonical form of Ai is equal

to r(qiαqi
+ (qi + 1)αqi+1, αqi

+ αqi+1).
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(iv) J (Ai) = (0, . . . , 0︸ ︷︷ ︸
qi−2

, αqi−1, αqi
, αqi+1), where αqi

≥ 2 and the Jordan canonical

form of Ai is equal to

ord(r((qi−1)αqi−1+qi(αqi
−1), αqi−1+αqi

−1), r(qi+(qi+1)αqi+1, 1+αqi+1)).

In case (a) we can write each block corresponding to subsequences of the form (3.1)
as a direct sum of blocks of type (iii). In the case (b) we use types (ii) and (iii) if
there is an odd i ≥ 1 such that αt−1+i ≥ 2 and types (iii) and (iv) otherwise. If
α1 ≥ 1 then the block corresponding to the subsequence (α1, α2, . . . , αs, 0), αi ≥ 1,
is decomposed as a direct sum of blocks of type (iii) if s is even and a combination of
types (i) and (iii) if s is odd. This proves the proposition.

Proof. (of Theorem 3.3) Since Proposition 3.5 holds also for m = n, the implica-
tion (a)⇒ (c) follows from Proposition 3.5. The implication (c)⇒ (b) is the statement
of Proposition 3.6 and the implication (b) ⇒ (a) is the statement of Proposition 3.2.

4. When is an operator a product of commuting square-zero opera-
tors?. In this section we assume that H is an infinite-dimensional, separable, real or
complex Hilbert space. We denote by B(H) the algebra of all operators (i.e., bounded
linear transformations) on H.

Question 3. Which operators A ∈ B(H) can be written as a product of two
commuting square-zero operators?

Similarly as in the finite-dimensional case we notice that also A is square-zero.
Therefore im A ⊆ ker A. So the space im A + ker A is closed.

Theorem 4.1. Let A ∈ B(H). Then A = BC = CB, where B2 = C2 = 0, if
and only if dim(kerA ∩ ker A∗) = ∞ and A2 = 0.

Proof. If A is a product of two square-zero operators it follows by [6] that
dim(kerA 	 im A) = ∞. Since kerA 	 im A = kerA ∩

(
im A

)⊥
= kerA ∩ ker A∗

we have that dim(kerA ∩ ker A∗) = ∞ and A2 = 0.
It remains to prove the converse. We can choose a decomposition of H as a direct

sum of infinite-dimensional subspaces H1 and H2 such that H2 ⊆ ker A∩ker A∗. The

matrix of A relative to this decomposition is of the form
[
D 0
0 0

]
. Since A2 = 0 also

D2 = 0. Therefore we can find a decomposition of space H1 = H11 ⊕ H12, where
both subspaces are infinite-dimensional and im D ⊆ H11. The matrix of D relative to

this decomposition is
[
0 D1

0 0

]
. Since H2 is infinite-dimensional space, we can write
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it as a direct sum of two infinite-dimensional subspaces H21 and H22. The form of A
relative to the decomposition H11 ⊕H12 ⊕H21 ⊕H22 is

0 D1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

Define operators B and C on H by

B =


0 0 D1 0
0 0 0 0
0 0 0 0
0 D1 0 0

 and C =


0 0 0 I
0 0 0 0
0 I 0 0
0 0 0 0

 .

It is evident that A = BC = CB and B2 = C2 = 0.
The factorization in the proof above is based on the factorization in the finite-

dimensional case. Since H2 is an infinite-dimensional space, we can write it as a
direct sum of k infinite-dimensional subspaces. Using the factorization in the proof
of Theorem 2.3 we get the following result.

Corollary 4.2. An operator A is a product of two commuting square-zero
operators if and only if A is a product of k square-zero operators.

5. When is an operator a product of two commuting nilpotent oper-
ators?. Let V be an infinite-dimensional vector space and A : V → V a nilpotent
operator with index of nilpotency n. We proceed to define the sequence

J (A) = (α1, α2, . . . , αn),

where now αi ∈ N ∪ {0,∞}.
For k = 0, 1, . . . , n− 1 we choose subspaces Vn−k such that:
1. For k = 0 we have V = kerAn = kerAn−1 ⊕ Vn.
2. For k > 0 we have ker An−k = kerAn−k−1 ⊕ AWn−k+1 ⊕ Vn−k, where

Wn−k+1 = AWn−k+2 ⊕ Vn−k+1 and Wn+1 = 0.
Then we define αi = dim Vi, i = 1, 2, . . . , n. Observe that if dim V < ∞ then this
definition of J (A) coincides with the one given in §2.

Observe that if an operator A is a product of two commuting nilpotent operators,
then A is also a nilpotent operator.

Theorem 5.1. A nilpotent operator A with J (A) = (α1, α2, . . . , αn) is a prod-
uct of two commuting nilpotent operators if and only if a matrix B with J (B) =
(β1, β2, . . . , βn), where βi = min{αi, 2}, is a product of two commuting nilpotent ma-
trices.
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Before we prove the theorem let us show the following two lemmas.

Lemma 5.2. If J (A) = (0, . . . , 0,∞), then A is a product of two commuting
nilpotent operators.

Proof. Since αi = 0 for i 6= n, it follows that all the indecomposable blocks are of
size n. Then A is similar to ⊕∞k=1Jk,n = ⊕∞k=1(J2k−1,n ⊕ J2k,n), where Jk,n, k ∈ N,
are indecomposable blocks of A each of them similar to Jn. Since J2k−1,n⊕ J2k,n is a
product of two commuting nilpotent matrices by Theorem 3.3, the assertion follows.

Lemma 5.3. Let A be a nilpotent matrix with J (A) = (α1, α2, . . . , αn), where
there exists an index j such that αj ≥ 2. Suppose that B is a matrix with J (B) =
(β1, β2, . . . , βn), where βi = αi for i 6= j and βj = αj + 1. Then A is a product of
two commuting nilpotent matrices if and only if B is a product of two commuting
nilpotent matrices.

Proof. By Theorem 3.3 a matrix A is a product of two commuting nilpotent
matrices if and only if J (A) is not of the form

(α1, . . . , αi, 0, 1, . . . , 1︸ ︷︷ ︸
2l−1

, 0, αk, . . . , αn). (5.1)

It follows easily that matrices A and B are simultaneously the products of two com-
muting nilpotent matrices.

Proof. (of Theorem 5.1) Suppose that A is a product of two commuting nilpotent
operators. Similarly as in the finite-dimensional case we can show that J (A) can not
be of the form (5.1). Hence also J (B) is not of that form and therefore B is a product
of two commuting nilpotent matrices.

To prove the converse write A as a direct sum of A1 and A2 with

J (Aj) = (α1j , α2j , . . . , αnj)

so that αi1 = αi and αi2 = 0 if αi is finite, and αi1 = 2 and αi2 = ∞ otherwise. It
suffices to show that A1 and A2 are the products of commuting nilpotent operators,
which follows from the lemmas above.
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[2] R. Drnovšek, V. Müller, and N. Novak. An operator is a product of two quasi-nilpotent
operators if and only if it is not semi-Fredholm. Proc. Roy. Soc. Edinburgh, 136A
(2006), 935–944.

[3] C. K. Fong and A. R. Sourour. Sums and products of quasi-nilpotent operators. Proc.
Roy. Soc. Edinburgh, 99A (1984), 193–200.



12 D. Kokol Bukovšek et al.
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