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Abstract. Let S be an irreducible semigroup of compact linear operators on a Banach

space of dimension at least 2 with the property that the products AB and BA are

proportional for each pair of elements A and B in S. We show that S is necessarily a

nilpotent matrix group of nilpotency class 2 with possible addition of the zero matrix.

We also study generalizations of the property.

1. Introduction

Several authors have studied semigroups of linear operators satisfying polynomial iden-

tities and considered the problem of irreducibility of these semigroups (see e.g. [1, 2, 3]).

Then one assumes that every sequence of elements satisfies the given identities. Here we

consider a weaker problem when the coefficients of the identities can depend on the chosen

elements. We first study the reducibility of an operator semigroup S such that for each

pair of elements A and B in S the products AB and BA are proportional.

It is easy to find examples of irreducible matrix groups having this property. Indeed,

let U be the permutation n × n (n ≥ 2) matrix defined on the standard basis vectors

{ei}n
i=1 by Uei = ei+1 for 1 ≤ i < n and Uen = e1, and let D be the diagonal matrix

diag(1, w, w2, . . . , wn−1), where w is the primitive n-th root of unity. Then the group

G generated by U and D is irreducible and for each pair A, B ∈ G there exists j ∈
{0, 1, 2, . . . , n − 1} such that AB = wjBA. These matrix groups are often minimal

counterexamples for reducibility when one studies various reducibility questions (see e.g.

Sections 3.3, 4.2 and 4.3 in [3]). Most of these reducibility questions were considered

in the infinite-dimensional setting as well. One may also ask whether there are infinite-

dimensional examples of irreducible operator semigroups S such that AB and BA are

proportional for all A,B ∈ S.
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In this note we show that the only such irreducible semigroups of compact linear oper-

ators on a Banach space of dimension at least 2 are irreducible nilpotent matrix groups

of class 2 with possible addition of the zero matrix. In these groups for each pair A,B

the commutator ABA−1B−1 is a scalar matrix, say γI, and so AB = γBA.

We also obtain weaker results in the case when the pair {AB, BA} in the condition is

replaced by pairs {ABAk, BAk+1} or {Ak+1B, AkBA} for some k ≥ 1 depending on A,B.

In our results the compactness assumption can not be omitted: there exists a bounded

operator on l1 without nontrivial invariant subspace (see e.g. [4]) so that the semigroup

it generates is irreducible and commutative.

2. Results

Throughout the paper we assume that the dimension of the underlying Banach space

is at least 2. We denote by R+ the set of all nonnegative real numbers. The closure of a

set S in a topological space is denoted by S.

In the proof of our first result we use several times the well-known fact that r(AB) =

r(BA) for all bounded operators A and B, where r denotes the spectral radius.

Theorem 2.1. Let S be an irreducible semigroup of compact operators on a complex

Banach space X with the property that for each pair of elements A and B in S the

products AB and BA are proportional. Then

(a) the dimension n of X is finite.

(b) the set G = R+S \ {0} is a nilpotent group of class 2, and its subgroup G0 = {G ∈
G : det (G) = 1} is finite.

(c) there exists a basis of X in which operators of the group G0 are represented by

monomial unitary matrices.

(d) for each pair A,B ∈ G there is a (unique) n-th root γA,B of unity such that AB =

γA,BBA.

(e) for every A ∈ G the operator An is a multiple of the identity.

Proof. With no loss of generality we may assume that R+ S = S. Denote by I the set of

all quasinilpotents in S. We claim that I is an ideal of S. Assume on the contrary that

r(AS) > 0 for some A ∈ I and S ∈ S. By the assumption, there exist complex numbers

α and β, not both equal to zero, such that αAS = βSA. Since r(AS) = r(SA) > 0, we
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conclude that |α| = |β| > 0. It follows that

‖(AS)m‖ = ‖AmSm‖ ≤ ‖Am‖ ‖Sm‖

for all positive integers m, and so r(AS) ≤ r(A) r(S) = 0. This contradiction shows that

I is an ideal of S.

By the famous Turovskii’s theorem (see [6] or [3]), the ideal I is reducible. Since every

non-zero ideal of an irreducible semigroup is also irreducible we obtain that I = {0}.
This implies that for A, B ∈ S we have AB = 0 if and only if BA = 0. Consequently,

we may assume for each pair A,B ∈ S there exists a nonzero complex number γA,B

such that AB = γA,BBA. Furthermore, we may assume that γA,B is on the unit circle.

Indeed, for each pair A,B ∈ S with AB 6= 0 we have r(AB) > 0, and so it follows from

r(AB) = |γA,B| r(BA) that |γA,B| = 1.

Now, it is easy to verify that there is no loss of generality in assuming that S is

closed. By [3, Theorem 7.4.5], S contains non-zero finite rank operators. Denote by n the

minimal rank of non-zero members of S and pick E ∈ S of rank n. Since AE = γA,EEA

for all A ∈ S, the range im E of E is invariant under every member of S. In view of

irreducibility of S we obtain that im E = X so that (a) holds and every member of G
is invertible. Moreover, G is a group by [3, Lemma 3.1.6]. The property AB = γA,BBA

implies that ABA−1B−1 belongs to the center of G for all A,B ∈ G. Since G is not

commutative (otherwise it was reducible), G is a nilpotent group of class 2. Since its

subgroup G0 = {G ∈ G : det (G) = 1} is finite by [5, Theorem 1, p. 208], the proof of (b)

is finished.

By [5, Lemma 6, p. 207] there exists a basis {e1, e2, . . . , en} of X in which operators of

G are represented by monomial matrices. We recall a well known argument to prove (c).

Denote by (·, ·) the standard inner product on X with respect to the basis {e1, e2, . . . , en}.
If G1, G2, . . ., Gm are all members of G0, then we define a new inner product on X as

follows

〈x, y〉 =
1

m

m∑
i=1

(Gix,Giy).

It is easily verified that every member G ∈ G0 has a monomial unitary matrix with respect

to the basis {f1, . . . , fn} defined by fi = ei/
√
〈ei, ei〉, i = 1, . . . , n. This completes the

proof of (c).

For every pair A,B ∈ G we have det (AB) = γn
A,B det (BA) which yields that γn

A,B = 1

proving (d). To show (e), take A ∈ G. It follows from (d) that the operator An commutes
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with any B ∈ G. Since G is irreducible, we conclude that An must be a multiple of the

identity. ¤

Corollary 2.2. Let S be an irreducible semigroup of n × n complex matrices. Then for

all pairs A,B ∈ S there exists a complex number γA,B such that AB = γA,BBA if and

only if R+ S \ {0} is a nilpotent group of class 2.

Proof. Only the converse implication needs a proof. If G = R+ S \{0} is a nilpotent group

of class 2, then for any pair A, B ∈ G the group commutator ABA−1B−1 belongs to the

center of G. Since G is irreducible, the center consists of scalar matrices only, and so there

is a complex number γA,B such that AB = γA,BBA. ¤

We denote by G(k) the irreducible subgroup of GLk(C) generated by the cyclic permu-

tation matrix U defined on the standard basis vectors {ei}k
i=1 by Uei = ei+1 for 1 ≤ i < k

and Uek = e1, and by the diagonal matrix diag(1, w, w2, . . . , wk−1), where w is a primitive

k-th root of unity.

Corollary 2.3. A semigroup S of n × n complex matrices is a maximal irreducible

semigroup such that for all pairs A,B ∈ S there exists a complex number γA,B with

AB = γA,BBA if and only is there exists a factorization n = k1k2 · · · kt (all kj ≥ 2 and

kj|ki for j > i) such that S is conjugate to the semigroup C · G(k1)⊗G(k2)⊗ · · · ⊗ G(kt).

Proof. By Corollary 2.2 we know that R+ S \{0} is an irreducible nilpotent matrix group

of class 2. It is contained in a maximal nilpotent matrix group of class 2 which we denote

by G. Another application of Corollary 2.2 implies that for all pairs A,B ∈ G there

exists a complex number γA,B such that AB = γA,BBA. By maximality it follows that

S = R+ S = G ∪ {0}. By [5, Theorem 7, pp. 210-211] we know that G is conjugate to

the matrix group C∗ · G(k1)⊗ G(k2)⊗ · · · ⊗ G(kt) for a factorization n = k1k2 · · · kt such

that all kj ≥ 2 and kj|ki for j > i. Here C∗ = C \ {0}. Then it follows that S is of the

required form. ¤

Theorem 2.4. Let Γ be a non-void compact subset of C\{0}, and let S be an irreducible

semigroup of compact operators on a complex Banach space X with the property that

for each pair A,B ∈ S \ {0} there exist γ = γA,B ∈ Γ and k = kA,B ∈ N such that

(AB − γBA)Ak = 0. Then the conclusions of Theorem 2.1 hold.

Proof. With no loss of generality we may assume again that R+ S = S. By Turovskii’s

theorem the semigroup S contains an operator that is not quasinilpotent. Since R+ S = S,
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there is an operator K ∈ S of spectral radius 1. As in the proof of [3, Lemma 7.4.5] we

obtain an unbounded sequence {mi} in N and a sequence {ti} in (0,∞) such that the

sequence {tiKmi} converges to a non-zero finite-rank operator F that is either idempotent

or nilpotent with F 2 = 0. (If F is idempotent, we can even take ti = 1.) By the assumption

for any B ∈ S \ {0} there exist γi = γKmi ,B ∈ Γ and ki = kKmi ,B ∈ N such that

(KmiB − γiBKmi)(Kmi)ki = 0.

We can find a subsequence {mij} of {mi} such that

mij+1
≥ mij · kij

for all j, and so

(Kmij B − γijBKmij )Kmij+1 = 0.

Since Γ is a compact set, by passing to a subsequence if necessary we may assume that the

sequence {γij} converges to γ ∈ Γ. Multiplying the last equation by tij tij+1
and taking

the limit we obtain (FB − γBF )F = 0. If F is nilpotent of index 2, we have FBF = 0

so that B(im F ) ⊆ ker F for all B ∈ S. Then for any non-zero vector x ∈ im F the closed

linear span of the set {x} ∪ {Sx : S ∈ S} is contained in ker F 6= X and is invariant

under each member of S which is a contradiction with the irreducibility of S. So, F

has to be idempotent, and it follows from FBF = γBF that the range im F is invariant

under every member of the irreducible semigroup S, so that im F = X. Now note that

with n = dim X it holds that im (Ak) = im (An) for all A ∈ S and all k > n, and so the

semigroup S has the property that for each pair A,B ∈ S \ {0} there exists γA,B ∈ Γ

such that (AB − γA,BBA)An = 0. By a simple compactness argument we may assume

that S is closed. Then by [3, Lemma 3.1.6] S contains an idempotent E of minimal rank

in S \ {0}. Since EBE = γE,BBE for all B ∈ S, the range im E is invariant under every

member of S, so that E is the identity operator. It follows that every non-zero member

of S is invertible, and so S has the property that for each pair A,B ∈ S \{0} there exists

γA,B ∈ Γ such that AB = γA,BBA. Now Theorem 2.1 can be applied to complete the

proof. ¤

The following example shows that the condition 0 /∈ Γ in Theorem 2.4 is necessary.

Example 2.5. Let n ≥ 2. We denote by Eij, i, j = 1, 2, . . . , n the standard linear basis

for Mn(C), i.e., Eij is the matrix with the only nonzero entry (i, j) equal to 1. Then

S = {Eij, i, j = 1, 2, . . . , n} ∪ {0} is a matrix semigroup. It is easy to check that for each
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pair A,B ∈ S, A 6= B we have ABA2 = 0, and so for each pair A,B ∈ S there exists a

complex number γ such that (AB − γBA)A2 = 0.

The following result is a ’dual’ version of Theorem 2.4. We omit its proof, since it is a

slight modification of the proof of Theorem 2.4.

Theorem 2.6. Let Γ be a non-void compact set of C \ {0}, and let S be an irreducible

semigroup of compact operators on a complex Banach space X with the property that

for each pair A,B ∈ S \ {0} there exist γ = γA,B ∈ Γ and k = kA,B ∈ N such that

Ak(AB − γBA) = 0. Then the conclusions of Theorem 2.1 hold.

The semigroup S in Example 2.5 satisfies the condition that A2(AB − BA)B2 = 0 for

each pair A,B ∈ S. Therefore further weakening of conditions in Theorems 2.4 and 2.6

to the condition that for each pair A,B ∈ S \ {0} there exist γA,B 6= 0 and k = kA,B ∈ N
such that Ak(AB − γBA)Bk = 0 will no more yield the conclusions of Theorem 2.1.
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