Singular components in shock models

Talk at the 11th International Conference on Soft Methods in Probability and Statistics Salzburg, Austria, September 2024

Tomaž Košir¹

Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia

September 4, 2024

¹A report on joint work with Matjaž Omladič.

Contents

Copulas for shock models

Contents

- Copulas for shock models
- Singularities of shock model copulas
 - Marshall Copulas
 - RMM Copulas
 - Maxmin Copulas

Copulas for shock models

- Singularities of shock model copulas
 - Marshall Copulas
 - RMM Copulas
 - Maxmin Copulas

Definitions

- A bivariate copula C(u, v) is a function $C : [0, 1]^2 \rightarrow [0, 1]$ such that:
 - **1** C(u,0) = 0 = C(0,v), C(u,1) = u, C(1,v) = v for all $u, v \in [0,1],$
 - ② $C(u_2, v_2) + C(u_1, v_1) C(u_2, v_1) C(u_1, v_2) \ge 0$ for all $0 \le u_1 \le u_2 \le 1$ and $0 \le v_1 \le v_2 \le 1$.

Definitions

- A bivariate copula C(u, v) is a function $C : [0, 1]^2 \rightarrow [0, 1]$ such that:
 - **1** C(u,0) = 0 = C(0,v), C(u,1) = u, C(1,v) = v for all $u, v \in [0,1],$
 - ② $C(u_2, v_2) + C(u_1, v_1) C(u_2, v_1) C(u_1, v_2) \ge 0$ for all $0 \le u_1 \le u_2 \le 1$ and $0 \le v_1 \le v_2 \le 1$.
- Let \mathcal{F} be the set of all functions $f:[0,1] \to [0,1]$ such that:

 - f is nondecreasing,
 - **3** function $f^*(u) = \frac{f(u)}{u} : (0,1] \to \mathbb{R}$ is nonincreasing.

Marshall Copulas

Theorem (A. W. Marshall, 1996)

Suppose that f, g belong to \mathcal{F} . Then the function

$$C(u, v) = \min\{u g(v), f(u) v\} = u v \min\{f^*(u), g^*(v)\}$$

is a copula.

Marshall Copulas

Theorem (A. W. Marshall, 1996)

Suppose that f, g belong to \mathcal{F} . Then the function

$$C(u, v) = \min\{u g(v), f(u) v\} = u v \min\{f^*(u), g^*(v)\}$$

is a copula.

 A copula C described in the theorem is called a Marshall copula, functions f and g are its generators.

Marshall Copulas

Theorem (A. W. Marshall, 1996)

Suppose that f, g belong to \mathcal{F} . Then the function

$$C(u, v) = \min\{u g(v), f(u) v\} = u v \min\{f^*(u), g^*(v)\}\$$

is a copula.

- A copula C described in the theorem is called a Marshall copula, functions f and g are its generators.
- Given three independent shocks X, Y and Z suppose that
 U = max{X, Z} and V = max{Y, Z}. Then the copula
 connecting U and V is a Marshall copula:

Marshall's Shock Model, 1996

Theorem (A. W. Marshall, 1996)

Suppose C is a Marshall copula with generators f and g, and H(x,y) = C(F(x), G(y)) for some distribution functions F and G. Then the following are equivalent:

- Random variables U and V with joint distribution function H have a representation of the form U = max{X, Z} and V = max{Y, Z}, where X, Y and Z are independent random variables (representing shocks).
- ② H has the form $H(x, y) = F_X(x)F_y(y)F_Z(\min\{x, y\})$, where F_X , F_Y and F_Z are distribution functions.
- **3** $f^*(F(x)) = g^*(G(x))$, i.e., $G(x) = g^{*-}(f^*(F(x)))$, where g^{*-} is left inverse of g^* .

Marshall-Olkin Copulas, 1967

 When X, Y and Z have Poisson distribution then the copula corresponding to (U, V) is given by

$$C(u,v) = \min\{uv^{\alpha}, u^{\beta}v\}$$

for some $\alpha, \beta \in [0, 1]$.

Marshall-Olkin Copulas, 1967

 When X, Y and Z have Poisson distribution then the copula corresponding to (U, V) is given by

$$C(u,v) = \min\{uv^{\alpha}, u^{\beta}v\}$$

for some $\alpha, \beta \in [0, 1]$.

 The model is motivated by several applications: in medicine (e.g. cancer treatment), hydrology (floods modelling), finance and economics, engineering, etc.

Maxmin Copulas

- Suppose that ψ is a nondecreasing function on [0, 1], such that $\psi(0) = 0$, $\psi(1) = 1$, and $\psi_*(u) = \frac{1 \psi(u)}{u \psi(u)}$ is nonincreasing on (0, 1).
- Write \mathcal{G} for the set of all such functions ψ .

Maxmin Copulas

- Suppose that ψ is a nondecreasing function on [0, 1], such that $\psi(0) = 0$, $\psi(1) = 1$, and $\psi_*(u) = \frac{1 \psi(u)}{u \psi(u)}$ is nonincreasing on (0, 1).
- Write \mathcal{G} for the set of all such functions ψ .

Theorem (M. Omladič, N. Ružić, 2016)

Suppose that $\varphi \in \mathcal{F}$ and $\psi \in \mathcal{G}$. Then the function

$$C(u,v) = uv + \min\{u(1-v), (\varphi(u)-u)(v-\psi(v))\}$$

is a copula.

• A copula C described in the theorem is called a *maxmin copula*, functions φ and ψ are its *generators*.

Maxmin Shock Model

Theorem (M. Omladič, N. Ružić, 2016)

Suppose C is a maxmin copula with generators φ and ψ , and H(x,y) = C(F(x),G(y)) for some distribution functions F and G. Then the following are equivalent:

- Random variables U and V with joint distribution function H have a representation of the form $U = \max\{X, Z\}$ and $V = \min\{Y, Z\}$, where X, Y and Z are independent random variables.
- ② $\varphi(F(x))(G(x) \psi(G(x)) = F(x)(1 \psi(G(x)), i.e., G(x) = \psi_{*}^{-}(\varphi^{*}(F(x)), where \psi_{*}^{-} is left inverse of \psi_{*}.$

23rd IWMS, Ljubljana 2014 (PHOTOS BY PETER LEGIŠA)

Figure: Ingram Olkin

Figure: Ingram Olkin and Nina Ružić

Reflected maxmin copulas

• We denote by \mathcal{F}' the set of all functions $f:[0,1] \to [0,1]$ such that x + f(x) belong to \mathcal{F} .

Theorem (TK, M. Omladič, 2020)

Suppose that φ and ψ are the generators of a maxmin copula ${\it C.}$ Then

$$C^{\sigma_2}(u,v) = \max\{0, uv - f(u)g(v)\},$$

where $f(u) = \varphi(u) - u$ and $g(v) = 1 - v - \psi(1 - v)$, is its reflected copula. Generators f and g of C^{σ_2} belong to \mathcal{F}' .

Reflected maxmin copulas

• We denote by \mathcal{F}' the set of all functions $f:[0,1] \to [0,1]$ such that x + f(x) belong to \mathcal{F} .

Theorem (TK, M. Omladič, 2020)

Suppose that φ and ψ are the generators of a maxmin copula ${\it C.}$ Then

$$C^{\sigma_2}(u,v) = \max\{0, uv - f(u)g(v)\},$$

where $f(u) = \varphi(u) - u$ and $g(v) = 1 - v - \psi(1 - v)$, is its reflected copula. Generators f and g of C^{σ_2} belong to \mathcal{F}' .

• C^{σ_2} is a reflected maxmin copula (or an RMM copula).

Reflected maxmin copulas

• We denote by \mathcal{F}' the set of all functions $f:[0,1] \to [0,1]$ such that x + f(x) belong to \mathcal{F} .

Theorem (TK, M. Omladič, 2020)

Suppose that φ and ψ are the generators of a maxmin copula ${\it C.}$ Then

$$C^{\sigma_2}(u,v) = \max\{0, uv - f(u)g(v)\},$$

where $f(u) = \varphi(u) - u$ and $g(v) = 1 - v - \psi(1 - v)$, is its reflected copula. Generators f and g of C^{σ_2} belong to \mathcal{F}' .

- C^{σ_2} is a reflected maxmin copula (or an RMM copula).
- RMM copulas are nicer to deal with. They are symmetric if f = g, which is not the case for maxmin copulas. With reflection operation it is easy to transfer properties from RMM to maxmin copulas.

- Copulas for shock models
- 2 Singularities of shock model copulas
 - Marshall Copulas
 - RMM Copulas
 - Maxmin Copulas

Constancy segments

• Consider a Marshall copula $C(u, v) = \max\{ug(v), f(u)v\}$. Then C is absolutely continuous everywhere except possibly on the set

$$L_0(f,g) = \{(u,v)| f(u)v = ug(v)\} = \{(u,v)| f^*(u) = g^*(v)\}.$$

Constancy segments

Consider a Marshall copula C(u, v) = max{ug(v), f(u)v}.
 Then C is absolutely continuous everywhere except possibly on the set

$$L_0(f,g) = \{(u,v)| f(u)v = ug(v)\} = \{(u,v)| f^*(u) = g^*(v)\}.$$

- Call a segment $S = [a, b] \subseteq [0, 1], a < b$, a constancy segment (for f^*) if for all $u, u' \in [a, b]$ we have $f^*(u) = f^*(u')$. We assume that every constancy segment is maximal in the sense that for all $u \in (0, 1] \setminus S$ we have $f^*(u) \neq f^*(S)$.
- If $f^*(S) = \lambda$ for some $\lambda \in [0, \infty)$ we denote this segment by $S_{\lambda}^f = [a_{\lambda}^f, b_{\lambda}^f]$. The set of all constancy segments of the function f^* will be denoted by \mathcal{I}_f and the set of all possible λ 's such that $\lambda = f^*(S)$, for some $S \in \mathcal{I}_f$, by \mathcal{D}_f .

Monotonicity segments

- An interval (a, b) will be called a *monotonicity interval* for f^* if for all $u, u' \in (a, b), u < u'$, we have $f^*(u) > f^*(u')$. Again, we assume that every monotonicity interval is maximal.
- The set of all monotonicity intervals of the function f^* will be denoted by \mathcal{M}_f .

Monotonicity segments

- An interval (a, b) will be called a *monotonicity interval* for f^* if for all $u, u' \in (a, b), u < u'$, we have $f^*(u) > f^*(u')$. Again, we assume that every monotonicity interval is maximal.
- The set of all monotonicity intervals of the function f^* will be denoted by \mathcal{M}_f .

Lemma

If for either f or g the corresponding set \mathcal{M}_f or \mathcal{M}_g is empty, then $C_{f,g} = \Pi$. If $C_{f,g} \neq \Pi$, then both sets \mathcal{M}_f and \mathcal{M}_g are nonempty.

Singularities of Marshall copulas

Lemma

① If for some $\lambda \in \mathcal{D}_f$ we have $\lambda \in \operatorname{Im} g^* \setminus \mathcal{D}_g$, then

$$\{(u,v); u \in \mathcal{S}_{\lambda}, v = g^{*-1}(\lambda)\} \subset L_0(f,g).$$

② If for some $\mu \in \mathcal{D}_g$ we have $\mu \in \operatorname{Im} f^* \setminus \mathcal{D}_f$, then

$$\{(u,v); u=f^{*-1}(\mu), v\in S_{\mu}\}\subset L_0(f,g).$$

③ If $\lambda \in \mathcal{D}_f \cap \mathcal{D}_g$, then

$$\{(u,b^g_\mu); u \in S_\lambda\} \cup \{(a^f_\lambda,v); v \in S_\lambda\} \subset L_0(f,g).$$

1 The copula $C_{f,g}$ is not singular along either of the parts of (1), (2), or (3).

Singularities of Marshall Copulas - 2

Theorem

For every interval $M \in \mathcal{M}_g$ there exists an interval $\widehat{M} \in \mathcal{M}_f$, and strictly increasing bijective functions

$$\chi: \widehat{M} \to M, \omega: M \to \widehat{M}$$
, such that

- **1** χ and ω are inverses of each other,
- The arc $A_M = \{(u, \chi(u)); u \in \widehat{M}\} = \{(\omega(v), v); v \in M\}$ belongs to $L_0(f, g)$.

The union

$$\bigcup_{M\in\mathcal{M}_g} A_M$$

is the entire singularity locus of $C_{f,g}$.

Singularities of Marshall Copulas - 3

Theorem

For any $\nu = (\widehat{M}, M)$, we have the density h of the arc A_{ν} , where

• under parametrization $(u, \chi(u)), u \in \widehat{M}$,

$$h(u) = \chi(u) \left[f^*(u) - f'(u) \right];$$

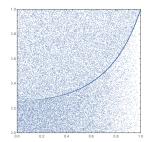
2 under parametrization $(\omega(v), v), v \in M$,

$$h(v) = \omega(v) \left[g^*(v) - g'(v) \right]$$

1 under parametrization $(f^{*-1}(\tau^{-1}), g^{*-1}(\tau)), \tau \in g^*(M),$

$$h(\tau) = \frac{g^{*-1}(\tau)f^{*-1}(\tau^{-1})}{\tau}.$$

Singularities of Marshall Copulas - 4



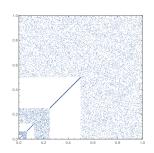


Figure: Connected singular component

Figure:
Disconnected singular component

Figure:
Disconnected
symmetric
case

Nonsingular RMM copulas

Now we denote by C_{f,g} RMM copula

$$C_{f,g}(u,v) = \max\{0, uv - f(u)g(v)\}.$$

Theorem (Kamnitui, Trutschnig, 2020)

An RMM copula $C_{f,g}$ is nonsingular if and only if $uv \ge f(u)g(v)$ for all $u, v \in [0.1]$.

Nonsingular RMM copulas

• Now we denote by $C_{f,g}$ RMM copula

$$C_{f,g}(u,v) = \max\{0, uv - f(u)g(v)\}.$$

Theorem (Kamnitui, Trutschnig, 2020)

An RMM copula $C_{f,g}$ is nonsingular if and only if $uv \ge f(u)g(v)$ for all $u, v \in [0.1]$.

• RMM copula $C_{f,g}$ is absolutely continuous everywhere except possibly on the set

$$\widetilde{L}_0(f,g) = \{(u,v)|\ uv = f(u)g(v)\} = \{(u,v)|\ f^*(u) = g^*(v)^{-1}\}.$$

Nonsingular RMM copulas

• Now we denote by $C_{f,g}$ RMM copula

$$C_{f,g}(u,v) = \max\{0, uv - f(u)g(v)\}.$$

Theorem (Kamnitui, Trutschnig, 2020)

An RMM copula $C_{f,g}$ is nonsingular if and only if $uv \ge f(u)g(v)$ for all $u, v \in [0.1]$.

• RMM copula $C_{f,g}$ is absolutely continuous everywhere except possibly on the set

$$\widetilde{L}_0(f,g) = \{(u,v)|\ uv = f(u)g(v)\} = \{(u,v)|\ f^*(u) = g^*(v)^{-1}\}.$$

 We consider the constancy and monotonicity intervals for f* and g* as we did for the Marshall copulas and prove analoquous results:

Singularities of RMM copulas

Lemma

• If for some $\lambda \in \mathcal{D}_f$ we have $\mu = \frac{1}{\lambda} \in \operatorname{Im} g^* \setminus \mathcal{D}_g$, then

$$\{(u,v); u \in \mathcal{S}_{\lambda}, v = f^*(\mu)^{-1}\} \subset \widetilde{L}_0(f,g).$$

② If for some $\mu \in \mathcal{D}_g$ we have $\lambda = \frac{1}{\mu} \in \operatorname{Im} f^* \setminus \mathcal{D}_f$, then

$$\{(u,v); u=g^*(\lambda)^{-1}, v\in S_\mu\}\subset \widetilde{L}_0(f,g).$$

③ If $\lambda \mu = 1$ for some $\lambda \in \mathcal{D}_f$ and $\mu \in \mathcal{D}_g$, then

$$\{(u,b_{\mu}^g);u\in\mathcal{S}_{\lambda}\}\cup\{(a_{\lambda}^f,v);v\in\mathcal{S}_{\mu}\}\subset\widetilde{L}_0(f,g).$$

1 The copula $C_{f,g}$ is not singular along either of the parts of (1), (2), or (3).

Singularities of RMM Copulas - 2

Theorem

For every interval $M \in \mathcal{M}_g$ there exists an interval $\widehat{M} \in \mathcal{M}_f$, and strictly decreasing bijective functions

$$\chi:\widehat{\pmb{\mathsf{M}}}\to \pmb{\mathsf{M}},\omega:\pmb{\mathsf{M}}\to \widehat{\pmb{\mathsf{M}}},$$
 such that

- **1** χ and ω are inverses of each other,
- The arc $A_M = \{(u, \chi(u)); u \in \widehat{M}\} = \{(\omega(v), v); v \in M\}$ belongs to $\widetilde{L}_0(f, g)$.

The union

$$\bigcup_{M\in\mathcal{M}_g}A_M$$

is the entire singularity locus of $C_{f,g}$.

Singularities of RMM Copulas - 3

Theorem

For any $\nu = (\widehat{M}, M)$, we have the density h of the arc A_{ν} , where

• under parametrization $(u, \chi(u)), u \in \widehat{M}$,

$$h(u) = \chi(u) \left[1 - \frac{f'(u)}{f^*(u)} \right];$$

a under parametrization $(\omega(v), v), v \in M$,

$$h(v) = \omega(v) \left[1 - \frac{g'(v)}{g^*(v)} \right];$$

3 under parametrization $(f^{*-1}(\tau^{-1}), g^{*-1}(\tau)), \tau \in g^*(M),$

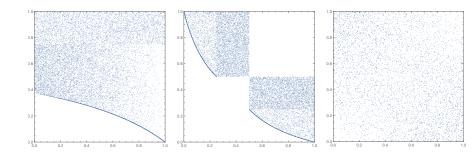
$$h(\tau) = \tau^{-1} g^{*-1}(\tau) f^{*-1}(\tau^{-1}).$$

Singularities of RMM copulas - 4

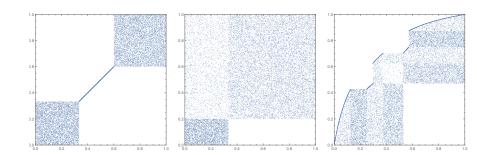
Theorem (Kamnitui, Trutschnig, 2020)

The family of all RMM copulas with non-degenerated singular component is dense in the set of all RMM copulas with respect to d_{∞} . The family of all absolutely continuous RMM copulas is a compact, nowhere dense subset.

Singularities of RMM copulas - 5



Singularities of maxmin copulas



Maxmin Copulas

References

- A.W. Marshall, I. Olkin. A generalized bivariate exponential distribution, J. Appl. Prob. 4 (1967) 291-302.
- A.W. Marshall. Copulas, Marginals, and Joint Distributions. In LMS Lecture Notes Series, vol., 28, 1996, pp. 213-222.
- M. Omladič, N. Ružić. Shock models with recovery option via the maxmin copulas. Fuzzy Sets Syst. 284 (2016) 113-128.
- TK, M. Omladič. Reflected maxmin copulas and modeling quadrant subindependence. Fuzzy Sets Syst. 378 (2020) 125-143.
- N. Kamnitui, W. Trutschnig. On some properties of reflected maxmin copulas. Fuzzy Sets Syst. 393 (2020) 53-74.
- TK, M. Omladič. Singular components of shock model copulas. J. Comp. Appl. Math. 400 (2022), 14, 113749.