A proof of the Box Conjecture for commuting nilpotent matrices

Tomaž Košir

Faculty of Mathematics and Physics University of Ljubljana

Seminar for Algebra and Functional Analysis. October 24, 2024

JOINT WORK WITH JOHN IRVING AND MITJA MASTNAK.

Contents

- The dense orbit map $\mathfrak D$
- 2 The Burge Correspondence
- The Box Theorem

The dense orbit map $\mathfrak D$

2 The Burge Correspondence

The Box Theorem

The setup

- F an infinite field, $B \in M_n(F)$ a nilpotent matrix,
- $\mathcal{N}_B = \{A \in M_n(F); A^n = 0, AB = BA\}$ the nilpotent commutator of B.
- \mathcal{P} the set of all partitions of all natural numbers (including the empty partition): $P = (p_1, p_2, \dots, p_k) \in \mathcal{P}$ where $k \in \mathbb{N}$, $p_i \ge p_{i+1}$ for $i = 1, 2, \dots, k-1$ and $p_k > 0$.
- $\mathcal Q$ the subset of all *Rogers-Ramanujan* (or *super-distinct*) partitions, i.e., $\mathcal Q=(q_1,q_2,\ldots,q_m)\in\mathcal Q$ if and only if $\sum_{j=1}^m q_j=n$ and $q_i-q_{i+1}\geq 2$ for $i=1,2,\ldots,m-1$,
- $P = (p_1, p_2, \dots, p_k) \in \mathcal{P}$ is almost-rectangular if $p_1 p_k \le 1$.
- The *Jordan type* of *B* is the partition $P \in \mathcal{P}$ that determines the Jordan canonical structure of *B*.

Introducing the map $\mathfrak{D}: \mathcal{P} \to \mathcal{P}$

- \mathcal{N}_B is an irreducible variety (Basili 2003),
- Thus, there is a nilpotent orbit (with respect to $GL_n(F)$ -action on $M_n(F)$) such that its intersection with \mathcal{N}_B is Zariski dense in \mathcal{N}_B .
- So, we have a map $\mathfrak{D}: \mathcal{P} \to \mathcal{P}$ such that $\mathfrak{D}(P)$ is the partition corresponding to the *dense orbit* in the nilpotent commutator \mathcal{N}_B , where B is of Jordan type P.
- Moreover, $\mathfrak{D}(P)$ is the *dominant partition* of \mathcal{N}_B , i.e., it is the maximal partition of any element of \mathcal{N}_B in the dominance order on \mathcal{P} .

The history of results on $\mathfrak D$

- The number of parts of $\mathfrak{D}(P)$ is equal to the smallest number of almost rectangular subpartitions needed to cover P (Basili 2000),
- $\mathfrak{D}(P) \in \mathcal{Q}$ for each $P \in \mathcal{P}$ (Basili, Iarrobino 2008),
- Description of the largest part of $\mathfrak{D}(P)$ (Oblak 2008).
- The extension of D to the Lie algebra setup and description of its image for simple Lie algebras (Panyushev 2008).
- A conjecture on recursive process to construct $\mathfrak{D}(P)$ (Oblak 2008).
- $\mathfrak D$ is idempotent map, i.e., $\mathfrak D^2=\mathfrak D$ (K., Oblak 2009). So, $\mathfrak D:\mathcal P\to\mathcal Q$ and $\mathfrak D(Q)=Q$ for $Q\in\mathcal Q$. Partitions in $\mathcal Q$ are called *stable* partitions.
- The Oblak process produces lower bound for $\mathfrak{D}(P)$ in the dominance order for partitions (larrobino, Khatami 2013).
- Description of the smallest part of $\mathfrak{D}(P)$ (Khatami 2014).

The history of results on $\mathfrak D$

- The Box conjecture on the form od $\mathfrak{D}^{-1}(Q)$ for a given $Q \in \mathcal{Q}$ (larrobino, Khatami, Van Steirtenghem, Zhao, 2014).
- Proof of the Table Theorem for $Q \in \mathcal{Q}$ with two parts $Q = (q_1, q_2)$ (larrobino, Khatami, Van Steirtenghem, Zhao, 2014).
- Proof that the Oblak process gives $\mathfrak{D}(P)$ (Basili 2022).

The statement of the Box Conjecture

Conjecture (larrobino et al, 2014)

```
Given a stable partition Q=(q_1,q_2,\ldots,q_k)\in\mathcal{Q}, the elements of \mathfrak{D}^{-1}(Q) can be arranged in a box (i.e. an array) of sizes q_k\times(q_{k-1}-q_k-1)\times(q_{k-2}-q_{k-1}-1)\times\cdots\times(q_1-q_2-1) such that the partition in the (i_1,i_2,\ldots,i_k)-th position has exactly \sum_{k=1}^{k} i_j parts.
```

 $lue{1}$ The dense orbit map ${\mathfrak D}$

2 The Burge Correspondence

The Box Theorem

Setup

- $P = (p_1, ..., p_k) \in \mathcal{P}$ a partition, p_i the parts of P.
- The size of P is $|P| = \sum_{i=1}^{k} p_i$, the length of P is the number of parts, $\ell(P) = k$.
- The *empty partition* is the unique element $\varepsilon \in \mathcal{P}$ of size (and length) 0.
- The 2-measure of P, denoted $\mu_2(P)$, is the maximum length of a super-distinct subpartition of P, or equivalently, the minimal number of almost rectangular partitions to cover P.

Setup

- $P = (p_1, \dots, p_k) \in \mathcal{P}$ a partition, p_i the *parts* of P.
- The size of P is $|P| = \sum_{i=1}^{k} p_i$, the length of P is the number of parts, $\ell(P) = k$.
- The *empty partition* is the unique element $\varepsilon \in \mathcal{P}$ of size (and length) 0.
- The 2-measure of P, denoted $\mu_2(P)$, is the maximum length of a super-distinct subpartition of P, or equivalently, the minimal number of almost rectangular partitions to cover P.

Example

Partition P=(8,7,4,4,3,2,2,1) has $|P|=31, \ell(P)=8$. It contains the subpartition $(7,4,1)\in\mathcal{Q}$ of length 3 and none longer, so $\mu_2(P)=3$.

Frequency representation of partitions

• A partition can equivalently be regarded as unordered multiset of positive integers. By $[1^{f_1}, 2^{f_2} \cdots]$ we denote the partition whose parts consist of f_1 copies of 1, f_2 copies of 2, etc.

Frequency representation of partitions

- A partition can equivalently be regarded as unordered multiset of positive integers. By $[1^{f_1}, 2^{f_2} \cdots]$ we denote the partition whose parts consist of f_1 copies of 1, f_2 copies of 2, etc.
- Let \mathcal{F} be the set of all finitely supported sequences of nonnegative integers. We work with partitions via their "frequency" representations in \mathcal{F} given by the trivial correspondence $[1^{f_1}2^{f_2}\cdots] \leftrightarrow (f_1, f_2, \ldots)$.
- This identification of \mathcal{F} and \mathcal{P} is used throughout. We write f(P) for the frequency sequence of $P \in \mathcal{P}$ and P(f) for the partition corresponding to $f \in \mathcal{F}$.

Frequency representation of partitions

- A partition can equivalently be regarded as unordered multiset of positive integers. By $[1^{f_1}, 2^{f_2} \cdots]$ we denote the partition whose parts consist of f_1 copies of 1, f_2 copies of 2, etc.
- Let \mathcal{F} be the set of all finitely supported sequences of nonnegative integers. We work with partitions via their "frequency" representations in \mathcal{F} given by the trivial correspondence $[1^{f_1}2^{f_2}\cdots] \leftrightarrow (f_1,f_2,\ldots)$.
- This identification of \mathcal{F} and \mathcal{P} is used throughout. We write f(P) for the frequency sequence of $P \in \mathcal{P}$ and P(f) for the partition corresponding to $f \in \mathcal{F}$.

Example

Partition P = (8,7,4,4,3,2,2,1) has multiset representation $[1,2^2,3,4^2,7,8]$ and frequency representation (1,2,1,2,0,0,1,1).

We omit the trailing zeros and use $f_0 = 0$ if needed.

Notation for frequencies

• Given $f \in \mathcal{F}$. The *support* of f is denoted $\mathcal{S}(f) = \{i \geq 1 : f_i \neq 0\}$. The size and length on \mathcal{P} are extended to \mathcal{F} by

$$|f|=|P(f)|=\sum_i i\,f_i,$$

and

$$\ell(f) = \ell(P(f)) = \sum_{i} f_{i}.$$

Also, we let $\mu_2(f) = \mu_2(P(f))$. This is the maximum size of a subset of S(f) that contains no consecutive pairs $\{i, i+1\}$.

Notation for frequencies

• Given $f \in \mathcal{F}$. The *support* of f is denoted $\mathcal{S}(f) = \{i \geq 1 : f_i \neq 0\}$. The size and length on \mathcal{P} are extended to \mathcal{F} by

$$|f|=|P(f)|=\sum_i i\,f_i,$$

and

$$\ell(f) = \ell(P(f)) = \sum_{i} f_{i}.$$

Also, we let $\mu_2(f) = \mu_2(P(f))$. This is the maximum size of a subset of S(f) that contains no consecutive pairs $\{i, i+1\}$.

Example

Suppose f = (0, 2, 3, 1, 0, 0, 1, 0, 1). Then its support is $S(f) = \{2, 3, 4, 7, 9\}$, the size is |f| =, and the length is $\ell(f) = 7$ and the 2-measure is $\mu_2(f) = 4$.

Notation for frequencies

• Given $f \in \mathcal{F}$. The *support* of f is denoted $\mathcal{S}(f) = \{i \geq 1 : f_i \neq 0\}$. The size and length on \mathcal{P} are extended to \mathcal{F} by

$$|f|=|P(f)|=\sum_i i\,f_i,$$

and

$$\ell(f) = \ell(P(f)) = \sum_{i} f_{i}.$$

Also, we let $\mu_2(f) = \mu_2(P(f))$. This is the maximum size of a subset of S(f) that contains no consecutive pairs $\{i, i+1\}$.

Example

Suppose f = (0, 2, 3, 1, 0, 0, 1, 0, 1). Then its support is $S(f) = \{2, 3, 4, 7, 9\}$, the size is |f| =, and the length is $\ell(f) = 7$ and the 2-measure is $\mu_2(f) = 4$.

Here the corresponding multiset is $P(f) = [2^2, 3^3, 4, 7, 9]$.

Spreads, left and right pairings

- A *spread* of f is a maximal interval $[i,j] \subseteq S(f)$. A spread $[i,i] = \{i\}$ of size 1 is said to be *trivial*.
- We define

$$L(f) := \bigcup \{i, i+2, \dots, i+2\lfloor \frac{j-i}{2} \rfloor\}$$

$$R(f) := \bigcup \{j, j-2, \dots, j-2\lfloor \frac{j-i}{2} \rfloor\},$$

where the unions run over all spreads [i, j] of f.

Observe that they are of equal size, namely

$$|\mathsf{L}(f)| = |\mathsf{R}(f)| = \mu_2(f) = \sum \lceil \frac{j-i+1}{2} \rceil.$$

Example

Let
$$f=(2,1,0,3,2,2,0,0,1)$$
. Then $P=P(f)=[9,6^2,5^2,4^3,2,1^2]$, and $|f|=|P|=47$ and $\ell(f)=\ell(P)=11$. The spreads of f are $\{1,2\}$, $\{4,5,6\}$ and $\{9\}$, so $L(f)=\{1,4,6,9\}$, $R(f)=\{2,4,6,9\}$ and $\mu_2(f)=\mu_2(P)=4$.

Left and right pairings

- The elements $i_1 < i_2 < \ldots < i_m$ of L(f) specify the pairs (f_{i_1}, f_{i_1+1}) , ..., $(f_{i_m}, f_{i_{m+1}})$ that result from parsing f from left-to-right and grouping consecutive entries f_i , f_{i+1} with $f_i > 0$. We call these the forward pairs of f.
- The elements $j_1 > j_2 > \ldots > j_m$ of R(f) determine the *backward* pairs $(f_{j_1-1}, f_{j_1}), \ldots, (f_{j_m-1}, f_{j_m})$ obtained by parsing f from right-to-left and grouping consecutive entries f_j , f_{j-1} with $f_j > 0$.

Left and right pairings - example

Example

For f = (2, 2, 1, 3, 1, 0, 4, 0, 0, 2, 1) we have $L(f) = \{1, 3, 5, 7, 10\}$ and $R(f) = \{1, 3, 5, 7, 11\}$. The forward/backward pairs of f are indicated with arrows pointed in the direction of parsing.

$$\overset{\text{O}}{\underset{\text{forward}}{(2,2,1,3,1,0,4,0,0,2,1)}} \overset{\text{}}{\underset{\text{forward}}{(2,2,1,3,1,0,4,0,0,2,1)}}$$

The fictional entry $f_0 = 0$ has been prepended in red. Observe that every nonzero entry of f appears in one forward and one backward pair, while all unpaired entries of f are 0.

Observe that L(f) and R(f) are different only in parts corresponding to spreads of even lengths, while forward/backward pairs are equal for spreads of even lengths and distinct for spreads of odd lengths.

Burge correspondence - the setup

- Let $A = \{ f \in \mathcal{F} : 1 \notin R(f) \}$ and $\mathcal{B} = \{ f \in \mathcal{F} : 1 \in R(f) \}$.
- Observe that these sets partition \mathcal{F} : $\mathcal{A} \cup \mathcal{B} = \mathcal{F}$ and $\mathcal{A} \cap \mathcal{B} = \emptyset$.
- Also, $f \in \mathcal{B} \iff (f_0, f_1)$ is a backward pair \iff 1 is contained in a spread of f of odd size.

Burge correspondence - the setup

- Let $A = \{ f \in \mathcal{F} : 1 \notin R(f) \}$ and $\mathcal{B} = \{ f \in \mathcal{F} : 1 \in R(f) \}$.
- Observe that these sets partition \mathcal{F} : $\mathcal{A} \cup \mathcal{B} = \mathcal{F}$ and $\mathcal{A} \cap \mathcal{B} = \emptyset$.
- Also, $f \in \mathcal{B} \iff (f_0, f_1)$ is a backward pair \iff 1 is contained in a spread of f of odd size.
- Now, introduce two central transformations $\alpha : \mathcal{F} \longrightarrow \mathcal{A}$ and $\beta : \mathcal{F} \longrightarrow \mathcal{B}$, along with a mapping $\partial : \mathcal{F} \longrightarrow \mathcal{F}$ that undoes them.

Burge correspondence - the setup

- Let $A = \{f \in \mathcal{F} : 1 \notin R(f)\}$ and $B = \{f \in \mathcal{F} : 1 \in R(f)\}$.
- Observe that these sets partition \mathcal{F} : $\mathcal{A} \cup \mathcal{B} = \mathcal{F}$ and $\mathcal{A} \cap \mathcal{B} = \emptyset$.
- Also, $f \in \mathcal{B} \iff (f_0, f_1)$ is a backward pair \iff 1 is contained in a spread of f of odd size.
- Now, introduce two central transformations $\alpha: \mathcal{F} \longrightarrow \mathcal{A}$ and $\beta: \mathcal{F} \longrightarrow \mathcal{B}$, along with a mapping $\partial: \mathcal{F} \longrightarrow \mathcal{F}$ that undoes them.
- Each of these acts as a sequence of raising/lowering operators on the forward or backward pairs of f.
 - $\alpha(f)$ is obtained from f by replacing (f_i, f_{i+1}) with $(f_i 1, f_{i+1} + 1)$ for each $i \in L(f)$.
 - $\beta(f) := (f_1 + 1, \alpha(f_2, f_3, \ldots))$
 - $\partial(f)$ is obtained from f by replacing (f_{j-1}, f_j) with $(f_{j-1} + 1, f_j 1)$ for each $j \in R(f)$, where in the case j = 1 only f_1 is reduced by 1 (i.e., the fictional f_0 is ignored).

Burge transformations - comments

- In effect, α scans f from left-to-right and "promotes" each forward pair (f_i, f_{i+1}) to $(f_i 1, f_{i+1} + 1)$.
- α transforms the forward pairs of f into the backward pairs of $\alpha(f)$.
- That is, $i \in L(f) \iff i + 1 \in R(\alpha(f))$.
- In particular, for any $f \in \mathcal{F}$ we have $1 \notin R(\alpha(f))$ and hence $1 \in R(\beta(f))$. Thus, the claim that α and β map \mathcal{F} into \mathcal{A} and \mathcal{B} , respectively, follows.
- Moreover, f can be recovered from either $\alpha(f)$ or $\beta(f)$ by scanning from right-to-left and "demoting" backward pairs. This is exactly the action of ∂ .
- α and β are bijections from \mathcal{F} to \mathcal{A} and \mathcal{B} , respectively, while $\partial: \mathcal{F} \longrightarrow \mathcal{F}$ is 2-to-1 and restricts to α^{-1} on \mathcal{A} and β^{-1} on \mathcal{B} .

Burge transformations - example

Example

Let f = (2, 2, 1, 3, 1, 0, 4, 0, 0, 2, 1) as in the previous example. Then

$$\alpha(f) = \alpha(2, 2, 1, 3, 1, 0, 4, 0, 0, 2, 1) = (1, 3, 0, 4, 0, 1, 3, 1, 0, 1, 2)$$

$$\beta(f) = (2+1, \alpha(2,1,3,1,0,4,0,0,2,1)) = (3,1,2,2,2,0,3,1,0,1,2)$$

$$\partial(f) = \partial(2,2,1,3,1,0,4,0,0,2,1) = (1,3,0,4,0,1,3,0,0,3,0).$$

We have $\partial(\alpha(f)) = \partial(\beta(f)) = \beta(\partial(f)) = f$. Note, however, that $\alpha(\partial(f)) = (0, 4, 0, 3, 1, 0, 4, 0, 0, 2, 1) \neq f$. This inequality is due to the fact that $f \notin \mathcal{A}$ (since $1 \in R(f)$).

The Burge chain and the Burge code

- Clearly we have $0 \le |\partial(f)| < |f|$ for all $f \ne \varepsilon$.
- Therefore, applying ∂ repeatedly to any $f \in \mathcal{F}$ results in $\partial^k f = \varepsilon$ for a positive integer $k \ge 1$.

Definition

We define the *Burge chain* of $f \in \mathcal{F}$ to be the sequence $\partial^0 f, \partial^1 f, \partial^2 f, \ldots, \partial^k f$, where k is the smallest positive integer such that $\partial^k f = \varepsilon$. The length of this sequence (namely k+1) is the *Burge length* of f. The *Burge code* of f is the binary word $\Omega(f) = \omega_1 \omega_2 \cdots \omega_{k+1} \in \{\alpha, \beta\}^*$ defined by

$$\omega_i = \begin{cases} \alpha & \text{if } \partial^{i-1} f \in \mathcal{A}, \\ \beta & \text{if } \partial^{i-1} f \in \mathcal{B}. \end{cases}$$

Here $\{\alpha, \beta\}^*$ is the free monoid on two symbols α and β .

Burge bijection Ω

- $f = \varepsilon$ has trivial Burge chain ε and Burge code $\Omega(\varepsilon) = \alpha$,
- Burge codes of all other sequences f are of length at least 2.
- If $\partial f = \varepsilon$ then $f = \varepsilon$ or f = (1).
- The chain of every $f \neq \varepsilon$ ends with $\partial^{k-1} f = (1) \in \mathcal{B}$ and $\partial^k f = \varepsilon \in \mathcal{A}$. Thus the Burge code $\Omega(f)$ for $f \neq \varepsilon$ ends with ... $\beta \alpha$.
- Since $\partial|_{\mathcal{A}} = \alpha^{-1}$ and $\partial|_{\mathcal{B}} = \beta^{-1}$, the definition of $\Omega(f) = \omega_1 \cdots \omega_n$ ensures that $\partial^{i-1} f = (\omega_i \circ \partial)(\partial^{i-1} f) = \omega_i(\partial^i f)$ for all i.
- Therefore, we reconstruct f from $\Omega(f)$ by applying it to ε

$$f = \omega_1(\partial^1 f) = \omega_1 \omega_2(\partial^2 f) = \omega_1 \omega_2 \omega_3(\partial^3 f) = \cdots = (\omega_1 \omega_2 \cdots \omega_n)(\varepsilon).$$

Burge bijection Ω

So,

$$f = \Omega(f)(\varepsilon).$$

- The products of ω_i are to be interpreted as functional composition in the usual right-to-left order.
- That is, the right-to-left reading of $\Omega(f)$ specifies the unique manner by which f can be "built" from ε via iterative applications of α and β , beginning with a single 'non-effective' application of α : $\alpha \varepsilon = \varepsilon$.

Proposition

The Burge encoding $f \mapsto \Omega(f)$ is a one-one correspondence between \mathcal{F} and the set $\mathcal{W} = (\alpha^*\beta)^*\alpha$ of all finite words on $\{\alpha,\beta\}$ that end with a singleton α .

Example of Burge correspondence

Example

Let f = (1, 2, 1, 0, 1). The Burge chain of f is displayed below, along with the values of ω_i . The Burge code is $\Omega(f) = \beta \alpha \beta \alpha \alpha \alpha \beta \beta \beta \alpha$.

i	$\partial^i f$	ω_{i+1}
0	(1,2,1,0,1)	β
1	(0,3,0,1)	α
2	(1, 2, 1)	β
3	(0,3)	α
4	(1,2)	α
5	(2, 1)	α
6	(3)	β
7	(2)	β
8	(1)	β
9	ε	α

Example of Burge correspondence - 2

Example

Given the word $\omega = \alpha\beta\beta\alpha\beta\alpha \in \mathcal{W}$ we build its corresponding partition by iterating α and β as follows:

$$\varepsilon \overset{\alpha}{\mapsto} \varepsilon \overset{\beta}{\mapsto} (1) \overset{\alpha}{\mapsto} (0,1) \overset{\beta}{\mapsto} (1,0,1) \overset{\beta}{\mapsto} (2,0,0,1) \overset{\alpha}{\mapsto} (1,1,0,0,1).$$

Thus ω is the Burge code of f = (1, 1, 0, 0, 1). Here P(f) = [1, 2, 5] is a partition with |P(f)| = 8, $\ell(P(f)) = 3$ and $\mu_2(P(f)) = 2$.

Descent sets, descent numbers and major indices

Lemma

For any $f \in \mathcal{F}$ we have:

$$\ell(\partial f) = \begin{cases} \ell(f) - 1 & \text{if } f \in \mathcal{B} \\ \ell(f) & \text{if } f \in \mathcal{A}. \end{cases}$$

Descent sets, descent numbers and major indices

Lemma

For any $f \in \mathcal{F}$ we have:

$$\ell(\partial f) = \begin{cases} \ell(f) - 1 & \text{if } f \in \mathcal{B} \\ \ell(f) & \text{if } f \in \mathcal{A}. \end{cases}$$

- For $\omega = \omega_1 \omega_2 \cdots \omega_n \in \{\alpha, \beta\}^*$ we define the *descent set* of ω , denoted $Des(\omega)$, as the set of all indices i for which $\omega_i\omega_{i+1}=\beta\alpha$.
- So, $Des(\omega)$ records the positions of descents in ω relative to the ordering $\beta > \alpha$. These positions differ pairwise by at least 2.
- The descent number and major index of ω are defined by $des(\omega) = |Des(\omega)|$ and $maj(\omega) := \sum_{i \in Des(\omega)} i$, respectively.

Descent sets, descent numbers and major indices – 2

Proposition

Let $f \in \mathcal{F}$ and let $\omega = \Omega(f)$. Then:

- **1** $\ell(f) = \#$ occurrences of β in ω
- $|f| = \operatorname{maj}(\omega)$
- **3** $\mu_2(f) = \operatorname{des}(\omega) = \#$ occurrences of $\beta \alpha$ in ω

Example

In the example before we saw that f=(1,2,1,0,1) has Burge code $\omega=\beta\alpha\beta\alpha\alpha\alpha\beta\beta\beta\alpha$. Note that ω contains $5=\ell(f)$ copies of β , and we have $\mathrm{Des}(\omega)=\{1,3,9\}$, $\mathrm{maj}(\omega)=13=|f|$ and $\mathrm{des}(\omega)=3=\mu_2(f)$.

Burge correspondence

 We have a three-way bijective correspondence between partitions, frequency vectors, and binary words, namely

$$\mathcal{P} \xrightarrow{\text{frequency } f} \mathcal{F} \xrightarrow{\text{Burge code } \Omega} \mathcal{W}.$$

- All notation defined previously for elements of \mathcal{F} and \mathcal{W} is extended to \mathcal{P} through $f(\cdot)$ and $\Omega(\cdot)$.
- We define $\partial P = P(\partial f(P))$, $\partial^i P = P(\partial^i f(P))$, $\Omega(P) = \Omega(f(P))$ and $Des(P) = Des(\Omega(P))$.
- If $Des(P) = \{i_1, i_2, \dots, i_m\}$ where $i_1 < i_2 < \dots < i_m$ then $i_j i_{j-1} \ge 2$ for all j, and $\sum_i i_j = maj(\Omega(P)) = |P|$.
- Thus Des(P) can be regarded as a super-distinct partition of size |P|.
- If $\Omega(P) = \omega_1 \omega_2 \cdots \omega_n$ then $\Omega(\partial P) = \omega_2 \cdots \omega_n$, so we have $\operatorname{Des}(\partial P) = \{i_1 1, i_2 1, \dots, i_m 1\} \setminus \{0\}.$

Example

Example

i	$\partial^i f$	$\Omega(\partial^i f)$	$\partial^i P$	$Des(\partial^i P)$
0	(1,1,0,1,0,0,1)	$\alpha\beta\alpha\beta\beta\alpha\beta\alpha$	[7, 4, 2, 1]	[7, 5, 2]
1	(2,0,1,0,0,1)	$\beta \alpha \beta \beta \alpha \beta \alpha$	$[6, 3, 1^2]$	[6, 4, 1]
2	(1,1,0,0,1)	$\alpha\beta\beta\alpha\beta\alpha$	[5, 2, 1]	[5, 3]
3	(2,0,0,1)	$\beta\beta\alpha\beta\alpha$	$[4, 1^2]$	[4, 2]
4	(1,0,1)	$\beta \alpha \beta \alpha$	[3, 1]	[3, 1]
5	(0, 1)	$\alpha \beta \alpha$	[2]	[2]
6	(1)	$\beta \alpha$	[1]	[1]
7	ε	α	ε	ε

Characterisation of the descent map

Definition

For a partition P, let P-1 be the *reduced partition* obtained by subtracting 1 from each part of P and eliminating any resulting zeros.

For example: $P = [6, 4^3, 2^4, 1^3] = [5, 3^3, 1^4]$.

Theorem

The descent map $P \mapsto \mathrm{Des}(P)$ is a size-preserving function from $\mathcal P$ to $\mathcal Q$ satisfying $\mathrm{Des}(\partial P) = \mathrm{Des}(P) - 1$. It is the unique such function.

 $lue{1}$ The dense orbit map $\mathfrak D$

2 The Burge Correspondence

The Box Theorem

Invariant subspaces and the descent map

Based on Shayman's description of the variety of invariant subspace of a nilpotent matrix from 1982 and 1986 we prove the following results:

Proposition

Each invariant subspace of B is equal to the image of an element of the commutator of C_B of B.

Theorem

Suppose that B is a nilpotent matrix and that P = P(B) is its Jordan type. Suppose that A is a generic nilpotent matrix commuting with B and that $W = \operatorname{Im} A$ is its image. Then the Jordan type of the restriction $B|_W$ is given by ∂P .

$$\mathfrak{D} = \mathsf{Des}$$

Corollary

$$\mathfrak{D}(P) = \mathrm{Des}(P)$$
.

Proof.

Theorem gives $\mathfrak{D}(\partial P) = \mathfrak{D}(P) - 1$ since the Jordan type of the restriction of a nilpotent matrix of Jordan type T to its own image is equal to T-1. Obviously $|\mathfrak{D}(P)| = |P|$, so the uniqueness result identifies \mathfrak{D} as the descent map.

The Box Theorem

Corollary

Suppose $P \in \mathcal{P}$ is the Jordan type of B and $\Omega(P) = \omega_1 \cdots \omega_n$ its Burge code. Then $\mathfrak{D}(P) = (q_1, q_2, \dots, q_k)$, where $q_1 > q_2 > \dots > q_k$ is the complete list of indices q for which $\omega_q = \beta$ and $\omega_{q+1} = \alpha$.

Theorem

Let $Q=(q_1,q_2,\ldots,q_k)\in\mathcal{Q}$ and set $\delta_1=q_k$ and $\delta_i=q_{k-i+1}-q_{k-i+2}-1$ for $2\leq i\leq k$. Then $\mathfrak{D}^{-1}(Q)$ is of size $\delta_1\delta_2\cdots\delta_k$ and consists of precisely those partitions whose Burge code is of the form

$$\alpha^{\delta_1-i_1}\beta^{i_1}\alpha^{\delta_2-i_2+1}\beta^{i_2}\alpha^{\delta_3-i_3+1}\beta^{i_3}\cdots\alpha^{\delta_k-i_k+1}\beta^{i_k}\alpha, \tag{1}$$

for $(i_1, \ldots, i_k) \in [1, \delta_1] \times [1, \delta_2] \times \cdots \times [1, \delta_k]$. The partition determined by (1) has exactly $\sum_i i_j$ (= the number of β s) parts.

(i_1, i_2, i_3)	$code\ \omega$	partition $\Omega^{-1}(\omega)$	# parts
(1, 1, 1)	$\alpha\alpha\beta\alpha\alpha\alpha\beta\alpha\alpha\beta\alpha$	[10, 7, 3]	3
(2,1,1)	$\alpha\beta\beta\alpha\alpha\alpha\beta\alpha\alpha\beta\alpha$	[10, 7, 2, 1]	4
(3,1,1)	$\beta\beta\beta\alpha\alpha\alpha\beta\alpha\alpha\alpha\beta\alpha$	$[10, 7, 1^3]$	5
(1, 2, 1)	$\alpha \alpha \beta \alpha \alpha \beta \beta \alpha \alpha \beta \alpha$	[10, 5, 3, 2]	4
(2, 2, 1)	$\alpha\beta\beta\alpha\alpha\beta\beta\alpha\alpha\beta\alpha$	[10, 4, 3, 2, 1]	5
(3, 2, 1)	$\beta\beta\beta\alpha\alpha\beta\beta\alpha\alpha\beta\alpha$	$[10, 4, 3, 1^3]$	6
(1,3,1)	$\alpha \alpha \beta \alpha \beta \beta \beta \alpha \alpha \beta \alpha$	$[10, 5, 2^2, 1]$	5
(2,3,1)	$\alpha\beta\beta\alpha\beta\beta\beta\alpha\alpha\beta\alpha$	$[10, 5, 2, 1^3]$	6
(3,3,1)	$\beta\beta\beta\alpha\beta\beta\beta\alpha\alpha\beta\alpha$	[10, 5, 1 ⁵]	7
(1, 1, 2)	$\alpha \alpha \beta \alpha \alpha \alpha \beta \alpha \beta \beta \alpha$	$[9,5,3^2]$	4
(2, 1, 2)	$\alpha\beta\beta\alpha\alpha\alpha\beta\alpha\beta\beta\alpha$	$[9,4^2,2,1]$	5
(3, 1, 2)	$\beta\beta\beta\alpha\alpha\alpha\beta\alpha\beta\alpha\beta\alpha$	$[9,4^2,1^3]$	6
(1, 2, 2)	$\alpha \alpha \beta \alpha \alpha \beta \beta \alpha \beta \beta \alpha$	$[9,5,2^3]$	5
(2, 2, 2)	$\alpha\beta\beta\alpha\alpha\beta\beta\alpha\beta\beta\alpha$	$[9,4,3,2,1^2]$	6
(3, 2, 2)	$\beta\beta\beta\alpha\alpha\beta\beta\alpha\beta\beta\alpha$	$[9,4,3,1^4]$	7
(1, 3, 2)	$\alpha \alpha \beta \alpha \beta \beta \beta \alpha \beta \beta \alpha$	$[9,5,2^2,1^2]$	6
(2,3,2)	$\alpha\beta\beta\alpha\beta\beta\beta\alpha\beta\beta\alpha$	$[9,5,2,1^4]$	7
(3, 3, 2)	$\beta\beta\beta\alpha\beta\beta\beta\alpha\beta\beta\alpha$	[9, 5, 1 ⁶]	8

Further comments

- The Box Theorem holds over all infinite fields.
- If we define $\mathfrak{D}(P)$ to be the maximal partition of \mathcal{N}_B in the dominance order then the Box Theorem holds over any field.
- The new definition of $\mathfrak{D}(P)$ is not field dependent as is the case for general pairs of partitions for commuting pairs of nilpotent matrices (a result by Britnell and Wildon, 2011).
- Using the Burge correspondence we provide also another proof of Oblak process and obtain another process to build $\mathfrak{D}(P)$.
- The Burge process is using $P \mapsto \partial P$ map. At each step each almost-rectangular part of P is shortened by 1.

