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Abstract. A set of matrices S ⊆ Mn(F) is said to be semitransitive if for any two nonzero
vectors x, y ∈ Fn there exists a matrix A ∈ S such that either Ax = y or Ay = x. In this paper
we study various properties of semitransitive linear subspaces of Mn(F). In particular, we show
that every semitransitive subspace of matrices has a cyclic vector. Moreover, if |F| ≥ n, it always
contains an invertible matrix. We prove that there are minimal semitransitive matrix spaces without
any nontrivial invariant subspace. We also study the structure of minimal semitransitive spaces
and triangularizable semitransitive spaces. Among other results we show that every triangularizable
semitransitive subspace contains a nonzero nilpotent.
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1. Introduction. Let F be an arbitrary field and Mn(F) the algebra of all n×n
matrices over F, which we will identify with the algebra of all linear operators on the
space V = Fn, when a basis is understood to be fixed. By a well-known definition, a
collection S of operators is said to be transitive on V if for any given pair of nonzero
elements x and y of V there is an A in S with Ax = y. Transitivity has been studied
extensively for sets with various structures, e.g. groups, semigroups, linear spaces
and algebras. The frequently-quoted theorem of Burnside, for example, states that
when F is algebraically closed, then Mn(F) has no proper transitive subalgebra. If
the transitive collection S is merely assumed to be a linear space, then there exist
many possibilities. It is known that such an S has dimension at least 2n− 1 [1]. If F
is the real or complex field, there is also a natural, topological version of transitivity
whereby the collection S is required only to take x approximately to y: given x and
y in V and positive ε, there is an A in S such that ‖Ax − y‖ < ε. (All norms are
equivalent in finite dimensions and any one can be fixed for the purpose.) Of course,
for linear spaces S of Mn(F) the strict and topological notions of transitivity coincide.
Note the obviously equivalent definition of transitivity: A set S is transitive if and
only if given nonzero x and y in the underlying space, Sx contains y. Here we write
Sx = { Ax | A ∈ S } for a vector x ∈ V.

A weaker property than transitivity was first proposed by H. Rosenthal and V.
Troitsky in [6], where they considered subalgebras S of bounded operators on a Ba-
nach space V and defined topological and (strict) semitransitivity of S, with strictly
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semitransitive algebras being the main object of investigation. Topological semitran-
sitivity of S means that for given x and y in V and positive ε, either Ax−y or Ay−x
is of norm less than ε. Finite-dimensional versions of this concept were considered
in [2] for algebras and semigroups. Among other things, minimal semitransitive alge-
bras were characterized in that paper as those simultaneously similar to the algebra
of upper triangular Toeplitz operators (that is, the algebra generated by the identity
and a nilpotent matrix of index n). Note that semitransitivity of a set S can be
equivalently defined by requiring that for nonzero x and y in V, either Sx should
contain y or Sy should contain x. Semitransitivity of linear spaces was studied in [5],
where k-fold semitransitivity was also considered and Jacobson’s density theorem for
rings was extended.

In this paper we prove several results about semitransitive linear spaces of Mn(F),
and construct examples to repudiate certain natural-sounding conjectures. As ex-
pected, there are many respects in which transitive and semitransitive spaces differ.
For example, it is clear that a transitive space cannot have any nontrivial invariant
subspaces, but a semitransitive space can be (simultaneously) triangularizable, as the
Toeplitz algebra mentioned above illustrates. Is a minimal semitransitive space nec-
essarily triangularizable (as in the case of algebras)? One of our counterexamples will
show that the answer is negative in an extreme way: there are minimal semitransitive
spaces which do not have any nontrivial invariant subspaces. Many of the natural
questions do not seem to be easy to handle, as our treatment of very small-dimensional
cases below will demonstrate. We shall mention some of the unsolved problems at
the end of the paper.

2. General Properties. Let Atr denote the transpose of a matrix A ∈ Mn(F).
For a set of matrices S ⊆ Mn(F) we denote

Str =
{

Atr
∣∣ A ∈ S

}
and for x, y ∈ Fn we define

x ⊥ y ⇐⇒ xtry = 0.

Theorem 2.1. If L is a semitransitive subspace of Mn(F), then so is Ltr.
Proof. Since xtry is a nondegenerate form, it follows that y belongs to a subspace

V if and only if z ⊥ V implies z ⊥ y for every z. Now take any nonzero x and y and
assume that x 6∈ Ltry. We want to show that y ∈ Ltrx. It suffices to show that z ⊥ y
whenever z ⊥ Ltrx. Now, since x 6∈ Ltry, there exists u ⊥ Ltry such that u 6⊥ x.
Next, if z ⊥ Ltrx, this means that x ⊥ Lz so that u 6∈ Lz. By semitransitivity of
L we then have that z ∈ Lu. It follows from the above that y ⊥ Lu, so that y ⊥ z
which was to be shown.

Remark 2.2. Suppose that ϕ : F → F is a field automorphism. We extend it
entrywise to Fn and Mn(F) and denote the extension by ϕ̃. If L is a subset of Mn(F),
then we write

L̃ = { ϕ̃(A) | A ∈ L } .
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Observe that L̃ is semitransitive if and only if L is. 2

The next result is implied by Theorem 2.1 and Remark 2.2.
Corollary 2.3. The following are equivalent for a space L of square complex

matrices:
1. L is semitransitive,
2. L∗ is semitransitive,
3. L̃ is semitransitive,
4. Ltr is semitransitive,

where

L̃ = { [aij ] | [aij ] ∈ L } .

The following result is well known. However, for the sake of completeness we give
the proof.

Proposition 2.4. Let L be a subspace of Mn(F).
(a) If PLP is transitive on the range of P for every projection P of rank 2, then

L is transitive.
(b) If in the case of the complex field PLP is transitive on the range of P for

every orthogonal projection P of rank 2, then L is transitive.
Proof. Assume that L is not transitive. Then there exists a nonzero vector x

such that Lx is a proper subspace of Fn. So, there exists a nonzero linear functional
f such that f(Lx) = 0. Choose a basis of Fn containing x such that the last n− 2 of
its members are contained in the kernel of f . If P is the projection on the first two
basis vectors along the rest of them, it follows that PLP is not transitive proving (a).

To get (b) let us modify this proof accordingly. Recall that in the (Hilbert) space
Cn the above functional f can be represented via a nonzero vector y ∈ Cn, so that
f(u) = y∗u for all u ∈ Cn. The kernels of the functionals u 7→ y∗u and u 7→ x∗u have
dimension n− 1 so that their intersection has to be of dimension at least n− 2. This
implies that we may choose an orthogonal basis containing x such that the last n− 2
of its members are contained in the kernel of f . We may now proceed as above.

Transitivity of a subspace over C can thus be verified by orthogonal projections
to two-dimensional subspaces only. For semitransitive spaces, however, this no longer
holds.

Example 2.5. The space

L =


a c e

0 d f
b c g

 ∣∣∣∣∣∣ a, b, c, d, e, f, g ∈ C


is not semitransitive because Te1 6= e2 and Te2 6= e1 for every T ∈ L. Nevertheless,
PLP is semitransitive for every orthogonal projection P ∈ M3(C) of rank two.

This latter claim is justified as follows. Given a pair
(

x
y
z

)
,
(

u
v
w

)
of nonzero vec-

tors, the existence of T ∈ L such that T
(

x
y
z

)
=

(
u
v
w

)
is equivalent to the existence of
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a solution to the linear system

x 0 z 0 0 y 0
0 x 0 z 0 y 0
0 0 0 0 z 0 y




a
b
e
g
f
c
d


=

u
w
v

 .

Note that the system has solutions if z 6= 0 or if z = 0 and x 6= 0 6= y. For
x = z = 0 6= y the system is consistent only if u = w, while for y = z = 0 6= x
the system is consistent only if v = 0. Hence the system is inconsistent exactly when
either x

y
z

 is a multiple of

1
0
0

 , and v 6= 0

or x
y
z

 is a multiple of

0
1
0

 , and u 6= w.

Consequently if for a pair
(

x
y
z

)
,
(

u
v
w

)
of nonzero vectors there does not exist T ∈ L

such that T
(

x
y
z

)
=

(
u
v
w

)
or T

(
u
v
w

)
=

(
x
y
z

)
, then each of the vectors in question must

be either a multiple of e1 or of e2, and the two vectors must be linearly independent.
It follows that PLP is semitransitive whenever P 6=

(
1 0 0
0 1 0
0 0 0

)
. On the other hand

it is easy to see that PLP is semitransitive in the case when P =
(

1 0 0
0 1 0
0 0 0

)
.

This example also demonstrates the possibility that for a given linear space L of
square matrices there may exist a unique pair U, V of one-dimensional subspaces of
vectors such that TU 6⊂ V and TV 6⊂ U for each nonzero T ∈ L. 2

Recall that, given a subspace L of Mn(F), a vector x ∈ Fn is cyclic for L if
Lx = Fn. It is clear from the definition that every nonzero vector is cyclic for
a transitive subspace of matrices. The next theorem shows that there exist cyclic
vectors for every semitransitive subspace of matrices.

Theorem 2.6. Let L ⊆ Mn(F) be a semitransitive linear subspace over any field
F. Then there exists a cyclic vector for L.

Proof. We consider two cases:

(i) F = Fq is the finite field of order q. Assume that there is no cyclic vector for
L. Then the dimension of Lx is at most n−1 for every x ∈ Fn. Now, semitransitivity
of L implies that

(Fn − {0})× (Fn − {0}) ⊂
⋃

0 6=u∈Fn

({u} × L′u ∪ L′u× {u}) ,
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where L′ = L − {0}. It follows that

(qn − 1)2 = |(Fn − {0})× (Fn − {0})| ≤

2
∑

0 6=u∈Fn

|L′u| ≤ 2(qn − 1)(qn−1 − 1) .

Hence qn−1 ≥ qn−1
2 + 1, which is a contradiction.

(ii) |F| = ∞. Let x1, . . . , xn be a basis for Fn. If one of xi is cyclic, we are done.
Otherwise Lxi is a proper subspace of Fn for every i. As the field F is infinite, Fn

is not a union of finitely many proper subspaces. Hence there exists a vector u ∈ Fn

such that u 6∈ Lxi, i = 1, . . . , n. By the semitransitivity of L we have xi ∈ Lu for
every i, which clearly implies that u is cyclic for L.

The following immediate corollary extends [5, Corollary 3] to the case of arbitrary
fields.

Corollary 2.7. The dimension of every semitransitive subspace of Mn(F) is at
least n.

As the set of vectors x that are not cyclic for a given subspace L ⊆ Mn(F) is
easily seen to be a closed variety, defined by the condition that dimLx ≤ n − 1, we
have also the following result.

Corollary 2.8. If F is algebraically closed and if L ⊆ Mn(F) is a semitransitive
subspace, then the set of cyclic vectors for L is open and dense in the Zariski topology
of Fn (and thus also in the Euclidean topology of Cn).

We are able to show another interesting property of semitransitive matrix spaces
which is known to hold in the transitive case [3].

Theorem 2.9. Every semitransitive subspace in Mn(F) contains an invertible
element, whenever F contains at least n elements.

Proof. We will prove the theorem by induction on n. For n = 1 the assertion is
trivial. Assume n > 1 and let L ⊂ Mn(F) be semitransitive. Let P be the projection
on the first n − 1 elements of the standard basis of Fn. The compression PLP is a
semitransitive subspace in dimension n− 1, so by induction it contains an invertible
element. Let B ∈ L be a matrix such that the compression PBP is invertible. If B
is invertible, we are done. Suppose not. Let x be a nonzero vector in the kernel of B.
We write the matrices in the block partition of P , where x is the n-th basis vector.
We have

B =
(

B1 0
∗ 0

)
,

where B1 is invertible. Since L is semitransitive, there exists a matrix C ∈ L such
that Cx = x, so that

C =
(

C1 0
∗ 1

)
.
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Since F has at least n elements, there exists λ ∈ F, which is not an eigenvalue of
B−1

1 C1. Then C − λB ∈ L is invertible.
The following example shows that in the last theorem the assumption on the field

cannot be omitted.
Example 2.10. Let F = {α1, ..., αq} be a finite field and let

L =




a c12 · · · c1,q+1

0 b + α1a · · · c2,q+1

...
...

. . .
...

0 0 · · · b + αqa


∣∣∣∣∣∣∣∣∣ a, b, cij ∈ F

 ⊂ Mq+1(F).

Then L is a semitransitive subspace, but it does not contain an invertible element.

3. Minimal semitransitive subspaces. A semitransitive subspace L ⊆ Mn(F)
is minimal semitransitive if it does not contain any proper semitransitive subspace.

Example 3.1. The set of upper-triangular Toeplitz matrices

L0 :=




a0 a1 · · · an−1

a0
. . .

...
. . . a1

a0


∣∣∣∣∣∣∣∣∣∣

ai ∈ F


is a minimal semitransitive subspace in Mn(F). Furthermore, L0 is an algebra and
is, up to similarity, the unique minimal semitransitive subalgebra of Mn(F) if F is
algebraically closed (see [2]).

Considering subspaces instead of algebras, the space L0 of Example 3.1 is no
longer unique.

Example 3.2. Let C = (cij) ∈ Mn(F) be a fixed matrix with cij 6= 0 for j ≥ i
and L0 the subspace of Example 3.1. Then

L := { C ∗A | A ∈ L0 }

(by ∗ we denote the Schur product of matrices) is a minimal semitransitive subspace
of Mn(F). Observe that L is not similar to L0 whenever cii 6= cjj for some i, j.

Minimal semitransitive spaces are not always triangularizable. Moreover, they
are not even always reducible.

Theorem 3.3. Let n ≥ 3. Then there exists a minimal semitransitive subspace
M⊂ Mn(F) without nontrivial invariant subspaces.

Proof. We construct the example for n = 3; for n ≥ 4 an example can be
constructed analogously.

Let V = F3 and let e1, e2, e3 be the standard basis for V. Let

A =


 a 0 b

b x1 0
x2 x3 a

 ∣∣∣∣∣∣ a, b, x1, x2, x3 ∈ F

 .



Semitransitive subspaces of matrices 7

We show that A is semitransitive. Note first that each vector x = α1e1 +α2e2 +α3e3

with α1 6= 0 is cyclic, i.e. Ax = V. Indeed, considering a = 1 (b = 1, x2 = 1,
respectively) and the remaining parameters equal to 0, we get α1e1 + α3e3 ∈ Ax,
α3e1 + α1e2 ∈ Ax and α1e3 ∈ Ax. Hence Ax = V.

We now show that for each y = β2e2 +β3e3 with β2 6= 0 we have Ay ⊃ ∨{e2, e3}.
Indeed, considering the parameters x1 and x3, we get β2e2 ∈ Ay and β2e3 ∈ Ay, and
so Ay ⊃ ∨{e2, e3}.

Finally, Ae3 3 e3. This implies that A is semitransitive.
Let M be a minimal semitransitive subspace of A. Suppose on the contrary that

there exists a nontrivial subspace U ⊂ V with MU ⊂ U .
Let x ∈ U , x 6= 0. Write x = α1e1 + α2e2 + α3e3. We show first that there is a

nonzero y ∈ U ∩∨{e2, e3}. This is clear if α1 = 0. Let α1 6= 0. Consider the pair x, e2.
Since Te2 6= x for all T ∈ A, there is an S ∈M such that Sx = e2. So e2 ∈MU ⊂ U .
Thus there is a nonzero y = β2e2 + β3e3 ∈ U .

We show similarly that e3 ∈ U . This is clear if β2 = 0. Let β2 6= 0. Consider
the pair y, e3. Since Te3 6= y for all T ∈ A, there is an S′ ∈ M with S′y = e3. Thus
e3 ∈MU ⊂ U .

Consider now the pair e1, e2. Since Te2 6= e1 for all T ∈ A, there is an S′′ ∈ M
with S′′e1 = e2. Observe that S′′e3 = e1, and so e1 ∈ MU ⊂ U . Further, e2 =
S′′e1 ∈ U . Hence U = V, a contradiction.

For n ≥ 4 we can take



a 0 0 0 . . . 0 b
b x22 0 0 . . . 0 0

x31 x32 x33 0 . . . 0 0
...

...
...

...
. . .

...
...

xn−1,1 xn−1,2 xn−1,3 xn−1,4 . . . xn−1,n−1 0
xn1 xn2 xn3 xn4 . . . xn,n−1 a



∣∣∣∣∣∣∣∣∣∣∣∣∣
a, b, xi,j ∈ F


and proceed as before.

4. Triangularizable semitransitive subspaces. In this section we study tri-
angularizable semitransitive subspaces of matrices.

Lemma 4.1. Let L be a semitransitive subspace acting on a vector space V.
Assume that a subspace U of V is invariant under L and the action of L on V/U is
transitive. Then L maps the set V −U transitively onto V, i.e. for each v, v′ ∈ V with
v 6∈ U , there is an L ∈ L such that Lv = v′.

Proof. Let W ≤ V be such that V = W⊕U . Let v = w+u and v′ = w′+u′, with
u, u′ ∈ U and w,w′ ∈ W. We will show that, whenever w 6= 0, there exists L ∈ L so
that Lv = v′ . Note that if w 6= 0 then there exists S ∈ L so that Sw = w′ + x for
some x ∈ U (since L acts transitively on V/U). Now semitransitivity yields a T ∈ L
so that Tv = v′ − Sv (since v′′ := v′ − Sv = u′ − x − Su ∈ U and hence v 6∈ Lv′′).
This finishes the proof since (S + T )v = v′.

Corollary 4.2. Assume that {0} = V0 < V1 < . . . < Vn = Fn is a triangulariz-
ing chain for a linear subspace L of Mn(F). The following are equivalent

1. L is semitransitive;
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2. For each i = 1, . . . , n, L maps the set Vi − Vi−1 transitively onto Vi.
If V is a vector space and L a vector subspace of End(V), then the evaluation

evL : L × V → V, evL(L, v) = L(v) is a bilinear map and hence gives rise to a linear
map l : L⊗V → V. We identify L, l and evL. More precisely, if V = Fn and dimL = m,
then we view L as a linear map l : Fmn → Fn, or a bilinear map evL : Fm × Fn → Fn

whenever convenient. If x ∈ Fm then we abbreviate Lx = evL(x, ), i.e. for a ∈ Fn

we have Lxa = evL(x, a). This gives a Fm parametrization for L = {Lx|x ∈ Fm}.
For a ∈ Fn we abbreviate Aa = evL( , a), i.e. for x ∈ Fm we have Aax = evL(x, a).
If e1, . . . , en denotes the standard basis of Fn, then we also abbreviate Ai = Aei

.
Furthermore, for the rest of the paper we define Vj =

∨j
i=1 ei, j = 1, . . . , n, and we

denote the range of a matrix A by R(A).
If A1, . . . , An are n×m matrices, then L(A1, . . . , An) = L(Ai)i denotes the linear

space of n × n matrices, parameterized by Fm as above, i.e. L(Ai)i = {Lx|x ∈ Fm},
where Lxei = Aix, or in matrix notation

Lx =
(
A1x A2x . . . Anx

)
.

Lemma 4.3. If Ai : Fm → Fn, i = 1, . . . , n are matrices satisfying R(Aj +∑
i<j yiAi) ⊇ Vj, for all j ≤ n and all y = (yi)i ∈ Fn, then the linear space L(Ai)i

acts semitransitively on Fn.
Proof. Choose nonzero vectors y = (yi) and y′ = (y′i) in Fn. Without any

loss of generality we assume that max
y′

i 6=0
i ≤ max

yi 6=0
i. By the assumption, we have y′ ∈

R(
∑

i yiAi). Let x ∈ Fm be such that (
∑

i yiAi)x = y′ and note that Lxy = y′.
Theorem 4.4. Let L = L(Ai)i. If Ai : Fm → Fn are such that R(Ai) ⊆ Vi

(that is, {0} < V1 < . . . < Vn is a triangularizing chain for L), then the following
assertions are equivalent

1. L is semitransitive;
2. R(Aj +

∑
i<j yiAi) = Vj, for all j = 1, . . . , n and all y = (yi)i.

Proof. Combine Lemma 4.3 and Corollary 4.2.
Theorem 4.5. Every triangularizable semitransitive linear space in Mn(F) con-

tains a nonzero nilpotent.
Proof. Suppose L is an upper triangular semitransitive linear space in Mn(F).

By Corollary 2.7, L is at least n-dimensional. Define a linear map Diag : L −→ Fn

by declaring that the i-th entry of Diag(T ) is T [i, i], so that Diag(T ) is simply the
vector appearing on the diagonal of T . If Diag is not bijective, then it has a non-
trivial kernel, and any matrix in that kernel is nilpotent, so that the proof is complete
in such a case. Therefore from now on assume that dimL = n and Diag is bijective.

For each m, let Lm be the unique matrix in L such that Diag(Lm) = em. Obvi-
ously L1, . . . , Ln is a basis of L. We shall show that this leads to a contradiction.

Using the notation introduced above let A1, A2, . . . , An be n × n matrices such
that

Li =
(
A1ei A2ei . . . Anei

)
.

Observe that the j-th row of Aj is equal to etr
j and the rows below the j-th row

in Aj are zero. Now we apply Theorem 4.4. Since L is semitransitive, the matrix
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A(y1, y2, . . . , yn−1) = An +
∑n−1

j=1 yjAj has to be invertible for all values yj ∈ F,
j = 1, 2, . . . , n− 1. The matrix A = A(y1, y2, . . . , yn−1) has the following form

y1 + r11 r12 . . . r1 n−1 r1 n

r21 y2 + r22 . . . r2 n−1 r2 n

r31 r32 . . . r3 n−1 r3 n

...
...

...
...

rn−2 1 rn−2 2 . . . rn−2 n−1 rn−2 n

rn−1 1 rn−1 2 . . . yn−1 + rn−1 n−1 rn−1 n

0 0 . . . 0 1


,

where rij = rij(yi+1, . . . , yn−1) are linear polynomials in the indicated variables and
rn−1 j are constants. Observe that for each m, m = 1, 2, . . . , n−1, the (m,m)-th entry
of A is equal to ym+rm m(ym+1, . . . , yn−1) and no other entry in the (n−m+1)×(n−
m + 1) principle south-east compression of A is dependent on y1, . . . , ym. It follows
that there exist y1, y2, . . . , yn−1 such that for each 1 ≤ k ≤ n− 1 the determinant of
the k×k principle south-east compression of A is 1, and the determinant of A is zero.
This contradicts the invertibility of A, and the proof is complete.

Both minimal subspaces L0 and L of Examples 3.1 and 3.2 have dimension n. Is
this always the case? Before we answer this question for n = 2 we need the following
auxiliary result.

Lemma 4.6. Assume that F is an algebraically closed field. If L is a transitive
subspace of M2(F), then there is a two-dimensional semitransitive subspace contained
in L.

Proof. A minimal transitive subspace in M2(F) is of dimension 3. (See [1, Sect.
4] and note that the proof given there works over any algebraically closed field.) If
L = M2(F) then the statement is obvious. Assume that dimL = 3. Then it fol-
lows that L is of the form A⊥ = { B ∈ M2(F) | trace(BAtr) = 0 } for some nonzero
matrix A ∈ M2(F). Since L is transitive, the corresponding matrix A is invert-
ible: Observe that if A is of rank 1 then A = vutr for some nonzero u, v ∈ F2.
Then trace(Buvtr) = vtrBu = 0 for all B ∈ L, and so the set {Bu|B ∈ L} is one-
dimensional contradicting the transitivity.

Since nonzero multiples of A determine the same subspace A⊥ and since it is
enough to consider A up to similarity, we need to consider two cases only: A1 =(

1 0
0 α

)
, α 6= 0, and A2 =

(
1 1
0 1

)
. Then we find that

A⊥
1 =

{ (
αa b
c −a

) ∣∣∣∣ a, b, c ∈ F
}

and A⊥
2 =

{ (
a −a− c
b c

) ∣∣∣∣ a, b, c ∈ F
}

.

Now L1 =
{ (

αa b
0 −a

) ∣∣∣∣ a, b ∈ F
}

and L2 =
{ (

a 0
b −a

) ∣∣∣∣ a, b ∈ F
}

are two-

dimensional semitransitive subspaces in A⊥
1 and A⊥

2 , respectively.
Proposition 4.7. Let F be algebraically closed.
(a) Every semitransitive subspace of M2(F) which is not transitive is triangular-

izable.
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(b) Every minimal semitransitive subspace of M2(F) is similar to{ (
a b
0 ca

) ∣∣∣∣ a, b ∈ F
}

for a fixed c 6= 0.
Proof. (a) If Lx = F2 for all nonzero x ∈ F2, then L is transitive. Hence, we may

assume that there exists a nonzero x ∈ F2 such that Lx (necessarily containing x) is
not equal to F2. Choose this x for the first basis vector to get L upper triangular.

(b) Let L ⊂ M2(F) be minimal semitransitive. By Lemma 4.6, L cannot be
transitive. By (a) we may assume that L is upper triangularizable. Observe that
dimL = 2 (if dimL = 3 then L consists of all upper triangular matrices and is clearly
not minimal semitransitive). By Theorem 4.5, L contains a nilpotent and hence also
an element of the form diag(1, c).

The following example shows that in Proposition 4.7 we cannot omit the assump-
tion that F is algebraically closed.

Example 4.8. The space{ (
a b
−b a

) ∣∣∣∣ a, b ∈ R
}

is a minimal semitransitive subspace of M2(R), but it has no nonzero nilpotents.
By above, if F is an algebraically closed field, every minimal semitransitive sub-

space in M2(F) is triangularizable and 2-dimensional. However, neither of this holds
for n ≥ 3.

Example 4.9. The space

S :=


a b c

0 d a
0 0 d

 ∣∣∣∣∣∣ a, b, c, d ∈ F


is a minimal semitransitive subspace of M3(F) but dim(S) = 4.

In order to show semitransitivity of S, take the basis matrices

A =

1 0 0
0 0 1
0 0 0

 , B =

0 1 0
0 0 0
0 0 0

 , C =

0 0 1
0 0 0
0 0 0

 , D =

0 0 0
0 1 0
0 0 1


and a nonzero vector u =

(
x
y
z

)
. If z 6= 0, u is cyclic for S, since

1
z
Cu = e1,

1
z
Au− x

z
e1 = e2, and

1
z
Du− y

z
e2 = e3.

Furthermore, if z = 0 and y 6= 0 we have

1
y
Bu = e1 and

1
y
Du = e2,
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while Au = u in the case when y = z = 0 and x 6= 0.
Now let us show that S is minimal semitransitive. Assume the contrary that there

exists a semitransitive subspace S0 ( S. By semitransitivity, there are matrices in
S0 taking the basis vector e3 to e1, e2 and e3, respectively. Therefore the following
linearly independent matrices0 b1 1

0 0 0
0 0 0

 ,

1 b2 0
0 0 1
0 0 0

 , and

0 b3 0
0 1 0
0 0 1


are contained in S0 for some b1, b2, b3 ∈ F. Since dim(S0) = 3, these matrices span

S0. Let v =
(

0
−1
b1

)
if b1 6= 0, and v =

(
b2
−1
0

)
otherwise. Now note that no matrix

from S0 maps either of vectors v and e1 into another. This contradiction proves the
minimality of S.

We would now like to describe all triangularizable semitransitive n-dimensional
subspaces of Mn(F) for n = 2, 3. Let T0 ⊂ Mn(F) denote the set of all upper triangular
matrices and for every i = 1, . . . , n − 1 let Ti ⊂ T0 be the set of all matrices having
0’s beneath the i-th superdiagonal.

Proposition 4.10. Let F be algebraically closed and n ∈ {2, 3}. Every triangu-
larizable semitransitive n-dimensional subspace of Mn(F) is similar to

∨{T0, T1, . . . , Tn−1}

for some nonzero Ti ∈ Ti of rank n− i.
Proof. For n = 2, the result follows from Proposition 4.7. Now, let n = 3. Assume

that L is a semitransitive subspace of M3(F) of dimension 3 and that {0} = V0 <
V1 < V2 < V3 = F3 is a triangularizing chain for L. Let L = L(A1, A2, A3). Note that
if X ∈ M3(F) is invertible, then L = L(A1X, A2X, A3X). We make use of Theorem
4.4. The condition R(A3) = V3 = F3 shows that A3 is invertible and hence we can
assume, without any loss of generality, that A3 = I. Note that any linear combination
of A1 and A2 is nilpotent, since the range of A3 + a2A2 + a1A1 is F3 (for all a1, a2).
Since R(A1) = V1 and R(A2) = V2, we must have

A1 =

0 x y
0 0 0
0 0 0

 , A2 =

a b e
c d f
0 0 0

 ,

and the matrix (
a b
c d

)
+ a1

(
0 x
0 0

)
is nilpotent for every choice of a1. Observe that we must have x = 0. Indeed, if
x 6= 0, then we must have a = d = c = 0 and R(A2 − x−1bA1) is 1-dimensional; a
contradiction. Now inspect the condition R(A2 +a1A1) = V2 again and note that for
every choice of a1, the vector (

e
f

)
+ a1

(
y
0

)
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is not in the range of the nilpotent matrix(
a b
c d

)
.

But this is only possible if f 6= 0, a = c = d = 0 and b 6= 0. Hence

A1 =

0 0 y
0 0 0
0 0 0

 , A2 =

0 b e
0 0 f
0 0 0

 , A3 =

1 0 0
0 1 0
0 0 1

 ,

with y, b, f nonzero. Now note that

L(A1, A2, A3) =
∨ 

0 0 1
0 0 0
0 0 0

 ,

0 b 0
0 0 1
0 0 0

 ,

y e 0
0 f 0
0 0 1

 .

In the last result we cannot omit the assumption that F is algebraically closed.
Example 4.11. The linear space

a b c
0 −c b
0 0 a

 ∣∣∣∣∣∣ a, b, c ∈ R


is semitransitive over R but not over C.

Using similar methods as in the proof of Proposition 4.10 and considerably more
computational efforts one can describe the structure of all 4-dimensional triangular-
izable semitransitive spaces.

Proposition 4.12. Every 4-dimensional triangularizable semitransitive subspace
in the space of all 4× 4 matrices over an algebraically closed field F is similar either
to the space

L1 =
∨ 


a b c 0
0 d e 0
0 0 f 0
0 0 0 1

 ,


0 g h 0
0 0 i 0
0 0 0 1
0 0 0 0

 ,


0 0 j 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


 ,

where b, c, e, h ∈ F are arbitrary elements and a, d, f, g, i, j ∈ F are nonzero elements,
or to the space

L2 =
∨ 


a b c 0
0 df e 0
0 0 f 0
0 0 0 1

 ,


0 −dg − dh2ij gj 0
0 dghij −ghij2 0
0 0 ghij 1
0 0 0 0

 ,
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0 −dh2i g 0
0 dghi −ghij 1
0 0 ghi 0
0 0 0 0

 ,


0 −dghi 0 1
0 dg2i −g2ij 0
0 0 g2i 0
0 0 0 0


 ,

where b, c, f, h, j ∈ F are arbitrary elements and a, d, e, g, i ∈ F are nonzero elements.
In conclusion, we would like to state four questions. To motivate the first one

observe that if L is a semitransitive subspace of Mn(C), then L + L∗ is a transitive
subspace. To prove the statement, assume that L + L∗ is not transitive. So there
exists a nonzero vector x in the underlying space such that Lx + L∗x is a proper
subspace. Let y be a nonzero vector perpendicular to this proper subspace. Then
y is not in Lx and x is not in Ly contradicting semitransitivity of L. Observe that
this implies again that the minimal possible dimension of a semitransitive subspace in
Mn(C) is n (cf. Corollary 2.7), because the minimum for the dimension of a transitive
space is 2n− 1.

Question 4.13. What additional conditions (given that L + L∗ is transitive)
make L semitransitive?

Question 4.14. Are there minimal semitransitive subspaces over algebraically
closed fields that are transitive?

Question 4.15. Do semitransitive subspaces over algebraically closed fields al-
ways contain nilpotents?

Question 4.16. Is every n-dimensional semitransitive subspace over an alge-
braically closed field triangularizable?

The last two of these questions have recently been answered affirmatively by part
of the authors of this paper and their proofs will appear in a subsequent paper.
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