Copula Basics Marshall Copulas Maxmin Copulas Reflected Maxmin Copulas Further Topics on Shock Model Copulas

Copulas arising in shock models

Colloquium talk at the Technical University Eindhoven, Eindhoven, The Netherlands

Tomaž Košir¹

Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia

January 24, 2024

¹A report on joint work with Damjana Kokol Bukovšek, Matjaž Omladič, and Blaž Mojškerc.

Copula Basics
Marshall Copulas
Maxmin Copulas
Reflected Maxmin Copulas
Further Topics on Shock Model Copulas

Contents

Copula Basics

- Copula Basics
- Marshall Copulas

- Copula Basics
- Marshall Copulas
- Maxmin Copulas

- Copula Basics
- Marshall Copulas
- Maxmin Copulas
- Reflected Maxmin Copulas

- Copula Basics
- Marshall Copulas
- Maxmin Copulas
- Reflected Maxmin Copulas
- 5 Further Topics on Shock Model Copulas

- Copula Basics
- Marshall Copulas
- Maxmin Copulas
- 4 Reflected Maxmin Copulas
- 5 Further Topics on Shock Model Copulas

Sklar's Theorem, 1959

• A copula C(u, v) is a joint distribution function (d. f.) with both marginal d. fs. uniformly distributed on [0, 1].

Sklar's Theorem, 1959

- A copula C(u, v) is a joint distribution function (d. f.) with both marginal d. fs. uniformly distributed on [0, 1].
- The beginning of the subject is the well-known theorem by A. Sklar that provided an answer to a question by M. Fréchet.

Sklar's Theorem, 1959

- A copula C(u, v) is a joint distribution function (d. f.) with both marginal d. fs. uniformly distributed on [0, 1].
- The beginning of the subject is the well-known theorem by A. Sklar that provided an answer to a question by M. Fréchet.

Theorem (A. Sklar, 1959)

Let H(x, y) be a joint distribution function with marginal distribution functions F and G. Then there exists a copula C such that

$$H(x,y) = C(F(x),G(y))$$
 for all $x,y \in \mathbb{R}$.

If F and G are continuous then C is uniquely determined.

Examples of bivariate copulas

• The three most important copulas are:

$$M(u, v) = \min\{u, v\}, \ \Pi(u, v) = uv, \ W(u, v) = \max\{0, u+v-1\}.$$

The Fréchet-Hoeffding upper bound M, the independence copula Π and the Fréchet-Hoeffding lower bound W.

Examples of bivariate copulas

• The three most important copulas are:

$$M(u, v) = \min\{u, v\}, \ \Pi(u, v) = uv, \ W(u, v) = \max\{0, u+v-1\}.$$

The Fréchet-Hoeffding upper bound M, the independence copula Π and the Fréchet-Hoeffding lower bound W.

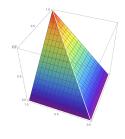


Figure: M(u, v)

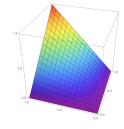


Figure: $\Pi(u, v)$

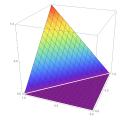


Figure: W(u, v)

Properties of bivariate copulas

• For any copula C(u, v) we have

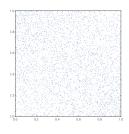
$$W(u, v) \le C(u, v) \le M(u, v)$$
 for all $u, v \in [0, 1]$.

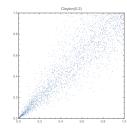
Properties of bivariate copulas

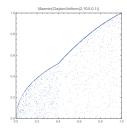
• For any copula C(u, v) we have

$$W(u, v) \le C(u, v) \le M(u, v)$$
 for all $u, v \in [0, 1]$.

• We often present copulas with scatterplots:







- Suppose C(u, v) is a copula corresponding to a random vector (X, Y). Then:
 - $C^{\sigma}(u,v) = u C(u,1-v)$ is a copula corresponding to the random vector (X,-Y). It is called a *reflected copula* of C.

- Suppose C(u, v) is a copula corresponding to a random vector (X, Y). Then:
 - $C^{\sigma}(u, v) = u C(u, 1 v)$ is a copula corresponding to the random vector (X, -Y). It is called a *reflected copula* of C.
 - $\widehat{C}(u,v) = u + v 1 + C(1-u,1-v)$ is a copula corresponding to the random vector (-X,-Y). \widehat{C} is called the *survival copula* of C.

- Suppose C(u, v) is a copula corresponding to a random vector (X, Y). Then:
 - $C^{\sigma}(u,v) = u C(u,1-v)$ is a copula corresponding to the random vector (X,-Y). It is called a *reflected copula* of C.
 - $\widehat{C}(u,v) = u + v 1 + C(1-u,1-v)$ is a copula corresponding to the random vector (-X,-Y). \widehat{C} is called the *survival copula* of C.
- A copula C is called *positively quadrant dependent*, or PQD for short, if $C(u, v) \ge \Pi(u, v)$ for all $u, v \in [0, 1]$.

- Suppose C(u, v) is a copula corresponding to a random vector (X, Y). Then:
 - $C^{\sigma}(u, v) = u C(u, 1 v)$ is a copula corresponding to the random vector (X, -Y). It is called a *reflected copula* of C.
 - $\widehat{C}(u,v) = u+v-1+C(1-u,1-v)$ is a copula corresponding to the random vector (-X,-Y). \widehat{C} is called the *survival copula* of C.
- A copula C is called *positively quadrant dependent*, or PQD for short, if $C(u, v) \ge \Pi(u, v)$ for all $u, v \in [0, 1]$.
- A copula C is called *negatively quadrant dependent*, or NQD for short, if $C(u, v) \leq \Pi(u, v)$ for all $u, v \in [0, 1]$.

 A copula C is nonsingular (or absolutely continuous) if it has density

$$c(u,v) = \frac{\partial^2 C}{\partial u \, \partial v}(u,v)$$

such that

$$C(u,v) = \int_0^u \int_0^v c(s,t) \, ds \, dt.$$

 A copula C is nonsingular (or absolutely continuous) if it has density

$$c(u,v) = \frac{\partial^2 C}{\partial u \, \partial v}(u,v)$$

such that

$$C(u,v)=\int_0^u\int_0^v c(s,t)\,ds\,dt.$$

 A copula has no isolated singular points (no mass in a single point). Singularities may be on arcs or more complicated (on Cantor-like sets, etc.).

Ljubljana, last Saturday

- Copula Basics
- 2 Marshall Copulas
- Maxmin Copulas
- Reflected Maxmin Copulas
- 5 Further Topics on Shock Model Copulas

Marshall-Olkin Model, 1967

- Consider lifetimes U and V of two components of a system. Three different independent shocks act on it:
 - Shock X represented by a Poisson process with intensity λ > 0 acts on the first component only.
 - Shock Y represented by a Poisson process with intensity $\mu > 0$ acts on the second component only.

Marshall-Olkin Model, 1967

- Consider lifetimes U and V of two components of a system. Three different independent shocks act on it:
 - Shock X represented by a Poisson process with intensity λ > 0 acts on the first component only.
 - Shock Y represented by a Poisson process with intensity $\mu > 0$ acts on the second component only.
 - Shock Z, the global shock, acts on both components. Its is represented by a Poisson process with intensity $\nu > 0$.

Marshall-Olkin Model, 1967

- Consider lifetimes U and V of two components of a system. Three different independent shocks act on it:
 - Shock X represented by a Poisson process with intensity λ > 0 acts on the first component only.
 - Shock Y represented by a Poisson process with intensity $\mu > 0$ acts on the second component only.
 - Shock Z, the global shock, acts on both components. Its is represented by a Poisson process with intensity $\nu > 0$.
- Then $U = \min\{X, Z\}$ and $V = \min\{Y, Z\}$.

• The survival function for vector (U, V) is given by

$$\overline{F}(u, v) = e^{-\lambda u - \mu v - \nu \max\{u, v\}}.$$

• The survival function for vector (U, V) is given by

$$\overline{F}(u, v) = e^{-\lambda u - \mu v - \nu \max\{u, v\}}.$$

The survival copula corresponding to (U, V) is given by

$$\widehat{C}(u,v) = uv \min\{u^{-\frac{\nu}{\lambda+\nu}}, v^{-\frac{\nu}{\mu+\nu}}\} = \min\{uv^{\frac{\mu}{\mu+\nu}}, u^{\frac{\lambda}{\lambda+\nu}}v\}.$$

• The survival function for vector (U, V) is given by

$$\overline{F}(u,v) = e^{-\lambda u - \mu v - \nu \max\{u,v\}}.$$

The survival copula corresponding to (U, V) is given by

$$\widehat{C}(u,v) = uv \min\{u^{-\frac{\nu}{\lambda+\nu}}, v^{-\frac{\nu}{\mu+\nu}}\} = \min\{uv^{\frac{\mu}{\mu+\nu}}, u^{\frac{\lambda}{\lambda+\nu}}v\}.$$

• Copulas parametrized by $\alpha, \beta \in [0, 1]$ of the form $C(u, v) = \min\{uv^{\alpha}, u^{\beta}v\}$ are called *Marshall-Olkin copulas*. They are PQD.

• The survival function for vector (U, V) is given by

$$\overline{F}(u,v) = e^{-\lambda u - \mu v - \nu \max\{u,v\}}.$$

The survival copula corresponding to (U, V) is given by

$$\widehat{C}(u,v) = uv \min\{u^{-\frac{\nu}{\lambda+\nu}}, v^{-\frac{\nu}{\mu+\nu}}\} = \min\{uv^{\frac{\mu}{\mu+\nu}}, u^{\frac{\lambda}{\lambda+\nu}}v\}.$$

- Copulas parametrized by $\alpha, \beta \in [0, 1]$ of the form $C(u, v) = \min\{uv^{\alpha}, u^{\beta}v\}$ are called *Marshall-Olkin copulas*. They are PQD.
- The model is motivated by applications: in medicine (e.g. cancer treatment), hydrology (floods modelling), finance and economics, engineering, etc.

Figure: Ingram Olkin

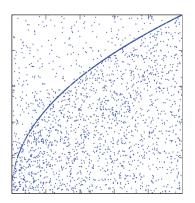


Figure: Scatterplot of a Marshall-Olkin copula

• Observe that function $f(u) = u^a$ for 0 < a < 1 is such that f maps [0,1] to itself, f(0) = 0, f(1) = 1, and function $f^*(u) = \frac{f(u)}{u} = u^{a-1}$ is decreasing on (0,1].

- Observe that function $f(u) = u^a$ for 0 < a < 1 is such that f maps [0, 1] to itself, f(0) = 0, f(1) = 1, and function $f^*(u) = \frac{f(u)}{u} = u^{a-1}$ is decreasing on (0, 1].
- Suppose that f is an increasing function (not necessarily strictly) defined on [0,1], such that f(0)=0, f(1)=1, and function $f^*(u)=\frac{f(u)}{u}$ is decreasing on (0,1].

- Observe that function $f(u) = u^a$ for 0 < a < 1 is such that f maps [0, 1] to itself, f(0) = 0, f(1) = 1, and function $f^*(u) = \frac{f(u)}{u} = u^{a-1}$ is decreasing on (0, 1].
- Suppose that f is an increasing function (not necessarily strictly) defined on [0,1], such that f(0)=0, f(1)=1, and function $f^*(u)=\frac{f(u)}{u}$ is decreasing on (0,1].
- Note that $f^*(1) = 1$ and $f^*(u) \ge 1$ for $u \in (0, 1)$.

- Observe that function $f(u) = u^a$ for 0 < a < 1 is such that f maps [0, 1] to itself, f(0) = 0, f(1) = 1, and function $f^*(u) = \frac{f(u)}{u} = u^{a-1}$ is decreasing on (0, 1].
- Suppose that f is an increasing function (not necessarily strictly) defined on [0,1], such that f(0)=0, f(1)=1, and function $f^*(u)=\frac{f(u)}{u}$ is decreasing on (0,1].
- Note that $f^*(1) = 1$ and $f^*(u) \ge 1$ for $u \in (0, 1)$.
- We write \mathcal{F} for the set of all such functions f.

Marshall's Theorem

Theorem (A. W. Marshall, 1996)

Suppose that f, g belong to \mathcal{F} . Then the function

$$C(u, v) = \min\{u g(v), f(u) v\} = u v \min\{f^*(u), g^*(v)\}$$

is a copula.

Marshall's Theorem

Theorem (A. W. Marshall, 1996)

Suppose that f, g belong to \mathcal{F} . Then the function

$$C(u, v) = \min\{u g(v), f(u) v\} = u v \min\{f^*(u), g^*(v)\}$$

is a copula.

 A copula C described in the theorem is called a Marshall copula, functions f and g are its generators.

Marshall's Theorem

Theorem (A. W. Marshall, 1996)

Suppose that f, g belong to \mathcal{F} . Then the function

$$C(u, v) = \min\{u g(v), f(u) v\} = u v \min\{f^*(u), g^*(v)\}$$

is a copula.

- A copula C described in the theorem is called a Marshall copula, functions f and g are its generators.
- A Marshall copula is PQD.

Marshall's Shock Models, 1996

Theorem (A. W. Marshall, 1996)

Suppose C is a Marshall copula with generators f and g, and H(x,y) = C(F(x), G(y)) for some distribution functions F and G. Then the following are equivalent:

- Random variables U and V with joint distribution function H have a representation of the form U = max{X, Z} and V = max{Y, Z}, where X, Y and Z are independent random variables (representing shocks).
- ② H has the form $H(x, y) = F_X(x)F_y(y)F_Z(\min\{x, y\})$, where F_X , F_Y and F_Z are distribution functions.
- **3** $f^*(F(x)) = g^*(G(x))$, i.e., $G(x) = g^{*-}(f^*(F(x)))$, where g^{*-} is left inverse of g^* .

Copula Basics
Marshall Copulas
Maxmin Copulas
Reflected Maxmin Copulas
Further Topics on Shock Model Copulas

23rd International Workshop on Matrices and Statistics - Ljubljana 2014

- Copula Basics
- Marshall Copulas
- Maxmin Copulas
- 4 Reflected Maxmin Copulas
- 5 Further Topics on Shock Model Copulas

• Suppose that ψ is an increasing function (not necessarily strictly) defined on [0,1], such that $\psi(0)=0$, $\psi(1)=1$, and function $\psi_*(u)=\frac{1-\psi(u)}{u-\psi(u)}$ is decreasing on (0,1).

- Suppose that ψ is an increasing function (not necessarily strictly) defined on [0,1], such that $\psi(0)=0$, $\psi(1)=1$, and function $\psi_*(u)=\frac{1-\psi(u)}{u-\psi(u)}$ is decreasing on (0,1).
- We write \mathcal{G} for the set of all such functions ψ .

- Suppose that ψ is an increasing function (not necessarily strictly) defined on [0,1], such that $\psi(0)=0$, $\psi(1)=1$, and function $\psi_*(u)=\frac{1-\psi(u)}{u-\psi(u)}$ is decreasing on (0,1).
- We write \mathcal{G} for the set of all such functions ψ .

Theorem (M. Omladič, N. Ružić, 2016)

Suppose that $\varphi \in \mathcal{F}$ and $\psi \in \mathcal{G}$. Then the function

$$C(u,v) = uv + \min\{u(1-v), (\varphi(u)-u)(v-\psi(v))\}\$$

is a copula.

- Suppose that ψ is an increasing function (not necessarily strictly) defined on [0,1], such that $\psi(0)=0$, $\psi(1)=1$, and function $\psi_*(u)=\frac{1-\psi(u)}{u-\psi(u)}$ is decreasing on (0,1).
- We write \mathcal{G} for the set of all such functions ψ .

Theorem (M. Omladič, N. Ružić, 2016)

Suppose that $\varphi \in \mathcal{F}$ and $\psi \in \mathcal{G}$. Then the function

$$C(u,v) = uv + \min\{u(1-v), (\varphi(u)-u)(v-\psi(v))\}\$$

is a copula.

• A copula C described in the theorem is called a *maxmin* copula, functions φ and ψ are its *generators*. It is PQD.

Maxmin Shock Models

Theorem (M. Omladič, N. Ružić, 2016)

Suppose C is a maxmin copula with generators φ and ψ , and H(x,y) = C(F(x),G(y)) for some distribution functions F and G. Then the following are equivalent:

- Random variables U and V with joint distribution function H have a representation of the form $U = \max\{X, Z\}$ and $V = \min\{Y, Z\}$, where X, Y and Z are independent random variables.
- ② $\varphi(F(x))(G(x) \psi(G(x)) = F(x)(1 \psi(G(x)), i.e., G(x) = \psi_*^-(\varphi^*(F(x)), where \psi_*^- is left inverse of \psi_*.$

23rd IWMS, Ljubljana 2014

Figure: Ingram Olkin and Nina Ružić

Figure: Matjaž Omladič

- Copula Basics
- Marshall Copulas
- Maxmin Copulas
- 4 Reflected Maxmin Copulas
- 5 Further Topics on Shock Model Copulas

Reflected maxmin copulas

Theorem (TK, M. Omladič, 2020)

Suppose that φ and ψ are the generators of a maxmin copula ${\it C.}$ Then

$$C^{\sigma}(u,v) = \max\{0, uv - f(u)g(v)\},\$$

where $f(u) = \varphi(u) - u$ and $g(v) = 1 - v - \psi(1 - v)$, is its reflected copula. Generators f and g of C^{σ} belong to \mathcal{F}' .

Reflected maxmin copulas

Theorem (TK, M. Omladič, 2020)

Suppose that φ and ψ are the generators of a maxmin copula ${\it C}$. Then

$$C^{\sigma}(u,v) = \max\{0, uv - f(u)g(v)\},\$$

where $f(u) = \varphi(u) - u$ and $g(v) = 1 - v - \psi(1 - v)$, is its reflected copula. Generators f and g of C^{σ} belong to \mathcal{F}' .

• We call C^{σ} a reflected maxmin copula, or an RMM copula for short. It is NQD.

Reflected maxmin copulas

Theorem (TK, M. Omladič, 2020)

Suppose that φ and ψ are the generators of a maxmin copula ${\it C.}$ Then

$$C^{\sigma}(u,v) = \max\{0, uv - f(u)g(v)\},\,$$

where $f(u) = \varphi(u) - u$ and $g(v) = 1 - v - \psi(1 - v)$, is its reflected copula. Generators f and g of C^{σ} belong to \mathcal{F}' .

- We call C^{σ} a *reflected maxmin copula*, or an *RMM copula* for short. It is NQD.
- RMM copulas are nicer to deal with. They are symmetric if f = g, which is not the case for maxmin copulas. With reflection operation it is easy to transfer properties from RMM to maxmin copulas.

Some scatterplots

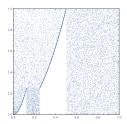


Figure: a Marshall copula

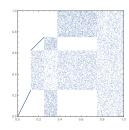


Figure: a maxmin copula

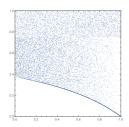
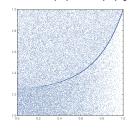


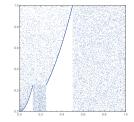
Figure: an RMM copula

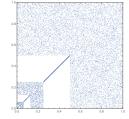
- Copula Basics
- Marshall Copulas
- Maxmin Copulas
- Reflected Maxmin Copulas
- 5 Further Topics on Shock Model Copulas

Singularities, TK., M. Omladič, 2022

• The only nonsingular Marshall copula is Π . A Marshall copula is singular on certain arcs of the form $(u, \chi(u))$, $u \in (a, b)$. The 'density' on an arc is given by $h(u) = \chi(u) [f^*(u) - f'(u)]$.

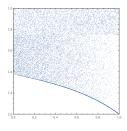


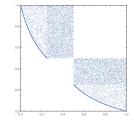


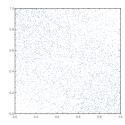


Singularities-2, TK., M. Omladič, 2022

• An RMM copula is nonsingular if and only if $uv \ge f(u)g(v)$ for all $u, v \in [0.1]$. If it is singular then it is so on certain arcs of the form $(u, \chi(u)), u \in (a, b)$. The 'density' on an arc is given by $h(u) = \chi(u) \left[1 - \frac{f'(u)}{f^*(u)}\right]$.







• A copula C(u, v) is exchangeable if C(u, v) = C(v, u) for all $u, v \in [0, 1]$.

- A copula C(u, v) is exchangeable if C(u, v) = C(v, u) for all $u, v \in [0, 1]$.
- Asymmetry function on a set S of copulas is given by $\mu_{\infty}(u, v) = \sup_{S \in S} |C(u, v) C(v, u)|$.

- A copula C(u, v) is exchangeable if C(u, v) = C(v, u) for all $u, v \in [0, 1]$.
- Asymmetry function on a set S of copulas is given by $\mu_{\infty}(u, v) = \sup_{S \in S} |C(u, v) C(v, u)|$.
- The maximal value of μ_{∞} on the set of all copulas is $\frac{1}{3}$, on the set of all PQD copulas it is $3-2\sqrt{2}\approx 0.172$ and on the set of all NQD copulas it is $\sqrt{5}-2\approx 0.236$.

- A copula C(u, v) is exchangeable if C(u, v) = C(v, u) for all $u, v \in [0, 1]$.
- Asymmetry function on a set S of copulas is given by $\mu_{\infty}(u, v) = \sup_{S \in S} |C(u, v) C(v, u)|$.
- The maximal value of μ_{∞} on the set of all copulas is $\frac{1}{3}$, on the set of all PQD copulas it is $3-2\sqrt{2}\approx 0.172$ and on the set of all NQD copulas it is $\sqrt{5}-2\approx 0.236$.
- The maximal value of $\mu_{\infty}(u,v)$ on the set of Marshall copulas is $\frac{4}{27}\approx 0.148$. The same is its maximal value on the set of all maxmin copulas, while on the set of all RMM copulas it is $3-2\sqrt{2}$.

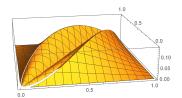


Figure: Function μ_{∞} for the set of all Marshall copulas.

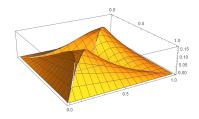


Figure: Function μ_{∞} for the set of all RMM copulas.

 Concordances and Tail Dependences.[Durante, Omladič, Oražem, Ružić, 2017]

- Concordances and Tail Dependences.[Durante, Omladič, Oražem, Ružić, 2017]
- Extreme Generators.[Kokol Bukovšek, TK, Omladič, Mojškerc, 2022]

- Concordances and Tail Dependences.[Durante, Omladič, Oražem, Ružić, 2017]
- Extreme Generators.[Kokol Bukovšek, TK, Omladič, Mojškerc, 2022]
- Copulas for Dependent Shocks.[Durante, Gerard, Mazo, 2016],[Durante, Omladič, Oražem, Ružić, 2017],[Kokol Bukovšek, TK, Omladič, Mojškerc, 2020]

- Concordances and Tail Dependences.[Durante, Omladič, Oražem, Ružić, 2017]
- Extreme Generators.[Kokol Bukovšek, TK, Omladič, Mojškerc, 2022]
- Copulas for Dependent Shocks.[Durante, Gerard, Mazo, 2016],[Durante, Omladič, Oražem, Ružić, 2017],[Kokol Bukovšek, TK, Omladič, Mojškerc, 2020]
- All of these has been generalized to d-dimensional copulas ($d \ge 3$).

Ljubljana, last Saturday-2

References

- A. Sklar. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris 8 (1959), 229-231.
- A.W. Marshall, I. Olkin. A generalized bivariate exponential distribution, J. Appl. Prob. 4 (1967) 291-302.
- A.W. Marshall. Copulas, Marginals, and Joint Distributions. In LMS Lecture Notes Series, vol., 28, 1996, pp. 213-222.
- F. Durante, S. Gerard, G. Mazo. Marshall-Olkin type copulas generated by a global shock. J. Multivar. Anal. 296 (2016) 638-648
- M. Omladič, N. Ružić. Shock models with recovery option via the maxmin copulas. Fuzzy Sets Syst. 284 (2016) 113-128.

References-2

- F. Durante, M. Omladič, L. Oražem, N. Ružić. Shock models with dependence and asymmetric linkages. Fuzzy Sets Syst. 323 (2017) 152-168.
- TK, M. Omladič. Reflected maxmin copulas and modeling quadrant subindependence. Fuzzy Sets Syst. 378 (2020) 125-143.
- N. Kamnitui, W. Trutschnig. On some properties of reflected maxmin copulas. Fuzzy Sets Syst. 393 (2020) 53-74.

References-3

- D. Kokol Bukovšek, TK, B. Mojškerc, M. Omladič.
 Non-exchangeability of copulas arising from shock models.
 J. of Comp. and Appl. Math. 358 (2019) 61-83.
- D. Kokol Bukovšek, TK, B. Mojškerc, M. Omladič. Asymmetric linkages: maxmin vs. reflected maxmin copulas. Fuzzy Sets Syst. 393 (2020) 75-95.
- TK, M. Omladič. Singular components of shock model copulas. J. Comp. and Appl. Math. 400 (2022), 14, 113749.
- Scatterplots by Blaž Mojškerc, photos from the 23rd IWMS by Peter Legiša.

