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Sklar’s Theorem, 1959
A copula C(u, v) is a joint distribution function (d. f.) with
both marginal d. fs. uniformly distributed on [0,1].

The beginning of the subject is the well-known theorem by
A. Sklar that provided an answer to a question by M.
Fréchet.

Theorem (A. Sklar, 1959)

Let H(x , y) be a joint distribution function with marginal
distribution functions F and G. Then there exists a copula C
such that

H(x , y) = C (F (x),G(y)) for all x , y ∈ R.

If F and G are continuous then C is uniquely determined.
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Examples of bivariate copulas
The three most important copulas are:

M(u, v) = min{u, v}, Π(u, v) = uv , W (u, v) = max{0,u+v−1}.
The Fréchet-Hoeffding upper bound M, the independence
copula Π and the Fréchet-Hoeffding lower bound W .

Figure: M(u, v) Figure: Π(u, v) Figure: W (u, v)
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Properties of bivariate copulas

For any copula C(u, v) we have

W (u, v) ≤ C(u, v) ≤ M(u, v) for all u, v ∈ [0,1].

We often present copulas with scatterplots:
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More basics on copulas-2

Suppose C(u, v) is a copula corresponding to a random
vector (X ,Y ). Then:

Cσ(u, v) = u − C(u,1 − v) is a copula corresponding to the
random vector (X ,−Y ). It is called a reflected copula of C.

Ĉ(u, v) = u + v − 1 + C(1 − u,1 − v) is a copula
corresponding to the random vector (−X ,−Y ). Ĉ is called
the survival copula of C.

A copula C is called positively quadrant dependent, or
PQD for short, if C(u, v) ≥ Π(u, v) for all u, v ∈ [0,1].
A copula C is called negatively quadrant dependent, or
NQD for short, if C(u, v) ≤ Π(u, v) for all u, v ∈ [0,1].
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the survival copula of C.

A copula C is called positively quadrant dependent, or
PQD for short, if C(u, v) ≥ Π(u, v) for all u, v ∈ [0,1].
A copula C is called negatively quadrant dependent, or
NQD for short, if C(u, v) ≤ Π(u, v) for all u, v ∈ [0,1].

T. Košir Copulas arising in shock models



Copula Basics
Marshall Copulas
Maxmin Copulas

Reflected Maxmin Copulas
Further Topics on Shock Model Copulas

More basics on copulas-3

A copula C is nonsingular (or absolutely continuous) if it
has density

c(u, v) =
∂2C
∂u ∂v

(u, v)

such that

C(u, v) =
∫ u

0

∫ v

0
c(s, t)ds dt .

A copula has no isolated singular points (no mass in a
single point). Singularities may be on arcs or more
complicated (on Cantor-like sets, etc.).
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Marshall-Olkin Model, 1967

Consider lifetimes U and V of two components of a
system. Three different independent shocks act on it:

Shock X represented by a Poisson process with intensity
λ > 0 acts on the first component only.
Shock Y represented by a Poisson process with intensity
µ > 0 acts on the second component only.

Shock Z , the global shock, acts on both components. Its is
represented by a Poisson process with intensity ν > 0.

Then U = min{X ,Z} and V = min{Y ,Z}.
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Marshall-Olkin Copula
The survival function for vector (U,V ) is given by

F (u, v) = e−λu−µv−νmax{u,v}.

The survival copula corresponding to (U,V ) is given by

Ĉ(u, v) = uv min{u− ν
λ+ν , v− ν

µ+ν } = min{uv
µ

µ+ν ,u
λ

λ+ν v}.

Copulas parametrized by α, β ∈ [0,1] of the form
C(u, v) = min{uvα,uβv} are called Marshall-Olkin
copulas. They are PQD.
The model is motivated by applications: in medicine (e.g.
cancer treatment), hydrology (floods modelling), finance
and economics, engineering, etc.

T. Košir Copulas arising in shock models



Copula Basics
Marshall Copulas
Maxmin Copulas

Reflected Maxmin Copulas
Further Topics on Shock Model Copulas

Marshall-Olkin Copula
The survival function for vector (U,V ) is given by

F (u, v) = e−λu−µv−νmax{u,v}.

The survival copula corresponding to (U,V ) is given by
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Marshall-Olkin Copulas-2

Figure: Ingram Olkin

Figure: Scatterplot of a
Marshall-Olkin copula
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Marshall’s Observation

Observe that function f (u) = ua for 0 < a < 1 is such that f
maps [0,1] to itself, f (0) = 0, f (1) = 1, and function
f ∗(u) = f (u)

u = ua−1 is decreasing on (0,1].

Suppose that f is an increasing function (not necessarily
strictly) defined on [0,1], such that f (0) = 0, f (1) = 1, and
function f ∗(u) = f (u)

u is decreasing on (0,1].
Note that f ∗(1) = 1 and f ∗(u) ≥ 1 for u ∈ (0,1).
We write F for the set of all such functions f .
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Marshall’s Theorem

Theorem (A. W. Marshall, 1996)
Suppose that f ,g belong to F . Then the function

C(u, v) = min{u g(v), f (u) v} = u v min{f ∗(u),g∗(v)}

is a copula.

A copula C described in the theorem is called a Marshall
copula, functions f and g are its generators.
A Marshall copula is PQD.
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Marshall’s Shock Models, 1996

Theorem (A. W. Marshall, 1996)
Suppose C is a Marshall copula with generators f and g, and
H(x , y) = C(F (x),G(y)) for some distribution functions F and
G. Then the following are equivalent:

1 Random variables U and V with joint distribution function
H have a representation of the form U = max{X ,Z} and
V = max{Y ,Z}, where X ,Y and Z are independent
random variables (representing shocks).

2 H has the form H(x , y) = FX (x)Fy (y)FZ (min{x , y}), where
FX , FY and FZ are distribution functions.

3 f ∗(F (x)) = g∗(G(x)), i.e., G(x) = g∗−(f ∗(F (x)), where g∗−

is left inverse of g∗.
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23rd International Workshop on Matrices and
Statistics - Ljubljana 2014
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Definition of a maxmin copula
Suppose that ψ is an increasing function (not necessarily
strictly) defined on [0,1], such that ψ(0) = 0, ψ(1) = 1, and
function ψ∗(u) =

1−ψ(u)
u−ψ(u) is decreasing on (0,1).

We write G for the set of all such functions ψ.

Theorem (M. Omladič, N. Ružić, 2016)
Suppose that φ ∈ F and ψ ∈ G. Then the function

C(u, v) = uv +min{u(1 − v), (φ(u)− u)(v − ψ(v))}

is a copula.

A copula C described in the theorem is called a maxmin
copula, functions φ and ψ are its generators. It is PQD.
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Definition of a maxmin copula
Suppose that ψ is an increasing function (not necessarily
strictly) defined on [0,1], such that ψ(0) = 0, ψ(1) = 1, and
function ψ∗(u) =

1−ψ(u)
u−ψ(u) is decreasing on (0,1).

We write G for the set of all such functions ψ.

Theorem (M. Omladič, N. Ružić, 2016)
Suppose that φ ∈ F and ψ ∈ G. Then the function

C(u, v) = uv +min{u(1 − v), (φ(u)− u)(v − ψ(v))}

is a copula.
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Maxmin Shock Models

Theorem (M. Omladič, N. Ružić, 2016)
Suppose C is a maxmin copula with generators φ and ψ, and
H(x , y) = C(F (x),G(y)) for some distribution functions F and
G. Then the following are equivalent:

1 Random variables U and V with joint distribution function
H have a representation of the form U = max{X ,Z} and
V = min{Y ,Z}, where X ,Y and Z are independent
random variables.

2 φ(F (x)) (G(x)− ψ(G(x)) = F (x) (1 − ψ(G(x)), i.e.,
G(x) = ψ−

∗ (φ
∗(F (x)), where ψ−

∗ is left inverse of ψ∗.
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23rd IWMS, Ljubljana 2014

Figure: Ingram Olkin and Nina Ružić Figure: Matjaž Omladič

T. Košir Copulas arising in shock models



Copula Basics
Marshall Copulas
Maxmin Copulas

Reflected Maxmin Copulas
Further Topics on Shock Model Copulas

1 Copula Basics

2 Marshall Copulas

3 Maxmin Copulas

4 Reflected Maxmin Copulas

5 Further Topics on Shock Model Copulas

T. Košir Copulas arising in shock models



Copula Basics
Marshall Copulas
Maxmin Copulas

Reflected Maxmin Copulas
Further Topics on Shock Model Copulas

Reflected maxmin copulas

Theorem (TK, M. Omladič, 2020)
Suppose that φ and ψ are the generators of a maxmin copula
C. Then

Cσ(u, v) = max{0,uv − f (u)g(v)},

where f (u) = φ(u)− u and g(v) = 1 − v − ψ(1 − v), is its
reflected copula. Generators f and g of Cσ belong to F ′.

We call Cσ a reflected maxmin copula, or an RMM copula
for short. It is NQD.
RMM copulas are nicer to deal with. They are symmetric if
f = g, which is not the case for maxmin copulas. With
reflection operation it is easy to transfer properties from
RMM to maxmin copulas.
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Some scatterplots
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Singularities, TK., M. Omladič, 2022

The only nonsingular Marshall copula is Π. A Marshall
copula is singular on certain arcs of the form (u, χ(u)),
u ∈ (a,b). The ’density’ on an arc is given by
h(u) = χ(u) [f ∗(u)− f ′(u)].
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Singularities-2, TK., M. Omladič, 2022

An RMM copula is nonsingular if and only if uv ≥ f (u)g(v)
for all u, v ∈ [0.1]. If it is singular then it is so on certain
arcs of the form (u, χ(u)), u ∈ (a,b). The ’density’ on an
arc is given by h(u) = χ(u)

[
1 − f ′(u)

f∗(u)

]
.
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Nonexchangeability

A copula C(u, v) is exchangeable if C(u, v) = C(v ,u) for
all u, v ∈ [0,1].

Asymmetry function on a set S of copulas is given by
µ∞(u, v) = supS∈S |C(u, v)− C(v ,u)|.
The maximal value of µ∞ on the set of all copulas is 1

3 , on
the set of all PQD copulas it is 3 − 2

√
2 ≈ 0.172 and on the

set of all NQD copulas it is
√

5 − 2 ≈ 0.236.
The maximal value of µ∞(u, v) on the set of Marshall
copulas is 4

27 ≈ 0.148. The same is its maximal value on
the set of all maxmin copulas, while on the set of all RMM
copulas it is 3 − 2

√
2.
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Nonexchangeability-2

Figure: Function µ∞ for the set
of all Marshall copulas.

Figure: Function µ∞ for the set
of all RMM copulas.
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Other Topics on Shock model topics

Concordances and Tail Dependences.[Durante, Omladič,
Oražem, Ružić, 2017]

Extreme Generators.[Kokol Bukovšek, TK, Omladič,
Mojškerc, 2022]
Copulas for Dependent Shocks.[Durante, Gerard, Mazo,
2016],[Durante, Omladič, Oražem, Ružić, 2017],[Kokol
Bukovšek, TK, Omladič, Mojškerc, 2020]
All of these has been generalized to d-dimensional
copulas (d ≥ 3).
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Oražem, Ružić, 2017]
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Mojškerc, 2022]
Copulas for Dependent Shocks.[Durante, Gerard, Mazo,
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Ljubljana, last Saturday-2
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