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Copula Basics

Sklar’'s Theorem, 1959

@ A copula C(u, v) is a joint distribution function (d. f.) with
both marginal d. fs. uniformly distributed on [0, 1].
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Sklar’'s Theorem, 1959

@ A copula C(u, v) is a joint distribution function (d. f.) with
both marginal d. fs. uniformly distributed on [0, 1].

@ The beginning of the subject is the well-known theorem by
A. Sklar that provided an answer to a question by M.
Fréchet.
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Copula Basics

Sklar’'s Theorem, 1959

@ A copula C(u, v) is a joint distribution function (d. f.) with
both marginal d. fs. uniformly distributed on [0, 1].

@ The beginning of the subject is the well-known theorem by
A. Sklar that provided an answer to a question by M.
Fréchet.

Theorem (A. Sklar, 1959)

Let H(x, y) be a joint distribution function with marginal
distribution functions F and G. Then there exists a copula C
such that

H(x,y) = C(F(x),G(y)) forall x,y € R.

If F and G are continuous then C is uniquely determined.
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Copula Basics

Examples of bivariate copulas

@ The three most important copulas are:

M(u, v) = min{u, v}, N(u,v) = uv, W(u,v) = max{0, u+v—1}.

The Fréchet-Hoeffding upper bound M, the independence
copula M and the Fréchet-Hoeffding lower bound W.
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Copula Basics

Examples of bivariate copulas

@ The three most important copulas are:
M(u, v) = min{u, v}, N(u,v) = uv, W(u,v) = max{0, u+v—1}.

The Fréchet-Hoeffding upper bound M, the independence
copula M and the Fréchet-Hoeffding lower bound W.

N [} A

-

Figure: M(u, v) Figure: M(u, v) Figure: W(u, v)
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Copula Basics

Properties of bivariate copulas

@ For any copula C(u, v) we have

W(u,v) < C(u,v) < M(u,v)forallu,v €[0,1].
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Copula Basics

Properties of bivariate copulas

@ For any copula C(u, v) we have

W(u,v) < C(u,v) < M(u,v)forallu,v €[0,1].

@ We often present copulas with scatterplots:

ol
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Copula Basics

More basics on copulas-2

@ Suppose C(u, v) is a copula corresponding to a random
vector (X, Y). Then:

e C?(u,v) =u— C(u,1—v)is acopula corresponding to the
random vector (X, —Y). It is called a reflected copula of C.
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Copula Basics

More basics on copulas-2

@ Suppose C(u, v) is a copula corresponding to a random
vector (X, Y). Then:
e C?(u,v) =u— C(u,1—v)is acopula corresponding to the
random vector (X, —Y). It is called a reflected copula of C.
° 6(u,v):u+v—1 + C(1 —u,1—v)isacopula
corresponding to the random vector (—X, —Y). C s called
the survival copula of C.
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More basics on copulas-2

@ Suppose C(u, v) is a copula corresponding to a random
vector (X, Y). Then:
e C?(u,v) =u— C(u,1—v)is acopula corresponding to the
random vector (X, —Y). It is called a reflected copula of C.
° 6(u,v):u+v—1 + C(1 —u,1—v)isacopula
corresponding to the random vector (—X, —Y). Cis called
the survival copula of C.
@ A copula C is called positively quadrant dependent, or
PQD for short, if C(u,v) > N(u, v) forall u,v € [0,1].
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Copula Basics

More basics on copulas-2

@ Suppose C(u, v) is a copula corresponding to a random
vector (X, Y). Then:
e C?(u,v) =u— C(u,1—v)is acopula corresponding to the
random vector (X, —Y). It is called a reflected copula of C.
° 6(u,v):u+v—1 + C(1 —u,1—v)isacopula
corresponding to the random vector (—X, —Y). C s called
the survival copula of C.
@ A copula C is called positively quadrant dependent, or
PQD for short, if C(u,v) > N(u, v) forall u,v € [0,1].
@ A copula C is called negatively quadrant dependent, or
NQD for short, if C(u, v) < MN(u,v) forall u, v € [0, 1].
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Copula Basics

More basics on copulas-3

@ A copula C is nonsingular (or absolutely continuous) if it
has density

such that

Clu, v) = /Ou /OV o(s, t) ds .
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Copula Basics

More basics on copulas-3

@ A copula C is nonsingular (or absolutely continuous) if it
has density

such that

Clu, v) = /Ou /OV o(s, t) ds .

@ A copula has no isolated singular points (no mass in a
single point). Singularities may be on arcs or more
complicated (on Cantor-like sets, etc.).
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Copula Basics

Ljubljana, last Saturday
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Marshall Copulas

Marshall-Olkin Model, 1967

@ Consider lifetimes U and V of two components of a
system. Three different independent shocks act on it:
@ Shock X represented by a Poisson process with intensity
A > 0 acts on the first component only.
e Shock Y represented by a Poisson process with intensity
1 > 0 acts on the second component only.
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Marshall Copulas

Marshall-Olkin Model, 1967

@ Consider lifetimes U and V of two components of a
system. Three different independent shocks act on it:

@ Shock X represented by a Poisson process with intensity
A > 0 acts on the first component only.

e Shock Y represented by a Poisson process with intensity
1 > 0 acts on the second component only.

e Shock Z, the global shock, acts on both components. Its is
represented by a Poisson process with intensity v > 0.
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Marshall Copulas

Marshall-Olkin Model, 1967

@ Consider lifetimes U and V of two components of a
system. Three different independent shocks act on it:

@ Shock X represented by a Poisson process with intensity
A > 0 acts on the first component only.

e Shock Y represented by a Poisson process with intensity
1 > 0 acts on the second component only.

e Shock Z, the global shock, acts on both components. Its is
represented by a Poisson process with intensity v > 0.

@ Then U=min{X,Z}and V = min{Y,Z}.
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Marshall Copulas

Marshall-Olkin Copula

@ The survival function for vector (U, V) is given by

?(U, V) _ e—/\u—uv—u max{u,v}'
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Marshall Copulas

Marshall-Olkin Copula

@ The survival function for vector (U, V) is given by

?(U, V) _ e—/\u—uv—u max{u,v}'

@ The survival copula corresponding to (U, V) is given by

~

C(u,v) = UVmin{u’A%u7 V‘ﬁ} _ min{uvﬁ’ uﬁ v
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Marshall Copulas

Marshall-Olkin Copula

@ The survival function for vector (U, V) is given by

?(U, V) _ e—/\U—MV—V max{u,v}'

@ The survival copula corresponding to (U, V) is given by

~

C(u,v) = UVmin{u’A%u7 V‘ﬁ} _ min{uvﬁ’ uﬁ v

@ Copulas parametrized by «, 8 € [0, 1] of the form
C(u,v) = min{uv®, uPv} are called Marshall-Olkin
copulas. They are PQD.
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Marshall Copulas

Marshall-Olkin Copula

@ The survival function for vector (U, V) is given by
?(U, V) — e—/\U—MV—V max{u,v}'

@ The survival copula corresponding to (U, V) is given by

~

C(u,v) = UVmin{u’A%u7 V‘ﬁ} _ min{uvﬁ’ uﬁ v

@ Copulas parametrized by «, 8 € [0, 1] of the form
C(u, v) = min{uv®, uPv} are called Marshall-Olkin
copulas. They are PQD.

@ The model is motivated by applications: in medicine (e.g.
cancer treatment), hydrology (floods modelling), finance
and economics, engineering, etc.
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Marshall Copulas

Marshall-Olkin Copulas-2

Figure: Scatterplot of a

Figure: Ingram Olkin Marshall-Olkin copula
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Marshall Copulas

Marshall’'s Observation

@ Observe that function f(u) = u? for 0 < a < 1 is such that f
maps [0, 1] to itself, f(0) = 0, f(1) = 1, and function
f+(u) = ") — ya—1 is decreasing on (0, 1].
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Marshall’'s Observation

@ Observe that function f(u) = u? for 0 < a < 1 is such that f
maps [0, 1] to itself, f(0) = 0, f(1) = 1, and function

f+(u) = ") — ya—1 is decreasing on (0, 1].

@ Suppose that f is an increasing function (not necessarily
strictly) defined on [0, 1], such that f(0) = 0, f(1) =1, and

function *(u) = f(”) is decreasing on (0, 1].
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Marshall’'s Observation

@ Observe that function f(u) = u? for 0 < a < 1 is such that f
maps [0, 1] to itself, f(0) = 0, f(1) = 1, and function

f+(u) = ") — ya—1 is decreasing on (0, 1].

@ Suppose that f is an increasing function (not necessarily
strictly) defined on [0, 1], such that f(0) = 0, f(1) =1, and

function *(u) = f(”) is decreasing on (0, 1].
@ Note that f*(1) = 1 and f*(u) > 1foru e (0,1).
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Marshall Copulas

Marshall’'s Observation

@ Observe that function f(u) = u? for 0 < a < 1 is such that f
maps [0, 1] to itself, f(0) = 0, f(1) = 1, and function

f+(u) = ") — ya—1 is decreasing on (0, 1].

@ Suppose that f is an increasing function (not necessarily
strictly) defined on [0, 1], such that f(0) = 0, f(1) =1, and

function *(u) = f(”) is decreasing on (0, 1].
@ Note that f*(1) = 1 and f*(u) > 1foru e (0,1).
@ We write F for the set of all such functions f.
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Marshall Copulas

Marshall’'s Theorem

Theorem (A. W. Marshall, 1996)
Suppose that f, g belong to F. Then the function

C(u,v) =min{ug(v), f(u) v} = uvmin{f*(u),g*(v)}

is a copula.
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Marshall Copulas

Marshall’'s Theorem

Theorem (A. W. Marshall, 1996)
Suppose that f, g belong to F. Then the function

C(u,v) =min{ug(v), f(u) v} = uvmin{f*(u),g*(v)}

is a copula.

@ A copula C described in the theorem is called a Marshall
copula, functions f and g are its generators.
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Marshall Copulas

Marshall’'s Theorem

Theorem (A. W. Marshall, 1996)
Suppose that f, g belong to F. Then the function

C(u,v) =min{ug(v), f(u) v} = uvmin{f*(u),g*(v)}

is a copula.

@ A copula C described in the theorem is called a Marshall
copula, functions f and g are its generators.

@ A Marshall copula is PQD.
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Marshall Copulas

Marshall's Shock Models, 1996

Theorem (A. W. Marshall, 1996)

Suppose C is a Marshall copula with generators f and g, and

H(x,y) = C(F(x), G(y)) for some distribution functions F and

G. Then the following are equivalent:

@ Random variables U and V with joint distribution function
H have a representation of the form U = max{X, Z} and
V =max{Y,Z}, where X, Y and Z are independent
random variables (representing shocks).

@ H has the form H(x,y) = Fx(x)Fy(y)Fz(min{x,y}), where
Fx, Fy and F> are distribution functions.

Q (F(x)) = g*(G(x)), i.e., G(x) = g*~ (f*(F(x)), where g*~
is left inverse of g*.
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© Maxmin Copulas
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Maxmin Copulas

Definition of a maxmin copula

@ Suppose that v is an increasing function (not necessarily
strictly) defined on [0, 1], such that ¢(0) = 0, ¢(1) = 1, and

function ¢, (u) = l:’j}%ﬁ; is decreasing on (0, 1).
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Maxmin Copulas

Definition of a maxmin copula

@ Suppose that v is an increasing function (not necessarily
strictly) defined on [0, 1], such that ¢(0) = 0, ¢(1) = 1, and

function ¢, (u) = l:%g is decreasing on (0, 1).

@ We write G for the set of all such functions .
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Maxmin Copulas

Definition of a maxmin copula

@ Suppose that v is an increasing function (not necessarily
strictly) defined on [0, 1], such that ¢(0) = 0, ¢(1) = 1, and

function ¢, (u) = l:%g is decreasing on (0, 1).

@ We write G for the set of all such functions .

Theorem (M. Omladi¢, N. Ruzi¢, 2016)

Suppose that p € F and ) € G. Then the function

C(u,v) = uv +min{u(1 —v), (p(u) - u)(v =¥ (v))}

is a copula.
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Maxmin Copulas

Definition of a maxmin copula

@ Suppose that v is an increasing function (not necessarily
strictly) defined on [0, 1], such that ¢(0) = 0, ¢(1) = 1, and

function ¢, (u) = l:%g is decreasing on (0, 1).

@ We write G for the set of all such functions .

Theorem (M. Omladi¢, N. Ruzi¢, 2016)

Suppose that p € F and ) € G. Then the function

C(u,v) = uv +min{u(1 —v), (p(u) - u)(v =¥ (v))}

is a copula.

@ A copula C described in the theorem is called a maxmin
copula, functions ¢ and v are its generators. It is PQD.
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Maxmin Copulas

Maxmin Shock Models

Theorem (M. Omladi¢, N. Ruzi¢, 2016)

Suppose C is a maxmin copula with generators ¢ and 1, and

H(x,y) = C(F(x), G(y)) for some distribution functions F and

G. Then the following are equivalent:

@ Random variables U and V with joint distribution function
H have a representation of the form U = max{X,Z} and
V =min{Y,Z}, where X, Y and Z are independent
random variables.

Q ¢(F(x)) (G(x) — ¥(G(x)) = F(x) (1 — (G(x)), i.e.,
G(x) = ¥, (¢*(F(x)), where ¢ is left inverse of 1,.
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Maxmin Copulas

23rd IWMS, Ljubljana 2014

Figure: Ingram Olkin and Nina Ruzi¢ Figure: Matjaz Omladi¢
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Reflected Maxmin Copulas

@ Reflected Maxmin Copulas
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Reflected Maxmin Copulas

Reflected maxmin copulas

Theorem (TK, M. Omladi¢, 2020)

Suppose that p and 1) are the generators of a maxmin copula
C. Then

C?(u,v) = max{0,uv — f(u)g(v)},
where f(u) = p(u) —uandg(v) =1—-v—y(1 —v),isits
reflected copula. Generators f and g of C? belong to F'.
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Reflected Maxmin Copulas

Reflected maxmin copulas

Theorem (TK, M. Omladi¢, 2020)

Suppose that p and 1) are the generators of a maxmin copula
C. Then

C?(u,v) = max{0,uv — f(u)g(v)},
where f(u) = p(u) —uandg(v) =1—-v—y(1 —v),isits
reflected copula. Generators f and g of C? belong to F'.

@ We call C7 a reflected maxmin copula, or an RMM copula
for short. It is NQD.
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Reflected Maxmin Copulas

Reflected maxmin copulas

Theorem (TK, M. Omladi¢, 2020)

Suppose that p and 1) are the generators of a maxmin copula
C. Then

C’(u,v) = max{0,uv — f(u)g(v)},

where f(u) = p(u) —uandg(v) =1—-v—y(1 —v),isits
reflected copula. Generators f and g of C? belong to F'.

@ We call C7 a reflected maxmin copula, or an RMM copula
for short. It is NQD.

@ RMM copulas are nicer to deal with. They are symmetric if
f = g, which is not the case for maxmin copulas. With
reflection operation it is easy to transfer properties from
RMM to maxmin copulas.
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Reflected Maxmin Copulas

Some scatterplots

// ‘ i
J
Figure: a Marshall Figure: a maxmin Figure: an RMM
copula copula copula
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Further Topics on Shock Model Copulas

e Further Topics on Shock Model Copulas
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Further Topics on Shock Model Copulas

Singularities, TK., M. Omladi¢, 2022

@ The only nonsingular Marshall copula is . A Marshall
copula is singular on certain arcs of the form (u, x(u)),
u € (a,b). The 'density’ on an arc is given by
h(u) = x(u) [f*(u) = F(u)].

/

/
/ /
7
/ /

e /
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Further Topics on Shock Model Copulas

Singularities-2, TK., M. Omladi¢, 2022

@ An RMM copula is nonsingular if and only if uv > f(u)g(v)
for all u, v € [0.1]. Ifitis singular then it is so on certain
arcs of the form (u, x(u)), u € (a, b). The ‘density’ on an

arc is given by h(u) = x(u) [1 _ %]

\

ool \

\
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Further Topics on Shock Model Copulas

Nonexchangeability

@ A copula C(u,v) is exchangeable if C(u,v) = C(v, u) for
all u,v € [0,1].
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Further Topics on Shock Model Copulas

Nonexchangeability

@ A copula C(u,v) is exchangeable if C(u,v) = C(v, u) for
allu,vel0,1].

@ Asymmetry function on a set S of copulas is given by
Hoo(U, V) = supges |C(U, v) — C(v, u)|.
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Further Topics on Shock Model Copulas

Nonexchangeability

@ A copula C(u,v) is exchangeable if C(u,v) = C(v, u) for
allu,vel0,1].

@ Asymmetry function on a set S of copulas is given by
Moo(ua V) = SUPses |C(U7 V) - C(V7 U)’

@ The maximal value of u, on the set of all copulas is % on

the set of all PQD copulas it is 3 — 2v/2 ~ 0.172 and on the
set of all NQD copulas it is v/5 — 2 ~ 0.236.
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Further Topics on Shock Model Copulas

Nonexchangeability

@ A copula C(u, v) is exchangeable if C(u, v) = C(v, u) for
allu,vel0,1].

@ Asymmetry function on a set S of copulas is given by
Hoo(U, V) = supges |C(U, v) — C(v, u)|.

@ The maximal value of u, on the set of all copulas is % on
the set of all PQD copulas it is 3 — 2v/2 ~ 0.172 and on the
set of all NQD copulas it is v/5 — 2 ~ 0.236.

@ The maximal value of u (U, v) on the set of Marshall
copulas is 55 ~ 0.148. The same is its maximal value on
the set of all maxmin copulas, while on the set of all RMM
copulas it is 3 — 2v/2.

T. Kosir Copulas arising in shock models



Further Topics on Shock Model Copulas

Nonexchangeability-2

Figure: Function p, for the set

Figure: Function u for the set
of all Marshall copulas. g K

of all RMM copulas.
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Further Topics on Shock Model Copulas

Other Topics on Shock model topics

@ Concordances and Tail Dependences.[Durante, Omladic,
Orazem, Ruzi¢, 2017]
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Other Topics on Shock model topics

@ Concordances and Tail Dependences.[Durante, Omladic,
Orazem, Ruzi¢, 2017]

@ Extreme Generators.[Kokol Bukovsek, TK, Omladic,
Mojskerc, 2022]
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Further Topics on Shock Model Copulas

Other Topics on Shock model topics

@ Concordances and Tail Dependences.[Durante, Omladic,
Orazem, Ruzi¢, 2017]

@ Extreme Generators.[Kokol Bukovsek, TK, Omladic,
Mojskerc, 2022]

@ Copulas for Dependent Shocks.[Durante, Gerard, Mazo,
2016],[Durante, Omladi¢, Orazem, Ruzi¢, 2017],[Kokol
Bukovsek, TK, Omladi¢, Mojskerc, 2020]
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Further Topics on Shock Model Copulas

Other Topics on Shock model topics

@ Concordances and Tail Dependences.[Durante, Omladic,
Orazem, Ruzi¢, 2017]

@ Extreme Generators.[Kokol Bukovsek, TK, Omladic,
Mojskerc, 2022]

@ Copulas for Dependent Shocks.[Durante, Gerard, Mazo,
2016],[Durante, Omladi¢, Orazem, Ruzi¢, 2017],[Kokol
Bukovsek, TK, Omladi¢, Mojskerc, 2020]

@ All of these has been generalized to d-dimensional
copulas (d > 3).

T. Kosir Copulas arising in shock models



Further Topics on Shock Model Copulas

Ljubljana, last Saturday-2
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Further Topics on Shock Model Copulas
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