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Copulas for shock models

Definitions

@ A bivariate copula C(u, v) is a function C : [0, 1] — [0, 1]

such that:
@ C(u,0)=0=C(0,v), C(u,1) =u, C(1,v) = vforall
u,v e [0,1],

Q C(to, v2) + C(uy, vy) — C(U, v1) — C(uy, v2) > 0 for all
O<uyy<wm<tando<yy<wn <.
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Copulas for shock models

Definitions

@ A bivariate copula C(u, v) is a function C : [0, 1] — [0, 1]

such that:
@ C(u,0)=0=C(0,v), C(u,1) =u, C(1,v) = vforall
u,v e [0,1],

Q C(to, v2) + C(uy, vy) — C(U, v1) — C(uy, v2) > 0 for all
O<uyy<wm<tando<yy<wn <.
@ Let F be the set of all functions f : [0,1] — [0, 1] such that:
@ f(0)=0,f(1)=1,
@ £ is nondecreasing,

© function f*(u) = UG/ 0,1] — R is nonincreasing.
u
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Copulas for shock models

Marshall Copulas

Theorem (A. W. Marshall, 1996)
Suppose that f, g belong to F. Then the function

C(u,v) =min{ug(v), f(u) v} = uvmin{f*(u),g*(v)}

is a copula.
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Marshall Copulas

Theorem (A. W. Marshall, 1996)
Suppose that f, g belong to F. Then the function

C(u,v) =min{ug(v), f(u) v} = uvmin{f*(u),g*(v)}

is a copula.

@ A copula C described in the theorem is called a Marshall
copula, functions f and g are its generators.

T. Kosir Singular components of shock model copulas



Copulas for shock models

Marshall Copulas

Theorem (A. W. Marshall, 1996)
Suppose that f, g belong to F. Then the function

C(u,v) =min{ug(v), f(u) v} = uvmin{f*(u),g*(v)}

is a copula.

@ A copula C described in the theorem is called a Marshall
copula, functions f and g are its generators.

@ Given three independent shocks X, Y and Z suppose that
U= max{X,Z} and V = max{Y,Z}. Then the copula
connecting U and V is a Marshall copula:
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Copulas for shock models

Marshall’'s Shock Model, 1996

Theorem (A. W. Marshall, 1996)
Suppose C is a Marshall copula with generators f and g, and
H(x,y) = C(F(x), G(y)) for some distribution functions F and
G. Then the following are equivalent:
@ Random variables U and V with joint distribution function
H have a representation of the form U = max{X,Z} and
V =max{Y,Z}, where X, Y and Z are independent
random variables (representing shocks).
@ H has the form H(x, y) = Fx(x)F,(y)Fz(min{x,y}), where
Fx, Fy and Fz are distribution functions.
Q (F(x)) = g*(G(x)), i.e., G(x) = g*~ (f*(F(x)), where g*~
is left inverse of g*.
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Copulas for shock models

Marshall-Olkin Copulas, 1967

@ When X, Y and Z have Poisson distribution then the
copula corresponding to (U, V) is given by

C(u,v) = min{uv®, uPv}

for some a, 5 € [0,1].
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Copulas for shock models

Marshall-Olkin Copulas, 1967

@ When X, Y and Z have Poisson distribution then the
copula corresponding to (U, V) is given by

C(u,v) = min{uv®, uPv}

for some a, 5 € [0,1].

@ The model is motivated by several applications: in
medicine (e.g. cancer treatment), hydrology (floods
modelling), finance and economics, engineering, etc.
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Copulas for shock models

Maxmin Copulas

@ Suppose that ¢ is a nondecreasing function on [0, 1], such
that 1(0) = 0, (1) = 1, and ¢.(u) = ;=4 is
nonincreasing on (0, 1).

@ Write G for the set of all such functions .
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Copulas for shock models

Maxmin Copulas

@ Suppose that ¢ is a nondecreasing function on [0, 1], such
that 1(0) = 0, (1) = 1, and ¢.(u) = ;=4 is
nonincreasing on (0, 1).

@ Write G for the set of all such functions .

Theorem (M. Omladi¢, N. Ruzi¢, 2016)

Suppose that o € F andy € G. Then the function

C(u,v) = uv +min{u(1 —v), (p(u) = u)(v =¥ (v))}

is a copula.

@ A copula C described in the theorem is called a maxmin
copula, functions ¢ and ¢ are its generators.
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Copulas for shock models

Maxmin Shock Model

Theorem (M. Omladi¢, N. Ruzi¢, 2016)

Suppose C is a maxmin copula with generators p and 1, and

H(x,y) = C(F(x), G(y)) for some distribution functions F and

G. Then the following are equivalent:

@ Random variables U and V with joint distribution function
H have a representation of the form U = max{X,Z} and
V =min{Y,Z}, where X, Y and Z are independent
random variables.

Q ¢(F(x)) (G(x) — ¥(G(x)) = F(x) (1 = »(G(x)), i.e.,
G(x) = ¢ (¢*(F(x)), where v is left inverse of i..
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23rd IWMS, Ljubljana 2014 (pHoTos BY PETER LEGISA)

Figure: Ingram Olkin and Nina Ruzi¢

Figure: Ingram Olkin
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Copulas for shock models

Reflected maxmin copulas

@ We denote by F' the set of all functions £ : [0,1] — [0, 1]
such that x + f(x) belong to F.

Theorem (TK, M. Omladi¢, 2020)

Suppose that o and 1) are the generators of a maxmin copula
C. Then

C?2(u,v) = max{0, uv — f(u)g(v)},

where f(u) = p(u) —uandg(v) =1—v —¢(1 —v), isits
reflected copula. Generators f and g of C?2 belong to F'.
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Reflected maxmin copulas

@ We denote by F' the set of all functions £ : [0,1] — [0, 1]
such that x + f(x) belong to F.

Theorem (TK, M. Omladi¢, 2020)

Suppose that o and 1) are the generators of a maxmin copula
C. Then

C?2(u,v) = max{0, uv — f(u)g(v)},

where f(u) = p(u) —uandg(v) =1—v —¢(1 —v), isits
reflected copula. Generators f and g of C?2 belong to F'.

@ C72is a reflected maxmin copula (or an RMM copula).
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Reflected maxmin copulas

@ We denote by F' the set of all functions £ : [0,1] — [0, 1]
such that x + f(x) belong to F.

Theorem (TK, M. Omladi¢, 2020)

Suppose that o and 1) are the generators of a maxmin copula
C. Then

C?2(u,v) = max{0, uv — f(u)g(v)},

where f(u) = p(u) —uandg(v) =1—v —¢(1 —v), isits
reflected copula. Generators f and g of C?2 belong to F'.

@ C72is a reflected maxmin copula (or an RMM copula).

@ RMM copulas are nicer to deal with. They are symmetric if
f = g, which is not the case for maxmin copulas. With
reflection operation it is easy to transfer properties from
RMM to maxmin copulas.
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Marshall Copulas
RMM Copulas
Maxmin Copulas

Singularities of shock model copulas

@ singularities of shock model copulas
@ Marshall Copulas
@ RMM Copulas
@ Maxmin Copulas
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Marshall Copulas
RMM Copulas

Singularities of shock model copulas .
9 P Maxmin Copulas

Constancy segments

@ Consider a Marshall copula C(u, v) = max{ug(v), f(u)v}.
Then C is absolutely continuous everywhere except
possibly on the set

Lo(f,9) = {(u, )| f(u)v = ug(v)} = {(u, V)| F*(u) = g"(v)}-
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ngutart P Maxmin Copulas

Constancy segments

@ Consider a Marshall copula C(u, v) = max{ug(v), f(u)v}.
Then C is absolutely continuous everywhere except
possibly on the set

Lo(f,9) = {(u, )| f(u)v = ug(v)} = {(u, V)| F*(u) = g"(v)}-

@ Callasegment S = [a,b] C [0,1],a < b, a constancy
segment (for f*) if for all u, v’ € [a, b] we have
f*(u) = f*(uv"). We assume that every constancy segment
is maximal in the sense that for all u € (0, 1] \ S we have
f*(u) # *(S).

@ If f*(S) = A for some \ € [0, o0) we denote this segment by
S{ = [a}, b{]. The set of all constancy segments of the
function f* will be denoted by Z; and the set of all possible
A’s such that A = f*(S), for some S € Z;, by Dy.
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RMM Copulas

Singularities of shock model copulas .
9 P Maxmin Copulas

Monotonicity segments

@ Aninterval (a, b) will be called a monotonicity interval for f*
ifforallu, v’ € (a,b),u < U, we have f*(u) > f*(u'). Again,
we assume that every monotonicity interval is maximal.

@ The set of all monotonicity intervals of the function 7* will
be denoted by M.
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Singularities of shock model copulas
9 P Maxmin Copulas

Monotonicity segments

@ Aninterval (a, b) will be called a monotonicity interval for f*
if forall u, v’ € (a,b),u < U, we have f*(u) > f*(u'). Again,
we assume that every monotonicity interval is maximal.

@ The set of all monotonicity intervals of the function 7* will
be denoted by M.

If for either f or g the corresponding set M; or Mg is empty,
then Cs 4 = N. If Cy 4 # N, then both sets My and Mgy are
nonempty.
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Singularities of Marshall copulas

Lemma

@ /ffor some )\ € Df we have \ € Im g* \ Dy, then

{(u,v)iue Sy,v=g""(\}C L(f,9).
@ If for some p € Dy we have 1 € Im f* \ Dy, then
{(u,v)iu=f""(n),v e S} c L(f.g).
©Q If\ € DN Dy, then
{(u,b9);u e S\}u{(d},v);ve S} c Lf,g).

© The copula Cy 4 is not singular along either of the parts of

(1), (2), or (3).
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Singularities of Marshall Copulas - 2

Singularities of shock model copulas

Theorem

For every interval M € Mg there exists an interval Me M fs
and strictly increasing bijective functions
X : M—>M w: M—>M such that

@  andw are inverses of each other,

Q@ The arc Ay = {(u, x(u)); u € M} = {(w(v), v); v € M}
belongs to Ly(f, g).

The union

U A

MeMyg

is the entire singularity locus of Cg .
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Singularities of Marshall Copulas - 3

Foranyv = (IW, M), we have the density h of the arc A,, where
@ under parametrization (u, x(u)),u € M,

h(u) = x(u) [f*(u) — f'(u)];

@ under parametrization (w(v), v),v € M,
h(v) =w(v) [g"(v) = g'(v)]

@ under parametrization (f*~ (1), g* (7)), € g*(M),

x—1 T x—1 7_71
oy 9O

T
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ingularities of shock model copulas
Singularit P Maxmin Copulas

Singularities of Marshall Copulas - 4

o / /
e o

/ %
Figure: Figure: Figure:
Connected Disconnected Disconnected
singular singular symmetric
component component case
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Singularities of shock model copulas

Nonsingular RMM copulas

@ Now we denote by C;, RMM copula
Crg(u,v) = max{0,uv — f(u)g(v)}.

Theorem (Kamnitui, Trutschnig, 2020)

An RMM copula Cy 4 is nonsingular if and only if uv > f(u)g(v)
forallu,v € [0.1].
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Singularities of shock model copulas

Nonsingular RMM copulas

@ Now we denote by C;, RMM copula
Crg(u,v) = max{0,uv — f(u)g(v)}.

Theorem (Kamnitui, Trutschnig, 2020)

An RMM copula Cy 4 is nonsingular if and only if uv > f(u)g(v)
forallu,v € [0.1].

@ RMM copula Cs 4 is absolutely continuous everywhere
except possibly on the set

Lo(f,9) = {(u, v)| uv = (W)g(v)} = {(u, V)| F*(u) = g"(v) "}
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Singularities of shock model copulas

Nonsingular RMM copulas

@ Now we denote by C;, RMM copula
Crg(u,v) = max{0,uv — f(u)g(v)}.

Theorem (Kamnitui, Trutschnig, 2020)

An RMM copula Cy 4 is nonsingular if and only if uv > f(u)g(v)
forallu,v € [0.1].

@ RMM copula Cs 4 is absolutely continuous everywhere
except possibly on the set

Lo(f,9) = {(u, v)| uv = (W)g(v)} = {(u, V)| F*(u) = g"(v) "}

@ We consider the constancy and monotonicity intervals for
f* and g* as we did for the Marshall copulas and prove
analoquous results:
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Singularities of RMM copulas

Lemma

@ /ffor some )\ € Df we have i = } € Img* \ Dy, then
{(u,v)iue Syv="F(u)"} c Lo, 9)-
Q Iffor some i € Dg we have X = 1. € Im f*\ Dy, then
{(uv)iu=g' (V)" ve S} cLof,g).
@ /fApu =1 forsome X\ € Dy and ;1 € Dy, then
{(u,b9);u e S\yu{(al,v)ive S.} c Lo(f,g).

© The copula Cy 4 is not singular along either of the parts of

(1), (2), or (3).

T. Kosir Singular components of shock model copulas



Marshall Copulas
RMM Copulas

i iti S
Singularities of shock model copula e

Singularities of RMM Copulas - 2

Theorem

For every interval M ¢ Mg there exists an interval M e M f
and strictly decreasing bijective functions
xX:M—M,w:M— M, such that

@ \ and w are inverses of each other,
@ The arc Ay = {(u, x(u));u € M} = {(w(v),v);v € M}
belongs to Ly(f, g).
The union

U Au

MeMg

is the entire singularity locus of Cg 4.
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Singularities of RMM Copulas - 3

Foranyv = (I\7I, M), we have the density h of the arc A,, where
@ under parametrization (u, x(u)), u € M,

h(u) = v(u) [1 - :((Z))] :

@ under parametrization (w(v), v),v € M,

)

h(v) = w(v) [1 —

@ under parametrization (f*~' (1), 9* (7)), T € g*(M),

h(r)=7"'g" "= ").
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RMM Copulas

Singularities of shock model copulas .
9 P Maxmin Copulas

Singularities of RMM copulas - 4

Theorem (Kamnitui, Trutschnig, 2020)

The family of all RMM copulas with non-degenerated singular
component is dense in the set of all RMM copulas with respect
to d.,. The family of all absolutely continuous RMM copulas is
a compact, nowhere dense subset.
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Singularities of RMM copulas - 5
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