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Definitions

A bivariate copula C(u, v) is a function C : [0,1]2 → [0,1]
such that:

1 C(u,0) = 0 = C(0, v), C(u,1) = u, C(1, v) = v for all
u, v ∈ [0,1],

2 C(u2, v2) + C(u1, v1)− C(u2, v1)− C(u1, v2) ≥ 0 for all
0 ≤ u1 ≤ u2 ≤ 1 and 0 ≤ v1 ≤ v2 ≤ 1.

Let F be the set of all functions f : [0,1]→ [0,1] such that:
1 f (0) = 0, f (1) = 1,
2 f is nondecreasing,
3 function f ∗(u) = f (u)

u : (0,1]→ R is nonincreasing.
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Marshall Copulas

Theorem (A. W. Marshall, 1996)
Suppose that f ,g belong to F . Then the function

C(u, v) = min{u g(v), f (u) v} = u v min{f ∗(u),g∗(v)}

is a copula.

A copula C described in the theorem is called a Marshall
copula, functions f and g are its generators.
Given three independent shocks X , Y and Z suppose that
U = max{X ,Z} and V = max{Y ,Z}. Then the copula
connecting U and V is a Marshall copula:
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Marshall’s Shock Model, 1996

Theorem (A. W. Marshall, 1996)
Suppose C is a Marshall copula with generators f and g, and
H(x , y) = C(F (x),G(y)) for some distribution functions F and
G. Then the following are equivalent:

1 Random variables U and V with joint distribution function
H have a representation of the form U = max{X ,Z} and
V = max{Y ,Z}, where X ,Y and Z are independent
random variables (representing shocks).

2 H has the form H(x , y) = FX (x)Fy (y)FZ (min{x , y}), where
FX , FY and FZ are distribution functions.

3 f ∗(F (x)) = g∗(G(x)), i.e., G(x) = g∗−(f ∗(F (x)), where g∗−

is left inverse of g∗.

T. Košir Singular components of shock model copulas



Copulas for shock models
Singularities of shock model copulas

Marshall-Olkin Copulas, 1967

When X , Y and Z have Poisson distribution then the
copula corresponding to (U,V ) is given by

C(u, v) = min{uvα,uβv}

for some α, β ∈ [0,1].

The model is motivated by several applications: in
medicine (e.g. cancer treatment), hydrology (floods
modelling), finance and economics, engineering, etc.
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Maxmin Copulas

Suppose that ψ is a nondecreasing function on [0,1], such
that ψ(0) = 0, ψ(1) = 1, and ψ∗(u) = 1−ψ(u)

u−ψ(u) is
nonincreasing on (0,1).
Write G for the set of all such functions ψ.

Theorem (M. Omladič, N. Ružić, 2016)
Suppose that ϕ ∈ F and ψ ∈ G. Then the function

C(u, v) = uv + min{u(1− v), (ϕ(u)− u)(v − ψ(v))}

is a copula.

A copula C described in the theorem is called a maxmin
copula, functions ϕ and ψ are its generators.
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Suppose that ϕ ∈ F and ψ ∈ G. Then the function

C(u, v) = uv + min{u(1− v), (ϕ(u)− u)(v − ψ(v))}

is a copula.

A copula C described in the theorem is called a maxmin
copula, functions ϕ and ψ are its generators.

T. Košir Singular components of shock model copulas



Copulas for shock models
Singularities of shock model copulas

Maxmin Shock Model

Theorem (M. Omladič, N. Ružić, 2016)
Suppose C is a maxmin copula with generators ϕ and ψ, and
H(x , y) = C(F (x),G(y)) for some distribution functions F and
G. Then the following are equivalent:

1 Random variables U and V with joint distribution function
H have a representation of the form U = max{X ,Z} and
V = min{Y ,Z}, where X ,Y and Z are independent
random variables.

2 ϕ(F (x)) (G(x)− ψ(G(x)) = F (x) (1− ψ(G(x)), i.e.,
G(x) = ψ−∗ (ϕ∗(F (x)), where ψ−∗ is left inverse of ψ∗.
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23rd IWMS, Ljubljana 2014 (PHOTOS BY PETER LEGIŠA)

Figure: Ingram Olkin

Figure: Ingram Olkin and Nina Ružić
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Reflected maxmin copulas

We denote by F ′ the set of all functions f : [0,1]→ [0,1]
such that x + f (x) belong to F .

Theorem (TK, M. Omladič, 2020)
Suppose that ϕ and ψ are the generators of a maxmin copula
C. Then

Cσ2(u, v) = max{0,uv − f (u)g(v)},

where f (u) = ϕ(u)− u and g(v) = 1− v − ψ(1− v), is its
reflected copula. Generators f and g of Cσ2 belong to F ′.

Cσ2 is a reflected maxmin copula (or an RMM copula).
RMM copulas are nicer to deal with. They are symmetric if
f = g, which is not the case for maxmin copulas. With
reflection operation it is easy to transfer properties from
RMM to maxmin copulas.
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Constancy segments

Consider a Marshall copula C(u, v) = max{ug(v), f (u)v}.
Then C is absolutely continuous everywhere except
possibly on the set

L0(f ,g) = {(u, v)| f (u)v = ug(v)} = {(u, v)| f ∗(u) = g∗(v)}.

Call a segment S = [a,b] ⊆ [0,1],a < b, a constancy
segment (for f ∗) if for all u,u′ ∈ [a,b] we have
f ∗(u) = f ∗(u′). We assume that every constancy segment
is maximal in the sense that for all u ∈ (0,1] \ S we have
f ∗(u) 6= f ∗(S).
If f ∗(S) = λ for some λ ∈ [0,∞) we denote this segment by
Sf
λ = [af

λ,b
f
λ]. The set of all constancy segments of the

function f ∗ will be denoted by If and the set of all possible
λ’s such that λ = f ∗(S), for some S ∈ If , by Df .
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Monotonicity segments

An interval (a,b) will be called a monotonicity interval for f ∗

if for all u,u′ ∈ (a,b),u < u′, we have f ∗(u) > f ∗(u′). Again,
we assume that every monotonicity interval is maximal.
The set of all monotonicity intervals of the function f ∗ will
be denoted byMf .

Lemma
If for either f or g the corresponding setMf orMg is empty,
then Cf ,g = Π. If Cf ,g 6= Π, then both setsMf andMg are
nonempty.
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Singularities of Marshall copulas

Lemma

1 If for some λ ∈ Df we have λ ∈ Im g∗ \ Dg , then

{(u, v); u ∈ Sλ, v = g∗−1(λ)} ⊂ L0(f ,g).

2 If for some µ ∈ Dg we have µ ∈ Im f ∗ \ Df , then

{(u, v); u = f ∗−1(µ), v ∈ Sµ} ⊂ L0(f ,g).

3 If λ ∈ Df ∩ Dg , then

{(u,bg
µ); u ∈ Sλ} ∪ {(af

λ, v); v ∈ Sλ} ⊂ L0(f ,g).

4 The copula Cf ,g is not singular along either of the parts of
(1), (2), or (3).
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Singularities of Marshall Copulas - 2

Theorem

For every interval M ∈Mg there exists an interval M̂ ∈Mf ,
and strictly increasing bijective functions
χ : M̂ → M, ω : M → M̂, such that

1 χ and ω are inverses of each other,
2 The arc AM = {(u, χ(u)); u ∈ M̂} = {(ω(v), v); v ∈ M}

belongs to L0(f ,g).
The union ⋃

M∈Mg

AM

is the entire singularity locus of Cf ,g .
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Singularities of Marshall Copulas - 3

Theorem

For any ν = (M̂,M), we have the density h of the arc Aν , where
1 under parametrization (u, χ(u)),u ∈ M̂,

h(u) = χ(u)
[
f ∗(u)− f ′(u)

]
;

2 under parametrization (ω(v), v), v ∈ M,

h(v) = ω(v)
[
g∗(v)− g′(v)

]
3 under parametrization (f ∗−1(τ−1),g∗−1(τ)), τ ∈ g∗(M),

h(τ) =
g∗−1(τ)f ∗−1(τ−1)

τ
.
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Singularities of Marshall Copulas - 4
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Nonsingular RMM copulas

Now we denote by Cf ,g RMM copula

Cf ,g(u, v) = max{0,uv − f (u)g(v)}.

Theorem (Kamnitui, Trutschnig, 2020)

An RMM copula Cf ,g is nonsingular if and only if uv ≥ f (u)g(v)
for all u, v ∈ [0.1].

RMM copula Cf ,g is absolutely continuous everywhere
except possibly on the set

L̃0(f ,g) = {(u, v)| uv = f (u)g(v)} = {(u, v)| f ∗(u) = g∗(v)−1}.

We consider the constancy and monotonicity intervals for
f ∗ and g∗ as we did for the Marshall copulas and prove
analoquous results:
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Singularities of RMM copulas

Lemma
1 If for some λ ∈ Df we have µ = 1

λ ∈ Im g∗ \ Dg , then

{(u, v); u ∈ Sλ, v = f ∗(µ)−1} ⊂ L̃0(f ,g).

2 If for some µ ∈ Dg we have λ = 1
µ ∈ Im f ∗ \ Df , then

{(u, v); u = g∗(λ)−1, v ∈ Sµ} ⊂ L̃0(f ,g).

3 If λµ = 1 for some λ ∈ Df and µ ∈ Dg , then

{(u,bg
µ); u ∈ Sλ} ∪ {(af

λ, v); v ∈ Sµ} ⊂ L̃0(f ,g).

4 The copula Cf ,g is not singular along either of the parts of
(1), (2), or (3).
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Singularities of RMM Copulas - 2

Theorem

For every interval M ∈Mg there exists an interval M̂ ∈Mf ,
and strictly decreasing bijective functions
χ : M̂ → M, ω : M → M̂, such that

1 χ and ω are inverses of each other,
2 The arc AM = {(u, χ(u)); u ∈ M̂} = {(ω(v), v); v ∈ M}

belongs to L̃0(f ,g).
The union ⋃

M∈Mg

AM

is the entire singularity locus of Cf ,g .
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Singularities of RMM Copulas - 3

Theorem

For any ν = (M̂,M), we have the density h of the arc Aν , where
1 under parametrization (u, χ(u)),u ∈ M̂,

h(u) = χ(u)

[
1− f ′(u)

f ∗(u)

]
;

2 under parametrization (ω(v), v), v ∈ M,

h(v) = ω(v)

[
1− g′(v)

g∗(v)

]
;

3 under parametrization (f ∗−1(τ−1),g∗−1(τ)), τ ∈ g∗(M),

h(τ) = τ−1g∗−1(τ)f ∗−1(τ−1).
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Singularities of RMM copulas - 4

Theorem (Kamnitui, Trutschnig, 2020)

The family of all RMM copulas with non-degenerated singular
component is dense in the set of all RMM copulas with respect
to d∞. The family of all absolutely continuous RMM copulas is
a compact, nowhere dense subset.
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Singularities of RMM copulas - 5
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Singularities of maxmin copulas
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