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The setup

@ F aninfinite field, B € M,(F) a nilpotent matrix,
@ Ng={Ae€ My(F); A" =0, AB = BA} the nilpotent commutator of
B.

@ P the set of all partitions of all natural numbers (including the
empty partition): P = (p1,p2,...,px) € P Wwhere k € N, p; > pj. 1
fori=1,2,...,k—1and p, > 0.

@ Q the subset of all Rogers-Ramanujan (or super-distinct)
partitions, i.e., Q = (g1, @2, . .., gm) € Q if and only if Z/-”; g=n
and g, — qj;1 >2fori=1,2,..., m—1,

@ P=(p1,p2,...,px) € Pis almost-rectangularif p1 — px < 1.

@ The Jordan type of B is the partition P € P that determines the
Jordan canonical structure of B.
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Introducingthe map ® : P — P

@ Mg is anirreducible variety (Basili 2003),

@ Thus, there is a nilpotent orbit (with respect to GL,(F)-action on
M, (F) ) such that its intersection with N is Zariski dense in Np.

@ So, we have a map © : P — P such that ©(P) is the partition
corresponding to the dense orbit in the nilpotent commutator Ag,
where B is of Jordan type P.

@ Moreover, ©(P) is the dominant partition of N, i.e., it is the
maximal partition of any element of /g in the dominance order on
P.
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The dense orbit map ©

The history of results on ©

@ The number of parts of ©(P) is equal to the smallest number of
almost rectangular subpartitions needed to cover P (Basili 2000),

@ ©(P) € Qforeach P € P (Basili, larrobino 2008),
@ Description of the largest part of ©(P) (Oblak 2008).

@ The extension of D to the Lie algebra setup and description of its
image for simple Lie algebras (Panyushev 2008).

@ A conjecture on recursive process to construct ©(P) (Oblak 2008).

@ D is idempotent map, i.e., % = D (K., Oblak 2009). So,
D:P— Qand D(Q) = Qfor Q € Q. Partitions in Q are called
stable partitions.

@ The Oblak process produces lower bound for ©(P) in the
dominance order for partitions (larrobino, Khatami 2013).

@ Description of the smallest part of ®(P) (Khatami 2014).
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The dense orbit map ©

The history of results on ©

@ The Box conjecture on the form od ©~'(Q) for a given Q € Q
(larrobino, Khatami, Van Steirtenghem, Zhao, 2014).

@ Proof of the Table Theorem for Q € Q with two parts Q = (g1, @2)
(larrobino, Khatami, Van Steirtenghem, Zhao, 2014).

@ Proof that the Oblak process gives ©(P) (Basili 2022).
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The dense orbit map ©

The statement of the Box Conjecture

Conjecture (larrobino et al, 2014)

Given a stable partition Q = (g1, @, - - ., Qk) € Q, the elements of
©~1(Q) can be arranged in a box (i.e. an array) of sizes

Ok % (Qk—1—Qk — 1) X (G2 — Gk—1 — 1) X --- x (q1 — G2 — 1)
such that the partition in the (i, b, . . ., ix)-th position has exactly

K
> i parts.
=
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The Burge Correspondence

@ The Burge Correspondence
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Setup

@ P=(p1,...,px) € P apartition, p; the parts of P.

@ The sizeof Pis |P| = ZL pi, the length of P is the number of
parts, ¢(P) = k.

@ The empty partition is the unique element ¢ € P of size (and
length) 0.

@ The 2-measure of P, denoted p»(P), is the maximum length of a
super-distinct subpartition of P, or equivalently, the minimal
number of almost rectangular partitions to cover P.
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Setup

@ P=(p1,...,px) € P apartition, p; the parts of P.

@ The sizeof Pis |P| = ZL pi, the length of P is the number of
parts, ¢(P) = k.

@ The empty partition is the unique element ¢ € P of size (and
length) 0.

@ The 2-measure of P, denoted p»(P), is the maximum length of a
super-distinct subpartition of P, or equivalently, the minimal
number of almost rectangular partitions to cover P.

Example |
Partition P = (8,7,4,4,3,2,2,1) has |P| = 31, /(P) = 8. It contains

the subpartition (7,4,1) € Q of length 3 and none longer, so

p2(P) = 3.
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The Burge Correspondence

Frequency representation of partitions

@ A partition can equivalently be regarded as unordered multiset of
positive integers. By [1,2%...] we denote the partition whose
parts consist of f; copies of 1, f, copies of 2, etc.
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The Burge Correspondence

Frequency representation of partitions

@ A partition can equivalently be regarded as unordered multiset of
positive integers. By [1,2%...] we denote the partition whose
parts consist of f; copies of 1, f, copies of 2, etc.

@ Let F be the set of all finitely supported sequences of nonnegative
integers. We work with partitions via their “frequency”
representations in F given by the trivial correspondence
[1f12f2 ] x4 (f1,f2,...).

@ This identification of 7 and P is used throughout. We write f(P)
for the frequency sequence of P € P and P(f) for the partition
corresponding to f € F.
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The Burge Correspondence

Frequency representation of partitions

@ A partition can equivalently be regarded as unordered multiset of
positive integers. By [1,2%...] we denote the partition whose
parts consist of f; copies of 1, f, copies of 2, etc.

@ Let F be the set of all finitely supported sequences of nonnegative
integers. We work with partitions via their “frequency”
representations in F given by the trivial correspondence
[1f12f2 ] x4 (f1,f2,...).

@ This identification of 7 and P is used throughout. We write f(P)
for the frequency sequence of P € P and P(f) for the partition
corresponding to f € F.

Example

Partition P = (8,7,4,4,3,2,2,1) has multiset representation
[1,22,3,42,7,8] and frequency representation (1,2,1,2,0,0,1,1).

We omit the trailing zeros and use fy = 0 if needed.
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The Burge Correspondence

Notation for frequencies

@ Given f € F. The supportof f is denoted S(f) = {i > 1 : f; # 0}.
The size and length on P are extended to F by

=[P = _if

1
and

U(f) = L(P(f)) = Z f.

Also, we let pp(f) = p2(P(f)). This is the maximum size of a
subset of S(f) that contains no consecutive pairs {i,i + 1}.
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Notation for frequencies

@ Given f € F. The supportof f is denoted S(f) = {i > 1 : f; # 0}.
The size and length on P are extended to F by

=[P = _if

1
and

U(f) = L(P(f)) = Z f.

Also, we let pp(f) = p2(P(f)). This is the maximum size of a
subset of S(f) that contains no consecutive pairs {i,i + 1}.

Example

Suppose f = (0,2,3,1,0,0,1,0,1). Then its support is
S(f) ={2,3,4,7,9}, the size is |f| =, and the length is ¢(f) = 7 and the
2-measure is ux(f) = 4.

- v = = o

A proof of the Box conjecture October 24, 2024 12/34



The Burge Correspondence

Notation for frequencies

@ Given f € F. The supportof f is denoted S(f) = {i > 1 : f; # 0}.
The size and length on P are extended to F by

=[P = _if

]

and

U(f) = L(P(f)) = Z f.

Also, we let pp(f) = p2(P(f)). This is the maximum size of a
subset of S(f) that contains no consecutive pairs {i,i + 1}.

Example

Suppose f = (0,2,3,1,0,0,1,0,1). Then its support is
S(f) ={2,3,4,7,9}, the size is |f| =, and the length is ¢(f) = 7 and the
2-measure is ux(f) = 4.

Here the corresponding multiset is P(f) = [22,3%,4,7,9].

= = o
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Spreads, left and right pairings

@ A spread of f is a maximal interval [/, j] C S(f). A spread
[i,i] = {i} of size 1 is said to be trivial.
@ We define

L(f) = J{ii+2.....i+ 2[5 ]}
R(f) = JUj—2.....0— 215},
where the unions run over all spreads [/, j] of f.
@ Observe that they are of equal size, namely

IL(F)] = [R(F)] = pa(f) = =51,

Example

Let f=(2,1,0,3,2,2,0,0,1). Then P = P(f) = [9,62,52,4% 2, 12],
and |f| = |P| =47 and ¢(f) = ¢(P) = 11. The spreads of f are {1,2},
{4,5,6} and {9}, so L(f) = {1,4,6,9}, R(f) = {2,4,6,9} and

pip(f) = po(P) = 4.
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Left and right pairings

@ The elements iy < ip < ... < ip of L(f) specify the pairs (f,, f;, +1),
.., (fi,, fi+1) that result from parsing f from left-to-right and
grouping consecutive entries f;, fi,1 with f; > 0. We call these the
forward pairs of f.

@ The elements j; > j> > ... > jy, of R(f) determine the backward
pairs (f,_1, %), ..., (f,,—1, f;,) obtained by parsing f from
right-to-left and grouping consecutive entries f, fi_4 with f; > 0.
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The Burge Correspondence

Left and right pairings — example

Example |
Forf=(2,2,1,3,1,0,4,0,0,2,1) we have L(f) = {1,3,5,7,10} and
R(f) ={1,3,5,7,11}. The forward/backward pairs of f are indicated
with arrows pointed in the direction of parsing.

e e T —3 L~ — k— —
0(2,2,1,3,1,0,4,0,0,2,1) 0(2,2,1,3,1,0,4,0,0,2,1)
forward backward

The fictional entry f = 0 has been prepended in red. Observe that
every nonzero entry of f appears in one forward and one backward
pair, while all unpaired entries of f are 0.

Observe that L(f) and R(f) are different only in parts corresponding to
spreads of even lengths, while forward/backward pairs are equal for
spreads of even lengths and distinct for spreads of odd lenghts.
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The Burge Correspondence

Burge correspondence - the setup

o letA={feF:1¢R(f)}andB={fe F : 1eR(f)}.
@ Observe that these sets partition 7: AUB = F and AN B = .

@ Also, f € B < (fy, f;) is a backward pair <= 1 is contained in
a spread of f of odd size.
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@ Observe that these sets partition 7: AUB = F and AN B = .

@ Also, f € B < (fy, f;) is a backward pair <= 1 is contained in
a spread of f of odd size.

@ Now, introduce two central transformations o« : ¥ — A and
B F — B, along with a mapping 0 : 7 — F that undoes them.
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The Burge Correspondence

Burge correspondence - the setup

o letA={feF:1¢R(f)}andB={fe F : 1eR(f)}.
@ Observe that these sets partition 7: AUB = F and AN B = .

@ Also, f € B < (fy, f;) is a backward pair <= 1 is contained in
a spread of f of odd size.

@ Now, introduce two central transformations o« : ¥ — A and
B F — B, along with a mapping 0 : 7 — F that undoes them.
@ Each of these acts as a sequence of raising/lowering operators on
the forward or backward pairs of f.
e «f(f) is obtained from f by replacing (f;, fi11) with (i — 1, fiyq + 1) for
each i € L(f).
o B(f) = (f+1,a(h,f,...)
e O(f) is obtained from f by replacing (f_1, f;) with (f_y +1,f — 1) for
each j € R(f), where in the case j = 1 only f; is reduced by 1 (i.e.,
the fictional f, is ignored).
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The Burge Correspondence

Burge transformations — comments

@ In effect, a scans f from left-to-right and “promotes” each forward
pair (f;, fiy1) to (fi =1, fiq +1).

@ « transforms the forward pairs of f into the backward pairs of a(f).

@ Thatis, i € L(f) < i+ 1 € R(«(f)).

@ In particular, for any f € F we have 1 ¢ R(a(f)) and hence
1 € R(B(f)). Thus, the claim that « and g map F into A and 5,
respectively, follows.

@ Moreover, f can be recovered from either a(f) or 5(f) by scanning
from right-to-left and “demoting” backward pairs. This is exactly
the action of 0.

@ « and  are bijections from F to A and B, respectively, while
d:F — Fis 2-to-1 and restricts to o' on A and 3~ on B.
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The Burge Correspondence

Burge transformations — example

Example
Letf=(2,2,1,3,1,0,4,0,0,2,1) as in the previous example. Then
_— > 3 3 —
a(fy=a(2,2,1,3,1,0,4,0,0,2,1) = (1,3,0,4,0,1,3,1,0,1,2)
— —3 —3
gl =(2+1,0(2,1,3,1,0,4,0,0,2,1)) =(3,1,2,2,2,0,3,1,0,1,2)
M~ ok~ e~ —

a(f)=0(2,2,1,3,1,0,4,0,0,2,1) = (1,3,0,4,0,1,3,0,0,3,0).

We have 0(a(f)) = 9(5(f)) = B(9(f)) = f. Note, however, that
a(o(f)) = (0,4,0,3,1,0,4,0,0,2,1) # f. This inequality is due to the
factthat f ¢ A (smce R(f)).
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The Burge Correspondence

The Burge chain and the Burge code

@ Clearly we have 0 < |0(f)| < |f| for all f # €.
@ Therefore, applying 0 repeatedly to any f € F results in 9Xf = ¢ for
a positive integer k > 1.

Definition

We define the Burge chain of f € F to be the sequence

0f, d'f,02f, ..., 0Ff, where k is the smallest positive integer such that
OKf = ¢. The length of this sequence (namely k + 1) is the Burge
length of f. The Burge code of f is the binary word

Q(f) = wiwo - - - wis1 € {a, B}* defined by

e if 0-1f € A,
"B ifo-feB.

Here {«, 3}* is the free monoid on two symbols « and g.

™ = = = = og

A proof of the Box conjecture October 24, 2024 19/34

V.




Burge bijection ©

@ f = ¢ has trivial Burge chain ¢ and Burge code Q(¢) = «,
@ Burge codes of all other sequences f are of length at least 2.
@ lfof =ecthenf=corf=(1).

@ The chain of every f # ¢ ends with 9~1f = (1) € Band
okf = ¢ € A. Thus the Burge code Q(f) for f # ¢ ends with ... a.

@ Since 9|4 = o' and 9|z = 7", the definition of Q(f) = wy - - wp
ensures that 0'~1f = (w; 0 9)(0"~'f) = w;(d'f) for all i.
@ Therefore, we reconstruct f from Q(f) by applying itto e

f=wi(8'F) = wiwa(?F) = wywowz(83f) = - -+ = (wiws - - - wp)(e).
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Burge bijection ©

@ So,
f=Q(f)(e).

@ The products of w; are to be interpreted as functional composition
in the usual right-to-left order.

@ That is, the right-to-left reading of Q(f) specifies the unique
manner by which f can be “built” from ¢ via iterative applications of
« and g, beginning with a single 'non-effective’ application of «:
Qg = €.

Proposition |
The Burge encoding f — Q(f) is a one-one correspondence between
F and the set W = (a*3)*« of all finite words on {«, 5} that end with a

singleton . |
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Example of Burge correspondence

Example

Let f =(1,2,1,0,1). The Burge chain of f is displayed below, along
with the values of w;. The Burge code is Q(f) = fafaaafBfao.

i|o'f Wij41
0|(1,2,1,0,1) | B
11(0,3,0,1) Qo
20 (1,2,1) I5;
31(0,3) o
41(1,2) «
5](2,1) «
6 (3) B
71(2) B
8 (1) B
9|¢ «

£
>

= > =
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The Burge Correspondence

Example of Burge correspondence — 2

Example
Given the word w = affafa € W we build its corresponding partition
by iterating o and 3 as follows:

eSS 0,15 (1,0,1) 4 (2,0,0,1) % (1,1,0,0, 1).

Thus w is the Burge code of f = (1,1,0,0,1). Here P(f) =[1,2,5] is a
partition with |P(f)| = 8, 4(P(f)) = 3 and p»(P(f)) = 2.
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The Burge Correspondence

Descent sets, descent numbers and major indices

Lemma
For any f € F we have:

Q [0f] = |f| — na(f)

Wfy—1 iffeB
0(0f) =
@ o {f(f) iffe A
puo(f)—1 iffe Bandof e A
of) =
Q 42(90) { pa(f) otherwise.
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The Burge Correspondence

Descent sets, descent numbers and major indices

Lemma
For any f € F we have:

Q [0f] = |f| — na(f)

Wfy—1 iffeB
0(0f) =
@ o {f(f) iffe A
pe(fy—1 iff e Bandof € A
of) =
Q 42(90) { pa(f) otherwise.

@ Forw = wyws - -wp € {a, }* we define the descent set of w,

denoted Des(w), as the set of all indices i for which wjw; 1 = Sa.
@ So, Des(w) records the positions of descents in w relative to the

ordering 5 > «. These positions differ pairwise by at least 2.
@ The descent number and major index of w are defined by
des(w) = [Des(w)| and maj(w) := 3 _jcpes(.) /- r€SPECtively.
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The Burge Correspondence

Descent sets, descent numbers and major indices — 2

Proposition

Letf € F and letw = Q(f). Then:
@ /(f) = #occurrences of 3 inw
Q || = maj(w)

©Q 1o(f) = des(w) = #occurrences of fa in w

Example

In the example before we saw that f = (1,2,1,0, 1) has Burge code
w = papacafBpa. Note that w contains 5 = ¢(f) copies of 3, and we
have Des(w) = {1, 3,9}, maj(w) = 13 = |f| and des(w) = 3 = ua(f).
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The Burge Correspondence

Burge correspondence

@ We have a three-way bijective correspondence between partitions,
frequency vectors, and binary words, namely

frequency f Burge code Q

P F W.

@ All notation defined previously for elements of 7 and W is
extended to P through 7(-) and Q(-).

@ We define 9P = P(9f(P)), 9'P = P(d'f(P)), Q(P) = Q(f(P)) and
Des(P) = Des(Q2(P)).

@ If Des(P) = {ij,i2,...,im} where iy < o < --- < iy then
fj— i1 = 2forall j, and >, jj = maj(Q(P)) = |P|.

@ Thus Des(P) can be regarded as a super-distinct partition of size
Pl

@ If Q(P) = wiwz - - - wp then Q(OP) = ws - - - wp, S0 we have
Des(OP) ={iy — 1, —1,...,im— 1} \ {0}.
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The Burge Correspondence

Example

Example
i|oif Q(o'f) o'P Des(0'P)
0|(1,1,0,1,0,0,1) | afappapa | [7,4,2,1] | [7,5,2]
1/(2,0,1,0,0,1) | BaBBaBa |[6,3,1%] |[6,4,1]
21((1,1,0,0,1) afBafa [5,2,1] [5,3]
31](2,0,0,1) BBafa [4,12] [4,2]
41(1,0,1) Bafo [3,1] (3, 1]
5/(0,1) afa [2] [2]
61 (1) Ba [1] (1]
7 e « € €

A proof of the Box conjecture
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The Burge Correspondence

Characterisation of the descent map

For a partition P, let P — 1 be the reduced partition obtained by

Definition
subtracting 1 from each part of P and eliminating any resulting zeros. ‘

For example: P = [6, 43,24 1%] = [5, 33, 14].

The descent map P — Des(P) is a size-preserving function from P to

Theorem
Q satisfying Des(0P) = Des(P) — 1. It is the unique such function. ‘
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The Box Theorem

e The Box Theorem
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The Box Theorem

Invariant subspaces and the descent map

Based on Shayman’s description of the variety of invariant subspace of
a nilpotent matrix from 1982 and 1986 we prove the following results:
Proposition

Each invariant subspace of B is equal to the image of an element of
the commutator of Cg of B.

Theorem

Suppose that B is a nilpotent matrix and that P = P(B) is its Jordan
type. Suppose that A is a generic nilpotent matrix commuting with B
and that W = Im A is its image. Then the Jordan type of the restriction
B|w is given by OP.
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D = Des

Corollary

D(P) = Des(P).

Proof.

Theorem gives D(0P) = ©(P) — 1 since the Jordan type of the
restriction of a nilpotent matrix of Jordan type T to its own image is
equal to T — 1. Obviously |D(P)| = |P|, so the uniqueness result
identifies © as the descent map. O
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The Box Theorem

The Box Theorem

Corollary

Suppose P € P is the Jordan type of B and Q(P) = w1 - - - wp its Burge
code. Then®(P) =(q1,Q2,...,qk), Wwhere g1 > g2 > --- > qi IS the
complete list of indices q for which wq = 8 and wg1 = a.

Theorem

LetQ=1(q1,Q,...,9«) € Q and set 61 = gx and

0i = Qk—ijt1 — Qk—jro — 1 for2 < i< k. Then ®_1(Q) is of size

0195 - - - Ok and consists of precisely those partitions whose Burge code
is of the form

a51—i1 511 a&g—i2+15i2a63—i3+15i3 e adk_ik+1ﬁika, (1)

for (iy,...,ik) € [1,01] x [1,02] x --- x [1,0x]. The partition determined
by (1) has exactly Z/- i (= the number of 3s) parts.
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The Box Theorem

(iy, i, i) | code w partition Q~"(w) | # parts
(1,1,1) | acfacafaafa | [10,7,3] 3
(2,1,1) | afpacafacfa | [10,7,2,1] 4
(3,1,1) | BBBacaBacBa | [10,7,19] 5
(1,2,1) | aaBaapaafa | [10,5,3,2] 4
(2,2,1) | aBBaafBacfa | [10,4,3,2,1] 5
(3,2,1) | BBBaaBBacBa | [10,4,3,13] 6
(1,3,1) | aaBaBBBacBa | [10,5,22 1] 5
(2,3,1) | aBpaBBBacBa | [10,5,2,13] 6
(3,3,1) | BBBaBBBaaBa | [10,5,19] 7
(1,1,2) | aaBacaBaBpa | [9,5,3?] 4
(2,1,2) | afpacaBaBBa | [9,4%,2,1] 5
(3,1,2) | BBBaaafapfa | [9,4%, 17 6
(1,2,2) | aaBaaBBaBpa | [9,5,2% 5
(2,2,2) | aBBaapBaBBa | [9,4,3,2,12] 6
(3,2,2) | BBBaafBabBa | [9,4,3,17] 7
(1,3,2) | aaBaBBBaBBa | [9,5,22,1?] 6
(2,3,2) | aBBaBBBaBBa | [9,5,2,14] 7
(3,8,2) | BBBaBBBaBBa | [9,5,19 8

A proof of the Box conjecture

October 24, 2024 33/34



The Box Theorem

Further comments

@ The Box Theorem holds over all infinite fields.

o If we define ©(P) to be the maximal partition of Az in the
dominance order then the Box Theorem holds over any field.

@ The new definition of ®(P) is not field dependent as is the case
for general pairs of partitions for commuting pairs of nilpotent
matrices (a result by Britnell and Wildon, 2011).

@ Using the Burge correspondence we provide also another proof of
Oblak process and obtain another process to build ©(P).

@ The Burge process is using P — 9P map. At each step each
almost-rectangular part of P is shortened by 1.
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