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What is Imprecise Probability?

• Traditional probability uses single values to represent the chance of an event.

• Imprecise probability represents probabilities as intervals [P(A),P(A)].

• The lower probability P(A) captures the evidence supporting A, while the upper
probability P(A) expresses the lack of evidence against A.

• P and P need not be additive measures but are assumed to be monotone in sets.

• This point of view is useful when exact probability is not available or not desired,
such as in finance, game theory, and reliability. It also has several applications in
social sciences.

• The foundation of imprecise probability was set by Peter Walley in his 1991
monograph Statistical Reasoning with Imprecise Probabilities.



Random Variables in Imprecise Setting

• Modeling imprecision of random
variables is based on the notion of a
p-box (a probability box).

• For a single random variable X , a p-box is a pair of cumulative distribution
functions [F (x),F (x)] such that F (x) ≤ F (x) for all x ∈ R, where F (x) and F (x)
represent the lower and the upper probability of the event [X ≤ x ].

• The point-wise infimum and supremum (the envelopes) of any p-box are its
lower and upper bound. They remain within the class of cumulative distribution
functions.

• The situation changes for distribution functions of two or more variables. There
the envelopes of a p-box may not be cumulative distribution functions.

• The set of all distribution functions of two (or more) variables is not equal to its
Dedekind-MacNeille completion.
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Copulas

• Copulas are distribution function of random vectors that have uniform marginal
distributions on [0, 1]. Their importance is emphasized by Sklar’s Theorem.

Theorem (Sklar, 1959)

Suppose that F (x , y) is the joint distribution function of a random vector (X ,Y ), and
functions FX and FY are the marginal distribution functions of X and Y , respectively.
Then there exist a copula C such that F (x , y) = C (FX (x),FY (y)). If (X ,Y ) is a
continuous random vector then C is unique.
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Discrete Copulas and Quasi-copulas

• Consider a uniform partition of the unit interval In = {0, 1n ,
2
n , . . . ,

n−1
n , 1} for

n ∈ N and define discrete (quasi-) copulas on the square grid I 2n .

• A discrete copula is a function C : I 2n → [0, 1] that satisfies certain conditions
(C1) and (C2).

• A discrete quasi-copula is a function Q : I 2n → [0, 1] satisfying certain conditions
(Q1)–(Q3).

• To avoid fractions we consider transformed maps that we still call discrete
copulas or discrete quasi-copulas: A discrete (quasi-)copula Q : I 2n → [0, 1] can
be expressed as a map Q ′ : Ln

2 → [0, n], where Ln = {0, 1, . . . , n}, by
Q ′(r , s) = n · Q

(
r
n ,

s
n

)
for r , s ∈ Ln.



Discrete Copulas

Let us consider formal definitions:

Definition

A function C : L2n → [0, n] is a discrete copula if and only if

(C1’) C is grounded C (r , 0) = C (0, s) = 0 and it has a unit C (r , n) = r , C (n, s) = s
for every r , s ∈ Ln;

(C2’) C is 2-increasing: C (r1, s1) + C (r2, s2) ≥ C (r1, s2) + C (r2, s1) for every
r1, r2, s1, s2 ∈ Ln such that r1 ≤ r2, s1 ≤ s2.

• (C2’) implies that the C-volume

VC (R) = C (r1, s1)+C (r2, s2)−C (r1, s2)−C (r2, s1)

of any (discrete) rectangle R = [r1, s1]× [r2, s2] is
nonnegative.
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Discrete Quasi-Copulas

Definition

A function Q : L2n → [0, n] is a discrete quasi-copula if and only if it satisfies the
following conditions:

(Q1’) Q is grounded Q(r , 0) = Q(0, s) = 0 and it has a unit Q(r , n) = r , Q(n, s) = s
for every r , s ∈ Ln,

(Q2b’) Q : L2n → [0, n] satisfies Q(r1, s1) + Q(r2, s2) ≥ Q(r1, s2) + Q(r2, s1) whenever
r1 ≤ r2, s1 ≤ s2 and at least one of r1, r2, s1, s2 is either equal to 0 or to n.

(Q2b’) implies that the Q-volume

VQ(R) = Q(r1, s1)+Q(r2, s2)−Q(r1, s2)−Q(r2, s1)

of any rectangle R = [r1, s1]× [r2, s2] with
at least one edge on the boundary of Ln2 is
nonnegative.
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Discrete Quasi-Copulas

• Note that (C1’) and (Q1’) are equal. Condition (Q2b’) is equivalent to conditions
(Q2’) and (Q3’) where

Definition

(Q2’) Q is increasing in each component.

(Q3’) Q satisfies the 1-Lipschitz condition, i.e., for every r1, r2, s1, s2 ∈ Ln,
|Q(r2, s2)− Q(r1, s1)| ≤ |r2 − r1|+ |s2 − s1|.



Discrete (Quasi)-Copulas and Matrices

• Quasi-copulas and copulas on Ln can be identified with square matrices of size n.

• We denote the matrix of a (quasi-)copula Q by the same letter Q and write

Q =


q11 q12 · · · q1n
q21 q22 · · · q2n

...
...

...
qn1 qn2 · · · qnn

 , where qrs = Q (r , s) .

• We omit the values at r = 0 and s = 0 that are all 0.

• Observe that qrn = qnr = r for all r .

• The value qrs is the probability that Q assigns to the rectangle [0, r ]× [0, s].
Hence, qrs ≥ 0.



Discrete Quasi-Copulas and Alternating Sign Matrices

• The probability distributions assigned by Q is then given by the values

ars = Q(r , s) + Q(r − 1, s − 1)− Q(r , s − 1)− Q(r − 1, s) for any r and s.

• Condition (C2’) imples that if Q is a copula then ars ≥ 0 for all r and s.

• This is no longer the case for a general quasi-copula.

• We say that a quasi-copula is proper if ars < 0 for at least one pair (r , s).

• We write A = A(Q) for the matrix A corresponding to a quasi-copula Q, and
Q = Q(A) for the inverse correspondence given by

Q (r , s) =
r∑

i=1

s∑
j=1

ai ,j , for r , s ≥ 1.

• Discrete copulas correspond to the points of the Birkhoff polytope, which is the
set of all bistochastic matrices.

• The extreme points of this polytope are permutation matrices.



Discrete Quasi-Copulas and Alternating Sign Matrices

• Discrete quasi-copulas correspond to points of the alternating sign matrix
(ASM) Polytope.

• This is the set of all alternating bistochastic matrices (ABM).

• The extreme points are the alternating sign matrices.

• We say that a quasi-copula is of minimal range if all its values are in Ln.
Condistions Q(r , n) = r imply that Ln is always in the range of Q.

• Quasi-copulas of minimal range are exactly all the quasi-copulas Q such that the
corresponding matrix A(Q) is an alternating sign matrix.

• So, the simplest proper discrete quasi-copula Q of minimal range and its
corresponding ASM are

Q =

0 1 1
1 1 2
1 2 3

 and A(Q) = F 2
3 =

0 1 0
1 −1 1
0 1 0





Defects of Quasi-Copulas

• Defects of quasi-copulas were introduced by Dibala, Saminger-Platz, Mesiar,
and Klement in 2016.

• To introduce defects we first define four sets of rectangles for each point (r , s)
on the square grid Ln × Ln.

R↘(r , s) = {[r + 1, r + i ]× [s + 1, s + j ]; 1 ≤ i ≤ n − r , 1 ≤ j ≤ n − s} ,
R↙(r , s) = {[r + 1, r + i ]× [j , s]; 1 ≤ i ≤ n − r , 1 ≤ j ≤ s} ,
R↖(r , s) = {[i , r ]× [j , s]; 1 ≤ i ≤ r , 1 ≤ j ≤ s} ,
R↗(r , s) = {[i , r ]× [s + 1, s + j ]; 1 ≤ i ≤ r , 1 ≤ j ≤ n − s} .

• For a rectangle R = [i , r ]× [j , s] in L2n its volume (mass) with respect to a
quasi-copula Q is

VQ(R) =
r∑

k=i

s∑
l=j

ak,l . (1)



An Example

Example

Rectangle R = [2, 4]× [3, 6] belongs to R↘(1, 2), R↙(1, 6), R↖(4, 6) and R↗(4, 2).

x x

x x

1

Its Q-volume is the sum of all entries of A(Q) with indices in R.



Defects of Quasi-Copulas

• Now, for each discrete quasi-copula Q we define four directional defect
matrices DQ

↗,DQ
↖,DQ

↙ and DQ
↘.

• Their entries are numbered by the grid points in the set L2n. We omit the bottom
row and left column of zeros and consider them as square matrices of size n.

• Their entries are given by

DQ
↘(r , s) = min{0,VQ(R); R ∈ R↘(r , s)},

DQ
↙(r , s) = min{0,VQ(R); R ∈ R↙(r , s)},

DQ
↖(r , s) = min{0,VQ(R); R ∈ R↖(r , s)},

DQ
↗(r , s) = min{0,VQ(R); R ∈ R↗(r , s)}.

• Observe that if Q is a copula then all the defect matrices are equal to 0.

• For a proper quasi-copula all its defect matrices have some nonzero entries.



Defects of Quasi-Copulas

• Two additional defect matrices are important. They are called the main and the
opposite defect matrices and denoted by DQ

M and DQ
O , respectively. Their

entries are given by

DQ
M(r , s) = min

{
DQ
↘(r , s),DQ

↖(r , s)
}
,

DQ
O (r , s) = min

{
DQ
↙(r , s),DQ

↗(r , s)
}
.

• We replace the subscript Q by A when we consider an ABM matrix A instead of
the corresponding quasi-copula Q(A). We write DA

↘, DA
↙, DA

↖, etc.



Example involving F 2
3

Example

Consider F 2
3 =

0 1 0
1 −1 1
0 1 0

 and the discrete quasi-copula Q = Q(F 2
3 ). The

corresponding directional defect matrices are

DQ
↘ =

−1 0 0
0 0 0
0 0 0

 ,DQ
↙ =

0 −1 0
0 0 0
0 0 0

 ,DQ
↖ =

0 0 0
0 −1 0
0 0 0

 ,DQ
↗ =

 0 0 0
−1 0 0
0 0 0


The main and the opposite defect matrices are

DQ
M =

−1 0 0
0 −1 0
0 0 0

 , and DQ
O =

 0 −1 0
−1 0 0
0 0 0

 .



Another Example

Example

Another matrix and two of its defect matrices:

A =



0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 −1 0 1
1 0 −1 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0

 , DA
↘ =



0 −1 −1 0 0 0
−1 −2 −1 0 0 0
−1 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

DA
M =



0 −1 −1 0 0 0
−1 −2 −1 0 0 0
−1 −1 0 −1 −1 0
0 0 −1 −2 −1 0
0 0 −1 −1 0 0
0 0 0 0 0 0

 .



Defects of Quasi-Copulas

• Using the defect matrices we obtain six transformation on quasi-copulas. They are:

Q↘ = Q − DQ
↘,

Q↖ = Q − DQ
↖,

QM = Q − DQ
M ,

Q↙ = Q + DQ
↙,

Q↗ = Q + DQ
↗,

QO = Q + DQ
O .

Theorem (Dibala et al, 2016)

All six transformations applied to a (discrete) quasi-copula yield (discrete)
quasi-copulas.

Theorem (K., Peronne, Stopar, 2025)

All six transformations applied to a quasi-copula of minimal range yield quasi-copulas
of minimal range.



Example involving F 2
3

Example

The six transformations applied to Q give discrete quasi-copulas that are in fact
discrete copulas. Their ASM matrices are the six permutation matrices.

Q↘ =

1 1 1
1 1 2
1 2 3

 , Q↙ =

0 0 1
1 1 2
1 2 3

 , Q↖ =

0 1 1
1 2 2
1 2 3



Q↗ =

0 1 1
0 1 2
1 2 3

 , QM =

1 1 1
1 2 2
1 2 3

 , and QO =

0 0 1
0 1 2
1 2 3

 .
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Definition of Imprecise Copulas

Definition

A pair (P,Q) of functions P,Q : L2n → [0, n] is called a discrete imprecise copula if
P and Q satisfy the following conditions:

(IC1) Both P and Q satisfy condition (Q1’).

(IC2) For each rectangle R = [i , j ]× [k, l ] ∈ R we have:

Q(i , k) + P(j , l)− P(i , l)− P(j , k) ≥ 0,

P(i , k) + Q(j , l)− P(i , l)− P(j , k) ≥ 0,

Q(i , k) + Q(j , l)− Q(i , l)− P(j , k) ≥ 0,

Q(i , k) + Q(j , l)− P(i , l)− Q(j , k) ≥ 0.



Example of an Imprecise Copula

Example

Take

A = F 3
4 =


0 0 1 0
0 1 −1 1
1 −1 1 0
0 1 0 0

 , B = F 2
4 =


0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0

 .

Then

P = Q(A) =


0 0 1 1
0 1 1 2
1 1 2 3
1 2 3 4

 ,Q = Q(B) =


0 1 1 1
1 1 2 2
1 2 2 3
1 2 3 4

 .

Pair (P,Q) is an imprecise copula.



Defects of Quasi-Copulas and Imprecise Copulas

• Montes, Miranda, Pelessoni, and Vicig in 2015 proved that that given an
imprecise copula then both P and Q are quasi-copulas and P(r , s) ≤ Q(r , s) for
all (r , s), i.e., P ≤ Q in the point-wise order.

• We also assume for any imprecise copula (P,Q) that both P and Q are proper
quasi-copulas.

• Dibala, Saminger-Platz, Mesiar, and Sempi in 2016 showed that a pair (P,Q) of
quasi-copulas is an imprecise copula if and only if PM ≤ Q and P ≤ QO .

• Hence, (P,PM) and (QO ,Q) are imprecise copulas for any proper quasi-copulas P
and Q.

• The main defect −DQ
M and the opposite defect −DP

O bound the difference Q − P

from below: Q − P ≥ −DQ
M , and Q − P ≥ −DP

O .

• Repeating the operations on an imprecise copula (P,Q) one obtains
P ≤ (PM)O ≤ PM ≤ Q, so that ((PM)O ,PM) is an imprecise copula inside the
original imprecise copula.



Self-Dual Imprecise Copulas

• Iterating the process further, we get a sequence of embedded quasi-copulas
(Pk ,Qk) given by P0 = P,Q0 = Q and Pk = (Qk)O ,Qk = (Pk−1)M .

• The limiting pair (P,Q) is also an imprecise copula which satisfies the equalities
(P)M = Q and (Q)O = P.

Definition

An imprecise copula (P,Q) is self-dual if PM = Q and QO = P. Also, a pair of
quasi-copulas (P,Q) is a dual pair if (P,Q) is a self-dual imprecise copula.
A pair of ASM (A,B) is a dual pair if (Q(A),Q(B)) is a self-dual imprecise copula.

• It follows from definition that an imprecise copula (P,Q) is self-dual if and only if
DP
M = DQ

O .



Self-Dual Imprecise Copulas

• An example of a self-dual discrete imprecise copula (P,Q), where both P and Q
are quasi-copulas of minimal range of size n = 7, was given by Omladič and
Stopar in 2020. We generalized this example to finer grids of size n ≥ 8.

Example

The corresponding ASM are:

A7 =



0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 −1 1
0 0 1 0 −1 1 0
0 1 0 −1 1 0 0
1 0 −1 1 0 0 0
0 0 1 0 0 0 0


and B7 =



0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 −1 1 0
0 1 0 −1 1 0 0
1 0 −1 1 0 −1 1
0 0 1 0 −1 1 0
0 0 0 0 1 0 0


.



Dense ASM

Definition

An ASM is called dense if it has no zero entries between any two nonzero entries in
either a column or in a row.

Example


0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0

 ,


0 0 0 0 1
0 1 0 0 0
1 −1 1 0 0
0 1 0 0 0
0 0 0 1 0

 ,



0 0 0 1 0 0
0 0 1 −1 1 0
0 1 −1 1 −1 1
1 −1 1 −1 1 0
0 1 −1 1 0 0
0 0 1 0 0 0

 .



Dense ASM

Example

Brualdi and Schroeder, 2017, denoted by F k
n , k = 1, 2, . . . , n, n ≥ 1, the (irreducible)

dense matrix that has the (1, k) entry equal to 1. By these conditions it is uniquely
determined for 2 ≤ k ≤ n − 1.
For instance, when n = 4 or n = 5 we have

F 1
4 = I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,F 2
4 =


0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0

 ,F 4
4 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,

F 2
5 =


0 1 0 0 0
1 −1 1 0 0
0 1 −1 1 0
0 0 1 −1 1
0 0 0 1 0

 ,F 3
5 =


0 0 1 0 0
0 1 −1 1 0
1 −1 1 −1 1
0 1 −1 1 0
0 0 1 0 0

 .



Maximal Chain of Dual Pairs

Theorem (K., Perrone, 2024)

Suppose n ≥ 3. Then

Q(F k
n )M = Q(F k−1

n ) and Q(F k
n )O = Q(F k+1

n )

for 2 ≤ k ≤ n − 1.

Corollary

Suppose that n ≥ 4. Then (F k
n ,F

k−1
n ) is a dual pair of ASM for 3 ≤ k ≤ n − 1.

Imprecise copulas
(
Q(F n−1

n ),Q(F n−2
n )

)
,
(
Q(F n−2

n ),Q(F n−3
n )

)
, . . . ,

(
Q(F 3

n ),Q(F 2
n )
)

form a maximal chain of self-dual imprecise copulas.

The chain cannot be extended further since Q(F n−1
n )O = W and Q(F 2

n )M = M are
copulas.



Avoidance of Sure Loss and Coherence

Definition

An imprecise copula (P,Q) avoids sure loss if there exists a discrete copula C such
that P ≤ C ≤ Q.

Definition

Suppose that an imprecise copula (P,Q) avoids sure loss. Then (P,Q) is coherent if
P(r , s) = infC∈C(P,Q){C (r , s)} and Q(r , s) = supC∈C(P,Q){C (r , s)} for all r , s ∈ Ln.
Here C(P,Q) is the set of all copulas such that P(r , s) ≤ C (r , s) ≤ Q(r , s) for all r
and s.

• Omladič and Stopar in 2020 gave an example of imprecise copula that does not
avoid sure loss (nor it is coherent).

• All imprecise copulas in the maximal chain above are coherent, so are those of the
example generalizing Omladič and Stopar example (A7,B7).
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