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Abstract

The main focus in this memoir is on Laplacians on both weighted graphs
and weighted metric graphs. Let us emphasize that we consider infinite locally
finite graphs and do not make any further geometric assumptions. Whereas the
existing literature usually treats these two types of Laplacian operators separately,
we approach them in a uniform manner in the present work and put particular
emphasis on the relationship between them. One of our main conceptual messages is
that these two settings should be regarded as complementary (rather than opposite)
and exactly their interplay leads to important further insight on both sides.

Our central goal is twofold. First of all, we explore the relationships between
these two objects by comparing their basic spectral (self-adjointness, spectral gap,
etc.), parabolic (Markovian uniqueness, recurrence, stochastic completeness, etc.),
and metric (quasi-isometries, intrinsic metrics, etc.) properties. In turn, we exploit
these connections either to prove new results for Laplacians on metric graphs or
to provide new proofs and perspective on the recent progress in weighted graph
Laplacians. We also demonstrate our findings by considering several important
classes of graphs (Cayley graphs, tessellations, and antitrees).
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CHAPTER 1

1.1. Introduction

The central object of this study is a Laplace-type operator either on a weighted
graph or on a metric graph. Both objects have a venerable history and enjoy deep
connections to several diverse branches of mathematics and mathematical physics,
placing them at the intersection of many subjects in mathematics and engineering.
It is impossible to give even a very brief account on these matters. The key features
of Laplacians on metric graphs, which are also widely known as quantum graphs,
include their use as simplified models of complicated quantum systems and the
appearance of metric graphs in tropical and algebraic geometry, where they can
be seen as non-Archimedean analogues of Riemann surfaces (we only refer to a
very brief selection of recent monographs and collected works [11], [23], [24], [61],
[66], [68], [179]). The subject of discrete Laplacians on graphs is even wider and
has been intensively studied from several perspectives (a partial overview of the
immense literature can be found in [12], [42], [43], [89], [134], [209]).

Whereas the existing literature usually treats these two Laplacian-type opera-
tors separately, we approach them in a uniform manner in the present work and put
particular emphasis on the relationship between them. One of our main conceptual
messages is that these two settings should be regarded as complementary (rather
than opposite) and exactly their interplay leads to important further insight on
both sides. In fact, the idea of using metric graphs in context with studying ran-
dom walks on graphs can be traced back at least to the 1980’s. Namely, there is a
close relationship between random walks on graphs and Brownian motion on metric
graphs and, for example, N.Th. Varopoulos used this in [202] to prove long-range
estimates for discrete time random walks by first establishing similar estimates for
heat kernels on specifically designed metric graphs (see also the recent works [13],
[15], [20], [70], [71], [152] for further manifestations of this point of view). In
more structural terms, difficulties in analyzing random walks on graphs often stem
from the fact that the Dirichlet form associated with a weighted discrete Laplacian
is non-local (e.g., no Leibniz rule), whereas the corresponding quadratic form for
metric graphs is, in general, a strongly local Dirichlet form and hence many famil-
iar tools from analysis are available. On the other hand, having in mind a metric
graph, it is rather natural to think of weighted discrete Laplacians as discretizations
and hence simplified models of quantum graphs (replacing differential equations by
difference equations, which is similar to triangulations of surfaces, see, e.g., [43,
§ 3.2]).

Our main focus is on infinite graphs (with countably many vertices and edges),
however, we always restrict to locally finite graphs (for definitions we refer to the
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2 1. INTRODUCTION

next chapter). The study of Laplacians on weighted graphs, i.e., difference expres-
sions of the form

(Lf)(v) =
1

m(v)

∑
u∈V

b(v, u)(f(v)− f(u)), v ∈ V,(1.1.1)

has seen a tremendous progress during the last decade (see [134]). Whereas this
setting is rather general, most works on metric graph Laplacians impose strong
restrictions on edge lengths (e.g., a strictly positive lower bound on edge lengths
[24], [179]), which excludes a number of interesting models and phenomena. On
a conceptual level, removing these assumptions can be considered as similar to the
case when the difference expression (1.1.1) gives rise to an unbounded operator
(i.e., the weighted degree function (2.2.8) is unbounded on the vertex set). In
fact, the arising difficulties in both cases are of the same nature and, since we are
considering unbounded operators, one of the crucial issues is the correct choice of
the domain of definition. Namely, the first mathematical problem arising in any
quantum mechanical model is self-adjointness (see, e.g., [181, Chap. VIII.11]),
that is, usually a formal symmetric expression for the Hamiltonian has some natural
domain of definition in a given Hilbert space (e.g., pre-minimally or maximally
defined Laplacians) and then one has to verify that it gives rise to an (essentially)
self-adjoint operator. Otherwise†, there are infinitely many self-adjoint extensions
(or restrictions in the maximally defined case) and one has to determine the right
one which is the observable.

Let us put all that in a slightly different context. For a given metric measure
space (X,µ), denote the formal expression in question by ∆. Moreover, we shall
assume that ∆ is formally symmetric and non-positive, that is, the corresponding
quadratic form Q[f ] = 〈−∆f, f〉L2(X;µ) is non-negative (one may think of X as
either a manifold or a graph/metric graph and then ∆ is the corresponding Lapla-
cian). Suppose the evolution of a system is governed by one of the three most
common equations — heat, wave or Schrödinger equation — and one is lead to in-
vestigate the corresponding Cauchy problem. For instance, in quantum mechanics,
one is interested in the solvability in L2 of the Cauchy problem for the Schrödinger
equation

i∂tu = −∆u, u|t=0 = u0 ∈ L2(X;µ).(1.1.2)

It is exactly the self-adjointness of ∆ defined on the maximal domain of definition
in L2(X;µ) which ensures the existence and uniqueness of solutions to (1.1.2). If
the maximally defined Laplacian is not a self-adjoint operator in L2(X;µ), then
one needs to impose additional boundary conditions on X. Similarly, the self-
adjointness of the maximally defined ∆ ensures the solvability of the Cauchy prob-
lem in L2 for both the heat and the wave equations. However, under the above
assumptions on ∆, the solvability of those two equations is in fact equivalent to the
self-adjointness (see, e.g., [189, §1.1]).

When considering the Cauchy problem for the heat equation

∂tu = ∆u, u|t=0 = u0 ∈ L2(X;µ),(1.1.3)

†Of course, one needs to check whether the corresponding symmetric operator has equal defi-
ciency indices, which is always the case for Laplacians or, more generally, for symmetric operators

which are bounded from below or from above.
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and having in mind, for instance, either a Brownian motion on a manifold or a
random walk on a graph, one can be a bit more specific: the corresponding semi-
group (e−∆t)t>0 should be positivity preserving and L∞ contractive, that is, the
semigroup possesses properties reflecting heat diffusion. Thus, one is interested
in very specific self-adjoint extensions — extensions enjoying the Markov property.
According to the Beurling–Deny criteria (see, e.g., [50]), the latter is equivalent
to the fact that the corresponding quadratic form is a Dirichlet form. Clearly, the
self-adjoint uniqueness implies Markovian uniqueness (i.e., the uniqueness of exten-
sions enjoying the Markov property), however, the converse is not true in general.
Furthermore, if there are several different Markovian extensions, one is led to the
analogous question of their description via additional boundary conditions on X.

On the other hand, both problems (self-adjoint and Markovian uniqueness) can
be restated in a more transparent way via solutions to the Helmholz equation

∆u = λu, λ ∈ R.(1.1.4)

Since ∆ is assumed non-positive, the maximally defined operator is self-adjoint if
and only if for some (and hence for all) λ > 0 equation (1.1.4) admits a unique
solution u ∈ L2(X;µ) (which is clearly identically zero in this case). Moreover,
Markovian uniqueness can be expressed in these terms as well: the Helmholz equa-
tion (1.1.4) for λ > 0 admits a unique solution u ∈ L2(X;µ) having finite energy,
that is, u has finite Dirichlet integral Q[u] < ∞. Recalling that in the context of
both manifolds and graphs functions satisfying (1.1.4) are called λ-harmonic, the
self-adjoint and Markovian uniqueness can be seen as some kind of a Liouville-type
property of X (e.g., L2 Liouville-type property [123], [151], [214])† and this indi-
cates their close connections with the geometry of the underlying metric space (e.g.,
Gaffney-type theorems connecting completeness with Markovian and self-adjoint
uniqueness [78]).

As it was mentioned already, one of the main objects under consideration in this
text is a Laplacian on an infinite metric graph. A metric graph G is a graph Gd =
(V, E) whose edges e ∈ E are assigned some lengths |e| and hence can be considered
as intervals (for the sake of a clear exposition, Gd is assumed simple throughout the
present chapter; strict definitions of all objects can be found in Chapter 2). Let
also µ, ν : G → (0,∞) be edgewise constant weights. The corresponding Laplacian
∆‡ acts edgewise in L2(G;µ) as a Sturm–Liouville operator

1

µ(e)

d

dxe
ν(e)

d

dxe
, e ∈ E .(1.1.5)

In order to reflect the underlying combinatorial structure, we impose the Kirchhoff
conditions (see (2.4.6) for details)f is continuous at v∑

e∼v
ν(e)∂ef(v) = 0

(1.1.6)

at all vertices. The second condition means that the sum of the slopes over all
edges emanating from a given vertex is zero and can be interpreted as a zero total

†Under the positivity of the spectral gap one can in fact replace λ > 0 by λ = 0 and hence

in this case one is led to harmonic functions on X.
‡Here and in the following sections, ∆ shall always denote the Laplacian on a weighted metric

graph.



4 1. INTRODUCTION

flow condition in vertices.† The corresponding energy form in L2(X;µ) is given by

Q[f ] = 〈−∆f, f〉L2(X;µ) =

∫
G
|∇f(x)|2ν(dx).(1.1.7)

Our second object of interest is the weighted graph Laplacian L given by (1.1.1)
and acting in `2(V;m), wherem : V → (0,∞) is a positive weight on V. The function
b : V × V → [0,∞) is symmetric, has vanishing diagonal and also satisfies certain
natural restrictions (e.g., local summability, see Section 2.2). The corresponding
energy form in `2(V;m) is given by

q[f ] = 〈Lf , f〉`2(V;m) =
1

2

∑
u,v

b(u, v)|f(v)− f(u)|2.(1.1.8)

One of the immediate ways to relate Laplacians on weighted metric and discrete
graphs is by noticing a connection between their harmonic functions. Despite being
elementary, this observation lies at the core of many of our considerations and hence
we briefly sketch it here. By (1.1.5), every harmonic function f on a weighted metric
graph G (i.e., f satisfies ∆f = 0), must be edgewise affine. The Kirchhoff conditions
(1.1.6) imply that f is continuous and, moreover, satisfies∑

e∼v
ν(e)∂ef(v) =

∑
u∼v

ν(eu,v)

|eu,v|
(
f(u)− f(v)

)
= 0

at each vertex v ∈ V. This suggests to consider a discrete Laplacian (1.1.1) with
edge weights given by

b(u, v) =

{
ν(eu,v)
|eu,v| , u ∼ v

0, u 6∼ v
, (u, v) ∈ V × V.(1.1.9)

Indeed, then for every ∆-harmonic function f on the weighted metric graph G, its
restriction to vertices f := f |V is an L-harmonic function, that is, it satisfies Lf = 0.
Moreover, the converse is also true. Phrased in a more formal way, the map

ıV : C(G) → C(V)
f 7→ f |V

,(1.1.10)

when restricted further to the space of continuous, edgewise affine functions on G
becomes bijective and establishes a bijective correspondence between ∆-harmonic
and L-harmonic functions (this immediately connects, for instance, the correspond-
ing Poisson and Martin boundaries). Taking into account what we have said above
regarding the self-adjointness problem, this also indicates a possible connection be-
tween the self-adjoint uniqueness for the corresponding Laplacians on G and Gd,
however, one also has to take into account the measures µ and m, that is, we need
to connect the corresponding Hilbert spaces L2(G;µ) and `2(V;m). It turns out

†On the one hand, (1.1.6) is just a conservation of the flow generated by the vector field

ν f ′ upon considering ∇ : f 7→ f ′ as the exterior derivative and hence interpreting f ′ as a 1-form,
that is, as a vector field with orientation (see also Remark 2.19). From this perspective (1.1.6)

is also reminiscent of the Kirchhoff laws for electric networks. On the other hand, if one speaks

about the quantum mechanical probability flow, its conservation at a given vertex is equivalent
to the self-adjointness of the corresponding vertex conditions, and Kirchhoff conditions (1.1.6) is

a particular case of this large family of boundary conditions.
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that the desired connection (under the additional assumption that (G, µ, ν) has
finite intrinsic size, see Definition 3.16) is given by

m : v 7→
∑
u∼v
|eu,v|µ(eu,v), v ∈ V.(1.1.11)

This correspondence has been widely known for a quite long time in at least two
particular cases. First of all, in the case of so-called unweighted equilateral metric
graphs (i.e., µ = ν = 1 on G and |e| = 1 for all edges e), (1.1.1) with the weights
(1.1.9),(1.1.11) turns into the normalized (or physical) Laplacian:

(Lnormf)(v) =
1

deg(v)

∑
u∼v

f(v)− f(u), v ∈ V.(1.1.12)

Connections between their spectral properties have been established in [169], [204]
for finite metric graphs and then extended in [40], [65], [34] to infinite metric
graphs, and in fact one can even prove some sort of local unitary equivalence [176].
These results allow to reduce the study of Laplacians on equilateral metric graphs
to a widely studied object — the normalized Laplacian Lnorm, the generator of the
simple random walk on Gd (see [12], [43], [192], [209]). The second well-studied
case is a slight generalization of the above setting: again, |e| = 1 for all edges e,
however, µ = ν on G (these are named cable systems in the work of Varopoulos
[202]). The corresponding Laplacian L with the coefficients (1.1.9),(1.1.11) is the
generator of a discrete time random walk on Gd with the probability of jumping
from v to u given by

p(u, v) =
µ(eu,v)∑
w∼v µ(eu,w)

when u ∼ v,

and 0 otherwise. There is a close connection between this random walk and the
Brownian motion on the cable system and exactly this link has been exploited
several times in the literature (see [20], [202] as well as the recent works [13], [15],
[63], [70], [71], [152]).

In fact, the idea to relate the properties of ∆ and L by taking into account
the relationship between their kernels has its roots in the fundamental works of
M.G. Krein, M.I. Vishik and M.Sh. Birman in the 1950s. Indeed, it turns out that
L serves as a “boundary operator” for ∆ (for the precise meaning see Prop. 3.11) and
exactly this fact allows to connect basic spectral properties of these two operators.
However, in order to make all that precise one needs to use the machinery of
boundary triplets and the corresponding Weyl functions, a modern language of
extension theory of symmetric operators in Hilbert spaces, which can be seen as
far-reaching development of the Birman–Krein–Vishik theory (see [54], [55], [188]).
First applications of this approach to finite and infinite metric graphs can be traced
back to the 2000s (see, e.g., [34], [66], [179]). One of its advantages is the fact that
the boundary triplets approach allows to treat metric graphs avoiding the standard
assumptions on the edge lengths [67], [141].

In order to make the above more precise, one of our main observations is the fol-
lowing connection between self-adjoint restrictions of the maximal Kirchhoff Lapla-
cian H (the maximal operator associated with ∆ in L2(G;µ)) and self-adjoint re-
strictions of the maximal graph Laplacian h (the maximal operator associated with
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L in `2(V;µ), where b and m are defined by (1.1.9) and (1.1.11)):

ExtS(h̃) 3 h̃ 7→ H̃ ∈ ExtS(H̃),

dom(H̃) := {f ∈ dom(H) | ıV(f) ∈ dom(h̃)}
(1.1.13)

where ıV is the restriction map (1.1.10). It turns out that this map establishes
a bijective correspondence between the sets ExtS(H) of self-adjoint restrictions of
H and ExtS(h) of self-adjoint restrictions of h (Lemma 4.7). Moreover, it remains
bijective upon further restricting it to certain classes of self-adjoint extensions (e.g.,
non-negative, Markovian) and connects their basic spectral and parabolic proper-
ties (e.g. positive spectral gap, discreteness, recurrence, stochastic completeness,
and on-diagonal heat kernel bounds). It should be mentioned that some of these
connections are only valid after a suitable subdivison of edges, which can intuitively
be understood as choosing a fine enough discretization of a weighted metric graph.

In our opinion, a tremendous part of the progress during the last decade in
the study of non-local Dirichlet forms (1.1.8) (notice that (1.1.13) enables us to
use these results to investigate metric graph Laplacians) is connected with the
successful introduction and systematic use of the notion of an intrinsic metric in
the discrete setting (see [73], [127]). As it was underlined in the work of K.-
T. Sturm in the 1990s [195]–[197], it is exactly this instrument which allows to
transfer many important results from the manifold setting to the abstract setting
of strongly local Dirichlet forms (which of course includes metric graphs). Taking
all this into account, one may look at the restriction map (1.1.10) from a different
perspective. First of all, every path metric % on G induces a path metric on V in
an obvious way:

%V(u, v) := %(u, v), u, v ∈ V,(1.1.14)

The crucial observation is that %V is intrinsic (in the sense of [73], [127]) for (V,m; b)
with b and m defined by (1.1.9) and (1.1.11) if % is intrinsic for (G, µ, ν) (the
precise meaning of all these notions can be found in Section 6.4). What is more
important, it turns out that under certain natural assumptions every path metric,
which is intrinsic w.r.t. (V,m; b), can be obtained in this way (see Theorem 6.34).
Recall also that every regular Dirichlet form (no killing term) in `2(V;m), where
V is at most countable and m is a measure of full support, arises as a closure of
(1.1.8) restricted to Cc(V) (see [130, §2]). These facts, in combination with the
results for strongly local Dirichlet forms as well as with the correspondence (1.1.13),
indicate that many of the important principles extend from the manifold setting
to the setting of weighted graph Laplacians. The latter is by no means surprising,
however, in our opinion this point of view provides another natural motivation for
the striking analogies between results as in, e.g., [18, 73, 127] and the setting of
manifolds.

A detailed description of the content of this memoir as well as of our main
results can be found in the next section. Let us emphasize that the main thrust
of our investigations is conceptual in nature and for this reason we would like to
conclude this lengthy introduction with one more comment. Let us look at the
maps (1.1.10) and (1.1.14) from the perspective of quasi-isometries (quite often
going by the name of rough isometries) [36], [173], [184]. It is straightforward to
check that the metric spaces (G, %) and (V, %V) are quasi-isometric (again, under
the finite intrinsic size assumption, which guarantees the net property) and this
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fact connects their large scale properties. The notion of a quasi-isometry has its
roots in the Švarc–Milnor Lemma [53], [173], [184], one of the most fundamental
observations in geometric group theory. It is a standard practice to investigate a
finitely generated group by turning its Cayley graph into a length space, which is
nothing but an equilateral metric graph (see, e.g., [184, Rem. 1.16]). Our results in
Chapter 6 show that with any locally finite weighted graph b over (V,m) equipped
with an intrinsic path metric % one can associate a weighted metric graph (G, µ, ν),
a cable system, whose intrinsic path metric %η is such that % = %η|V and the metric
spaces (V, %) and (G, %η) are quasi-isometric. One immediate advantage is the fact
that (G, %η) is a length space. Moreover, exactly this correspondence provides,
in our opinion, a transparent perspective on many results for graph Laplacians
obtained during the last decade. Let us stress that, although quasi-isometric spaces
are known to share many important properties (e.g., geometric properties such as
volume growth and isoperimetric inequalities; Liouville-type theorems for harmonic
functions etc.), most of these connections require additional conditions on the local
geometry of the spaces in question. On the other hand, in our particular setting,
the local structures of the spaces (G, %η) and (V, %) are connected by (1.1.10) an
(1.1.14) (at least they enjoy the same combinatorial structure), and exactly this
fact, in our opinion, enables us to prove a number of correspondences which are not
true in the general setting of quasi-isometric spaces.

1.2. Overview of the results

Let us now outline the content of this memoir as well as our main results.
Chapter 2 is of a preliminary character, where we introduce basic objects,

notions and facts. We begin with graph theoretic notions, metric graphs and graph
ends (Section 2.1). In the next section, following [130], [134] we present basic
definitions and facts about Laplacians on weighted graphs. Sections 2.3–2.4 are
dedicated to Laplacians on metric graphs. First, we recall the definitions of the
most important function spaces on metric graphs (Section 2.3). The minimal and
maximal Kirchhoff Laplacians are then defined in Section 2.4.1. Using the form
approach, which can be considered as a variational definition of a Laplacian on a
metric graph, we introduce Dirichlet and Neumann Laplacians, and also we define
the so-called Gaffney Laplacian (Section 2.4.2), which plays a crucial role in the
study of Markovian extensions of the minimal Kirchhoff Laplacian and also can be
seen as the Hodge Laplacian on a metric graph (Remark 2.19).

Chapter 3 provides the first major step towards establishing connections be-
tween Kirchhoff Laplacians on metric graphs and graph Laplacians on locally finite
graphs. The main results of this chapter are Theorem 3.1 and also Theorem 3.22,
which relate basic spectral properties of Laplacians with δ-couplings at the vertices
with those of certain Schrödinger-type operators on the underlying combinatorial
graph. Section 3.1 states the central result, Theorem 3.1, and then Section 3.2 is
dedicated to its proof. Let us stress that the main tool is the concept of boundary
triplets and the corresponding Weyl functions [54], [55], [85], [188]. The con-
cluding Section 3.3 elaborates further on the consequences of Theorem 3.1 in the
case of Kirchhoff Laplacians. First of all, every metric graph has infinitely many
models and each such model gives rise to a graph Laplacian. Thus we begin by
discussing Theorem 3.1 from this perspective. On the other hand, if the minimal
Kirchhoff Laplacian is not self-adjoint, then it admits infinitely many self-adjoint
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extensions. It is not at all surprising that these extensions can be parameterized by
means of self-adjoint extensions of the corresponding minimal graph Laplacian (see
Lemma 3.20). The latter allows us to extend Theorem 3.1 to the case of non-trivial
deficiency indices (see Theorem 3.22). Let us also stress that this bijective cor-
respondence between self-adjoint extensions, according to Theorem 3.22, remains
bijective upon restriction to certain classes of self-adjoint extensions (e.g., semi-
bounded or non-negative extensions), however, some of these relations require a
careful choice of the underlying model for a given metric graph (e.g., for uniformly
positive extensions the corresponding model should have finite intrinsic size).

The main focus in Chapter 4 is on connections between parabolic properties
of Laplacians on weighted graphs and metric graphs. We begin by recalling the
definition of Markovian extensions and by underlining the role of the Dirichlet and
Neumann Laplacians (Section 4.1). Section 4.2 is of conceptual importance and
gives a good motivation for subsequent considerations. Namely, following [70], we
review some connections between transfer probabilities of a Brownian motion on
a metric graph and of a continuous time random walk on a weighted graph. Sec-
tions 4.3 and 4.4 form the core of this chapter. We begin with the study of the map
ıV defined by (1.1.10). First of all, ıV becomes injective when further restricted to
the space of continuous, edgewise affine functions CA(G\V) on a metric graph G. It
turns out that this map connects the corresponding energy forms as well, and even
more, it allows to describe the bijective correspondence (1.1.13) from Lemma 3.20
between self-adjoint extensions of the minimal Kirchhoff and graph Laplacians in
a much more transparent and concrete way (see Lemma 4.7). Moreover, the map
(1.1.13) induces a bijection between the sets of Markovian extensions ExtM (H0)
and ExtM (h0) (Section 4.4). These results enable us to relate basic parabolic prop-
erties of Laplacians on metric and weighted graphs. More precisely, Section 4.5
and Section 4.6 deal with transience/recurrence and stochastic completeness, re-
spectively. To a certain extent these connections are not new and under some
additional restrictions they have been discussed earlier in [70], [112] (stochastic
completeness) and [95, Chap. 4] (transience/recurrence). In Section 4.7, we elab-
orate further on the relationship between spectral gaps of Laplacians on metric
and weighted graphs. We conclude this chapter by looking at ultracontractivity
estimates for heat semigroups on weighted graphs and metric graphs (Section 4.8).

Chapter 5 is dedicated to the simplest possible example – an infinite path
graph. Since this case can be thoroughly analyzed, it is a suitable toy model to
demonstrate our findings from the previous two chapters. Indeed, in this case
the corresponding Laplacian (with δ-couplings at the vertices) is nothing but the
Sturm–Liouville operator defined by the differential expression

τ =
1

µ(x)

(
− d

dx
ν(x)

d

dx
+
∑
k≥1

αkδ(x− xk)
)
,(1.2.1)

on the interval I := [0, L) with L ∈ (0,∞], where (xk)k≥0 ⊂ I is a strictly increasing
sequence such that x0 = 0, xk ↑ L and the weights µ, ν : I → R>0 are given by

µ(x) =
∑
k≥0

µk1[xk,xk+1)(x), ν(x) =
∑
k≥0

νk1[xk,xk+1)(x).(1.2.2)

If α = (αk) ≡ 0, then (1.2.1) is a Sturm–Liouville operator in the divergence form
and its basic spectral properties are rather well studied (let us only mention the
contributions of H. Weyl [206], M.G. Krein and I.S. Kac [117], [118], [119]). The



1.2. OVERVIEW OF THE RESULTS 9

study of its parabolic properties (recurrence, stochastic completeness) was initiated
in the work of W. Feller [69]. It is not at all surprising that, in this particular situa-
tion, one can obtain a complete answer to most basic questions and we collect some
of these results in Section 5.1. In the next Section 5.2 we look at the corresponding
difference expression associated with (1.2.1) by means of Theorem 3.1. Looking at
this difference operator in the unweighted Hilbert space `2(Z≥0), we end up with
the usual semi-infinite Jacobi (tri-diagonal) matrix (5.2.8). If α 6≡ 0, then we briefly
demonstrate that the self-adjointness problem for (1.2.1) is a rather complicated
issue. Actually, in the unweighted case µ = ν ≡ 1, the corresponding results were
obtained in [141] and even for this operator, known as the 1d Schrödinger operator
with δ-interactions [3], a complete answer to the self-adjointness problem is not yet
known. In Section 5.3 we are interested in the following problem: How large is the
set of Jacobi matrices (5.2.8) arising as boundary operators for (1.2.1)?† Propo-
sition 5.18 shows that even when restricting to the case of operators with µ ≡ 1,
every Jacobi matrix can be realized as a boundary operator for (1.2.1). The latter
in particular implies that the self-adjointness problem for the particular class of op-
erators (1.2.1)–(1.2.2), which are Laplacians on weighted path graphs, is equivalent
to the self-adjointness problem for Jacobi matrices, which is the classical problem
in spectral theory and of vital importance in the classical moment problem [2].
However, when considering the boundary operator in the weighted space `2(Z≥0;m),
that is, a weighted graph Laplacians (1.1.1) on a path graph (which is known in
the literature as a Krein–Stieltjes string [2, Appendix], [118, §13]),

(τf)(k) :=
1

m(k)

∑
|n−k|=1

b(min{n, k})(f(k)− f(n)), k ∈ Z≥0,(1.2.3)

the situation changes drastically. It turns out that the answer to the above question
depends on the weight m in a rather non-trivial way. Namely, (1.2.3) arises as
a boundary operator for some Sturm–Liouville operator (1.2.1) with the weights
(1.2.2) if and only if a positive sequence m = (mk)k≥0 satisfies

n∑
k=0

(−1)n−km(k) > 0(1.2.4)

for all n ≥ 0 (see Proposition 5.20).
In Chapter 6 we study the problems raised in Section 5.3, however, for Lapla-

cians on arbitrary locally finite graphs. Surprisingly enough, the answers obtained
for a path graph extend to the general setting. Namely, if one looks at symmet-
ric Jacobi matrices on graphs (i.e., second order symmetric difference expressions
on graphs) acting in the unweighted space `2(V), then every such operator can
be realized as a boundary operator (in the sense of Theorem 3.1) for a metric
graph Laplacian with δ-couplings. For graph Laplacians (1.1.1) the situation is
more involved. There are two different cases. First of all, one may look only at
simple graphs and then the answer is very much similar to (1.2.4). Let us stress
that M. Folz faced precisely the same problem in [70]. The way to overcome this
difficulty is to allow loops. Namely, it is immediate to notice that the difference

†A possibility to exploit spectral properties of (1.2.1) in order to study the corresponding

properties of Jacobi matrices has already been emphasized in [4, §7]. Moreover, in 2010 during
the OTAMP Conference in Bedlewo, Sergei Naboko (1950-2020) posed to one of us (A.K.) exactly

this question.
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expression (1.1.1) does not “see” loops in the coefficient b, however, loops enter
the weight m in (1.1.11) and exactly this observation allows to realize every locally
finite graph (V,m; b) as a boundary operator for some metric graph Laplacian.

We begin Chapter 6 by introducing the notion of a cable system and a minimal
cable system (Definition 6.1) and then explicitly state the problems (see Prob-
lems 6.1–6.4). In Section 6.1, we provide several illustrative examples showing that
some important classes of graph Laplacians admit minimal cable systems (e.g., gen-
erators of discrete time random walks on graphs) and some of them do not (e.g.,
combinatorial Laplacians). The next section is dedicated to Problem 6.1, where
we demonstrate that the answer is very much similar to the case of a path graph.
We also recall here one interesting result due to H. Zaimi providing a combinato-
rial answer to Problem 6.1 in the particular case of the combinatorial Laplacian
(Lemma 6.13). Section 6.3 answers Problem 6.2 in the affirmative (see also [70]).
A solution to Problem 6.4 is contained Section 6.6.

Sections 6.4-6.5 attempt to deepen the connections established in Chapters 3–4.
More specifically, Section 6.4 provides a quasi-isometric perspective on the obtained
results. First, in Subsection 6.4.1 we recall the notion of the intrinsic metric %η on
a weighted metric graph (G, µ, ν). In the next Subsection 6.4.2, we briefly recall
following [73], [127] the notion of an intrinsic metric on a weighted graph. The
intrinsic path metric %η on G induces a path metric %V on V in an obvious way
(see (1.1.14)). It then turns out that the metric %V is intrinsic with respect to
(V,m; b) if the graph b over (V,m) is related to (G, µ, ν) in the sense of Chapter 3
(see Lemma 6.25). Moreover, we show that for a locally finite weighted graph every
intrinsic path metric of finite jump size arises in this way (Lemma 6.31). In partic-
ular, imposing some natural restrictions on cable systems (the so-called canonical
cable systems), this correspondence between continuous and discrete intrinsic path
metrics becomes bijective (Theorem 6.34). Notice that (G, %η) and (V, %V) are
quasi-isometric metric spaces (Lemma 6.28) and hence these results allow to as-
sociate to a discrete locally compact metric space a quasi-isometric length space,
which also respects its local combinatorial structure. For example, in Section 6.4.5
we demonstrate these findings by looking at Hopf–Rinow-type theorems, which
connect completeness with bounded compactness and geodesic completeness. Orig-
inally established for manifolds, the Hopf–Rinow theorem was extended to length
spaces by M. Gromov and the above connections enable us to immediately extend
it to the discrete setting. Of course, the discrete version of the Hopf–Rinow the-
orem is by no means new [165], [113, Theorem A.1] (see also [127]). The next
Section 6.5 is dedicated to harmonic and sub-/superharmonic functions on graphs.
As it was mentioned already, there is a 1-to-1 correspondence between harmonic
functions. Moreover, this correspondence extends to sub- and superharmonic func-
tions on (G, µ, ν) which are assumed edgewise affine. The results of Section 4.3 and
Section 6.4 enable us to connect Liouville-type properties in discrete and continu-
ous settings (e.g., Yau’s Lp-Liouville-type theorems, see Subsection 6.5.3). Let us
emphasize once again that results of this type usually do not extend to the whole
equivalence class of quasi-isometric spaces (see, e.g., [46], [149], [158], [191]).

The aim of Chapter 7 is to employ the established connections in order to
prove new results for Laplacians on metric graphs, as well as to provide another
perspective on recent results for weighted graph Laplacians.
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Section 7.1 deals with the self-adjointness problem. We start by proving the
Gaffney-type theorem for Kirchhoff Laplacians. On the one hand, this result seems
to be a folklore, however, it is hard to find its proof in the existing literature (ac-
tually, we are aware of only two such sources [95, Theorem 3.49] and [67]) and,
moreover, we provide a very short proof using the L2-Liouville theorem for metric
graphs from [195]). As an immediate corollary, we obtain a Gaffney-type theorem
for weighted graph Laplacians proved by a different approach than in [113, Theo-
rem 2]. On the other hand, one can use the results from [113] and [130] to prove
sufficient self-adjointness conditions for Kirchhoff Laplacians. Let us stress that
Theorem 7.7, first established in [67] for unweighted metric graphs, has an obvi-
ous analog in the case of Sturm–Liouville operators, however, we are unaware of its
analogs in the manifold setting (Remark 7.8). Then we consider the self-adjointness
problem for Laplacians with δ-couplings. First, following [143] we present the
Glazman–Povzner–Wienholtz theorem for metric graphs (Theorem 7.9), which also
provides another proof of Theorem 7.1, and then immediately obtain its analog for
graph Laplacians (Theorem 7.11). Moreover, we discuss semiboundedness and also
relate it with the notion of criticality on graphs [138].

Section 7.2 is dedicated to Markovian uniqueness. Here we extend the results
from [144] to the setting of weighted metric graphs. More specifically, using the
notion of finite volume graph ends introduced in [144], we are interested in con-
ditions on the edge weights µ and ν under which finite volume graph ends serve
as the proper boundary for Markovian extensions. Let us also mention that these
results can be seen at the study of self-adjointness for the Gaffney Laplacian [147].

We investigate spectral gap estimates in Section 7.3. Motivated by [146], we
introduce an isoperimetric constant for weighted metric graphs (Definition 7.31).
First, we prove the analogs of Cheeger and Buser estimates (Theorem 7.33). Taking
into account that the isoperimetric constant has a combinatorial flavour (which
is in sharp contrast with the case of finite metric graphs [170]), we are able to
connect it with the combinatorial isoperimetric constant (a classical widely studied
object [209]) as well as with isoperimetric constants for weighted graph Laplacians,
recently introduced in [18]. The section is concluded with a quick discussion of
volume growth estimates.

The remaining two sections briefly touch the most important parabolic proper-
ties – recurrence and stochastic completeness (a.k.a. conservativeness). On the one
hand, we follow the road indicated in earlier work of M. Folz [70], [71]. Namely,
by combining volume growth criteria for strongly local Dirichlet forms with the
results from Chapter 4, one can obtain volume growth criteria for weighted graph
Laplacians. On the other hand, let us mention one result, which seems to be new.
Theorem 7.49 relates recurrence of the Brownian motion on a weighted metric graph
to that of a particular discrete time random walk (reversible Markov chain) on a
graph (V, b). Notice that this fact can be seen as a significant improvement of the
results in Section 4.5.

Chapter 8 continues along the lines of Chapter 7, however, here we restrict
ourselves to three particular classes of graphs.

Section 8.1 deals with antitrees. Imposing an additional radial symmetry as-
sumption, one can perform a very detailed analysis in this case since the Sturm–
Liouville operator (or weighted Laplacian on a path graph) studied in Section 5.1
plays a crucial role in this analysis (see Theorem 8.2). Thus for this class of graphs
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we can obtain complete answers to most basic questions (self-adjointness, Mar-
kovian uniqueness, positive spectral gap, recurrence, stochastic completeness etc.).
However, we should stress that removing the radial symmetry assumption makes
the analysis much more complicated and, for instance, the self-adjointness problem
is widely open in this case (Subsection 8.1.2). In Subsection 8.1.3 we collect some
historical remarks and further references to the existing literature.

Section 8.2 is dedicated to Cayley graphs. Taking into account that random
walks on groups is a classical subject, the results obtained in the previous chap-
ters enable us to prove many new results for Laplacians on weighted metric Cay-
ley graphs. First of all, the classical theorems of H. Freudenthal, H. Hopf and
J.R. Stallings about ends of groups enable us to make a rather thorough study of
the Markovian uniqueness on metric Cayley graphs (Section 8.2.1). In sharp con-
trast to the Markovian uniqueness, the self-adjointness depends on the choice of
a generating set. In particular, the self-adjointness problem remains widely open
for metric Cayley graphs (see Remark 8.25). In Subsection 8.2.2, employing con-
nections between isoperimetric constants and amenability we, among other results,
prove a metric graph analog of Kesten’s amenability criterion (Corollary 8.31).
Similarly, taking into account the classification of recurrent groups, we prove a
number of results regarding transience/recurrence on metric Cayley graphs (see
Subsection 8.2.4). In Subsection 8.2.5, we study ultracontractivity estimates by
employing the classical results of N.Th. Varopoulos, which relate growth in groups
with the decay rate of simple random walks. Moreover, we use these results to
establish Cwiekel–Lieb–Rozenblum-type estimates (Theorem 8.42). Again, we con-
clude this part with some historical remarks and further references to the existing
literature (Subsection 8.2.6).

The aim of Section 8.3 is to discuss graphs arising in context with tessellations
(or tilings) of the Euclidian plane R2. In Section 8.3.1, we first observe that our
criteria for Markovian uniqueness become particularly transparent in this case (see
Corollary 8.47). Moreover, in the past several discrete curvature-like notions have
been introduced for plane graphs to study their geometric and spectral properties
(see [128] for an overview). In Section 8.3.2, we develop this approach in context
with weighted metric graphs and spectral gap estimates. We introduce a charac-
teristic value on edges of a weighted metric graph, which takes over the role of the
classical discrete curvature. Theorem 8.50 then provides a lower estimate on the
isoperimetric constant (and the spectrum of the Dirichlet Laplacian) in terms of
the characteristic values. Finally, Section 8.3.3 contains further historical remarks,
references and a discussion of the relation to other discrete curvature notions for
plane graphs.

Finally, in order to make the exposition (reasonably) self-contained we provide
three appendices. Appendix A collects basic notions and facts on linear relations,
boundary triplets and the corresponding Weyl functions. Appendix B is dedicated
to Dirichlet forms. In Appendix C, we recall results relating ultracontractivity
estimates with Sobolev and Nash-type inequalities.

Acknowledgments. First and foremost we would like to thank Mark Mala-
mud who, more than 15 years ago, introduced one of us (A.K.) into the exciting
field of spectral theory and, in fact, initiated this work. Without his influence and
encouragement this text would never have been written. We are also grateful to
Pavel Exner who, starting from August 2009, brought quantum graphs together



1.2. OVERVIEW OF THE RESULTS 13

with several intriguing questions to our attention and whose enthusiasm shaped
our interest in the subject.

We are also indebted to Omid Amini, Matthias Keller, Daniel Lenz, Delio
Mugnolo, Wolfgang Woess for numerous fruitful and enlightening discussions during
the preparation of this manuscript. We also thank the referee for the careful reading
and remarks that have helped to improve the exposition.





CHAPTER 2

Laplacians on Graphs

2.1. Combinatorial and metric graphs

2.1.1. Graphs. Let Gd = (V, E) be a (undirected) graph, that is, V is a finite
or countably infinite set of vertices and E is a finite or countably infinite set of
edges. Two vertices u, v ∈ V are called neighbors and we shall write u ∼ v if there
is an edge eu,v ∈ E connecting u and v. For every v ∈ V, we define Ev as the set of
edges incident to v. We stress that we allow multigraphs, that is, we allow multiple
edges (two vertices can be joined by several edges) and loops (edges from one vertex
to itself). Graphs without loops and multiple edges are called simple. Sometimes it
is convenient to assign an orientation on Gd: to each edge e ∈ E one assigns the pair
(eı, eτ ) of its initial eı and terminal eτ vertices. We shall denote the corresponding

oriented graph by ~Gd = (V, ~E), where ~E denotes the set of oriented edges. Notice
that for an oriented loop we do distinguish between its initial and terminal vertices.
Next, for every vertex v ∈ V, set

E+
v =

{
(eı, eτ ) ∈ ~E | eı = v

}
, E−v =

{
(eı, eτ ) ∈ ~E | eτ = v

}
,(2.1.1)

and let ~Ev be the disjoint union of outgoing E+
v and incoming E−v edges,

~Ev := E+
v t E−v = ~E+

v ∪ ~E−v , ~E±v :=
{

(±, e) | e ∈ E±v
}
.(2.1.2)

We shall denote the elements of ~Ev by ~e. The (combinatorial) degree or valency of
v ∈ V is defined by

deg(v) := #(~Ev) = #(~E+
v ) + #(~E−v ) = #(Ev) + #{e ∈ Ev| e is a loop}.(2.1.3)

Notice that if Ev has no loops, then deg(v) = #(Ev). The graph Gd is called locally
finite if deg(v) <∞ for all v ∈ V. If furthermore supv∈V deg(v) <∞, then Gd has
bounded geometry.

A sequence of (unoriented) edges P = (ev0,v1 , ev1,v2 , . . . , evn−1,vn) is called a
path of (combinatorial) length n ∈ Z≥0 ∪ {∞}. If v0 = vn and all other vertices

as well as all edges are distinct, then such a path is called a cycle‡. Notice that
for simple graphs each path P can be identified with its sequence of vertices, i.e.,
P = (vk)nk=0. A graph Gd is called connected if for any two vertices there is a path
connecting them.

We shall always make the following assumptions on the geometry of Gd:

Hypothesis 2.1. Gd is connected and locally finite.

‡Sometimes in the literature cycles are called loops and in such a case what we call a “loop”
is called a self-loop. On the other hand, in our terminology each loop is a cycle of length 1.

15
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Figure 2.1. Star shaped sets for deg(x) = 1, 2, 3, 5 and 6.

2.1.2. Metric graphs. Next, let us assign each edge e ∈ E a finite length
|e| ∈ (0,∞). We can then naturally associate with (Gd, | · |) = (V, E , | · |) a metric
space G: first, we identify each edge e ∈ E with a copy of the interval Ie = [0, |e|],
which also assigns an orientation on E upon identification of eı and eτ with the
left, respectively, right endpoint of Ie. The topological space G is then obtained
by “glueing together” the ends of edges corresponding to the same vertex v (in the
sense of a topological quotient, see, e.g., [36, Chapter 3.2.2]). The topology on G
is metrizable by the length metric %0 — the distance between two points x, y ∈ G
is defined as the arc length of the “shortest path” connecting them (notice that G
may not be a geodesic space, that is, such a path does not necessarily exist and one
needs to take the infimum over all paths connecting x and y). Moreover, each point
x ∈ G has a neighborhood isometric to a star-shaped set E(deg(x), rx) of degree
deg(x) ∈ Z≥1 (see Figure 2.1),

E(deg(x), rx) :=
{
z = re2πik/ deg(x)| r ∈ [0, rx), k = 1, . . . ,deg(x)

}
⊂ C.(2.1.4)

Notice that deg(x) in (2.1.4) coincides with the combinatorial degree if x belongs
to the vertex set, and deg(x) = 2 for every non-vertex point x of G.

A metric graph is a metric space G arising from the above construction for
some collection (Gd, | · |) = (V, E , | · |). More specifically, G is then called the metric
realisation of (Gd, | · |). On the other hand, we will call a pair (Gd, | · |) whose metric
realization coincides with G a model of G.

Remark 2.1 (Metric graph as a length space). A metric graph G equipped
with its length metric %0 is a length space (see [36, Chapter 2.1] for definitions and
further details). Concerning terminology, let us only stress that the metric %0 is
intrinsic in the sense of [36, Definition 2.1.6], however, we are going to use the
notion of an intrinsic metric in a different context — intrinsic w.r.t. to a Dirichlet
form — and in certain situations of interest %0 turns out to be intrinsic in both
senses (see Section 6.4 for further details).

Remark 2.2 (Paths in metric graphs). Let us make one more convention. Usu-
ally, for length spaces one introduces the class of admissible paths (e.g., rectifiable
curves, see [36]), however, taking into account the one-dimensional local structure
of metric graphs, we shall define a path P in G as a continuous map γ : I → G, which
is piecewise injective. Here I ⊂ R is an interval, that is, a connected subset of R,
and piecewise injectivity means that for any [a, b] ⊆ I there is a finite partition
a = t0 < t1 < · · · < tn = b such that γ is injective on each open interval (tk−1, tk),
k ∈ {1, . . . , n}. Notice that this definition of paths in G allows self-intersections
and backtracking.

Clearly, different models may give rise to the same metric graph. Moreover,
any metric graph has infinitely many models (e.g., they can be constructed by
subdividing edges using vertices of degree 2). On this set we can introduce a
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partial order by saying that a model (V ′, E ′, | · |′) of G is a refinement of (V, E , | · |)
if V ⊆ V ′. A model (V, E , | · |) is called simple if the corresponding graph (V, E)
is simple. In particular, every locally finite metric graph has a simple model and
hence this indicates that restricting to simple graphs, that is, assuming in addition
to Hypothesis 2.1 that Gd has no loops or multiple edges, would not be a restriction
at all when dealing with metric graphs.

Let us emphasize that one can introduce metric graphs without the use of
models. From topological point of view, a locally finite metric graph is precisely
a connected (second countable and locally compact) Hausdorff space G such that
each point x ∈ G has a neighborhood Ux homeomorphic to a star-shaped set Ex of
the form (2.1.4). As metric spaces, they are characterized by requiring additionally
that the homeomorphism between Ux and the star Ex is an isometry and the metric
on G coincides with the associated path metric. Given a metric graph G, one can
construct a model (V, E , | · |) of G as follows: fix a discrete set V ⊂ G containing
all the points x ∈ G with deg(x) 6= 2 and such that each connected component of
G \ V is isometric to a bounded, open interval. The edge set E then consists of
all connected components of G \ V and the edge length |e| of e ∈ E is chosen as
the distance between the respective endpoints. For a thorough discussion of metric
graphs as topological and metric spaces we refer to [95, Chapter I].

Remark 2.3. In most parts of our manuscript, we will consider a metric graph
together with a fixed choice of its model. In this situation, we will usually be
slightly imprecise and do not distinguish between these two objects. In particular,
we will denote both objects by the same letter G and also write G = (V, E , | · |)
or G = (Gd, | · |). However, for certain questions it is crucial to consider different
models of the same metric graph or even the whole set of its models. Whenever
this is the case, we will specifically indicate it in order to avoid a possible confusion.

Remark 2.4 (Metric graph as a 1d manifold with singularities). Let us men-
tion that one may also consider metric graphs as one-dimensional manifolds with
singularities. Since every point x ∈ G has a neighborhood isomorphic to a star-
shaped set (2.1.4), one may introduce the set of tangential directions Tx(G) at x as
the set of unit vectors e2πik/ deg(x), k = 1, . . . ,deg(x). Then all vertices v ∈ V with
deg(v) ≥ 3 are considered as branching points/singularities and vertices v ∈ V with
deg(v) = 1 as a boundary. Notice that for every vertex v ∈ V the set of tangential

directions Tv(G) can be identified with ~Ev. If there are no loop edges at the vertex
v ∈ V, then Tv(G) is identified with Ev in this way.

2.1.3. Graph ends. There are many different notions of graph boundaries.
In this subsection we recall basic facts about, perhaps, the simplest graph bound-
ary – graph ends. The notion of graph ends was introduced independently by
H. Freudenthal [75] and R. Halin [100] and its origins are closely related to the
study of finitely generated groups [75], [76], [107] (see Remark 8.19 for further
information).

An infinite path P = (evn,vn+1
)n≥0 without self-intersections (i.e., all vertices

(vn)n≥0 are distinct) is called a ray . Two rays R1,R2 are called equivalent if there
is a third ray containing infinitely many vertices of bothR1 andR2. An equivalence
class of rays is called a graph end of Gd.

Considering a metric graph G as a topological space, one can introduce topolog-
ical ends. Consider sequences U = (Un) of non-empty open connected subsets of G
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with compact boundaries and such that Un+1 ⊆ Un for all n ≥ 0 and
⋂
n≥0 Un = ∅.

Two such sequences U and U ′ are called equivalent if for all n ≥ 0 there exist j and
k such that Un ⊇ U ′j and U ′n ⊇ Uk. An equivalence class γ of sequences is called
a topological end of G and C(G) denotes the set of topological ends of G. There
is a natural bijection between topological ends of a locally finite metric graph G
and graph ends of the underlying combinatorial graph Gd: for every topological end
γ ∈ C(G) of G there exists a unique graph end ωγ of Gd such that for every sequence
U = (Un) representing γ, each Un contains a ray from ωγ (see [209, § 21], [57, § 8.6
and also p.277–278] for further details).

One of the main features of graph ends is that they provide a rather convenient
way of compactifying graphs (see [57, § 8.6], [209]). Namely, we introduce a topol-

ogy on Ĝ := G ∪C(G) as follows. For an open subset U ⊆ G, denote its extension Û

to Ĝ by

Û = U ∪ {γ ∈ C(G) | ∃ U = (Un) ∈ γ such that U0 ⊂ U}.(2.1.5)

Now we can introduce a neighborhood basis of γ ∈ C(G) as follows

{Û |U ⊆ G is open, γ ∈ Û}.(2.1.6)

This turns Ĝ into a compact topological space, called the end (or Freudenthal)
compactification of G.

Definition 2.5. An end ω of a graph Gd is called free if there is a finite set X
of vertices such that X separates ω from all other ends of the graph. Otherwise, ω
is called non-free.

Remark 2.6. Let us mention that by Halin’s theorem [100] every locally finite
graph Gd with infinitely many ends has at least one end which is not free.

2.2. Discrete Laplacians on graphs

There are several ways to introduce Laplacians on (combinatorial) graphs and
here we follow the approach from [130], [134]. Let V be a finite or countable set
(one may think of V as the set of vertices from the previous section). A function
m : V → (0,∞) defines a measure of full support on V in an obvious way. A pair
(V,m) is called a discrete measure space. The set of square summable functions

`2(V;m) =
{
f ∈ C(V) | ‖f‖2`2(V;m) :=

∑
v∈V
|f(v)|2m(v) <∞

}
has a natural Hilbert space structure. Here C(V) denotes the space of all complex-
valued functions on V. Next, let c : V → [0,∞) and suppose b : V × V → [0,∞)
satisfies the following conditions:

(i) symmetry: b(u, v) = b(v, u) for each pair (u, v) ∈ V × V,
(ii) vanishing diagonal: b(v, v) = 0 for all v ∈ V,
(iii) local summability:

∑
v∈V b(u, v) <∞ for all u ∈ V.

Following [130], [134], such a pair (b, c) is called a (weighted) graph over V (or over
(V,m) if in addition a measure m of full support on V is given); b is called an edge
weight and c is a killing term. If c ≡ 0, then we would say a graph b over V. To
simplify notation, we shall denote a graph b or (b, c) over (V,m) by (V,m; b) or,
respectively, (V,m; b, c).
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Remark 2.7. Let us quickly explain how the above notion is related to the
previous section. To any graph b over V, we can naturally associate a simple
combinatorial graph Gb. Namely, V is the vertex set of Gb and its edge set Eb is
defined by calling two vertices u, v ∈ V neighbors, u ∼ v, exactly when b(u, v) > 0.
Clearly, Gb = (V, Eb) is an undirected graph in the sense of Section 2.1. Let us
stress, however, that the constructed graph Gb is always simple. Moreover, for a
given metric graph G, each model (V, E , | · |) can be seen as a weighted graph over V
with the edge weight 1/| · |, which further connects it with electrical networks when
lengths are thought of as resistances (see, e.g., [192]).

With each graph (b, c) one can associate the energy form q : C(V) → [0,∞]
defined by

q[f ] = qb,c[f ] :=
1

2

∑
u,v∈V

b(v, u)|f(v)− f(u)|2 +
∑
v∈V

c(v)|f(v)|2.(2.2.1)

Functions f ∈ C(V) such that q[f ] < ∞ are called finite energy functions. The
local summability condition ensures that the set of compactly supported functions
Cc(V), i.e., functions which vanish everywhere on V except finitely many vertices, is
contained in the set D(q) of finite energy functions. If (b, c) is a graph over (V,m),
introduce the graph norm

‖f‖2q := q[f ] + ‖f‖2`2(V;m)(2.2.2)

for all f ∈ D ∩ `2(V;m) =: dom(q). Clearly, dom(q) is the maximal domain of
definition of the form q in the Hilbert space `2(V;m); let us denote this form by
qN . Restricting further to compactly supported functions and then taking the
graph norm closure, we get another form:

qD := q � dom(qD), dom(qD) := Cc(V)
‖·‖q

.

It turns out that both qD and qN are Dirichlet forms (for definitions see Appen-
dix B). Moreover, qD is a regular Dirichlet form. The converse is also true (see
[130, Theorem 7]): every regular Dirichlet form over (V,m) arises as the energy
form qD for some graph (b, c) over (V,m).

Remark 2.8. The notion of irreducibility for Dirichlet forms on graphs corre-
lates with the notion of connectivity. Recall that a graph (b, c) is called connected
if the corresponding graph Gb is connected, i.e., for any u, v ∈ V there is a finite
set {v0, v1, . . . , vn} ⊂ V such that u = v0, v = vn and b(vk−1, vk) > 0 for all
k ∈ {1, . . . , n}. Then the regular Dirichlet form qD is irreducible exactly when the
underlying graph (b, c) is connected (see, e.g., [134, Chapter 1.4]).

Now using the representation theorems for quadratic forms (see, e.g., [125])
one can associate in `2(V;m) the self-adjoint operators hD and hN , the so-called
Dirichlet and Neumann Laplacians over (V,m), with, respectively, qD and qN . Usu-
ally, it is a rather nontrivial task to provide an explicit description of the operators
hD and, especially, hN

†. Let us first introduce the formal Laplacian L = Lc,b,m

†In fact, to decide whether hN and hD coincide, or equivalently that qN = qD, is already
a nontrivial and still open problem. This property is related to the uniqueness of a Markovian

extension (Section 4.1) and we shall return to this issue in Chapter 7.
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associated to a graph (b, c) over the measure space (V,m):

(Lf)(v) :=
1

m(v)

(∑
u∈V

b(v, u)(f(v)− f(u)) + c(v)f(v)
)
.(2.2.3)

It acts on functions f ∈ Fb(V), where

Fb(V) =
{
f ∈ C(V)

∣∣ ∑
u∈V

b(v, u)|f(u)| <∞ for all v ∈ V
}
.(2.2.4)

This naturally leads to the maximal Laplacian h in `2(V;m) defined by

h := L � dom(h), dom(h) := {f ∈ Fb(V) ∩ `2(V;m) |Lf ∈ `2(V;m)}.(2.2.5)

This operator is closed, however, if V is infinite, it is not symmetric in general (cf.
[130, Theorem 6]). On the other hand, one gets

hD = h � dom(hD), dom(hD) = dom(h) ∩ dom(qD),(2.2.6)

which also implies that hD is the Friedrichs extension of the adjoint h∗ to h.
In order to proceed further we need to make some additional assumptions on

the edge weight b. Namely, in contrast to the energy form q, compactly supported
functions are not necessarily in the domain of h, which does not allow us to define
the minimal operator in the standard way (i.e., to describe the adjoint h∗ to h). In
many situations of interest, in particular, it would be sufficient for the purposes of
the present text, it makes sense to assume that b is

(iv) locally finite: #{u ∈ V | b(u, v) 6= 0} <∞ for all v ∈ V.

It is straightforward to verify that Cc(V) ⊆ Fb(V) for locally finite graphs. In
this case, the minimal Laplacian h0 is defined in `2(V;m) as the closure of the
pre-minimal Laplacian

h′ := L � dom(h′), dom(h′) := Cc(V).(2.2.7)

Then h′ ⊆ h0 ⊆ h and (h′)∗ = (h0)∗ = h.
Let us provide one transparent sufficient condition which ensures that all graph

Laplacians coincide (see, e.g., [51, Lemma 1], [129, Theorem 11], [198, Rem. 1]).

Lemma 2.9. The Laplacian L = L0,b,m (with c ≡ 0) is bounded on `2(V,m) if
and only if the weighted degree function Deg : V → [0,∞) given by

Deg : v 7→ 1

m(v)

∑
u∈V

b(u, v)(2.2.8)

is bounded on V. In this case, h0 = hD = hN = h for any c : V → [0,+∞).

A few remarks are in order.

Remark 2.10 (Schrödinger-type operators on graphs). The positivity restric-
tion on the killing term c comes from the theory of Dirichlet forms (or, equivalently,
from its probabilistic interpretation), however, it of course makes sense to consider
the case when c takes values of both signs. Then L is usually called a Schrödinger-
type operator on a graph. To distinguish between the nonnegative and sign indefinite
cases, we shall denote c in the latter case with α, that is, α : V → R, and call it
a potential. In the locally finite case, the definitions of the pre-minimal, minimal
and maximal operators remain the same in the case of potentials. However, one
very important difference between these cases is that the quadratic form approach
applies only if the negative part of α is not “too negative”. Let us mention that
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this also allows to keep the positivity preserving property for the corresponding
resolvent and the semigroup, however, Lp-contractivity is lost once the potential is
sign indefinite.

Remark 2.11 (Random walks on graphs). If the weighted degree function is
bounded by 1 on V,

sup
v∈V

Deg(v) ≤ 1,(2.2.9)

then the graph Laplacian h is a generator of a discrete time random walk on a
weighted graph: for a vertex v ∈ V, the jump probabilities are defined by (see, e.g.,
[12, Chapter 1.2])

p(u, v) =

{
b(u,v)
m(v) , u 6= v,

1−Deg(v), u = v.

In particular, the probability p(v, v) to stay at v equals 1 − Deg(v) and hence, if
Deg(v) < 1 for some vertex v ∈ V, then p(v, v) > 0, which can be interpreted as
a loop at v. The matrix P =

(
p(u, v)

)
u,v∈V is called the transition matrix of the

associated discrete time (reversible) Markov chain.

Remark 2.12 (Laplacians on multi-graphs). The above remark indicates that
(2.2.3)–(2.2.7) allow to treat weighted discrete Laplacians on multigraphs. Namely,
for a multigraph Gd = (V, E) and a given edge weight bE : E → (0,∞), vertex weight
m : V → (0,∞) and killing term c : V → [0,∞), the corresponding (minimal and
maximal) Laplacians are associated with the formal expression

(LGf)(v) :=
1

m(v)

(∑
u∼v

∑
e∈Eu,v

bE(e)(f(v)− f(u)) + c(v)f(v)
)
, v ∈ V,

where Eu,v denotes the set of edges between the vertices u, v ∈ V. Defining the
function b : V × V → [0,∞) as

b(u, v) =

{∑
e∈Eu,v bE(e), u 6= v,

0, u = v,

it is clear that LG = L (see (2.2.3)). However, notice that in general Gd 6= Gb for
the simple graph Gb = (V, Eb) associated with b in Remark 2.7.

2.3. Function spaces on metric graphs

Let G be a metric graph together with a fixed model (V, E , | · |). Let also
µ : E → (0,∞) be a weight function assigning a positive weight µ(e) to each edge
e ∈ E . We shall assume that edge weights are orientation independent and we set

µ(~e) = µ(e)

for all ~e ∈ ~Ev, v ∈ V. Identifying every edge e ∈ E with a copy of Ie = [0, |e|],
we can introduce Lebesgue and Sobolev spaces on edges and also on G. First of
all, with the weight µ we associate the measure µ on G defined as the edgewise
scaled Lebesgue measure such that µ(dx) = µ(e)dxe on every edge e ∈ E . Thus,
we can define the Hilbert space L2(G;µ) of measurable functions f : G → C which
are square integrable w.r.t. the measure µ on G. Similarly, one defines the Banach
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spaces Lp(G;µ) for any p ∈ [1,∞]. In fact, if p ∈ [1,∞), then Lp(G;µ) can be seen
as the edgewise direct sum of Lp spaces

Lp(G;µ) ∼=
{
f = (fe)e∈E

∣∣ fe ∈ Lp(e;µ),
∑
e∈E
‖fe‖pLp(e;µ) <∞

}
,

where

‖fe‖pLp(e;µ) =

∫
e

|fe(xe)|pµ(dxe) = µ(e)

∫
e

|fe(xe)|p dxe,

that is, Lp(e;µ) stands for the usual Lp space upon identifying e with Ie and µ
with the scaled Lebesgue measure µ(e)dxe on Ie. If µ(e) = 1, then we shall simply
write Lp(e). The subspace of compactly supported Lp functions will be denoted
by Lpc(G;µ). The space Lploc(G;µ) of locally Lp functions consists of all measurable
functions f such that fg ∈ Lpc(G;µ) for all g ∈ Cc(G). Notice that both Lploc and
Lpc are independent of the weight µ.

For edgewise locally absolutely continuous functions on G, let us denote by ∇
the edgewise first derivative,

∇ : f 7→ f ′.(2.3.1)

Then for every edge e ∈ E ,

H1(e) = {f ∈ AC(e) | ∇f ∈ L2(e)}, H2(e) = {f ∈ H1(e) | ∇f ∈ H1(e)},

are the usual Sobolev spaces (upon the identification of e with Ie = [0, |e|]), and
AC(e) is the space of absolutely continuous functions on e. Let us denote by
H1

loc(G \ V) and H2
loc(G \ V) the spaces of measurable functions f on G such that

their edgewise restrictions belong to H1, respectively, H2, that is,

Hj
loc(G \ V) = {f ∈ L2

loc(G) | f |e ∈ Hj(e) for all e ∈ E}

for j ∈ {1, 2}. Clearly, for each measurable f ∈ H2
loc(G \V) the following quantities

f(eı) := lim
xe→eı

f(xe), f(eτ ) := lim
xe→eτ

f(xe),(2.3.2)

and the normal derivatives

∂f(eı) := lim
xe→eı

f(xe)− f(eı)

|xe − eı|
, ∂f(eτ ) := lim

xe→eτ

f(xe)− f(eτ )

|xe − eτ |
,(2.3.3)

are well defined for all edges e ∈ E . We also need the following notation

f~e(v) :=

{
f(eı), ~e ∈ ~E+

v ,

f(eτ ), ~e ∈ ~E−v ,
∂~ef(v) :=

{
∂f(eı), ~e ∈ ~E+

v ,

∂f(eτ ), ~e ∈ ~E−v ,
(2.3.4)

for every v ∈ V and ~e ∈ ~Ev. In the case of a loopless graph, the above notation

simplifies since we can identify ~Ev with Ev for all v ∈ V.

2.4. Laplacians on weighted metric graphs

Again, let G be a metric graph together with a fixed model (V, E , | · |). Suppose
we are also given two edge weights

µ : E → (0,∞), ν : E → (0,∞).(2.4.1)

To motivate our definitions, let us look at ∇ given by (2.3.1) as a differentiation
operator on G acting on functions which are edgewise locally absolutely continuous
and also continuous at the vertices. Notice that when considering ∇ as an operator
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acting from L2(G;µ) to L2(G; ν), its formal adjoint ∇† acting from L2(G; ν) to
L2(G;µ) acts edgewise as

∇† : f 7→ − 1

µ
(νf)′.(2.4.2)

Thus, the weighted Laplacian ∆ acting in L2(G;µ), written in the divergence form

∆: f 7→ −∇†(∇f),(2.4.3)

acts edgewise as the following divergence form Sturm–Liouville operator

∆: f 7→ 1

µ
(νf ′)′.(2.4.4)

The continuity assumption imposed on f results for ∆ in a one-parameter family
of symmetric boundary conditions at each vertex v ∈ V

f is continuous at v,∑
~e∈~Ev

ν(e)∂~ef(v) = α(v)f(v),(2.4.5)

where α(v) ∈ R ∪ {∞}, and α(v) = ∞ should be understood as the Dirichlet
boundary condition at v. With the Laplacian ∆ acting on G we shall shall always
associate the Kirchhoff vertex conditions†

f is continuous at v,∑
~e∈~Ev

ν(e)∂~ef(v) = 0, v ∈ V,(2.4.6)

that is, conditions (2.4.5) with α(v) = 0 for all v ∈ V. Notice that for non-zero
α : V → R ∪ {∞}, the Laplacian with boundary conditions (2.4.5) can be written
as

−∆ +
∑
v∈V

α(v)δv,(2.4.7)

(at least when µ ≡ 1), where δv is the Dirac delta centred at v.

Remark 2.13. Of course, since both weights are edgewise constant, on every
edge e ∈ E the corresponding differential expression for ∆ simplifies to

−ν(e)

µ(e)

d2

dx2
e

and then the definition of ∆ looks simpler, especially if µ = ν. However, the
form (2.4.4) is important for us since it reflects, on the one hand, the choice of
the Hilbert space L2(G;µ) and, on the other hand, the proper choice of boundary
conditions at the vertices, see (2.4.6).

There are several standard ways to associate an operator with ∆ in the Hilbert
space L2(G;µ) and this will be our main goal in the following subsections. Notice
that different definitions may lead to different operators (the choice of a domain
of definition is very important when dealing with unbounded operators) and each
definition has its advantages and disadvantages.

†Seems, there is no agreement in the literature regarding the name of the boundary condi-
tions (2.4.6). Sometimes they are called standard or Kirchhoff–Neumann boundary conditions.
The last name can be explained by looking at vertices with deg(v) = 1, in which case (2.4.6) is
nothing but the usual Neumann condition ∂f(v) = 0.
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2.4.1. (Weighted) Kirchhoff Laplacian. For every e ∈ E consider the max-
imal operator He,max defined in L2(e;µ) by

He,max = − 1

µ(e)

d

dxe
ν(e)

d

dxe
, dom(He,max) = H2(e).(2.4.8)

Then one can define the maximal operator in L2(G;µ) as the edgewise direct sum

Hmax =
⊕
e∈E

He,max.(2.4.9)

However, the definition of Hmax does not reflect the underlying graph structure.
Moreover, to make the maximal operator symmetric, one needs to impose appropri-
ate boundary conditions at the vertices. Imposing Kirchhoff boundary conditions
on the maximal domain yields the (maximal) Kirchhoff Laplacian:

H = −∆ � dom(H), dom(H) = {f ∈ dom(Hmax) | f satisfies (2.4.6) on V}.
(2.4.10)

Restricting further to compactly supported functions we end up with the pre-
minimal operator

H′ = −∆ � dom(H′), dom(H′) = dom(H) ∩ Cc(G).(2.4.11)

We shall call its closure H0 := H′ in L2(G;µ) the minimal Kirchhoff Laplacian.
Integrating by parts one obtains

〈H′f, f〉L2 =

∫
G
|∇f(x)|2 ν(dx) = ‖∇f‖2L2(G;ν) =: Q[f ](2.4.12)

for each f ∈ dom(H′), and hence both H′ and H0 are nonnegative symmetric
operators. It is known that

H∗ = H0.(2.4.13)

The equality H0 = H holds if and only if H0 is self-adjoint (or, equivalently, H′ is
essentially self-adjoint).

Alongside Kirchhoff boundary conditions (2.4.6) we are going to consider a
slightly more general class of boundary conditions (2.4.5). These vertex conditions
are interpreted as δ-couplings (or δ-interactions) of strength α (see (2.4.7)).† Indeed,
define the maximal operator

Hα = −∆ �dom(Hα),

dom(Hα) = {f ∈ dom(Hmax) | f satisfies (2.4.5) on V}
(2.4.14)

and the pre-minimal operator

H′α = −∆ � dom(H′α), dom(H′α) = dom(Hα) ∩ Cc(G).(2.4.15)

Integrating by parts one obtains

〈H′αf, f〉L2 =

∫
G
|∇f(x)|2 ν(dx) +

∑
v∈V

α(v)|f(v)|2 =: Qα[f ](2.4.16)

†In fact, one can interpret these boundary conditions as a perturbation of the Kirchhoff
Laplacian by δ-potentials, see [143, Remark 4.5].
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for all f ∈ dom(H′α), which implies that H′α is a symmetric operator in L2(G;µ).
We define H0

α as the closure of H′α. It is standard to show that

(H′α)∗ = Hα.(2.4.17)

In particular, the equality H0
α = Hα holds if and only if Hα is self-adjoint (or,

equivalently, H′α is essentially self-adjoint).

2.4.2. Gaffney Laplacian. One can also associate self-adjoint operators with
the Laplacian ∆ in a different way, which to a certain extent can be interpreted as
the quadratic form approach. Setting

H1
loc(G) := H1

loc(G \ V) ∩ C(G), H1
c (G) := H1

loc(G \ V) ∩ Cc(G),(2.4.18)

let us introduce two (weighted) Sobolev spaces on G. First define

H1(G) = H1(G;µ, ν) :=
{
f ∈ H1

loc(G)
∣∣ f ∈ L2(G;µ), ∇f ∈ L2(G; ν)

}
.(2.4.19)

Equipping H1(G) with the graph norm

‖f‖2H1(G) := ‖f‖2L2(G;µ) + ‖∇f‖2L2(G;ν)(2.4.20)

turns it into a Hilbert space. Next, we set

H1
0 (G) = H1

c (G)
‖·‖H1

.(2.4.21)

Notice that in contrast to H1
c (G) and H1

loc(G), the Sobolev spaces H1(G) and H1
0 (G)

do depend on the weights µ and ν.
The Friedrichs extension of H′, let us denote it by HD, is defined as the operator

associated with the closure in L2(G;µ) of the quadratic form (2.4.12). Clearly, the
domain of the closure coincides with H1

0 (G) and hence HD is given as the restriction
of H to the domain dom(HD) := dom(H)∩H1

0 (G) (see, e.g., [188, Theorem 10.17]).
On the other hand, the form Q is well defined on H1(G) and, moreover, the form

QN [f ] := Q[f ], f ∈ dom(QN ) = H1(G)

is closed (since H1(G) is a Hilbert space). The self-adjoint operator HN associated
with QN is usually called the Neumann extension of H0 or Neumann Laplacian.

Remark 2.14. Following the analogy with the Friedrichs extension, it might
be tempting to think that the domain of the Neumann Laplacian HN is given by
dom(H) ∩ H1(G). However, the operator defined on this domain has a different
name — the Gaffney Laplacian — and it is not symmetric in general. Moreover,
this operator is not always closed (see [147]).

In the Hilbert space L2(G;µ), we can associate (at least) two gradient operators
with ∇ defined by (2.3.1). Namely, we define ∇D and ∇N as the operators

∇D,∇N : L2(G;µ) → L2(G; ν)
f 7→ ∇f(2.4.22)

acting on the domains

dom(∇D) = H1
0 (G), dom(∇N ) = H1(G).(2.4.23)

Both operators are closed and their importance stems from the following fact.
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Lemma 2.15. Let HD and HN be the Friedrichs and the Neumann extensions
of H0, respectively. Then

HD = ∇∗D∇D, HN = ∇∗N∇N ,(2.4.24)

where ∗ denotes the adjoint operator.†

Proof. Since H1
0 (G) and H1(G) are Hilbert spaces, both ∇D and ∇N are

closed operators and hence, by von Neumann’s theorem (see [125, Chapter V.3.7]
or [182, Theorem X.25]), ∇∗D∇D and ∇∗N∇N are self-adjoint nonnegative operators
in L2(G;µ). The quadratic forms associated with ∇∗D∇D and ∇∗N∇N coincide with,
respectively, the quadratic forms of HD and HN and the claim now follows from
the representation theorem (see, e.g., [125, Chapter VI.2.1]). �

Remark 2.16. A few remarks are in order.

(i) HD is often called the Dirichlet Laplacian, which explains the subscript.
(ii) Clearly, ∇ and hence both ∇D and ∇N do depend on the choice of an

orientation on G. However, it is straightforward to see that the second
order operators HD and HN are orientation independent.

In the Hilbert space L2(G;µ), define the following operators

HG,min = ∇∗N∇D, HG = ∇∗D∇N .(2.4.25)

Both operators act edgewise as the Laplacian −∆ and their domains are

dom(HG,min) = {f ∈ H1
0 (G) | ∇f ∈ dom(∇∗N )},

dom(HG) = {f ∈ H1(G) | ∇f ∈ dom(∇∗D)}.
The operator HG is called the Gaffney Laplacian. We shall refer to HG,min as the
minimal Gaffney Laplacian.

Remark 2.17. Notice that the above definition is not precisely the original
definition of M.P. Gaffney [78] (roughly speaking H1 was replaced by C1 ∩H1 in
[78], [79]). The obvious drawback is that the corresponding Laplacian in [78] is
always non-closed. Let us also stress that we are unaware of HG,min in the manifold
context and this natural, in our opinion, object seems to be new.

The following transparent description of HG will be useful.

Lemma 2.18. The domain of the maximal Gaffney Laplacian is given by

dom(HG) = dom(H) ∩H1(G) = {f ∈ dom(H) | ∇f ∈ L2(G; ν)}.(2.4.26)

Moreover, the minimal Gaffney Laplacian is closed in L2(G) and

HG,min = H∗G.(2.4.27)

Proof. The inclusion dom(HG) ⊆ dom(H)∩H1(G) follows from the definition
of HG. The converse inclusion is immediate from the following description of the
adjoint ∇∗D to ∇D (see [147, Lemma 3.5]):

dom(∇∗D) =
{
f ∈ H1(G \ V;µ, ν)

∣∣ ∑
~e∈~Ev

ν(~e)~f~e(v) = 0 for all v ∈ V
}
,(2.4.28)

†The product AB of two unbounded operators A, B in a Hilbert space H is understood as
their composition: (AB)(f) := A(Bf) for all f ∈ dom(AB) := {f ∈ dom(B)|Bf ∈ dom(A)}.
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which then makes the converse inclusion in (2.4.26) obvious. Here we employ the
following notation

~f~e(v) =

{
f~e(v), e ∈ ~E+

v ,

−f~e(v), e ∈ ~E−v
and

H1(G \ V;µ, ν) := {f ∈ H1
loc(G \ V) | f ∈ L2(G;µ), ∇f ∈ L2(G; ν)}. �

It is immediate from the above description that

H0 ⊆ HG,min ⊆ HG ⊆ H(2.4.29)

and

HG,min ⊆ HD ⊆ HG, HG,min ⊆ HN ⊆ HG.(2.4.30)

Remark 2.19 (Hodge Laplacians). One can introduce 0-forms and 1-forms on
G (due to the local 1d nature of metric graphs, the space of 2-forms on G is trivial)
and, upon assigning an orientation, both can be further identified with functions.
From this perspective the operator

~∆ = ∇N∇∗D
is a metric graph analogue of the Hodge Laplacian on 1-forms (see [17, § 5.1], [80],
[178]). Indeed, the Hodge Laplacian on smooth k-forms on a Riemannian manifold
is given by

∆k = δk+1dk + dk−1δk,

where dk is the exterior derivative (mapping k-forms to (k + 1)-forms) and the co-
differential δk+1 is its formal adjoint (mapping (k+1)-forms to k-forms). Working in
the L2-framework and replacing smooth by H1 for metric graphs, one can identify
d0 = ∇N and δ1 = ∇∗D. In particular, the Gaffney Laplacian (2.4.25) can be
viewed as the Hodge Laplacian on 0-forms. Let us also stress that due to the

supersymmetry, the properties of HG and ~∆ are closely connected.

2.4.3. Inessential vertices and models. So far we have defined (weighted)
Laplacian operators by viewing a given metric graph G as a metric realization of a
fixed model (Gd, | · |). Of course, one can introduce these operators also by starting
with a given metric graph G, however, from the metric space perspective. Moreover,
as it was already mentioned, sometimes it is important to consider different models
of the same metric graph and hence we need to introduce the following notions. Let
G be a metric graph. A positive function µ : G → (0,∞) is called an edge weight if
there is a discrete subset Vµ ⊂ G such that Vµ contains all the points of G having
degree not equal to 2 and, moreover, µ is constant on each connected component of
G\Vµ. Clearly, for each model (Gd, |·|) of G, we can lift any function µE : E → (0,∞)
to an edge weight µ : G → (0,∞) in an obvious way. Conversely, each edge weight
µ : G → (0,∞) arises in this way.

Definition 2.20. A triple (G, µ, ν), where G is a metric graph and µ, ν are
edge weights, is called a weighted metric graph.

A collection (Gd, | · |, µE , νE) = (V, E , | · |, µE , νE) is called a model of a weighted
graph (G, µ, ν) if (Gd, | · |) is a model of G and the weights µE , νE lifted to G coincide
with µ and ν, respectively.

For a given model (V, E , | · |, µE , νE) of (G, µ, ν), a vertex v ∈ V is called inessen-
tial if deg(v) = 2 and both µ and ν are constant in some neighborhood of v.
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Notice that we can introduce a partial order on the set of models of (G, µ, ν)
in exactly the same way as for metric graphs: a model (V ′, E ′, | · |′, µE′ , νE′) is a
refinement of (V, E , | · |, µE , νE) if V ⊆ V ′ .

Having introduced these notions, it is clear that the spaces H1(G) and H1
0 (G)

together with the Laplacian operators introduced in Section 2.4.1–2.4.2 only depend
on the weighted metric graph (G, µ, ν) (and not the concrete choice of a model).
For instance, if v ∈ V is an inessential vertex, then the differential expression
remains the same on its two adjacent edges and the corresponding Kirchhoff con-
ditions (2.4.6) turn into the usual continuity condition at v for f and its gradient.
Therefore, replacing these two edges by a single edge whose length equals the sum of
lengths and also taking the same edge weights would not change the corresponding
Kirchhoff Laplacian.

Remark 2.21. A few remarks are in order.

(i) By construction, µ enters the differential expression and ν appears in (2.4.6)
(one can notice this also by looking at the graph norm (2.4.20), where
µ and ν enter the first and the second summand, respectively, on the
RHS (2.4.20)).

(ii) If both edge weights µ and ν are constant on G, then each vertex of degree
2 is inessential.

(iii) We often abuse the notation and denote both a weighted metric graph
and its model by (G, µ, ν). However, when different models of the same
weighted metric graph or the whole set of its models are considered, we will
specifically indicate it in order to avoid a possible confusion. Moreover,
sometimes we will call a model (V, E , | · |, µE , νE) of (G, µ, ν) a (weighted)
metric graph over (V, E).

2.4.4. More general operators on graphs. As one may easily notice, our
setting is rather restrictive from the perspective of differential operators involved.
Indeed, (2.4.8) is nothing but a divergence form Sturm–Liouville differential ex-
pression with constant coefficients and, of course, one can consider more general
differential expressions on edges. The use of more general operators can be justified
from the quantum mechanical perspective (in particular, this leads to the consid-
eration of magnetic Schrödinger operators) as well as from the Brownian motion
perspective (which leads to the study of Sturm–Liouville expressions with distribu-
tional coefficients, e.g., Krein strings which are also widely known as Krein–Feller
operators). Moreover, the one-parameter family of vertex conditions (2.4.5) obvi-
ously does not cover all self-adjoint vertex conditions if the degree of a vertex is
greater than 1. However, some of our results (especially those in Chapter 3) allow
to treat both more general differential expressions (clearly, not all) and arbitrary
self-adjoint vertex conditions, although this requires separate considerations. One
may even attempt to establish the analogs of some results regarding connections
between magnetic Schrödinger operators on graphs and metric graphs. We refer for
further details to [34, § 3.5], [178] as well as to the case of 1d Schrödinger operators
with point interactions [65], [141] (see also Remark 3.14).



CHAPTER 3

Connections via boundary triplets

To simplify the exposition we begin by looking at a weighted metric graph
(G, µ, ν) as a metric realization of one of its models, that is, we start with a given
combinatorial graph Gd = (V, E) equipped with edge lengths | · | : E → (0,∞) and
weights µ, ν : E → (0,∞). Let also α : V → R, that is, we are going to consider
Laplacians with δ-couplings (2.4.5) at vertices. The main results of this chapter
(see Theorem 3.1 and also Theorem 3.22 below) relate basic spectral properties
of the Laplacian with δ-couplings Hα with those of a certain Schrödinger-type
operator on the corresponding combinatorial graph Gd. At the very end of this
chapter, in Section 3.3, we shall look at a weighted metric graph from the metric
space perspective, which allows to understand the whole family of graph Laplacians
associated with the models of a given weighted metric graph.

Let us stress once again that we always assume Hypothesis 2.1.

3.1. Spectral properties: graph Laplacians vs Kirchhoff Laplacians

To state the result, we first define the intrinsic edge length

η(e) := |e|

√
µ(e)

ν(e)
, e ∈ E ,(3.1.1)

together with the following quantity‡

η∗(E) := sup
e∈E

η(e).(3.1.2)

Now introduce the edge weight r : E → (0,∞) by distinguishing two cases:

• if the underlying model of a weighted metric graph satisfies η∗(E) < ∞,
then we set

r(e) = |e|µ(e), e ∈ E ,(3.1.3)

• if η∗(E) =∞, we define the weight r by

r(e) =

|e|µ(e), η(e) ≤ 1,√
µ(e)ν(e), η(e) > 1.

(3.1.4)

Next, with a given metric graph G and weights µ, ν we associate:

• the vertex weight m : V → (0,∞)

m(v) =
∑
~e∈~Ev

r(e), v ∈ V,(3.1.5)

‡In Section 3.3, we shall call it the intrinsic size of a model and its meaning will be clarified
in Chapter 6 (see Remark 6.19).

29
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• the edge weight b : V × V → [0,∞),

b(u, v) =

{∑
~e∈~Eu : e∈Ev

ν(e)
|e| , u 6= v,

0, u = v,
(u, v) ∈ V × V.(3.1.6)

It is straightforward to verify that b satisfies all the properties (i)-(iv) of Section 2.2.
Since Gd is connected, so is the edge weight b. Moreover, the vertex weight m is
strictly positive on V and hence defines a measure of full support on V. Therefore,
following considerations in Section 2.2, with the discrete Schrödinger expression

(τf)(v) :=
1

m(v)

(∑
u∈V

b(v, u)(f(v)− f(u)) + α(v)f(v)
)
, v ∈ V,(3.1.7)

we can associate in the weighted Hilbert space `2(V;m) the minimal operator h0
α

and the maximal operator hα.
The main aim of this section is to prove the following result:

Theorem 3.1. Let H0
α be the minimal Laplacian on (G, µ, ν) equipped with the

δ-coupling conditions (2.4.5) at the vertices and let also h0
α be the corresponding

minimal discrete Schrödinger operator defined in `2(V;m) by (3.1.7). Then:

(i) The deficiency indices of H0
α and h0

α are equal and

n+(H0
α) = n−(H0

α) = n±(h0
α) ≤ ∞.(3.1.8)

In particular, Hα is self-adjoint if and only if hα is self-adjoint.

Assume in addition that Hα (and hence also hα) is self-adjoint. Then:

(ii) The operator Hα is lower semibounded if and only if the operator hα is
lower semibounded.

(iii) The operator Hα is nonnegative if and only if hα is nonnegative.
(iv) The total multiplicities of negative spectra of Hα and hα coincide,

κ−(Hα) = κ−(hα).

(v) The spectrum of Hα is purely discrete if and only if #{e ∈ E | η(e) > ε}
is finite for every ε > 0 and the spectrum of hα is purely discrete.

Assume also that η∗(E) = supe∈E η(e) <∞. Then:

(vi) The operator Hα is positive definite if and only if hα is positive definite.
(vii) If, in addition, the operator hα is lower semibounded, then λess

0 (Hα) > 0
(λess

0 (Hα) = 0) exactly when λess
0 (hα) > 0 (respectively, λess

0 (hα) = 0).
(viii) Moreover, the following equivalence

H−α ∈ Sp(L
2) ⇐⇒ h−α ∈ Sp(`

2),

holds for all p ∈ (0,∞]. In particular, the negative spectrum of Hα is
discrete if and only if so is the negative spectrum of hα.

Here and below for a self-adjoint operator T in a Hilbert space H, λ0(T ) and
λess

0 (T ) denote the bottoms of its spectrum, respectively, of its essential spectrum,

λ0(T ) = inf σ(T ), λess
0 (T ) = inf σess(T ).

Moreover, T− := T1(−∞,0)(T ), where 1(−∞,0)(T ) is the spectral projection on the
negative subspace of T .

As an immediate corollary we obtain the following result for the Kirchhoff
Laplacian.
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Corollary 3.2. Let H0 be the minimal Kirchhoff Laplacian on (G, µ, ν) and let
also h0 be the corresponding minimal weighted graph Laplacian defined in `2(V;m)
by (3.1.7) with α ≡ 0. Then:

(i) The deficiency indices of H0 and h0 are equal and

n+(H0) = n−(H0) = n±(h0) ≤ ∞.(3.1.9)

In particular, H0 is self-adjoint if and only if h0 is self-adjoint.

Assume in addition that H0 is self-adjoint (and hence coincides with the maximal
Kirchhoff Laplacian H). Then:

(ii) The spectrum of H is purely discrete if and only if #{e ∈ E | η(e) > ε} is
finite for every ε > 0 and the spectrum of the operator h is purely discrete.

Assume also that supe∈E η(e) <∞. Then:

(iii) The operator H is positive definite, λ0(H) > 0 if and only if the operator
h is positive definite, λ0(h) > 0.

(iv) λess
0 (Hα) > 0 exactly when λess

0 (hα) > 0.

Proof. The proof is a straightforward application of Theorem 3.1 to the case
α ≡ 0. One only needs to take into account that both the minimal Kirchhoff
Laplacian H0 and the minimal graph Laplacian h0 are nonnegative operators. �

Remark 3.3. A few remarks are in order.

(i) In the case η∗(E) =∞ the weight r can be chosen in many different ways
by changing the threshold 1 in (3.1.4) to any positive number.

(ii) In the following specific case

inf
e∈E

η(e) > 0,

the choice of r can be further simplified to

r(e) :=
√
µ(e)ν(e), e ∈ E .(3.1.10)

Notice that if µ = ν ≡ 1, the assumption infe∈E η(e) > 0 is equivalent to
infe∈E |e| > 0, which is the most common restriction in the spectral theory
of quantum graphs [24], [179]. In this case r(e) ≡ 1 for all e ∈ E and hence
the vertex weight m given by (3.1.5) is nothing but the combinatorial
degree (2.1.3).

(iii) In the papers [141], [67] it is assumed that µ = ν ≡ 1 and supe∈E η(e) =
supe∈E |e| <∞. Usually, the latter is not a restriction since this condition
can always be achieved by adding inessential vertices, that is by choosing
an appropriate model of a metric graph since this choice does not have any
impact on spectral properties of the corresponding Kirchhoff Laplacian
(see Section 2.4.3). However, this changes the combinatorial structure of
the underlying graph Gd, which is important for our future purposes. This
will be discussed in greater details in Section 3.3

(iv) Let us also mention that the list of equivalences in Theorem 3.1 is not
complete and we refer to, e.g., [67] for further details.

3.2. Graph Laplacians as boundary operators

This section is devoted to the proof of Theorem 3.1, which is based on the
boundary triplets approach (see Appendix A) and essentially follows the lines of
[67].
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3.2.1. Edge-based boundary triplet. We begin with constructing a suit-
able boundary triplet for the operator Hmax. First of all, the following simple fact
holds true (cf. [67, Lemma 2.1]).

Lemma 3.4. Let He,max, e ∈ E be the maximal operator (2.4.8). The triplet

Π̃e = {C2, Γ̃0,e, Γ̃1,e}, where the mappings Γ̃0,e, Γ̃1,e : H2(e)→ C2 are defined by

Γ̃0,e : f 7→

(
f(eı)

f(eτ )

)
, Γ̃1,e : f 7→

(
ν(e)∂f(eı)

ν(e)∂f(eτ )

)
,(3.2.1)

is a boundary triplet for He,max. The corresponding Weyl function is

M̃e : z 7→
√
µ(e)ν(e)z

(
− cot

(
η(e)
√
z
)

csc
(
η(e)
√
z
)

csc
(
η(e)
√
z
)

− cot
(
η(e)
√
z
)) , z ∈ C \ R.

Next we proceed as follows (see, e.g., [141, § 4] and also [67, § 2]): set

Re := r(e) I2, Qe := lim
z→0

M̃e(z) =
ν(e)

|e|

(
−1 1
1 −1

)
,(3.2.2)

where r : E → (0,∞) is given by (3.1.3), (3.1.4). Define the mappings

Γ0,e := R1/2
e Γ̃0,e, Γ1,e := R−1/2

e (Γ̃1,e −QeΓ̃0,e),(3.2.3)

that is, Γ0,e, Γ1,e : H2(e)→ C2 are given by

Γ0,e : f 7→
√
r(e)

(
f(eı)

f(eτ )

)
, Γ1,e : f 7→ ν(e)√

r(e)

∂f(eı)− f(eτ )−f(eı)
|e|

∂f(eτ ) + f(eτ )−f(eı)
|e|

 .(3.2.4)

Clearly, Πe = {C2,Γ0,e,Γ1,e} is also a boundary triplet for He,max. In addition, the
following claim holds (cf. [141, Theorem 4.1] and [67, Theorem 2.2]).

Proposition 3.5. The direct sum of boundary triplets

ΠE =
⊕
e∈E

Πe =
{
HE ,ΓE0 ,ΓE1

}
,(3.2.5)

where

HE =
⊕
e∈E

C2, ΓE0 :=
⊕
e∈E

Γ0,e, ΓE1 :=
⊕
e∈E

Γ1,e,(3.2.6)

is a boundary triplet for the operator Hmax = ⊕e∈EHe,max.

Proof. Since H∗e,max is a positive symmetric operator for every e ∈ E , so is
H∗max. Therefore, we need to apply Theorem A.11 and to verify conditions (A.4.3).
Notice that for each e ∈ E , the corresponding Weyl function is given by

Me(z) = R−1/2
e (M̃e(z)−Qe)R

−1/2
e =

1

r(e)
M̃e(z)−

1

r(e)
Qe.

(i) First of all, straightforward calculations yield that for all e ∈ E

Me(−1) =

√
µ(e)ν(e)

r(e)

( 1
η(e) − coth η(e) 1

sinh η(e) −
1
η(e)

1
sinh η(e) −

1
η(e)

1
η(e) − coth η(e)

)
,
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M ′e(−1) =

√
µ(e)ν(e)

r(e)

 coth η(e)− η(e)
sinh2 η(e)

η(e) cosh η(e)
sinh2 η(e)

− 1
sinh η(e)

η(e) cosh η(e)
sinh2 η(e)

− 1
sinh η(e) coth η(e)− η(e)

sinh2 η(e)

 ,

where r(e) is given by (3.1.4). Clearly, ‖Me(−1)‖ = max(|λ+(Me)|, |λ−(Me)|),
where λ+(Me) and λ−(Me) are the eigenvalues of Me(−1) given explicitly by

λ±(Me) =

√
µ(e)ν(e)

r(e)

(
1

η(e)
− coth η(e)±

( 1

sinh η(e)
− 1

η(e)

))
.

Since |λ+(Me)| > |λ−(Me)|, we get

‖Me(−1)‖ = |λ+(Me)| =
√
µ(e)ν(e)

r(e)

cosh η(e)− 1

sinh η(e)
=

√
µ(e)ν(e)

r(e)
tanh

(η(e)

2

)
.

Similarly, one obtains that

‖M ′e(−1)‖ = λ+(M ′e) =

√
µ(e)ν(e)

r(e)

(sinh η(e) + η(e))(cosh η(e)− 1)

2 sinh2 η(e)
,

‖(M ′e(−1))−1‖ =
1

λ−(M ′e)
=

r(e)√
µ(e)ν(e)

2 sinh2 η(e)

(sinh η(e)− η(e))(cosh η(e) + 1)
,

where λ+(M ′e) and λ−(M ′e) are the eigenvalues of M ′e(−1).
(ii) Assume first that η∗(E) <∞. Then r(e) = µ(e)|e|, e ∈ E and in particular,

‖Me(−1)‖ ≤ sup
0<s≤η∗(E)

1

s
tanh

(s
2

)
= sup

0<s≤η∗(E)

f(s).

Since the function f(s) defined by the RHS admits an analytic continuation at 0,
we conclude that supeMe(−1) <∞. Similar considerations imply that

sup
e

(‖M ′e(−1)‖+ ‖(M ′e(−1))−1‖) <∞(3.2.7)

and hence (A.4.3) holds true in this case.
(iii) Suppose now that η∗(E) = ∞. If e ∈ E is an edge with η(e) > 1, then

r(e) =
√
µ(e)ν(e) and hence

‖Me(−1)‖ ≤ sup
s>1

tanh
(s

2

)
= 1,(3.2.8)

and

‖M ′e(−1)‖ ≤ sup
s>1

(sinh s+ s)(cosh s− 1)

2 sinh2 s
<∞,(3.2.9)

‖(M ′e(−1))−1‖ ≤ sup
s>1

2 sinh2 s

(sinh s− s)(cosh s+ 1)
<∞.(3.2.10)

On the other hand, if η(e) ≤ 1, then r(e) = µ(e)|e| as in (ii), and the same steps as
there give uniform bounds on ‖Me(−1)‖, ‖M ′e(−1)‖ and‖(M ′e(−1))−1‖. Altogether,
we conclude that the condition (A.4.3) holds true and this completes the proof. �

Remark 3.6. It is easy to see that Proposition 3.5 holds true if instead of
(3.1.4) the weight r is defined as in Remark 3.3(i).

Clearly, the Weyl function corresponding to the boundary triplet constructed in
Proposition 3.5 has a very transparent form and enjoys some important properties.
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Lemma 3.7. The Weyl function corresponding to the boundary triplet ΠE is
given by

ME(z) =
⊕
e∈E

Me(z), Me(z) = R−1/2
e (M̃e(z)−Qe)R

−1/2
e .(3.2.11)

Moreover,

(i) ME(0) = OHE , where

ME(0) := s−R− lim
x↑0

ME(x).(3.2.12)

(ii) ME(x) uniformly tends to −∞ as x→ −∞, that is, for every N > 0 there
is xN < 0 such that for all x < xN , ME satisfies

ME(x) < −N · IH.

Proof. First of all, (3.2.11) is immediate from Proposition 3.5. To prove (i),
it suffices to mention that Me(0) = O2 for all e ∈ E .

(ii) Denote by λ+
e (x) and λ−e (x) the eigenvalues of Me(−x2). Straightforward

calculations yield

λ±e (x) = −x
√
µ(e)ν(e)

r(e)
· cosh(η(e)x)∓ 1

sinh(η(e)x)
+

ν(e)

|e|r(e)
(1∓ 1),

and noting that λ+
e (x) < λ−e (x) < 0 for all x > 0, we get

Me(−x2) ≤ λ−e (x)I2 = I2 ×


2

η(e)2 −
x
η(e) coth(η(e)x

2 ), if r(e) = |e|µ(e),

2
η(e) − x coth(η(e)x

2 ), if r(e) =
√
µ(e)ν(e).

For an e ∈ E with r(e) =
√
µ(e)ν(e), we have η(e) > 1 and one easily verifies

Me(−x2) ≤ (2− x)I2.

If r(e) = |e|µ(e), then η(e) ≤ C for all such edges e and some uniform constant
C > 0 (e.g., take C = η∗(E) if η∗(E) < ∞ and C = 1 otherwise). Let us now
proceed as in the proof of [141, Prop. 4.10] and consider the function

F (s) =
coth(s)

s
− 1

s2
, s > 0.

Clearly, F is strictly positive and continuous on (0,∞). Moreover, F (s) = 1
3 +O(s2)

as s→ 0 and F ′(s) = − 1
s2 +O(s−3) as s→ +∞ and hence

inf
s∈(0,a)

F (s) = F (a) =
1

a
coth(a)− 1

a2

for all sufficiently large a > 1. It remains to notice that

λ−e (x) = −x
2

2
F
(η(e)x

2

)
and hence

λ−e (x) ≤ −x
2

2
inf

s∈(0,Cx/2)
F (s) = −x

2

2
F
(Cx

2

)
=

2

C2
− x

C
coth

(Cx
2

)
≤ − x

2C

for all sufficiently large x > 1. Taking into account (3.2.11), we get

ME(−x2) ≤ IH inf
e∈E

λ−e (x) ≤ − x

2 max{1, C}
IH

for all sufficiently large x > 1. �
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3.2.2. Vertex-based boundary triplet. It will be convenient for us to work
with another boundary triplet for Hmax, which can be obtained from the triplet
ΠE by regrouping all its components with respect to the vertices. Define

HV =
⊕
v∈V

Cdeg(v), ΓV0 =
⊕
v∈V

Γ0,v, ΓV1 =
⊕
v∈V

Γ1,v,(3.2.13)

where

Γ0,vf =
(√

r(e)f~e(v)
)
~e∈~Ev

,(3.2.14)

Γ1,vf =

(
ν(e)√
r(e)

(
∂~ef(v)− πv(~e)

f(eτ )− f(eı)

|e|

))
~e∈~Ev

,(3.2.15)

with πv : ~Ev → {−1, 1} denoting the orientation function

πv(~e) :=

{
1, ~e ∈ ~E+

v ,

−1, ~e ∈ ~E−v .
(3.2.16)

Corollary 3.8. The triplet ΠV = {HV ,ΓV0 ,ΓV1 } given by (3.2.13)–(3.2.15) is
a boundary triplet for Hmax.

Proof. For fE =
(
(feı , feτ )

)
e∈~E ∈ HE define the operator UG : HE → HV by

UG : fE 7→
(
(fv,~e)~e∈~Ev

)
v∈V , fv,~e :=

{
feı , ~e ∈ ~E+

v ,

feτ , ~e ∈ ~E−v ,
~e ∈ ~Ev, v ∈ V.(3.2.17)

Clearly, UG is an isometric isomorphism. Moreover, it is straightforward to check
that

ΓV0 = UGΓE0 , ΓV1 = UGΓE1 ,(3.2.18)

which completes the proof. �

Let us also mention other important relations.

Corollary 3.9. The Weyl function MV corresponding to the boundary triplet
(3.2.13)–(3.2.15) is given by

MV(z) = UGME(z)U
−1
G ,(3.2.19)

where ME is given by (3.2.11) and UG is the operator defined by (3.2.17). In partic-
ular, s−R− limx↑0MV(x) = OHV and, moreover, MV(x) uniformly tends to −∞
as x→ −∞.

Proof. The proof is straightforward and the last claim is an immediate con-
sequence of Lemma 3.7 and equality (3.2.19). �

Remark 3.10. Consider the mappings Γ̃E0 =
⊕

e∈E Γ̃0,e and Γ̃E1 =
⊕

e∈E Γ̃1,e

given by (3.2.1). If f ∈ dom(Hmax) ∩ Cc(G), then

Γ̃V0 f := UGΓ̃E0f, Γ̃V1 f := UGΓ̃E0f,(3.2.20)

have the following form Γ̃V0 =
⊕

v∈V Γ̃0,v and Γ̃V1 =
⊕

v∈V Γ̃1,v, where

Γ̃0,vf =
(
f~e(v)

)
~e∈~Ev

, Γ̃1,vf =
(
ν(e)∂~ef(v)

)
~e∈~Ev

.(3.2.21)
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3.2.3. Boundary operators for Laplacians on metric graphs. Let Θ be
a linear relation in HV and define the following operator

HΘ := Hmax �dom(HΘ),

dom(HΘ) :=
{
f ∈ dom(Hmax) | (ΓV0 f,ΓV1 f) ∈ Θ

}
,

(3.2.22)

where the mappings ΓV0 and ΓV1 are defined by (3.2.13)–(3.2.15). Since ΠV is a
boundary triplet for Hmax, every proper extension of the operator Hmin has the
form (3.2.22) (see Theorem A.4) and hence so does H0

α. The next result provides
the explicit form of the linear relation parameterizing H0

α.

Proposition 3.11. Assume Hypotheses 2.1 and let ΠV be the boundary triplet
(3.2.13)–(3.2.15). Suppose Θ0

α is the boundary relation for the operator H0
α,

dom(H0
α) =

{
f ∈ dom(Hmax) | (ΓV0 f,ΓV1 f) ∈ Θ0

α

}
.(3.2.23)

Then the operator part Θop
α of Θ0

α is unitarily equivalent to the operator h0
α = h′α

acting in `2(V;m) and defined by (3.1.7) with (3.1.4), (3.1.5) and (3.1.6).

Proof. We divide its proof in several steps.
(i) For each vertex v ∈ V, the boundary conditions (2.4.5) can be written as

D̃vΓ̃1,vf = C̃vΓ̃0,vf,

where we recall that (see (3.2.21))

Γ̃0,vf =
(
f~e(v)

)
~e∈~Ev

, Γ̃1,vf =
(
ν(e)∂~ef(v)

)
~e∈~Ev

,

and the matrices C̃v, D̃v ∈ Cdeg(v)×deg(v) are given by

C̃v =


1 −1 0 . . . 0
0 1 −1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . −1

α(v) 0 0 . . . 0

 , D̃v =


0 0 0 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 0
1 1 1 . . . 1

 .

It is straightforward to verify the Rofe–Beketov conditions (A.1.4), that is,

C̃vD̃
∗
v = D̃vC̃

∗
v , rank(C̃v|D̃v) = deg(v),

holds for all v ∈ V, and hence

Θ̃v :=
{

(f, g) ∈ Cdeg(v) × Cdeg(v) | C̃vf = D̃vg
}

(3.2.24)

is a self-adjoint linear relation in Cdeg(v). Now set

C̃ :=
⊕
v∈V

C̃v, D̃ :=
⊕
v∈V

D̃v.

Both C̃ and D̃ are closed operators in HV . Clearly, f ∈ dom(Hmax)∩Cc(G) satisfies

D̃Γ̃V1 f = C̃Γ̃V0 f

if and only if f ∈ dom(H′α) = dom(Hα) ∩ Cc(G). In view of (3.2.20), we get

ΓV0 f = RV Γ̃V0 f, ΓV1 f = R−1
V (Γ̃V1 −QV Γ̃V0 )f,

for all f ∈ dom(Hmax) ∩ Cc(G), where

RV = UGREU
−1
G , QV = UGQEU

−1
G ,
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RE = ⊕e∈ER1/2
e , QE = ⊕e∈EQe are defined by (3.2.2) and UG is given by (3.2.17).

Hence f ∈ dom(H′α) if and only if f ∈ dom(Hmax) ∩ Cc(G) satisfies

DΓV1 f = CΓV0 f,

where

D = D̃RV , C = (C̃ − D̃QV)R−1
V .

The operators D and C are well defined on HV,c, which consists of vectors of HV
having only finitely many non-zero coordinates.

(ii) Define the linear relation

Θ′α =
{

(f, g) ∈ HV,c ×HV,c |Cf = Dg
}

(3.2.25)

and let HΘ′α
be the corresponding restriction given by (3.2.22). By construction, Θ′α

is symmetric and hence so is HΘ′α
(see Theorem A.4(i)). Moreover, H′α ⊆ HΘ′α

and

it is straightforward to check that HΘ′α
⊆ H0

α. Then by Theorem A.4(i), Θ0
α := Θ′α

is the boundary relation parameterizing (via (3.2.22)) the minimal operator H0
α.

(iii) To proceed further, let f = (fv)v∈V ∈ HV , where fv = (fv,~e)~e∈~Ev . For each
v ∈ V, let us denote by Pv the orthogonal projection in HV onto Hv, the subspace
consisting of elements f = (fu)u∈V ∈ HV with all entries equal zero except fv, that
is,

(Pvf)u = (δvufu,~e)~e∈~Eu , δvu =

{
1, u = v,

0, u 6= v.

By construction, the operators C̃, D̃, RV (and hence D) commute with Pv. In
particular,

RV =
⊕
v∈V

Rv, Rv = diag
(√

r(e)
)
~e∈~Ev

,(3.2.26)

and

D =
⊕
v∈V

Dv, Dv = D̃vRv = D̃v · diag
(√

r(e)
)
~e∈~Ev

.(3.2.27)

However, the form of QV (and hence of C) is a bit more complicated:

QV = Q̃0 −
⊕
v∈V

Qv, Qv = diag
(ν(e)

|e|

)
~e∈~Ev

,(3.2.28)

where

(Q̃0f)v,~e =
ν(e)

|e|
fu,−~e,(3.2.29)

and u ∈ V and −~e ∈ ~Eu are given by

u :=

{
eτ , ~e ∈ ~E+

v ,

eı, ~e ∈ ~E−v ,
− ~e :=

{
(−, e), ~e ∈ ~E+

v ,

(+, e), ~e ∈ ~E−v .

The operators PvC and PvD are finite rank and hence admit a bounded ex-
tension onto HV . By abusing the notation, we shall denote these extensions by
PvC and PvD as well. It is straightforward to verify that f ∈ dom(Hmax) satisfies
(2.4.5) exactly when

PvDΓV1 f = PvCΓV0 f.(3.2.30)
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Therefore, combining the definition of Hα (see (2.4.14)) with (A.2.3), we conclude
that the boundary relation Θα parameterizing Hα in the sense of (3.2.22) is explic-
itly given by

Θα = {(f, g) ∈ HV ×HV |PvCf = PvDg for all v ∈ V}.(3.2.31)

In particular, by Theorem A.4(i), Θα = (Θ′α)∗ = (Θ0
α)∗.

(iv) By (3.2.25), mul(Θ′α) = ker(D) (notice that we consider D as the operator
defined only on HV,c and hence ker(D) is not closed). On the other hand, (3.2.31)
implies that

mul(Θα) = {f ∈ HV |PvDf = 0 for all v ∈ V},(3.2.32)

and hence

mul(Θα) = mul(Θ′α) = mul(Θ0
α).

Therefore, Θ0
α is densely defined on Hop

V := mul(Θα)⊥ and hence admits the de-
composition (A.1.1), that is,

Θ0
α = Θ0

op ⊕Θmul, Θmul = {0} ×mul(Θα),(3.2.33)

where Θ0
op is the graph of a densely defined closed symmetric operator acting in

Hop
V . Next observe that

Hop
V = mul(Θα)⊥ = ker(D)⊥ = ran(D∗) = span{fv}v∈V ,

where fv = (fvu)u∈V ∈ Hv is given by

fvu = (fvu,~e)~e∈~Eu , fvu,~e =

{√
r(e), u = v,

0 , u 6= v.
(3.2.34)

By construction, fv ⊥ fu whenever v 6= u and

‖fv‖2 =
∑
~e∈~Ev

r(e) = m(v)(3.2.35)

for all v ∈ V.
Let us now show that fv ∈ dom(Θ0

α) for every v ∈ V. It is straightforward to
calculate that

(PuCfv)u =
(
Pu(C̃−D̃QV)R−1

V fv)u =



(
0, 0, . . . , 0, α(v) +

∑
w∈V

b(v, w)︸ ︷︷ ︸
deg(v)

)
, u = v,

(
0, 0, . . . , 0,−b(u, v)︸ ︷︷ ︸

deg(u)

)
, u 6= v, u ∼ v,

0, u 6= v, u 6∼ v,

where b : V × V → [0,∞) is the weight function given by (3.1.6). Moreover, for
g ∈ HV,c we have

(PuDg)u = (PuD̃RVg)u =
(

0, 0, . . . , 0,
∑
~e∈~Eu

√
r(e) gu,~e︸ ︷︷ ︸

deg(u)

)
.
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Therefore, define gv = (gvu)u∈V ∈ Hop
V by

gvu = (
√
r(e))~e∈~Eu ×


1

m(v) (α(v) +
∑
w∼v b(v, w)), u = v,

− b(u,v)
m(u) , u 6= v, u ∼ v,

0, u 6= v, u 6∼ v.

(3.2.36)

Clearly, this implies the following equality

Cfv = Dgv,

and hence fv ∈ dom(Θ′α) ⊆ dom(Θ0
α). Moreover, (3.2.36) immediately implies that

gv =
1

m(v)

(
α(v) +

∑
u∼v

b(u, v)
)
fv −

∑
u∼v

b(u, v)

m(u)
fu =: Θ0

opfv.(3.2.37)

Noting that by construction the family (fv)v∈V is an orthogonal basis in Hop
V and

taking into account (3.2.35), the above equality implies that the operator part Θ0
op

of Θ0
α is unitarily equivalent to the minimal operator h̃0

α defined in `2(V) by

(τ̃ f)(v) =
1√
m(v)

(∑
u∈V

b(v, u)
( f(v)√

m(v)
− f(u)√

m(u)

)
+

α(v)√
m(v)

f(v)

)
,(3.2.38)

for each vertex v ∈ V. More specifically, as usual we define the operator h̃0
α in `2(V)

as the closure in `2(V) of the pre-minimal operator

h̃′α : dom(h̃′α) → `2(V)
f 7→ τ̃ f

,
(3.2.39)

where dom(h′α) := Cc(V). It remains to notice that the operators h̃0
α and h0

α are

unitarily equivalent. Indeed, it is easy to verify that h′α = U−1h̃′αU , where

U : `2(V;m) → `2(V)
f 7→

√
mf

,(3.2.40)

is an isometric isomorphism. �

Remark 3.12. In fact, one can write down explicitly the isometric isomorphism
Φ: `2(V;m) → Hop

V relating Θop
α and h0

α. Indeed, we proved that the collection of
vectors (fv)v∈V given by (3.2.34) forms an orthogonal basis in Hop

V . Moreover, their
norms are given by (3.2.35), which immediately implies that the map

Φ: `2(V;m) → Hop
V

a 7→
∑
v∈V avf

v
(3.2.41)

is an isometric isomorphism. In particular, this implies the following representation:

Θop
α =

{
(Φf,Φh0

αf) | f ∈ dom(h0
α)
}
.(3.2.42)

3.2.4. Proof of Theorem 3.1. Now we have all the ingredients to finish the
proof of the main result of this section. It is analogous to the proof of Theorem 2.9
in [67] and we provide the details for the sake of completeness.

Proof of Theorem 3.1. Consider the vertex-based boundary triplet ΠV . Us-
ing Proposition 3.11, item (i) follows from Theorem A.4(iii).

Next, observe that
He,max � ker(Γ0,e) =: HF

e
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is the Friedrichs extension of He,min = (He,max)∗, and hence we conclude that

Hmax � ker(Γ0) =
⊕
e∈E

HF
e(3.2.43)

is the Friedrichs extension of Hmin = (Hmax)∗. Moreover,

σ(HF
e ) =

{ π2n2

η(e)2

∣∣∣ n ∈ Z≥1

}
,(3.2.44)

and hence

inf σ(HF ) = inf
e∈E

inf σ(HF
e ) = inf

e∈E

π2

η(e)2
=

π2

(supe∈E η(e))2
.(3.2.45)

Now item (ii) follows from Theorem A.9 and Corollary 3.9; items (iii)–(iv)
as well as items (vi) and (viii) follow from Theorem A.7 by taking into account
Corollary 3.9; item (vii) follows from Theorem A.10.

Finally, (3.2.43) and (3.2.44) imply that the spectrum of HF is purely discrete
if and only if #{e ∈ E | η(e) > ε} is finite for every ε > 0. Moreover, HF can
be written in the form (3.2.22) with Θmul = {0} × HV . By Theorem A.4(iv), the
difference of resolvents satisfies

(Hα − i)−1 − (HF − i)−1 ∈ S∞

exactly when (Θα− i)−1− (Θmul− i)−1 is a compact operator. It remains to notice
that (Θmul − i)−1 = OHV . �

We finish this section with the following remark.

Remark 3.13. Notice that (3.2.22) establishes a bijective correspondence be-
tween the set Ext(Hmin) of proper extensions of Hmin and the set of all linear
relations in HV . In fact, Theorem 3.1 extends to all operators HΘ and it relates
basic spectral properties of the self-adjoint extension HΘ and the corresponding
boundary relation Θ (see, e.g., [67, Theorem 2.9]). In particular, this would be
helpful in the treatment of the case when H0 has nontrivial deficiency indices (cf.
Theorem 3.1(ii)–(viii)) and this will be done in the next section.

Remark 3.14. The above remark indicates that the machinery developed
in this section enables us to consider all possible (self-adjoint) vertex conditions
(for instance, two other important families are δ′-couplings and symmetrized δ′-
couplings). Moreover, one may include more general differential expressions in-
cluding magnetic Schrödinger operators. However, the main difficulty is the search
for a suitable boundary operator, which usually requires separate considerations,
and then the study of its properties (cf., e.g., [141, § 5-6]). Let us mention that
there are strong indications that one may connect spectral properties (in the sense
of Theorem 3.1) of magnetic Schrödinger operators on metric graphs with those
of weighted magnetic Schrödinger operators on graphs (see [34, § 3.5]). Moreover,
it seems to us that one may also establish similar connections between Laplacians
with δ′-couplings and symmetrized δ′-couplings and “weighted” Hodge Laplacians
on graphs, respectively, signless Laplacians on graphs (cf. [178]). However, all these
require separate considerations and will be done elsewhere.
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3.3. Spectral properties: metric graphs and models

We restrict ourselves to the case α ≡ 0, that is, in this section we shall consider
Kirchhoff Laplacians only. Our main aim now is to look at Corollary 3.2 from the
continuous-to-discrete perspective. Let (G, µ, ν) be a given weighted metric graph,
that is, G is a locally finite metric graph (as a metric space) and µ, ν are two
edge weights on G. With each model (V, E , | · |, µ, ν) of (G, µ, ν) we can associate a
weighted graph Laplacian

(τf)(v) =
1

m(v)

∑
u∈V

b(v, u)(f(v)− f(u)), v ∈ V,(3.3.1)

where m and b are defined by (3.1.5) and (3.1.6), respectively. Thus we have the
minimal Kirchhoff Laplacian H0 on G and the family of minimal graph Laplacians
h0 associated with the models of (G, µ, ν). In this situation Corollary 3.2(i) imme-
diately implies the following results.

Corollary 3.15. Let (G, µ, ν) be a weighted metric graph and let H0 be the
corresponding minimal Kirchhoff Laplacian. Then:

(i) For each model of (G, µ, ν), the deficiency indices of H0 and h0 are equal,

n±(H0) = n±(h0).(3.3.2)

(ii) If H0 is self-adjoint, then h0 is self-adjoint for each model. And con-
versely, H0 is self-adjoint exactly when h0 is self-adjoint for one (and
hence for all) models of (G, µ, ν).

In order to preserve the equivalences further, the next results require a careful
choice of a model, which motivates the following definition.

Definition 3.16. For a given model (V, E , | · |, µ, ν) of (G, µ, ν), the quantity
η∗(E) defined by (3.1.2) is called the intrinsic size of the model. A model has finite
intrinsic size if η∗(E) <∞. Otherwise, (V, E , | · |, µ, ν) is called a model of infinite
intrinsic size.

A weighted metric graph (G, µ, ν) has finite intrinsic size if all its models are
of finite intrinsic size. Otherwise, (G, µ, ν) has infinite intrinsic size.

We define the essential intrinsic size of a given model by

η∗ess(E) := inf
Ẽ

sup
e∈E\Ẽ

η(e),(3.3.3)

where the infimum is taken over all finite subsets Ẽ of E .

Remark 3.17. A few remarks are in order.

(i) The above definition becomes transparent when µ = ν. Indeed, in this
case η(e) = |e| for all e ∈ E and the intrinsic size of a model is simply the
length of its “longest” edge, that is, η∗(E) = `∗(E), where

`∗(E) = sup
e∈E
|e|.(3.3.4)

In particular, such a model has infinite intrinsic size exactly when there
is an arbitrarily long edge. Similarly,

η∗ess(E) = `∗ess(E) := inf
Ẽ

sup
e∈E\Ẽ

|e|,(3.3.5)

where the infimum is taken over all finite subsets Ẽ of E .
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(ii) The function r in (3.1.5) is given by (3.1.3) if the model has finite size
and by (3.1.4) if it has infinite size.

(iii) The definition of essential intrinsic size can be understood as follows. For

any compact subgraph G̃ ⊂ G and every ε > 0, one can always find an

edge in E \ Ẽ whose intrinsic length is at least η∗ess(E) − ε. Moreover, for

any ε > 0, there is a compact subgraph G̃ such that the intrinsic length of

every edge e ∈ E \ Ẽ is smaller than η∗ess(E) + ε. In particular, η∗ess(E) = 0

means that for any ε > 0 there is a compact subgraph G̃ such that all

edges in E \ Ẽ have intrinsic length less than ε.

Corollary 3.18. Let (G, µ, ν) be a weighted metric graph such that the corre-
sponding minimal Kirchhoff Laplacian H0 is self-adjoint, H0 = H. Then:

(i) The operator H is positive definite, λ0(H) > 0, if and only if there is
a model of finite intrinsic size such that the corresponding operator h is
positive definite, λ0(h) > 0.

(ii) λess
0 (H) > 0 exactly when there is a model of finite intrinsic size such that
λess

0 (h) > 0.
(iii) If (G, µ, ν) has infinite intrinsic size, then λ0(H) = λess

0 (H) = 0 and,
moreover, λ0(h) = λess

0 (h) = 0 for all models with finite intrinsic size.
(iv) The spectrum of H is purely discrete if and only if there is a model with

zero essential intrinsic size, η∗ess(E) = 0 and the spectrum of the corre-
sponding graph Laplacian h is purely discrete.

(v) If there is a model with η∗ess(E) > 0, then the essential spectrum of H is
not empty and, moreover, so is the essential spectrum of h for each model

with η∗ess(Ẽ) = 0.

Proof. By Corollary 3.15, h is self-adjoint, h = h0 for each model of a given
weighted metric graph. Moreover, both operators are nonnegative. Then (i) and (ii)
follow immediately from Corollary 3.2(iii)–(iv) since one can always find a model
with finite intrinsic size. The same argument together with Theorem 3.1(v) proves
items (iv)–(v).

Thus it remains to show (iii). In fact we only need to prove the first claim that
λ0(H) = λess

0 (H) = 0 if there is a model of infinite size. However, the Friedrichs ex-
tension HF has zero spectral gap, see (3.2.45), and hence so does every nonnegative
self-adjoint restriction of Hmax.† �

Remark 3.19. Notice that one can always find a model with η∗ess(E) = 0 by
refining (even if (G, µ, ν) has infinite intrinsic size). Indeed, for each model the edge

set E is countable and hence one can obtain a new model satisfying η∗ess(Ẽ) = 0 by
“cutting” an edge into equally short pieces; then the next edge into shorter ones,
and so on.

Let us stress the following fact. The above results demonstrate that a Kirch-
hoff Laplacian shares some properties with the corresponding graph Laplacians for
each model (e.g., self-adjointness), however, for some properties the class of mod-
els must be sufficiently good in a certain sense. For instance, strict positivity of
spectra/essential spectra requires models having finite intrinsic size, η∗(E) < ∞.

†In fact, following line by line the argument of M. Solomyak in [193, Theorem 5.1], one can
show in this case that the whole semi-axis [0,∞) belongs to the spectrum of H.
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Discreteness (that is, compactness of resolvents) requires even a more refined choice
(essential intrinsic size must be zero, η∗ess(E) = 0). On the other hand, Corol-
lary 3.18 demonstrates that if the set of models is in a certain sense too wide (for
instance, there are models having infinite size), then the corresponding Kirchhoff
Laplacian can’t have the required property (e.g., positive spectral gap). However, in
the latter case the absence of a required property is shared with all graph Laplacians
arising from all reasonable models.

We would like to finish with a result which sheds light on the situation when
the deficiency indices of H0 are nontrivial. However, first we need the following
useful fact.

Lemma 3.20. Let (G, µ, ν) be a weighted metric graph together with the minimal
Kirchhoff Laplacian H0. If n±(H0) > 0, then for each model the map

h̃ 7→ H̃ = HΘ̃ := Hmax � {f ∈ dom(Hmax) | (ΓV0 f,Γ
V
1 f) ∈ Θ̃}

Θ̃ := Θmul ⊕
{

(Φf,Φh̃f) | f ∈ dom(h̃)
}(3.3.6)

is a bijection between the sets ExtS(h0) and ExtS(H0) of self-adjoint extensions
of h0 and H0. Here {HV ,ΓV0 ,ΓV1 } is the vertex-based boundary triplet defined in
Section 3.2.2, the map Φ and the multivalued part Θmul are given by (3.2.41) and,
respectively, (3.2.32).

Proof. The existence of a bijection is a trivial consequence of von Neumann’s
formulas in view of (3.3.2), however, we would like to give another proof based on
the use of the boundary triplets approach, which enables us to connect self-adjoint
extensions of H0 and h0 in a rather transparent way.

Take a self-adjoint extension H̃ ∈ Ext(H0) of H0. Then for a chosen model it
admits the representation (3.2.22), that is, there exists a self-adjoint linear relation

Θ̃ in HV such that†

dom(H̃) =
{
f ∈ dom(Hmax) | (ΓV0 f,ΓV1 f) ∈ Θ̃

}
.(3.3.7)

By Theorem A.4(i), Θ̃ is a self-adjoint extension of the linear relation Θ0 parame-
terizing H0 via (3.2.23). As it was mentioned in the proof of Proposition 3.11, Θ0

admits the representation (3.2.33). Similarly, Θ̃ admits analogous decomposition.

Moreover, the multivalued parts of Θ0 and Θ̃ coincides, that is, Θmul = Θ̃mul, since

both Θmul and Θ̃mul are self-adjoint relations (or since mul(Θ0) = mul(Θ)). There-

fore, Θ̃op is a self-adjoint extension of Θ0
op in Hop

V . Taking into account (3.2.42),

every self-adjoint extension of Θ0 has the form

Θ̃ = Θmul ⊕
{

(Φf,Φh̃f) | f ∈ dom(h̃)
}
,

where h̃ is a self-adjoint extension of h0. �

Remark 3.21. In fact, one can rewrite the map (3.3.6) in a more convenient
form and this will be done in Chapter 4 (see Lemma 4.7 below).

Lemma 3.20 provides us with a map establishing a 1-to-1 correspondence be-
tween self-adjoint extensions of H0 and h0. It turns out that their spectral prop-
erties are closely connected as well:

†Taking into account Theorem A.4, in fact Θ̃ is given by Θ̃ = {(ΓV0 f,ΓV1 f) | f ∈ dom(H̃)}.
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Theorem 3.22. Let (G, µ, ν) be a weighted metric graph together with a fixed
model. Suppose

n±(H0) > 0,

and H̃ ∈ ExtS(H0). If h̃ ∈ ExtS(h0) is the self-adjoint extension corresponding to

H̃ via (3.3.6), then:

(i) H̃ is lower semibounded if and only if h̃ is lower semibounded.

(ii) H̃ is nonnegative if and only if h̃ is nonnegative.

(iii) The total multiplicities of negative spectra of H̃ and h̃ coincide,

κ−(H̃) = κ−(h̃).

(iv) The spectrum of H̃ is purely discrete if and only if the model satisfies

η∗ess(E) = 0 and the spectrum of h̃ is purely discrete.

If additionally the corresponding model has finite intrinsic size, η∗(E) <∞, then:

(v) H̃ is positive definite if and only if h̃ is positive definite.

(vi) If, in addition, the extension H̃ is lower semibounded, then λess
0 (H̃) > 0

(λess
0 (H̃) = 0) exactly when λess

0 (h̃) > 0 (respectively, λess
0 (h̃) = 0).

(vii) Moreover, the following equivalence

H̃− ∈ Sp(L
2) ⇐⇒ h̃− ∈ Sp(`

2),

holds for all p ∈ (0,∞]. In particular, negative spectra of H̃ and h̃ are
discrete simultaneously.

The proof is an immediate corollary of Lemma 3.20 and Remark 3.13 and we
leave it to the reader.

Remark 3.23. In fact, Theorem 3.22 specifies the properties of the map (3.3.6)
when it is further restricted to certain subclasses of self-adjoint extensions. Namely,
items (i)–(iii) say that (3.3.6) is a bijection between the sets of semibounded/nonne-
gative/ self-adjoint extensions. According to items (v) and (vi), (3.3.6) is a bijection
between self-adjoint extensions having a positive spectral gap/positive essential
spectral gap, however, only if the corresponding model of a weighted metric graph
has finite intrinsic size.

Remark 3.24 (Laplacians with δ-couplings). It is not difficult to notice that
Lemma 3.20 extends to the operator H0

α with α 6≡ 0 in an obvious way. Taking into
account that the representation (3.3.6) is the key to prove Theorem 3.22, it is then
straightforward to see that the analog of Theorem 3.22 holds true for the operator
Hα with non-trivial α.

3.3.1. Historical remarks. The fact that the boundary triplets machinery is
a convenient tool to investigate finite and infinite metric graphs was realized in the
2000s (the literature is enormous and we only refer to [34], [66], [179], which also
contain further references). However, in all these studies it was assumed that edge
lengths admit a uniform positive lower bound (infe∈E η(e) > 0 in our notation).
Notice that in contrast to the finite intrinsic size assumption (which can always be
achieved by subdividing edges), this “uniform positive lower bound” assumption,
which is rather common in the quantum graph literature [24], [179], is indeed a
restriction. The main obstacle on this way is to construct a boundary triplet for
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the maximal operator Hmax. A convenient approach to construct such a triplet was
proposed by M.M. Malamud and H. Neidhardt in [156] (see Theorem A.11). This
technique was applied in [141] to investigate 1d Schrödinger operators with local
point interactions on discrete sets and then in [67] to Laplacians on unweighted
metric graphs (µ = ν ≡ 1).





CHAPTER 4

Connections between parabolic properties

This chapter is dedicated to correspondences between Kirchhoff Laplacians and
discrete graph Laplacians on the level of Markovian extensions and parabolic prop-
erties (e.g., recurrence, stochastic completeness, on-diagonal heat kernel estimates).

4.1. Markovian extensions

As in Section 3.3, let (G, µ, ν) be a weighted metric graph (as a metric space).
The discussion below is independent of the choice of a concrete model, however,
one can, of course, choose a model (V, E , | · |, µ, ν) and look then at (G, µ, ν) as its
metric realization. Let also H0 be the corresponding minimal Kirchhoff Laplacian
in L2(G;µ). We start by collecting some basic properties of Markovian extensions,
that is, of self-adjoint extensions whose quadratic form is a Dirichlet form (see
Appendix B for definitions and further facts). First of all, recall that H1(G) is
the weighted Sobolev space defined by (2.4.19). When equipped with the graph
norm (2.4.20), it turns into a Hilbert space. It is clear that the energy form

Q[f ] =

∫
G
|∇f(x)|2ν(dx),(4.1.1)

when restricted to dom(QN ) = H1(G), is a Dirichlet form on L2(G;µ) and hence the
corresponding Neumann Laplacian HN is a Markovian extension of H0. Moreover,
the quadratic form QD of the Friedrichs extension of H0, which coincides with
the Dirichlet Laplacian HD, is the restriction of Q to the subspace H1

0 (G). Recall
that H1

0 (G) is defined as the closure of dom(H) ∩ Cc(G) with respect to ‖ · ‖H1(G)

and hence QD is a regular Dirichlet form. It is well known that the Dirichlet and
Neumann Laplacians play a rather distinctive role among the Markovian extensions
of H0.

Lemma 4.1. If H̃ is a Markovian extension of H0, then dom(H̃) ⊂ H1(G) and

HN ≤ H̃ ≤ HD,(4.1.2)

where the inequalities are understood in the sense of forms.‡ Moreover, the following
statements are equivalent:

(i) H0 admits a unique Markovian extension,
(ii) HD = HN ,
(iii) H1

0 (G) = H1(G),
(iv) the Gaffney Laplacian HG is self-adjoint.

‡We shall write A ≤ B for two nonnegative self-adjoint operators A and B if their quadratic
forms tA and tB satisfy dom(tB) ⊆ dom(tA) and tA[f ] ≤ tB [f ] for every f ∈ dom(tB). The latter

is also equivalent to the fact that (A+ I)−1 − (B + I)−1 is a positive operator.

47
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Proof. The proof of [97, Theorem 5.2] carries over to our setting (see also
the proof of [77, Theorem 3.3.1]). �

An analogous result holds true for weighted graph Laplacians (see [97]). Namely,
fix a model (V, E , | · |, µ, ν) and let h0 be the graph Laplacian defined in `2(V;m)
by (3.1.7) with the coefficients (3.1.5) and (3.1.6) (notice that α ≡ 0). In most
of this chapter we are going to consider exactly this graph Laplacian, which is re-
lated to the Kirchhoff Laplacian. We shall see in Chapter 6 that this is not at
all a restriction. Following the considerations in Section 2.2, we can introduce the
Dirichlet hD and the Neumann hN Laplacians. Namely, define the energy form by

q[f ] :=
1

2

∑
u,v∈V

b(u, v)|f(u)− f(v)|2,(4.1.3)

with the edge weight

b(u, v) =

{∑
~e∈~Eu : e∈Ev

ν(e)
|e| , u 6= v,

0, u = v,
(u, v) ∈ V × V,(4.1.4)

and denote by dom(qN ) the space of all `2(V;m)-functions f such that q[f ] is finite.
Clearly, the restriction qN of q to dom(qN ) is a Dirichlet form. The corresponding
self-adjoint operator hN is a Markovian extension of h0 and we refer to it as the
Neumann extension. Moreover, the Friedrichs extension hD is also a Markovian
extension of h0 and we call it the Dirichlet extension. Its quadratic form qD is
obtained by restricting qN to the domain dom(qD), which is the closure of dom(h0)
with respect to the graph norm

‖ · ‖2H1(V) := q[·] + ‖ · ‖2`2(V;m).

Let us also denote

H1(V) = H1(V,m; b) := dom(qN ),(4.1.5)

and

H1
0 (V) = H1

0 (V,m; b) := dom(qD).(4.1.6)

The analog of Lemma 4.1 for the discrete operator h0 now reads (see [97, Theo-

rem 5.2]): If h̃ is a Markovian extension of h0, then dom(h̃) ⊆ H1(V) and

hN ≤ h̃ ≤ hD.(4.1.7)

4.2. Brownian motion and random walks

The framework of Dirichlet forms relates the energy forms (4.1.1) and (4.1.3)
with stochastic processes (Brownian motions and, respectively, random walks) and
we will review certain connections known on this level. We will not need these
stochastic results in the sequel and hence restrict to a rather informal discussion.
However, in our opinion this viewpoint is conceptually important and gives a good
motivation for subsequent considerations.

We follow the setup in Section 4.1: (G, µ, ν) is a weighted metric graph and
QD is the corresponding (strongly local) Dirichlet form in L2(G). Moreover, we fix
a model of (G, µ, ν) and consider the corresponding form qD in `2(V;m) associated
with (4.1.3) and (4.1.4), where m : V → (0,∞) is the vertex weight (3.1.5). By
definition, both QD and qD are regular Dirichlet forms and hence they correspond
to two stochastic processes (XGt )t≥0 and (XVt )t≥0 (see Remark B.3).
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The stochastic process (XVt )t≥0 defined by qD is a continuous-time random walk
(see [12, Rem. 5.7], [134, Sections 0.10 and 2.5] and [172] for details and further
information). Roughly speaking, a particle starting at some vertex v ∈ V first waits
for a random waiting time, which is exponentially distributed with parameter

1

m(v)

∑
u∈V

b(u, v) = Deg(v), v ∈ V,(4.2.1)

(which is called the weighted degree in Section 2.2), and then jumps to a randomly
chosen vertex u ∈ V. Here, the probability of jumping from v to u is given by

p(u, v) =
b(u, v)∑
u∈V b(u, v)

, u, v ∈ V.(4.2.2)

Repeating the same steps for the vertex u and continuing in this manner, we end up
with a continuous-time random walk. Notice that the expected waiting time of the
particle at the vertex v equals 1/Deg(v). In particular, according to Lemma 2.9,
the boundedness of hD is equivalent to the existence of a uniform positive lower
bound for expected waiting times.

On the other hand, the stochastic process (XGt )t≥0 associated with QD is a
Brownian motion on a metric graph (see, e.g., [70, Section 2], [63, Section 2] and
[152, Section 2]). It admits the following informal description: assume the particle
starts at the vertex v ∈ V. Let B = (Bt)t≥0 denote the standard Brownian motion
on R started at the origin. For each excursion of B, we randomly pick an oriented

edge ~e ∈ ~Ev with probability

P (v,~e ) =
ν(e)∑
~e∈~Ev ν(e)

, ~e ∈ Ev.

The excursions are then performed successively in the corresponding edges e ∈ Ev,
starting from v (for a loop edge, the orientation of ~e needs to be taken into account),
however with different speeds. Namely, if ~e1 is the first chosen edge, then in the
first excursion the particle is at position |Bν(e1)t/µ(e1)| instead of |Bt| inside e1 and
so on. This is performed until we reach a new vertex u ∈ V\{v}. Then we repeat
the construction with u as the starting vertex and continue in the same manner.

To make the connection between the two processes (XGt )t≥0 and (XVt )t≥0, we
briefly recall the results of [70]. Denote by T the first hitting time of the Brownian
motion, that is, the first time that the Brownian motion started at some vertex hits
a different vertex. Then the expected value of T , if the Brownian motion starts at
v ∈ V, is given by (see [70, Theorem 2.2])

EvT =

∑
~e∈~Ev |e|µ(e)∑

w 6=v
∑
e∈Ew∩Ev

ν(e)
|e|

, v ∈ V.(4.2.3)

Then the next natural question is which of the neighboring vertices gets hit at the
time T . By [70, Theorem 2.1], if the Brownian motion starts at v ∈ V, then for
each u ∼ v, u 6= v, the probability of being this next vertex is precisely

Pv(XGT = u) =

∑
e∈Eu∩Ev

ν(e)
|e|∑

w 6=v
∑
e∈Ew∩Ev

ν(e)
|e|

.(4.2.4)

Comparing (4.2.1) with (4.2.3) and (4.2.2) with (4.2.4), we see that if m is
defined by (3.1.5) with the weight r(e) given by (3.1.3) and b by (3.1.6), they
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coincide. In fact, the above discussion shows that to a certain extent the continuous-
time random walk associated with qD is a discretization of the Brownian motion
defined by QD. This can be taken as a first indication for connections between
parabolic properties. However, we also stress that already the second moments of
the hitting and waiting times differ (see [70, Theorem 2.3]).

4.3. Correspondence between quadratic forms

A more straightforward approach to establish connections between weighted
Kirchhoff Laplacians and weighted graph Laplacians is to compare their quadratic
forms. Fix a model (V, E , | · |, µ, ν) of (G, µ, ν) and consider the space of continuous
edgewise affine functions on G,

CA(G\V) :=
{
f ∈ C(G)

∣∣ f |e is affine for each edge e ∈ E
}
.(4.3.1)

The importance of CA(G\V) stems from the fact that it contains the kernel ker(H)
of the maximal Kirchhoff Laplacian H, as well as all harmonic functions on G, as
a subspace (see Section 6.5.2). Clearly, for each refinement of a given model the
corresponding space of edgewise affine functions is larger.

Every function f ∈ CA(G\V) can be identified with its values f |V = (f(v))v∈V
at the vertices. And conversely, we can identify each f ∈ C(V) with a continuous
edgewise affine function f ∈ CA(G\V) such that f = f |V =

(
f(v)

)
v∈V . This

suggests to define the map

ıV : C(G) −→ C(V)
f 7→ f |V .

(4.3.2)

Notice that this map is linear. Moreover, it is bijective when restricted to CA(G\V).
In the following we shall denote by ı−1

V the inverse of its restriction to CA(G\V).
Clearly, when restricted to bounded edgewise affine functions, ıV is a bijection onto
`∞(V). The situation is not so trivial when 1 ≤ p < ∞, as the next result shows.
Recall that (see Definition 3.16) a model of a weighted metric graph has finite
intrinsic size if

η∗(E) = sup
e∈E

η(e) = sup
e∈E
|e|

√
µ(e)

ν(e)
<∞.(4.3.3)

Moreover, we define the vertex weight m by (3.1.5) with r given by (3.1.3) for
models having finite intrinsic size and by (3.1.4) otherwise.

Lemma 4.2. If f ∈ CA(G\V)∩Lp(G;µ), 1 ≤ p <∞, then f = ıV(f) ∈ `p(V;m),
where m is the vertex weight (3.1.5), (3.1.3)–(3.1.4). If additionally the underlying
model has finite intrinsic size, then the inclusion f ∈ `p(V;m) implies that the
corresponding continuous edgewise affine function f = ı−1

V (f) belongs to Lp(G;µ)
and, moreover,

‖f‖pLp(G;µ) ≤ ‖f‖
p
`p(V;m) ≤ 4p‖f‖pLp(G;µ).(4.3.4)

Proof. Consider the case p = 1 first. Then

`

4

(
|f(0)|+ |f(`)|

)
≤
∫ `

0

|f(x)|dx ≤ `

2

(
|f(0)|+ |f(`)|

)
,(4.3.5)
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for each affine function on I` = [0, `] and hence

‖f‖L1(G;µ) =

∫
G
|f(x)|µ(dx) =

∑
e∈E

∫
e

|f(x)|µ(dx)

≥ 1

4

∑
e∈E
|e|µ(e)(|f(eı)|+ |f(eτ )|),

whenever f ∈ CA(G\V). However, by (3.1.3)–(3.1.4),

r(e) ≤ |e|µ(e)(4.3.6)

for all e ∈ E , and hence (3.1.5) implies the estimate

‖f‖L1(G;µ) ≥
1

4
‖ıV(f)‖`1(V;m) =

1

4
‖f‖`1(V;m).(4.3.7)

The case p > 1 easily follows from the above considerations. Indeed, apply-
ing Hölder’s inequality to the left-hand side in (4.3.5) together with the simple
inequality

(a+ b)p ≥ ap + bp, a, b,≥ 0, p ≥ 1,

we get from (4.3.5) the following estimate for edgewise affine functions

4p
∫
e

|f(x)|pµ(dx) ≥ |e|µ(e)
(
|f(eı)|p + |f(eτ )|p

)
, e ∈ E .(4.3.8)

Summing up over all edges and taking into account (4.3.6), we finally arrive at the
estimate

4p‖f‖pLp(G;µ) ≥ ‖ıV(f)‖p`p(V;m) = ‖f‖p`p(V;m).(4.3.9)

This proves the first claim as well as the second inequality in (4.3.4).
Assume now that the model has finite intrinsic size. Then r is defined by (3.1.3)

and hence for f = ı−1
V (f) ∈ CA(G\V) we get

‖f‖pLp(G) =
∑
e∈E

∫
e

|f(x)|pµ(dx)

≤
∑
e∈E
|e|µ(e) max

x∈e
|f(x)|p

≤
∑
e∈E
|e|µ(e)(|f(eı)|p + |f(eτ )|p)

≤
∑
v∈V
|f(v)|pm(v) = ‖f‖p`p(V;m).

This clearly implies the first estimate in (4.3.4) and finishes the proof. �

Remark 4.3. A few remarks are in order.

(i) Considering CA(G\V)∩Lp(G;µ) as a Banach space with the correspond-
ing Lp norm, the above result actually says that ıV is a bounded linear
operator from CA(G\V)∩Lp(G;µ) to `p(V;m) for all 1 ≤ p <∞ (however,
for p =∞ this claim is trivial) and this is true for each model of a given
weighted metric graph. However, this map has a bounded inverse exactly
when the model has finite intrinsic size.
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(ii) The estimate in (4.3.4) is not optimal. In particular, in the case p = 2 the
arguments from [67, Rem. 3.8] (see also [146, § 2.5]) show that

2‖f‖2L2(G;µ) ≤ ‖f‖
2
`2(V;m) ≤ 6‖f‖2L2(G;µ),

for any model of finite intrinsic size (for models of infinite intrinsic size,
only the second inequality is valid).

(iii) Let us also mention that if f ∈ CA(G\V) is nonnegative, f ≥ 0, then the
second inequality in (4.3.5) turns into equality. Therefore, if the underly-
ing model has finite intrinsic size, we end up with the equality

‖f‖L1(G;µ) =
1

2
‖ıV(f)‖`1(V;m) =

1

2
‖f‖`1(V;m)(4.3.10)

for all 0 ≤ f ∈ CA(G\V) ∩ L1(G;µ).

The crucial fact for our further considerations is the observation that the above
results can be extended to the H1 setting:

Corollary 4.4. If f ∈ CA(G\V) ∩H1(G), then f = ıV(f) belongs to H1(V)
and

Q[f ] = q[f ].(4.3.11)

Conversely, if f ∈ H1(V) and the underlying model has finite intrinsic size, then
f = ı−1

V (f) ∈ H1(G).

Proof. Taking into account the relationship established in Lemma 4.2, we
only need to mention that for f ∈ CA(G\V) the energy forms (4.1.1) and (4.1.3)
coincide upon identification (4.3.2):

Q[f ] =

∫
G
|∇f(x)|2ν(dx) =

∑
e∈E

∫
e

|∇f(x)|2ν(dx)

=
∑
e∈E

ν(e)

|e|
|f(eı)− f(eτ )|2(4.3.12)

=
1

2

∑
u,v∈V

b(v, u)|f(v)− f(u)|2 = q[f ]. �

Every continuous function f on G can be uniquely decomposed as

f = flin + f0,(4.3.13)

where both flin and f0 are continuous functions on G, however, flin is edgewise
affine on G, flin ∈ CA(G\V) and f0 vanishes at all vertices, that is,

flin|V = f |V , f0|V = 0.

Notice also the following identity flin = (ı−1
V ◦ ıV)(f) in terms of (4.3.2). Now we

are in position to state the key technical result connecting the energy forms (4.1.1)
and (4.1.3). For convenience matters, let us introduce the following notation

H1
0 (G\V) =

{
f ∈ H1(G)

∣∣ f |V = 0
}
.

Lemma 4.5. Let f ∈ H1(G) and consider its decomposition (4.3.13). If (4.3.3)
is satisfied, then f0 ∈ H1

0 (G\V), flin ∈ H1(G) and

Q[f ] = Q[flin] + Q[f0].(4.3.14)
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Moreover, f = ıV(f) belongs to H1(V) and

Q[flin] = q[f ].(4.3.15)

Proof. A straightforward edgewise integration by parts gives

Q[f ] =
∑
e∈E

∫
e

|∇f(x)|2ν(dx)

=
∑
e∈E

∫
e

|∇flin(x)|2 + |∇f0(x)|2 ν(dx)

=

∫
G
|∇flin(x)|2ν(dx) +

∫
G
|∇f0(x)|2ν(dx) = Q[flin] + Q[f0].

The latter implies that if f is continuous and has finite energy (i.e., it is edgewise
in H1 and Q[f ] < ∞), then both summands on the RHS in (4.3.13) have finite
energy. In particular, (4.3.14) holds for all continuous edgewise H1 functions on G.

Taking into account the following trivial estimate∫ |e|
0

|f(x)|2dx ≤ |e|
2

π2

∫ |e|
0

|f ′(x)|2dx,

which holds for any f ∈ H1
0 ([0, |e|]), we get

‖f0‖L2(G;µ) ≤
η∗(E)

π
‖∇f0‖L2(G;ν).(4.3.16)

Therefore, f0 ∈ L2(G;µ) whenever (4.3.3) holds true and f0 has finite energy. This
immediately implies that flin ∈ H1(G) if so is f and (4.3.3) holds. It remains to
apply Corollary 4.4. �

Remark 4.6. The constant in (4.3.16) is optimal since so are the corresponding
constants in one-dimensional inequalities for H1

0 functions (see also (3.2.44)).

To emphasize the role of the map (4.3.2), let us provide another way to write
down the correspondence between self-adjoint extensions of the minimal Kirchhoff
Laplacian H0 and the corresponding minimal graph Laplacian h0established in

Lemma 3.20. For a self-adjoint extension H̃ ∈ ExtS(H0) of H0 define the operator

h̃ in `2(V;m) by setting

h̃ := h � dom(h̃), dom(h̃) =
{
ıV(f) | f ∈ dom(H̃)

}
,(4.3.17)

where h = (h0)∗ is the maximal graph Laplacian.

Lemma 4.7. Let H0 be the minimal Kirchhoff Laplacian with possibly nontrivial

deficiency indices, n±(H0) ≥ 0. If H̃ ∈ ExtS(H0), then the operator h̃ defined by
(4.3.17) is a self-adjoint extension of h0. Moreover, the induced map

(4.3.18)
ExtS(H0) −→ ExtS(h0)

H̃ 7→ h̃

is a bijection. The inverse image of a self-adjoint extension h̃ of h0 is the extension

H̃ := H � dom(H̃), dom(H̃) =
{
f ∈ dom(H) | ıV(f) ∈ dom(h̃)

}
.(4.3.19)
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Proof. First of all, let us show that the map is well defined, that is, h̃ is indeed

a self-adjoint restriction of h. Recall that H̃ admits the representation (3.3.7) and,

moreover, by Lemma 3.20, there is a self-adjoint extension ĥ ∈ ExtS(h0) such that

Θ̃ = Θmul ⊕
{

(Φf,Φĥf) | f ∈ dom(ĥ)
}
.

The Kirchhoff conditions at vertices imply that (see (3.2.14) and (3.2.34), (3.2.41))

ΓV0 f =
∑
v∈V

f(v)fv = Φ(ıV(f))(4.3.20)

for all f ∈ dom(H). Therefore, by (3.3.7), dom(ĥ) = Φ−1(dom(Θ̃)) = dom(h̃).

Thus, by (4.3.17), h̃ = ĥ ∈ ExtS(h0). Moreover, this also implies that the map
(4.3.18) coincides with the inverse of the map (3.3.6) and hence (4.3.18) is a bijection
by Lemma 3.20.

It remains to prove the last claim. However, by definition, we have

dom(H̃) ⊆
{
f ∈ dom(H) | ıV(f) ∈ dom(h̃)

}
=
{
f ∈ dom(Hmax) | (ΓV0 f,ΓV1 f) ∈ Θ, ıV(f) ∈ dom(h̃)

}
.

Taking into account the decomposition

Θ = Θmul ⊕
{

(Φf ,Φ hf) | f ∈ dom(h)
}
,

as well as (4.3.20), it is clear that (4.3.19) coincides with (3.3.6), which proves the
claim. �

Remark 4.8. Since the map (4.3.17)–(4.3.18) coincides with the inverse of the
map (3.3.6), Theorem 3.22 (see also Remark 3.23) implies that (4.3.17) remains
to be a bijection when it is further restricted to certain subclasses of self-adjoint
extensions (e.g., semibounded, nonnegative etc.).

It turns out that the simple correspondence in Lemma 4.7 also prevails on the
level of quadratic forms.

Corollary 4.9. Suppose H̃ ∈ ExtS(H0) is a self-adjoint extension of H0 and

let h̃ ∈ ExtS(h0) be the self-adjoint extension of h0 defined by (4.3.17). Then

〈H̃f, f〉L2(G;µ) = 〈h̃ f , f〉`2(V;m) +

∫
G
|∇f0(x)|2 ν(dx)(4.3.21)

for all f ∈ dom(H̃), where f = ıV(f) and f0 is the function defined by (4.3.13). In

particular, f0 has finite energy, Q[f0] = ‖∇f0‖2L2(G;ν) <∞ for every f ∈ dom(H̃).

Proof. Take f ∈ dom(H̃) and consider f = ıV(f), which belongs to dom(h̃) by
definition. Using the same notation as in the proof of Lemma 3.20 and Lemma 4.7,
we conclude from (4.3.20) that

〈h̃ f , f〉`2(V;m) = 〈h̃Φ−1ΓV0 f,Φ
−1ΓV0 f〉`2(V;m) = 〈ΓV1 f,ΓV0 f〉HV = 〈ΓE1f,ΓE0f〉HE .

Here, ΠE and ΠV denote the edge-based and vertex-based boundary triplets in-
troduced in Theorem 3.5 and Corollary 3.8 in Section 3.2.2. Next, decompose
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f ∈ dom(H̃) as f = f0 + flin (see (4.3.13)). A straightforward edgewise integration
by parts gives (see (3.2.4))

〈H̃f, f〉L2(G) =
∑
e∈E
−〈∆f, f〉L2(e;µ)

=
∑
e∈E
〈Γ1,ef,Γ0,ef〉C2 + 〈∇f0,∇f〉L2(e;ν)

=
∑
e∈E
〈Γ1,ef,Γ0,ef〉C2 +

∑
e∈E
〈∇f0,∇f〉L2(e;ν)

= 〈ΓE1f,ΓE0f〉HE +
∑
e∈E
〈∇f0,∇f〉L2(e;ν).

Notice that we can rearrange sums. Indeed, both (Γ0,ef)e∈E and (Γ1,ef)e∈E belong
to HE by Theorem 3.5 and hence the first sum is absolutely convergent. Taking
into account that f0 vanishes on V, we get

〈∇f0,∇f〉L2(e;ν) = 〈∇f0,∇f0〉L2(e;ν) ≥ 0

for all e ∈ E , which implies that the second series is also absolutely convergent and
equals the energy Q[f0] of f0. This finishes the proof of the equality (4.3.21). �

Remark 4.10. Notice that Theorem 3.1(i) states that the sets of self-adjoint
extensions of H0 and h0 are in 1-to-1 correspondence and the concept of boundary
triplets provides the explicit correspondence which, however, requires a construction
of a suitable boundary triplet. From this perspective, Lemma 4.7 and Corollary 4.9
connect self-adjoint extensions via quadratic forms and this approach has its roots
in the pioneering works of M.G. Krein, M.I. Vishik and M.S. Birman in the 1950s on
boundary value problems for elliptic PDEs (see, e.g., [55] for more details). How-
ever, let us emphasize that the decomposition (4.3.21) is usually established under
the additional assumption that the corresponding symmetric operator is uniformly
positive, see [154, f-la (25)] (in our setting this would mean that the Dirichlet
Laplacian HD has positive spectral gap).

4.4. Correspondence between Markovian extensions

According to (4.1.2) and (4.1.7), the sets ExtM (H0) and ExtM (h0) of Markov-
ian extensions are nonempty. Lemma 3.20 as well as Lemma 4.7 show that first
of all, the sets of self-adjoint extensions ExtS(H0) and ExtS(h0) are in bijection,
and, what is more important, each self-adjoint extension of h0 can be seen as a
boundary operator parameterizing the corresponding self-adjoint extension of H0.
The further correspondence between their spectral properties indicates that one
can hope that (4.3.17)–(4.3.18) induces a bijection between the sets ExtM (H0) and
ExtM (h0) and we shall see that this is indeed the case.

It turns out that the correspondence between Markovian extensions can be con-
veniently explained using the notion of extended Dirichlet spaces (see Appendix B.3
for details) and we need to introduce the following function spaces. Let (G, µ, ν) be
a weighted metric graph together with a fixed model. Recall that the energy of a
continuous, edgewise H1-function f : G → C is given by

Q[f ] := ‖∇f‖2L2(G;ν) =

∫
G
|∇f(x)|2 ν(dx).(4.4.1)
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The space of functions of finite energy is defined as

Ḣ1(G) :=
{
f ∈ C(G)

∣∣ f |e ∈ H1(e) for all e ∈ E , Q[f ] <∞
}
,

and its subspace of functions vanishing on the vertex set is denoted by Ḣ1
0 (G\V),

Ḣ1
0 (G\V) := {f ∈ Ḣ1(G) | ıV(f) ≡ 0}.

Let us stress at this point that in contrast to the Sobolev space H1(G) we do not

require f to belong to L2(G;µ) (for example, 1 always belongs to Ḣ1(G), however,
1 ∈ H1(G) exactly when µ(G) <∞).

Since Ḣ1(G) ⊂ C(G), each f ∈ Ḣ1(G) can be decomposed into f = flin + f0 as
in (4.3.13) and, moreover, we easily get (see the proof of Lemma 4.5)

(4.4.2) Q[f ] = Q[flin] + Q[f0],

which implies that flin ∈ Ḣ1(G) and f0 ∈ Ḣ1
0 (G\V) whenever f ∈ Ḣ1(G). Moreover,

the calculations in the proof of Corollary 4.4 imply that

Q[flin] = q[f ] =
1

2

∑
u,v∈V

b(v, u)|f(v)− f(u)|2,(4.4.3)

where f = ıV(f) = ıV(flin). In particular, this means that a function f ∈ C(V)
has finite energy, q[f ] <∞ exactly when the corresponding edgewise affine function
flin = ı−1

V (f) ∈ CA(G\V) has finite energy. In contrast to the usual Sobolev space
H1(G), the above decomposition holds for all models of a given metric graph (see
Lemma 4.5) and exactly this fact makes the use of extended Dirichlet spaces very
convenient. In particular a similar decomposition holds for all Markovian extensions
and the corresponding extended Dirichlet spaces.

Lemma 4.11. Let H̃ be a Markovian extension of the minimal Kirchhoff Lapla-

cian H0 and Q̃e : dom(Q̃e) → [0,+∞) the corresponding extended Dirichlet form.
Then:

(i) dom(Q̃e) ⊆ Ḣ1(G).

(ii) Ḣ1
0 (G\V) ⊆ dom(Q̃e) and for each f0 ∈ Ḣ1

0 (G\V)

Q̃e[f0] = Q[f0].

(iii) Each f ∈ dom(Q̃e) has an approximating sequence (fn)n ⊂ dom(H̃).

(iv) If f = flin + f0 ∈ dom(Q̃e), then flin ∈ dom(Q̃e), f0 ∈ Ḣ1
0 (G\V) and

Q̃e[f ] = Q̃e[flin] + Q[f0].

Proof. (i) By Lemma 4.1, HN ≤ H̃. Moreover, it is easy to observe that the

extended Dirichlet space for QN is contained in Ḣ1(G), which implies the desired
inclusion.

(ii) For each f0 ∈ Ḣ1
0 (G\V) there exists a sequence (fn)n ⊂ dom(H) ∩ Cc(G)

such that each fn vanishes in a neighborhood of all vertices and

lim
n→∞

Q[f0 − fn] = 0.

The claim now follows easily from Corollary 4.9.

(iii) is an immediate consequence of the fact that dom(H̃) is a core of dom(Q̃)

and convergence in the graph norm of Q̃ implies uniform convergence on compact
subsets of G.
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(iv) Take f = flin + f0 ∈ dom(Q̃e). By (i), f0 ∈ Ḣ1
0 (G\V) and hence (ii)

implies that flin ∈ dom(Q̃e). By (iii), pick an approximating sequence (fn)n ⊂
dom(H̃) for f with fn = fn,0 + fn,lin for each n. By the proof of (ii), there exists
an approximating sequence (gn)n ⊂ dom(H) ∩ Cc(G) for f0 such that gn|V ≡ 0.
Corollary 4.9 implies that (fn,0)n and (gn)n are Q-Cauchy sequences. Moreover, it
is straightforward to show that

lim
n→∞

Q[f0 − fn,0] = lim
n→∞

Q[f0 − gn] = 0.

Since (fn − gn)n is an approximating sequence for flin, by Corollary 4.9 we get

Q̃[flin] = lim
n→∞

〈h̃ fn, fn〉+ Q[fn,0 − gn]

= lim
n→∞

〈h̃ fn, fn〉+ Q[fn,0]−Q[fn,0]

= Q̃[f ]−Q[f0].

This completes the proof of Lemma 4.11. �

Now we are in position to state the main result of this subsection.

Theorem 4.12. Let (G, µ, ν) be a weighted metric graph together with a fixed
model. Then the map defined by (4.3.17) induces a bijection

(4.4.4)
ExtM (H0) −→ ExtM (h0)

H̃ 7→ h̃
.

Proof. By Lemma 4.7, the map (4.3.17) is a bijection between ExtS(H0) and

ExtS(h0) and hence we only need to show that H̃ ∈ ExtS(H0) is Markovian exactly

when so is the corresponding h̃ ∈ ExtS(h0). We divide the proof in several steps.

(i) First suppose that H̃ ∈ ExtM (H0) and h̃ ∈ ExtS(h0) is defined by (4.3.17)

with the corresponding quadratic form q̃ in `2(V;m). Let us show that h̃ is also
Markovian. Define the quadratic form

q̂e[f ] := Q̃e[ı
−1
V (f)], f ∈ dom(q̂e) :=

{
f ∈ C(V)| ı−1

V (f) ∈ dom(Q̃e)
}
,(4.4.5)

and also its `2(V;m) restriction (compare with (B.3.1))

q̂ := q̂e � dom(q̂), dom(q̂) = dom(q̂e) ∩ `2(V;m).(4.4.6)

Here Q̃e is the extended Dirichlet form of Q̃. It is straightforward to prove that

q̂ is closed, which basically follows from the fact that Q̃e is closed under taking

a.e. pointwise limits of Q̃e-Cauchy sequences. Moreover, q̂ inherits the Markovian

property from Q̃e. Indeed, take f ∈ dom(q̂) and pick a normal contraction ϕ : C→
C. Then f = ı−1

V (f) ∈ dom(Q̃e) and hence ϕ ◦ f = ıV(ϕ ◦ f) belongs to dom(q̂)

since Q̃e is Markovian (see Appendix B.3). Moreover, Lemma 4.11 implies

q̂[ϕ ◦ f ] = q̂e[ϕ ◦ f ] = Q̃e[ı
−1
V (ϕ ◦ f)] ≤ Q̃e[ϕ ◦ f ] ≤ Q̃e[f ] = Q̃e[ı

−1
V (f)] = q̂[f ].

Thus, q̂ is a Dirichlet form in `2(V;m) and the corresponding self-adjoint operator

ĥ is Markovian. Hence to prove the claim it suffices to show that ĥ = h̃ (or
equivalently that q̂ = q̃).

First of all, (4.3.17) implies that dom(h̃) ⊆ dom(q̂) and q̃ = q̂ on dom(h̃) by

Corollary 4.9. Therefore, h̃ ≥ ĥ.
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To prove the converse, observe that ĥ ∈ ExtS(h0). Indeed, take f ∈ dom(h′)
and g ∈ dom(q̂) and then pick an f ∈ dom(H′) with ıV(f) = f and an approxi-

mating sequence (gn)n ⊂ dom(H̃) for g := ı−1
V (g) ∈ dom(Q̃e)∩CA(G\V). Then by

Lemma 4.11 (iv),

q̂[f ,g] = Q̃e[ı
−1
V (f), ı−1

V (g)] = Q̃e[f, ı
−1
V (g)] = lim

n→∞
Q̃[f, gn] = lim

n→∞
〈H′f, gn〉L2 .

Since H̃ ≥ HN (see Lemma 4.1), it follows that gn converges to g uniformly on
compact subsets of G. Using integration by parts and (4.4.2),

q̂[f ,g] = 〈H′f, g〉L2 = Q[f, g] = q[f ,g] = 〈h′f ,g〉`2 ,

which shows that h′ ⊆ ĥ and hence ĥ ∈ ExtS(h0).

Let Ĥ be the nonnegative self-adjoint extension of H0 corresponding to ĥ via
(4.3.17). Again, we infer from Lemma 4.7, Lemma 4.11(iv) and Corollary 4.9 that
(see also (B.3.1))

dom(Ĥ) ⊆ dom(Q̃e) ∩ L2(G;µ) = dom(Q̃)

and that Q̂ = Q̃ on dom(Ĥ). This implies that Ĥ ≥ H̃. However, the map between
nonnegative extensions of H0 and h0 is monotonic (this can easily be deduced from

Krein’s resolvent formula (A.3.2)), that is, H̃1 ≥ H̃2 exactly when h̃1 ≥ h̃2. Hence

we conclude that ĥ = h̃.
(ii) It remains to show that H̃ is a Markovian extension of H0 if h̃ is a Markovian

extension of h0. The proof essentially consists in reversing the construction of the
previous step. More precisely, we define the quadratic form

Q̂e[f ] := q̃e[ıV(f)] + Q[f0], f ∈ dom(Q̂e) :=
{
g ∈ Ḣ1(G)| ıV(g) ∈ dom(q̃e)

}(4.4.7)

and consider its restriction

Q̂ := Q̂e � dom(Q̂), dom(Q̂) = dom(Q̂e) ∩ L2(G;µ).(4.4.8)

Similar to the previous step, it turns out that Q̂ is a Dirichlet form in L2(G;µ) and

the associated operator coincides with H̃, that is, Ĥ = H̃. Let us only prove that

Q̂ verifies the Markovian property (B.1.1) since the other claimed properties can be
verified without difficulty analogous to the previous step and we omit the details.

Take f ∈ Q̂ and pick a normal contraction ϕ : C→ C. By [131, Theorem 3.12]
(see also (4.1.7)), the difference q̃e − q satisfies the Markovian condition (B.1.1)
on dom(q̃e). Setting f := ıV(f), we see that ıV(ϕ ◦ f) = ϕ ◦ f and in particular
ϕ ◦ f ∈ dom(q̃). Moreover, it follows from (4.4.2) that

Q̂[f ] = q̃e[f ] + Q[f0] = q̃e[f ] + Q[f ]−Q[ı−1
V (f)] = q̃e[f ]− q[f ] + Q[f ]

≥ (q̃e − q)[ϕ ◦ f ] + Q[ϕ ◦ f ] = Q̂[ϕ ◦ f ],

which shows that Q̂ is Markovian. �

The proof of Theorem 4.12 in fact contains the following transparent correspon-
dence between the extended Dirichlet forms (see (4.4.5)–(4.4.6) and (4.4.7)–(4.4.8)).

Corollary 4.13. Let (G, µ, ν) be a weighted metric graph together with a fixed

model. Let also H̃ be a Markovian extension of H0 and consider the associated
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Markovian extension h̃ of h0 defined by (4.3.17). The domains of the corresponding

extended Dirichlet forms Q̃e and q̃e are related by

(4.4.9) dom(q̃e) = {ıV(f) | f ∈ dom(Q̃e)}

and

(4.4.10) dom(Q̃e) = {f ∈ Ḣ1(G) | ıV(f) ∈ dom(q̃e)}.

Moreover, for every function f ∈ dom(Q̃e),

(4.4.11) Q̃e[f ] = q̃e[ıV(f)] + Q[f0].

However, the above correspondence cannot be extended to the Dirichlet forms
(and form domains) without further restrictions on the underlying model.

Corollary 4.14. Let (G, µ, ν) be a weighted metric graph together with a fixed

model having finite intrinsic size. Let H̃ ∈ ExtM (H0) and h̃ ∈ ExtM (h0) be given

by (4.3.17). Then the corresponding Dirichlet forms Q̃ and q̃ are connected by

q̃[f ] = Q̃[ı−1
V (f)], f ∈ dom(q̃) =

{
ıV(f) | f ∈ dom(Q̃)

}
,(4.4.12)

and

dom(Q̃) =
{
ı−1
V (f) + f0 | f ∈ dom(q̃), f0 ∈ H1

0 (G\V)
}
,

Q̃[f ] = q̃[f ] + Q[f0], f = ı−1
V (f) + f0 ∈ dom(Q̃).

(4.4.13)

Proof. Taking into account (B.3.1), the proof is a straightforward combina-
tion of Corollary 4.13, Lemma 4.11 and Lemma 4.5. �

Remark 4.15. It is easy to show that under the finite intrinsic size assumption

(4.3.3), Corollary 4.14 holds true for nonnegative extensions H̃ ∈ Ext+
S (H0) and

h̃ ∈ Ext+
S (h0) as well. However, we restrict to the special case of Markovian

extensions for the sake of a streamlined exposition.

Remark 4.16. The results of this section remain valid for Laplacians with
δ-couplings H0

α (see Section 2.4.3) and their associated discrete Laplacians h0
α

(see (3.1.7) and Theorem 3.1), of course under the additional assumption that
all strengths are nonnegative, that is, α : V → [0,∞).

4.5. Recurrence/transience

As it was explained in Section 4.2, the connection between a Brownian mo-
tion on a metric graph and a continuous time random walk on a graph indicates
a connection between the corresponding heat semigroups. The main tool to con-
firm this intuition is the close relationship between the energy forms established in
the previous sections. We begin with the study of recurrence and transience (see
Appendix B.2 for definitions and further references).

Theorem 4.17. Let (G, µ, ν) be a weighted metric graph together with a fixed

model. Let also H̃ be a Markovian extension of H0 and h̃ the corresponding Mar-

kovian extension of h0 (see Theorem 4.12). Then the heat semigroup (e−H̃t)t>0 is

recurrent (respectively, transient) if and only if the semigroup (e−h̃t)t>0 is recurrent
(respectively, transient).
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Proof. The claim follows immediately from the recurrence characterization by
means of extended Dirichlet spaces (see Lemma B.7) and the relationship between
extended Dirichlet spaces established in Corollary 4.13. Notice also that G (and
hence Gd for each model of G) is connected and hence the corresponding Dirichlet
form is irreducible, which implies the recurrence/transience dichotomy. �

Remark 4.18. Let us stress that recurrence/transience is independent of the
choice of a model of a weighted metric graph (one may even allow models having
infinite intrinsic size). So, the situation is analogous to the self-adjoint uniqueness

(cf. Corollary 3.15): if (e−H̃t)t>0 is recurrent, then (e−h̃t)t>0 is recurrent for all

models of (G, µ, ν). And conversely, (e−H̃t)t>0 is recurrent if (e−h̃t)t>0 is recurrent
for one (and hence for all) models of (G, µ, ν).

Remark 4.19. A similar approach connecting recurrence/transience on graphs
and metric graphs was suggested in [95, Chapter 4].

For the two extremal Markovian extensions, the Dirichlet and Neumann Lapla-
cians HD and HN , we obtain the following characterizations.

Corollary 4.20. Let (G, µ, ν) be a weighted metric graph together with a fixed
model. The following statements are equivalent for the Neumann Laplacian HN :

(i) (e−HN t)t>0 is recurrent,
(ii) (e−hN t)t>0 is recurrent,

(iii) 1 ∈ dom(Qe
N ), where dom(Qe

N ) is the extended Dirichlet space of QN ,

(iv) dom(Qe
N ) = Ḣ1(G).

Proof. Since 1 ∈ Ḣ1(G), in view of Theorem 4.12, Theorem 4.17 and Lem-
ma B.7, we only need to prove the implication (iii) ⇒ (iv). The arguments leading
to their proofs are well-known (see, e.g., [134, Prop. 6.11]), however, we repeat
them for the sake of completeness.

Suppose (iii) holds true and let (fn)n ⊂ H1(G) be an approximating sequence
for 1, that is, limn→∞ fn(x) = 1 for a.e. x ∈ G and limn→∞Q[fn] = 0. Replacing

fn by f̃n := 0 ∨ Re(fn) ∧ 1, if necessary, we can assume that 0 ≤ fn ≤ 1. Suppose

also that g ∈ Ḣ1(G) is bounded. Then gn := fng belongs to H1(G) as well for all
n ∈ Z≥0. Moreover, the sequence (gn)n converges to g pointwise a.e. on G and

lim
n→∞

Q[g − gn] ≤ lim
n→∞

2‖g‖2∞Q[fn] + 2

∫
G

(1− fn)2|∇g|2 ν(dx) = 0.

Hence every bounded function g ∈ Ḣ1(G) belongs to dom(Qe
N ) and satisfies Qe

N [g] =

Q[g]. On the other hand, for every (real-valued) function g ∈ Ḣ1(G), the sequence
defined by gn := (−n) ∨ gn ∧ n, n ∈ Z≥0 converges pointwise to g and, moreover,
limn→∞Q[g − gn] = 0. In particular, it follows that (iv) holds true. �

In the case of Dirichlet Laplacians, the characterization looks slightly differ-
ently. If H0 admits a unique Markovian extensions, then HD coincides with HN

and in this case the above characterization applies. It turns out that Markovian
uniqueness is necessary for (e−HDt)t>0 to be recurrent.

Corollary 4.21. Let (G, µ, ν) be a weighted metric graph together with a fixed
model. The following statements are equivalent for the Dirichlet Laplacian HD:

(i) (e−HDt)t>0 is recurrent,
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(ii) (e−hDt)t>0 is recurrent,
(iii) 1 ∈ dom(Qe

D), where dom(Qe
D) is the extended Dirichlet space of QD,

(iv) dom(Qe
D) = Ḣ1(G),

(v) HD = HN and dom(Qe
D) = Ḣ1(G).

Proof. Clearly, we only need to prove that HD = HN if (e−HDt)t>0 is re-
current. However, QD is a regular Dirichlet form and the corresponding fact con-
necting recurrence and Markovian uniqueness is rather well known (see, e.g., [98,
Theorem 5.20]). �

Remark 4.22. A few remarks are in order.

(i) Let us stress that Markovian uniqueness is not necessary for the Neumann
Laplacian to be recurrent. Intuitively, this is explained by the fact that
Neumann boundary conditions are considered as a reflecting boundary.
On the other hand, one can easily construct simple examples (see, e.g.,
Lemma 5.13).

(ii) For the Kirchhoff Laplacian Hα with nonzero α ≥ 0 (which is equivalent to
the presence of a nonzero killing term for hα) the corresponding Dirichlet
form is always transient.

(iii) As in the manifold case (see, e.g., [88]), transience/recurrence for both
Kirchhoff Laplacians and graph Laplacians admits several equivalent re-
formulations in terms of harmonic and subharmonic functions. We shall
return to this issue in Section 7.4.

4.6. Stochastic completeness

The preceding sections suggest a connection between stochastic completeness
of the Kirchhoff Laplacian H on a weighted metric graph (G, µ, ν) and its associated
discrete Laplacian h on a fixed model. In fact, the results of [70], [112] imply that
(assuming the model has finite intrinsic size and, for simplicity, that H and h are
self-adjoint‡)

(4.6.1) (e−tH)t>0 stochastically complete ⇒ (e−th)t>0 stochastically complete.

It can be shown by examples that the converse direction fails (even for models of
finite intrinsic size). However, we are going to show that equivalence holds true in
(4.6.1) if the corresponding model is in a certain sense fine enough.

Theorem 4.23. Let (G, µ, ν) be a weighted metric graph with a fixed model of

finite intrinsic size. Let H̃ ∈ ExtM (H0) be a Markovian extension of H0 together

with the corresponding extension h̃ ∈ ExtM (h0) defined on `2(V;m) by (4.3.17).

(i) If (e−tH̃)t>0 is stochastically complete, then (e−th̃)t>0 is stochastically
complete.

(ii) If (e−th̃)t>0 is stochastically complete and the model additionally satisfies∑
e∈E

η(e)
√
|e|µ(e) <∞,(4.6.2)

then (e−tH̃)t>0 is stochastically complete.

‡It is assumed in [70], [112] that G is complete as a metric space with respect to the corre-
sponding intrinsic metric, which implies the self-adjointness of both H and h, see Theorem 7.1.
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Notice that one can always find a model satisfying (4.6.2) since by cutting

a given edge e into N equal edges, the corresponding summand η(e)
√
|e|µ(e) in

(4.6.2) is replaced with 1√
N
η(e)

√
|e|µ(e). Taking this into account we end up with

the following immediate corollary.

Corollary 4.24. Let (G, µ, ν) be a weighted metric graph and let H̃ ∈ ExtM (H0)
be a Markovian extension of H0. Then:

(i) (e−tH̃)t>0 is stochastically complete exactly when for each model of (G, µ, ν)

having finite intrinsic size the heat semigroup (e−th̃)t>0 with the generator

h̃ defined by (4.3.17) is stochastically complete.

(ii) (e−tH̃)t>0 is not stochastically complete exactly when for each model of
(G, µ, ν) having finite intrinsic size and satisfying (4.6.2) the corresponding

heat semigroup (e−th̃)t>0 is not stochastically complete.

Remark 4.25. By Corollary 4.24(i), stochastic incompleteness of (e−tH̃)t>0 is

equivalent to the existence of a model of finite intrinsic size such that (e−th̃)t>0 is
not stochastically complete. The point of Corollary 4.24(ii) is to provide an explicit

class of models for which H̃ and h̃ are simultaneously stochastically complete.

Proof of Theorem 4.23. (i) was essentially obtained in [70], [112] and we

only slightly adapt the proof of [112, pp. 137–140] to our setting. Suppose (e−tH̃)t>0

is stochastically complete and consider the operator h̃ (see (4.3.17)) for some
fixed model of (G, µ, ν) satisfying (4.3.3). By Lemma B.6, there exists a sequence

(fn) ⊂ dom(Q̃) such that 0 ≤ fn ≤ 1 for all n ≥ 0, limn→∞ fn = 1 a.e. on G, and

lim
n→∞

Q̃[fn, g] = 0

for all g ∈ dom(Q̃) ∩ L1(G;m). By Corollary 4.14, fn = ıV(fn) ∈ dom(q̃) and
0 ≤ fn ≤ 1 for all n ≥ 0. Moreover, using additionally Lemma 4.2, we see that

lim
n→∞

q̃[fn,g] = lim
n→∞

Q̃[ı−1
V (fn), ı−1

V (g)] = lim
n→∞

Q̃[fn, ı
−1
V (g)] = 0

for all g ∈ dom(q̃)∩ `1(V;m). Taking into account again Lemma B.6, it remains to
show that limn→∞ fn(v) = 1 for all vertices v ∈ V. We decompose fn = fn,lin +fn,0
as in (4.3.13), where fn,lin ∈ CA(G\V) and fn,0 ∈ H1

0 (G\V). Denote by gen the
restriction of fn,0 to the edge e ∈ E and extended by zero to the rest of G. Clearly

gen belongs to dom(Q̃) ∩L1(G) and taking into account Corollary 4.14, we see that

lim
n→∞

∫
e

|∇gen|2 ν(dxe) = lim
n→∞

Q̃[gen, g
e
n] = lim

n→∞
Q̃[fn, g

e
n] = 0.

Since gen has support contained in the edge e, this implies that limn→∞ gen(x) = 0
for all x ∈ e and hence limn→∞ fn,0(x) = 0 for all x ∈ G. Thus limn→∞ fn,lin(x) = 1
on G, which implies the desired property of (fn).

(ii) Suppose now that (e−th̃)t>0 is stochastically complete for some model of
(G, µ, ν) satisfying (4.3.3). By Lemma B.6, there exists a sequence (fn) ⊂ dom(q̃)
such that 0 ≤ fn ≤ 1, limn→∞ fn(v) = 1 for all v ∈ V and limn→∞ q̃[fn, g] = 0 for
all g ∈ dom(q̃) ∩ `1(V;m). Define fn := ı−1

V (fn) ∈ CA(G\V) and notice that (fn)

is a sequence in dom(Q̃) with 0 ≤ fn ≤ 1 and limn→∞ fn(x) = 1 for all x ∈ G.
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Moreover, by Corollary 4.14 we have

Q̃[fn, g] = Q̃[fn, glin] = q̃[fn, ıV(glin)]

for all g ∈ dom(Q̃). Hence, by Lemma B.6, the stochastic completeness of (e−tH̃)t>0

would follow if we could prove that g := ıV(glin) belongs to dom(q̃) ∩ `1(V;m) for

all g ∈ dom(Q̃) ∩ L1(G). Taking into account Corollary 4.14 and Lemma 4.2 with
p = 1, it suffices to show that glin ∈ L1(G;µ) and the additional assumption (4.6.2)
is needed exactly for this purpose. Indeed, for an edge e ∈ Ev, the estimate

|glin(x)− g(x)| ≤ |glin(x)− glin(v)|+ |g(x)− g(v)|

≤ |e|1/2
(∫

e

|∇glin(xe)|2dxe

)1/2

+ |e|1/2
(∫

e

|∇g(xe)|2dxe

)1/2

holds for all x ∈ e. Taking into account Corollary 4.14 this implies∫
e

|glin(x)− g(x)|µ(dx) ≤ 2η(e)
√
|e|µ(e)

√
Q̃[g], e ∈ E ,

and hence ∫
G
|glin(x)|µ(dx) ≤ ‖g‖L1(G;µ) + 2

√
Q̃[g]

∑
e∈E

η(e)
√
|e|µ(e),

which proves the claim. �

Remark 4.26. A few remarks are in order.

(i) As in the manifold case (see, e.g., [88, Theorem 6.2]), stochastic complete-
ness for both Kirchhoff Laplacians and graph Laplacians admits several
equivalent reformulations in terms of λ-harmonic or λ-subharmonic func-
tions and the uniqueness for the heat equation in L∞ or `∞ (Khas’minskii-
type theorems). Therefore, both Theorem 4.23 and Corollary 4.24 can be
reformulated in these terms. For further details we refer to Section 7.5.

(ii) The condition (4.6.2) in Theorem 4.23 is far from being optimal. Actu-
ally, what one needs in order to prove the converse implication to (i) in

Theorem 4.23 is the boundedness of ıV as a map from dom(Q̃)∩L1(G;µ)
to dom(q̃) ∩ `1(V;m).

(iii) Theorem 4.23 extends in an obvious way to the case of nontrivial δ-
couplings, of course under the positivity assumption that α ≥ 0 on V.

(iv) In [115] and [114], a “refinement” of a graph (V,m; b) was suggested
(see [114, Def. 1.4] and [115, Def. 1.10]). It is very much similar to the
construction induced by (3.1.5)–(3.1.6) when refining a weighted metric
graph, however, the corresponding difference can be seen as adding loops
at the end vertices of a refined edge in order to keep the same vertex
weights. Moreover, the construction from [114], [115] enjoys the same
important stability property w.r.t. stochastic completeness: if a refined
graph is stochastically complete, then so is the original graph (V,m; b) (see
[114, Theorem 1.5]).

4.7. Spectral estimates

Recall that in Theorem 3.22(v) we observed the following equivalence between
strict positivity of spectra,

λ0(H̃) = inf σ(H̃) > 0 ⇐⇒ λ0(h̃) = inf σ(h̃) > 0
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for a nonnegative extension H̃ of H0 on a weighted metric graph (G, µ, ν) and the

associated nonnegative extension h̃ of h0 on a fixed model having finite intrinsic

size. In this section we present a simple two-sided estimate between λ0(H̃) and

λ0(h̃) based on the results of Section 4.3.

Theorem 4.27. Let (G, µ, ν) be a weighted metric graph together with a fixed

model. Suppose H̃ ∈ ExtS(H0) is a nonnegative extension of H0 and consider in

`2(V;m) the nonnegative extension h̃ ∈ ExtS(h0) of h0 defined by (4.3.17). Then

min
{
λ0(h̃),

1

2

( π

η∗(E)

)2}
≤ λ0(H̃) ≤ min

{
6λ0(h̃),

( π

η∗(E)

)2}
.(4.7.1)

Proof. First of all, recall from Theorem 3.22(ii) that H̃ ≥ 0 exactly when

h̃ ≥ 0. Moreover, since H̃ is a nonnegative extension of Hmin = H∗max, whose
Friedrichs extension HF is given by (3.2.43), we conclude from (3.2.45) that

λ0(H̃) ≤ λ0(HF ) =
π2

η∗(E)2
.

In particular, (4.7.1) trivially holds if the model has infinite intrinsic size since all
three terms vanish in this case (see also Corollary 3.18(iii)). Hence in the following,
we assume η∗(E) <∞.

Recall the following variational characterization via the Rayleigh quotient

λ0(H̃) = inf
f∈dom(H̃)

〈H̃f, f〉L2(G;µ)

‖f‖2L2(G;µ)

, λ0(h̃) = inf
f∈dom(h̃)

〈h̃ f , f〉`2(V;m)

‖f‖2`2(V;m)

.(4.7.2)

Turning to the upper estimate in terms of λ0(h̃0), let f ∈ dom(h̃) be fixed. By Corol-

lary 4.9, there is f = flin + f0 ∈ dom(H̃) such that ıV(f) = f and f0 ∈ Ḣ1
0 (G\V).

Moreover, by (4.3.16) and (4.3.3), Ḣ1
0 (G\V) = H1

0 (G\V) algebraically and topo-
logically. Modifying f by edgewise H2-functions vanishing in a neighborhood of

V, we readily construct a sequence (fn) ⊆ dom(H̃), fn = fn,lin + fn,0 such that
ıV(fn) = ıV(fn,lin) = f and

lim
n→∞

Q[fn,0] + ‖fn,0‖L2(G;µ) = 0.

Hence we conclude from Corollary 4.9 that

λ0(H̃) ≤ lim
n→∞

〈H̃fn, fn〉L2(G;µ)

‖fn‖2L2(G;µ)

=
〈h̃ f , f〉`2(V;m)

‖ı−1
V (f)‖2L2(G;µ)

,

and Remark 4.3(ii) finishes the proof of the upper estimate in (4.7.1).
It remains to prove the lower inequality in (4.7.1). By Corollary 4.9, every

function f ∈ dom(H̃) can be decomposed as f = flin + f0 with flin ∈ CA(G\V) and

f0 ∈ Ḣ1
0 (G\V) (see also (4.3.13)). Setting f := ıV(f), (4.3.21) together with (4.3.16)

imply that

〈H̃f, f〉L2(G;µ) ≥ 〈h̃ f , f〉`2(V;m) +
π2

η∗(E)2
‖f0‖2L2(G;µ)

≥ λ0(h̃)‖f‖2`2(V;m) +
π2

η∗(E)2
‖f0‖2L2(G;µ).

The lower estimate in (4.7.1) now follows from Remark 4.3(ii) and the trivial in-
equality ‖f‖2L2(G;µ) ≤ 2‖flin‖2L2(G;µ) + 2‖f0‖2L2(G;µ). �
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We shall continue the study of the positivity of spectral gaps in Section 7.3 and
now we complete this section with a few remarks.

Remark 4.28. The constant in the second estimate in (4.7.1) can be improved.
For instance, a modified version of [177, Cor. 2.2 and Rem. 2.3] yields the bound

λ0(H̃) ≤ π2

2
λ0(h̃).

Remark 4.29. Theorem 4.27 remains valid for Laplacians with δ-couplings
H0
α (see Section 2.4.3) and their associated discrete Laplacians h0

α (see (3.1.7) and
Theorem (3.1) and Remark 3.24), of course under the additional assumption that
all strengths are nonnegative, that is, α : V → [0,∞).

4.8. Ultracontractivity estimates

Theorem 4.27 shows that under the additional assumption (4.3.3), there is a

connection between the decay of heat semigroups e−tH̃ and e−th̃ since ‖e−tH̃‖L2 =

e−tλ0(H̃) and ‖e−th̃‖`2 = e−tλ0(h̃) for all t > 0. Our next result indicates that
the connection between the decay of heat semigroups can be specified further if
λ0(H) = λ0(h) = 0. More specifically, we are going to relate small and large
time behavior of the heat kernels by studying the corresponding ultracontractivity
estimates.

Theorem 4.30. Let (G, µ, ν) be a weighted metric graph together with a fixed

model having finite intrinsic size. Let also H̃ ∈ ExtM (H0) be a Markovian extension

of H0 and consider the associated Markovian extension h̃ of h0 on `2(V;m) defined
by (4.3.17).

(i) If (e−tH̃)t>0 is ultracontractive and there are D ≥ 1 and C1 > 0 such that

‖e−tH̃‖L1→L∞ ≤ C1t
−D/2(4.8.1)

holds for all t > 0, then (e−th̃)t>0 is ultracontractive and

‖e−th̃‖`1→`∞ ≤ C2t
−D/2(4.8.2)

holds for all t > 0 with some positive constant C2 > 0.

(ii) If there is D > 2 such that the heat kernel of h̃ satisfies (4.8.2) for all
t > 0 and, in addition, the underlying model satisfies

sup
e∈E

(
|e|µ(e)

)1−2/D |e|
ν(e)

<∞,(4.8.3)

then the heat kernel of H̃ satisfies (4.8.1) for all t > 0 with some positive
constant C1 > 0.

Proof. (i) Suppose that (4.8.1) holds true for all t > 0 with some fixed D ≥ 1.
Then, by Theorem C.4, the Nash-type inequality

‖f‖2+4/D
L2(G;µ) ≤ C Q̃[f ] ‖f‖4/DL1(G;µ)(4.8.4)

holds true for all 0 ≤ f ∈ dom(Q̃) ∩ L1(G;µ), where Q̃ is the Dirichlet forms

associated with H̃. However, restricting in (4.8.4) to edgewise affine functions and
then using Corollary 4.14 and the second inequality in (4.3.4) with p = 2 together
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with the first one with p = 1 (see also Remark 4.3(iii)), one easily concludes that
(4.8.4) implies

‖f‖2+4/D
`2(V;m) ≤ C̃ q̃[f ] ‖f‖4/D`1(V;m), C̃ = 42+4/DC,(4.8.5)

for all 0 ≤ f ∈ dom(q̃)∩ `1(V;m), where q̃ is the Dirichlet forms associated with h̃.
By Theorem C.4, this implies (4.8.2) for all t > 0.

(ii) Suppose now that (4.8.2) holds true for all t > 0 with some fixed D > 2.
Then, by Varopoulos’s theorem (Theorem C.2), the Sobolev-type inequality

‖f‖2`q(V;m) ≤ C q̃[f ], f ∈ dom(q̃),(4.8.6)

is valid, where q = q(D) := 2D
D−2 . Since the model satisfies (4.3.3), by Corollary 4.14,

every f ∈ dom(Q̃) admits a unique decomposition f = ı−1
V (f)+f0 with f ∈ dom(q̃),

f0 ∈ H1
0 (G\V) and, moreover,

Q̃[f ] = q̃[f ] + Q[f0] = q̃[f ] + ‖∇f0‖2L2(G;ν).

Using Lemma 4.2, the first inequality in (4.3.4) with p = q together with (4.8.6)
imply that

‖ı−1
V (f)‖2Lq(G;µ) ≤ C q̃[f ].(4.8.7)

Next, using the following simple estimate(∫ `

0

|f(s)|qds
)2/q

≤ `2/q sup
0≤x≤`

|f(x)|2 ≤ `1+2/q

∫ `

0

|f ′(s)|2ds,

which holds true for all f ∈ H1
0 (0, `) and ` > 0, we obtain(∫

e

|f(x)|qµ(dx)

)2/q

≤ |e|1+2/q µ(e)2/q

ν(e)

∫
e

|∇f(x)|2ν(dx), f ∈ H1
0 (G\V),

for each edge e ∈ E . Since q > 2, this immediately implies the inequality

‖f0‖2Lq(G;µ) ≤ C ‖∇f0‖2L2(G;ν),(4.8.8)

for all f0 ∈ H1
0 (G\V), where the constant C = C(E , µ, ν) depends only on the model

and edge weights µ, ν and is given by

C(E , µ, ν) = sup
e∈E
|e|1+2/q µ(e)2/q

ν(e)
= sup

e∈E
(|e|µ(e))1−2/D |e|

ν(e)
.

Thus, combining (4.8.8) with (4.8.7), we arrive at the following Sobolev-type in-
equality

‖f‖2Lq(G;µ) ≤ C̃ Q̃[f ], f ∈ dom(Q̃).(4.8.9)

Applying Theorem C.2 once again, we conclude that (e−tH̃)t>0 is ultracontractive
and (4.8.1) holds true for all t > 0. �

Remark 4.31. In the special case µ = ν ≡ 1 on G, Theorem 4.30 was proved
in [67, § 5]. However, the proof of Theorem 4.30(i) in [67] was based on the use
of Varopoulos’ Theorem and hence was restricted to the case D > 2. Notice that
Theorem 4.30(i) with µ = ν ≡ 1 was observed by G. Rozenblum and M. Solomyak
(see [186, Theorem 4.1]), however, for a different discrete Laplacian (the vertex

weight m is defined in [186] as the vertex degree function deg : v 7→ #(~Ev)).
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The proof of Theorem 4.30(ii) indicates that (4.8.3) is necessary for the validity
of (4.8.1) for t > 0. As the next result shows, it is indeed necessary for all D > 0.

Lemma 4.32. Let (G, µ, ν) be a weighted metric graph and let H̃ ∈ ExtM (H0)

be a Markovian extension of H0. Assume also that (e−tH̃)t>0 is ultracontractive.
If there is a model of (G, µ, ν) such that (4.8.3) fails to hold for a given D > 0, then

sup
t∈(0,1)

tD/2 ‖e−tH̃‖L1→L∞ =∞.(4.8.10)

In particular, (4.8.10) always holds for D ∈ (0, 1).

Proof. Assume the converse, that is, (4.8.1) holds for all t ∈ (0, 1) with some
fixed D > 0. Then, by Theorem C.4, this implies that the Nash-type inequality

‖f‖2+4/D
L2(G;µ) ≤ C (Q̃[f ] + ‖f‖2L2(G;µ)) ‖f‖

4/D
L1(G;µ)(4.8.11)

holds true for all 0 ≤ f ∈ dom(Q̃)∩L1(G;µ). In particular, this inequality holds for
all 0 ≤ f ∈ H1

0 (G\V) ∩ L1(G;µ). It remains to apply a scaling argument. Indeed,
take a positive function 0 6= f0 ∈ H1

0 ([0, 1]) with ‖f0‖L1 = 1 and choose a model
of (G, µ, ν) satisfying (4.3.3). Next define fe ∈ H1

0 (G\V) as f0(·/|e|) on e (upon
identification of e ∈ E with Ie = [0, |e|]) and then extend it by 0 to the rest of G\e.
Clearly, 0 ≤ fe ∈ dom(Q̃) ∩ L1(G;µ) for all e ∈ E and

‖fe‖L1(G;µ) = |e|µ(e), ‖fe‖2L2(G;µ) = |e|µ(e)‖f0‖22, Q[fe] =
ν(e)

|e|
‖f ′0‖22.(4.8.12)

Plugging fe into (4.8.11), we get

C ≥ (|e|µ(e))1+2/D‖f0‖2+4/D
2(ν(e)

|e| ‖f
′
0‖22 + |e|µ(e)‖f0‖22

)
(|e|µ(e))4/D

≥ (|e|µ(e))1−2/D‖f0‖2+4/D
2

ν(e)
|e|
(
‖f ′0‖22 + η∗(E)2‖f0‖22

)
=

(
η(e)2D−2

µ(e)ν(e)

) 1
D ‖f0‖2+4/D

2

‖f ′0‖22 + η∗(E)2‖f0‖22
for all e ∈ E . Since η∗(E) < ∞, the latter is unbounded from above if (4.8.3) fails
to hold, and hence we arrive at a contradiction, which proves the first claim.

To prove the last claim it suffices to mention that 2D− 2 < 0 if D ∈ (0, 1) and
hence we can always find a model such that (4.8.3) is not true with D ∈ (0, 1). �

Using Theorem C.6, it is possible to extend the above connections to subex-
ponential scales. In the next result we shall always assume that s : R>0 → R>0 is
a decreasing differentiable bijection such that its logarithmic derivative has polyno-
mial growth (see (C.0.9)). For instance, those are functions that behave like t−d/2

with d > 0 for small t, and e−ct
α

with α ∈ (0, 1] for large D (notice that α > 1 is
also allowed, however, heat semigroups cannot have such a fast decay at infinity).

Theorem 4.33. Let (G, µ, ν) be a weighted metric graph together with a fixed

model having finite intrinsic size. Let also H̃ ∈ ExtM (H0) be a Markovian extension

of H0 and consider the associated Markovian extension h̃ of h0 on `2(V;m) defined
by (4.3.17).

(i) If (e−tH̃)t>0 is ultracontractive and

‖e−tH̃‖L1→L∞ ≤ s(t), t > 0,(4.8.13)
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then (e−th̃)t>0 is ultracontractive and

‖e−th̃‖`1→`∞ ≤ s(ct)(4.8.14)

holds for all t > 0 with some positive constant c > 0.
(ii) If (4.8.13) holds true, then there is a positive constant C > 0 such that(8|e|µ(e)

π2

)2

θs

( π2

8 |e|µ(e)

)
≤ 8

ν(e)

|e|
, θs := −s′ ◦ s−1,(4.8.15)

for all e ∈ E.

Proof. (i) For simplicity we assume that H is self-adjoint. Our proof is based
on the use of Theorem C.6 and its proof in [45]. First of all, by Proposition II.2
from [45], (4.8.13) implies that

γs(‖f‖2L2(G;µ)) ≤ Q[f ],(4.8.16)

for all 0 ≤ f ∈ dom(Q) with ‖f‖L1(G;µ) ≤ 1. Here the function γs : R>0 → R>0 is
given by

γs(x) := sup
r>0

x

2r
log
( x

s(r)

)
.(4.8.17)

In particular, the latter holds for edgewise affine functions and hence restricting to
0 ≤ f ∈ CA(G\V) we get by taking into account (4.3.10) and (4.3.11) that

γs(4
−1‖f‖2`2(V;m)) ≤ 4q[f ],(4.8.18)

for all 0 ≤ f ∈ dom(q) with ‖f‖L1(V;m) ≤ 1. Here we also used (4.3.4) with p = 2
together with the monotonicity of the logarithm. Now, taking into account that

θ4s(x) = 4θs(x/4), by [45, Lemma II.3], there is C̃ > 0 such that

θ(4−1‖f‖2`2(V;m)) ≤ C̃q[f ],(4.8.19)

for all 0 ≤ f ∈ dom(q) with ‖f‖`1(V;m) ≤ 1. It remains to use Theorem C.6 once
again.

(ii) By Theorem C.6, (4.8.13) implies the Nash-type inequality

θs
(
‖f‖2L2(G;µ)

)
≤ CQ[f ],(4.8.20)

for all f ∈ dom(Q) with ‖f‖L1(G;µ) = 1. Pick 0 ≤ f0 ∈ H1
0 ([0, 1]) with ‖f0‖1 = 1.

For each e ∈ E , define fe ∈ H1
0 (G) as in the proof of Lemma 4.32. Plugging

f = 1
|e|µ(e)fe into (4.8.20) and taking into account (4.8.12), we get

θs

( ‖f0‖22
|e|µ(e)

)
≤ ν(e)

|e|

( ‖f ′0‖2
|e|µ(e)

)2

,(4.8.21)

for all e ∈ E and each 0 ≤ f0 ∈ H1
0 ([0, 1]) with ‖f0‖1 = 1. Finally, choosing

f0(x) = π
2 sin(πx) in (4.8.21), we end up with (4.8.15). �

Remark 4.34. We are convinced that (4.8.14) together with (4.8.15) should
imply the estimate (4.8.13), however, we have not succeeded in proving it by apply-
ing T. Coulhon’s extension of Theorem C.4. Let us also stress that in the case of a
polynomial decay our proof of Theorem 4.30(ii) is based on Varopoulos’s theorem
(Theorem C.2) and hence the range of the corresponding exponent is restricted to
D > 2.



CHAPTER 5

1-D Schrödinger operators with point interactions

Let us demonstrate our findings by considering the simplest possible situation:
Fix L ∈ (0,∞] and let (xk)k≥0 ⊂ I := [0,L) be a strictly increasing sequence
such that x0 = 0 and xk ↑ L. Considering (xk) as a vertex set and the intervals
ek = [xk, xk+1] as edges, we end up with the simplest infinite metric graph – an
infinite path graph. In this case the edge weights µ, ν : I → R>0 are given by

µ(x) =
∑
k≥0

µk1[xk,xk+1)(x), ν(x) =
∑
k≥0

νk1[xk,xk+1)(x),(5.0.1)

where (µk)k≥0 and (νk)k≥0 are positive real sequences. For every real sequence
α = (αk)k≥0 conditions (2.4.5) take the form:{

f(xk−) = f(xk+) =: f(xk),

νkf
′(xk+)− νk−1f

′(xk−) = αkf(xk),
(5.0.2)

for all k ≥ 0, where we set f ′(0−) = 0 for notational simplicity and hence for
k = 0 the corresponding condition is ν0f

′(0) = α0f(0). The corresponding (max-
imal) operator Hα := Hµ,ν,α acting in L2(I;µ) is known as the 1d Schrödinger
operator with δ-interactions on X = (xk)k≥0 (see, e.g., [3]), and the corresponding
differential expression is given by

τ =
1

µ(x)

(
− d

dx
ν(x)

d

dx
+
∑
k≥0

αkδ(x− xk)
)
.(5.0.3)

Remark 5.1. There are manifold reasons to investigate the operator Hα. First
of all, it serves as a toy model in quantum mechanics. Indeed, if µk = νk = 1 for
all k ≥ 0, then (5.0.3) turn into the usual δ-coupling on X and Hα in this case is
nothing but the Hamiltonian (see [3], [142])

− d2

dx2
+
∑
k≥0

αnδxn .(5.0.4)

Moreover, (5.0.3) naturally appears in the study of Kirchhoff Laplacians and Lapla-
cians with δ-couplings on family preserving graphs (see Section 8.1 for further de-
tails).

5.1. The case α ≡ 0 and Krein strings

We begin with the study of the “unperturbed” case, that is, when α ≡ 0 and
hence (5.0.3) is the classical weighted Sturm–Liouville operator

τ = − 1

µ(x)

d

dx
ν(x)

d

dx
.(5.1.1)

69
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In this situation the well developed spectral theory of Sturm–Liouville operators
[205] and Krein strings [118], [119] leads to rather transparent and complete,
although far from being trivial, answers to some spectral questions.

Let H := Hµ,ν be the maximal operator associated with (5.1.1) in L2(I;µ) and
subject to the Neumann boundary condition at x = 0:

dom(H) =
{
f ∈ L2(I;µ) | f, νf ′ ∈ ACloc[0,L), f ′(0) = 0, τf ∈ L2(I;µ)

}
.(5.1.2)

The corresponding minimal operator H0 is defined as the closure in L2(I;µ) of the
pre-minimal operator H′:

H′ = H � dom(H′), dom(H′) = dom(H) ∩ Cc(I).(5.1.3)

It is immediate to see that H and H0 coincide with the maximal and, respectively,
minimal Kirchhoff Laplacians defined in Section 2.4.1. The next result provides a
rather transparent criterion for the equality H = H0 to hold.

Lemma 5.2. The operator H is self-adjoint if and only if the series∑
k≥0

µk|ek|
(∑
j≤k

|ej |
νj

)2

(5.1.4)

diverges.

Proof. The self-adjointness criterion follows from the standard limit point/limit
circle classification for (5.1.1) (see, e.g., [205]). Namely, τy = 0 has two linearly
independent solutions

y1(x) ≡ 1, y2(x) =

∫ x

0

ds

ν(s)
, x ∈ [0,L),

and one simply needs to verify whether or not both y1 and y2 belong to L2(I;µ).
Clearly, y1 ∈ L2(I;µ) exactly when the series∑

k≥0

µk|ek|(5.1.5)

converges. Moreover, it is straightforward to check that y2 ∈ L2(I;µ) if and only
if the series (5.1.4) converges. The Weyl alternative finishes the proof. �

The above considerations suggest to introduce the following quantity:

Lν :=

∫
I

dx

ν(x)
=
∑
k≥0

|ek|
νk

.(5.1.6)

Observe that Lν <∞ exactly when all solutions to τy = 0 are bounded.

Corollary 5.3. If ∑
k≥0

µk|ek| =∞,(5.1.7)

then H is self-adjoint. Moreover, in the case Lν <∞, (5.1.7) is also necessary for
the self-adjointness.

Remark 5.4. A few remarks are in order.
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(i) Notice that the condition (5.1.7) admits two transparent geometric re-
formulations. Namely, equipping the set X = {xk}k≥1 with weights
m : xk 7→ µk−1|ek−1| + µk|ek|, and considering the path graph (xk ∼ xn
exactly when |k − n| = 1) as a metric space (X, %m) equipped with the
path metric %m (see Section 6.4.2 for a detailed definition), then condition
(5.1.7) is equivalent to
(a) infinite total volume: m(X) =

∑
k≥0m(xk) = µ0|e0|+2

∑
k≥1 µk|ek|,

(b) completeness of (X, %m).
In particular, Lemma 5.2 implies that completeness of (X, %m) is only
sufficient for H to be self-adjoint (cf. Theorem 7.7). Moreover, observe
that in the case of a path graph both conditions (a) and (b) become also
necessary for the self-adjointness exactly when the constant Lν is finite,
that is, when all solutions to τy = 0 are bounded.

(ii) It is an interesting and, in fact, very difficult question to decide about
the self-adjointness by looking at the geometry of a given metric graph.
Lemma 5.2 demonstrates that even in the simplest case of a weighted path
graph its solution involves nontrivial tools.

Despite the well developed spectral theory of Sturm–Liouville operators, it
turns out that the detailed spectral analysis of the operator (5.1.2) is already a
difficult task even with this very special class of weights (5.0.1). However, in one
particular situation the analysis is rather straightforward.

Lemma 5.5. If the series (5.1.4) is convergent, then the deficiency indices of
H0 equal 1 and the self-adjoint extensions of H0 form a one-parameter family Hθ,
where θ ∈ [0, π) and

dom(Hθ) :=
{
f ∈ dom(H) | cos(θ)fν(L) + sin(θ)f ′ν(L) = 0

}
.(5.1.8)

Here fν(L) = limx→L(f(x)− ν(x)f ′(x)y2(x)) and f ′ν(L) = limx→L ν(x)f ′(x).
Moreover, the spectrum of Hθ is purely discrete, bounded from below, and eigen-

values (if ordered in the non-decreasing order) obey the Weyl law:

lim
n→∞

n√
λn(Hθ)

=
1

π

∫ L
0

√
µ(x)

ν(x)
dx =

1

π

∑
k≥0

|ek|
√
µk
νk
.(5.1.9)

Proof. The first claim is standard (see, e.g., [205]). The second one follows
from, e.g., [84, Chapter 6.7]. �

Remark 5.6. (i) Using the definition (3.1.1) of the intrinsic edge length,
we set

ηk := η(ek) = |ek|
√
µk
νk

(5.1.10)

for all k ∈ Z≥0, and then the RHS (5.1.9) is nothing but

1

π

∑
k≥0

η(ek) =
1

π
× intrinsic length of I.

(ii) If y2 is bounded, then fν(L) can be replaced by limx→L f(x).

The next result mostly follows from the work of I.S. Kac and M.G. Krein [117],
[118] on spectral theory of Krein strings. Recall that λ0(A) and λess

0 (A) denote the
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bottoms of the spectrum, respectively, of the essential spectrum of a self-adjoint
operator A.

Lemma 5.7. Suppose that the series (5.1.4) diverges, i.e., the operator H is
self-adjont. Then:

(i) Positive spectral gap: λ0(H) > 0 if and only if

Lν =
∑
k≥0

|ek|
νk

<∞ and sup
n≥0

∑
k≤n

µk|ek|
∑
k≥n

|ek|
νk

<∞.(5.1.11)

(ii) Positive essential spectral gap: λess
0 (H) > 0 if and only if either

(5.1.11) holds true or∑
k≥0

|ek|
νk

=∞ and sup
n≥0

∑
k≤n

|ek|
νk

∑
k≥n

µk|ek| <∞.(5.1.12)

(iii) Discreteness: The spectrum of H is purely discrete if and only if

either
∑
k≥0

|ek|
νk

<∞ and

lim
n→∞

∑
k≤n

µk|ek|
∑
k≥n

|ek|
νk

= 0,(5.1.13)

or
∑
k≥0 µk|ek| <∞ and

lim
n→∞

∑
k≤n

|ek|
νk

∑
k≥n

µk|ek| = 0,(5.1.14)

Proof. Let us only give a sketch of the proof (details can be found in, e.g.,
[146]). First observe that 0 is an eigenvalue of H exactly when y1 = 1 ∈ L2(I;µ),
that is, exactly when the series (5.1.5) converges. Taking this fact into account
together with the divergence of (5.1.4), to prove (i), (ii) and (iii) it suffices to
observe that by using a simple change of variables, the operator H is unitarily

equivalent to the minimal operator H̃ defined in the Hilbert space L2([0,Lν);µg)
by the differential expression

τ̃ = − 1

µg(x)

d2

dx2

and subject to the Neumann boundary condition at x = 0. Here

µg := (µ · ν) ◦ g−1,(5.1.15)

where the function g : [0,L)→ [0,∞) is given by

g(x) =

∫ x

0

ds

ν(s)
, Lν := g(L) =

∫ L
0

ds

ν(s)
.(5.1.16)

Notice that g is strictly increasing, locally absolutely continuous on [0,L) and maps
[0,L) onto [0,Lν). Hence its inverse g−1 : [0,Lν)→ [0,L) is also strictly increasing
and locally absolutely continuous on [0,L). Now the remaining claims follow from
the results of M.G. Krein and I.S. Kac (see Theorems 1 and 3 in [117] or [118,
Section 11] and [119]). �

Remark 5.8. A few remarks are in order.

(i) Using the quantities in (5.1.11) and (5.1.12) one can obtain sharp esti-
mates on λ0(H) and λess

0 (H) (cf., e.g., [146], [193]).
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(ii) If the spectrum of H is discrete, then it consists of simple eigenvalues such
that 0 ≤ λ0(H) < λ1(H) < λ2(H) < . . . and the Weyl type asymptotics
(5.1.9) holds true. If the RHS in (5.1.9) is infinite (i.e., I = [0,L) has infi-
nite intrinsic length), then there are criteria (see [119]) to decide whether
the series ∑

n≥1

1

λn(H)γ

converges with some γ > 1/2 (the series diverges for all γ ∈ (0, 1/2]).

If the spectrum of H is not discrete, the study of spectral types of H is a highly
nontrivial problem. However, we would like to mention only one result on the
absolutely continuous spectrum established recently in [25].

Lemma 5.9 ([25]). Assume that I = [0,L) has infinite intrinsic length,∫ L
0

√
µ(x)

ν(x)
dx =

∑
k≥0

|ek|
√
µk
νk

=
∑
k≥0

ηk =∞,(5.1.17)

and define the increasing sequence (tn)n≥0 ⊂ [0,L) by setting∫ tn

0

√
µ(x)

ν(x)
dx = n, n ∈ Z≥0.

If ∑
n≥0

(∫ tn+2

tn

µ(x)dx

∫ tn+2

tn

dx

ν(x)
− 4
)
<∞,(5.1.18)

then σac(H) = [0,∞).

Remark 5.10. The operator H also plays an important role in the analysis
of Kirchhoff Laplacians on family preserving graphs (G, µ, ν), which are known to
reduce to Sturm-Liouville operators (see [29], [30]). In this situation, the weights
admit the following description in terms of graph parameters of G (for simplicity
we restrict to the case when the weights in Section 2.1 are constant on G and hence
µ = ν ≡ const in (5.0.1)):

• |ek| is the length of edges between the consecutive combinatorial spheres
Sk and Sk+1,

• µk = νk is the number of edges between the consecutive combinatorial
spheres Sk and Sk+1,

• the series (5.1.5) equals the total volume of the metric graph G.

For instance, for radially symmetric antitrees µk = sksk+1, where (sk)k≥0 ⊆ Z≥1

are the antitree sphere numbers [29], [146] (see also Section 8.1 for weighted metric
antitrees); for radially symmetric trees µk = b0 . . . bk, where (bk)k≥0 ⊆ Z≥1 are the
tree branching numbers [193].

In conclusion, let us quickly discuss parabolic properties of Markovian exten-
sions of H0. We begin with the characterization of Markovian uniqueness. Recall
that the Gaffney Laplacian HG is defined (see Lemma 2.18) as the restriction of H
to H1 functions, that is,

dom(HG) = {f ∈ dom(H) | f ′ ∈ L2(I; ν)}.(5.1.19)
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Lemma 5.11. The operator HG is self-adjoint if and only if y2 =
∫ x

0
ds
ν(s) does

not belong to H1(I), that is, either the series (5.1.4) diverges or Lν =∞. If HG is
not self-adjoint, then its Markovian restrictions form a one parameter family

dom(Hθ) :=
{
f ∈ dom(HG) | cos(θ)f(L) + sin(θ)f ′ν(L) = 0

}
, θ ∈ [0, π/2].

(5.1.20)

Here f(L) = limx→L f(x) and f ′ν(L) = limx→L ν(x)f ′(x).

Proof. If HG is not self-adjoint, then so is H and hence, by Lemma 5.2, the
series (5.1.4) converges. On the other hand, all self-adjoint extensions in this case
are parameterized by (5.1.8). For each θ 6= π

2 , dom(Hθ) contains functions such

that f ′ν(L) = 1, that is, f ′(x) = 1
ν(x) (1 + o(1)) as x → L. However, if Lν = ∞,

then f ′ /∈ L2(I; ν), which implies that HG admits a unique self-adjoint restriction
corresponding to θ = π

2 . The latter contradicts our assumption that HG is not self-
adjoint since in this case HG admits at least two different self-adjoint restrictions
HD and HN . �

Remark 5.12. Notice that the self-adjointness of HG is equivalent to the equal-
ity H1(I) = H1

0 (I), where H1(I) = {f ∈ ACloc(I) | f ∈ L2(I;µ), f ′ ∈ L2(I; ν)}
and H1

0 (I) = H1(I) ∩ Cc(I)
‖·‖H1

.

The next result provides a characterization of transience/recurrence of Mar-
kovian restrictions of HG.

Lemma 5.13. Let HG be the Gaffney Laplacian (5.1.19).

(i) If HG is self-adjoint, then it is recurrent if and only if Lν =∞.
(ii) If HG is not self-adjoint and Hθ is its Markovian restriction (5.1.20), then

Hθ is recurrent if and only if θ = π/2.

Proof. It is not difficult to show that HG (or its Markovian restriction when
HG is not self-adjoint) is transient exactly when the Green’s function of HG is well
defined at the zero energy, that is, one needs to look at the limit of the resolvent
(HG − z)−1 when z ↑ 0. It remains to use the form of the resolvent of a second
order linear differential operator. �

Finally, let us state the stochastic completeness criterion, which essentially goes
back to W. Feller [69].

Lemma 5.14. Let HG be the Gaffney Laplacian (5.1.19).

(i) If HG is self-adjoint, then it is stochastically incomplete if and only if

Lν <∞, and
1

ν(x)

∫ x

0

µ(s)ds ∈ L1(I).(5.1.21)

(ii) If HG is not self-adjoint and Hθ is its Markovian restriction (5.1.20), then
Hθ is stochastically complete if and only if θ = π/2.

Proof. (i) If HG is self-adjoint, then stochastic completeness is equivalent to
the fact that for some (and hence for all) λ > 0 the boundary value problem

(5.1.22) (ν(x)y′)′ = λµ(x)y, y′(0) = 0.
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has only a trivial nonnegative bounded solution on I. Integrating (5.1.22) with
λ = 1 yields

y′(x) =
1

ν(x)

∫ x

0

y(s)µ(s)ds, x ∈ [0,L).

Since a solution to (5.1.22) is unique up to a scalar multiple, we can assume that
y(0) = 1. Clearly, y ∈ L∞(I) exactly when y′ ∈ L1(I). Thus, if y is bounded,
then (5.1.21) necessarily holds true. Conversely, taking into account that y is non-
decreasing, we get

0 ≤ y′(x) ≤ y(x)

ν(x)

∫ x

0

µ(s)ds =: y(x)b(x), x ∈ [0,L).

Since w′ = wb has a bounded solution on I satisfying w(0) = 1 whenever b ∈ L1(I),
and taking into account that y ≤ w on I, this completes the proof of sufficiency.

(ii) If HG is not self-adjoint, then each Markovian restriction Hθ of HG has
purely discrete, nonnegative spectrum. Moreover, each eigenvalue of Hθ is sim-
ple. Thus the claim is an immediate consequence of the spectral theorem and the
definition of stochastic completeness. �

5.2. Connection via boundary triplets

If α 6= 0 and, in particular, if α takes negative values on X, the analysis of Hα,
the maximal operator associated with (5.0.3) in L2(I;µ)‡, becomes more involved.
In particular, we shall see that there is no transparent self-adjointness criterion.

Consider the interval I = [0,L) together with the sequence X = (xk)k≥0 as a
metric path graph: V = Z≥0 is a vertex set, and k ∼ n exactly when |k−n| = 1; the
length of the edge ek connecting k with k + 1 equals |ek| := xk+1 − xk. Following
(3.1.3)–(3.1.6) and using (5.1.10), we define the weight r : Z≥0 → R>0:

• if η∗(X) := supk≥0 ηk <∞, then

r(k) = |ek|µk, k ≥ 0,(5.2.1)

• if η∗(X) =∞, we set

r(k) =

|ek|µk, ηk ≤ 1,

√
µkνk, ηk > 1.

(5.2.2)

Next, we define the weights m : Z≥0 → (0,∞) and b : Z≥0 × Z≥0 → [0,∞) by

m(k) =

{
r(0), k = 0,

r(k − 1) + r(k), k ≥ 1,
(5.2.3)

and

b(k, n) =


νmin(n,k)

|xk−xn| , |n− k| = 1,

0, |n− k| 6= 1.
(5.2.4)

‡The precise definitions of Hα and the corresponding minimal operator H0
α are given in

Section 2.4.1, see (2.4.14), (2.4.15) and take into account (5.0.2).



76 5. 1-D SCHRÖDINGER OPERATORS WITH POINT INTERACTIONS

First, we can associate the minimal h0
α and the maximal hα operators in the

weighted Hilbert space `2(Z≥0;m) with the discrete Schrödinger-type expression

(τf)(k) :=
1

m(k)

(∑
n≥0

b(k, n)(f(k)− f(n)) + αkf(k)
)
, k ∈ Z≥0.(5.2.5)

Next, using the map (3.2.40), we can consider in `2(Z≥0) the minimal h̃0
α and

the maximal h̃α operators, which are unitarily equivalent to h0
α and, respectively,

hα. The corresponding difference expression (3.2.38) is the following second order
difference expression

(τ̃αf)(k) =

{
a0f(0)− b0f(1), k = 0,

−bk−1f(k − 1) + akf(k)− bkf(k + 1), k ≥ 1,
(5.2.6)

where

ak =
1

m(k)

(
αk +

νk−1

|ek−1|
+

νk
|ek|

)
, bk =

νk

|ek|
√
m(k)m(k + 1)

,(5.2.7)

for all k ≥ 0 with ν−1/|e−1| = 0 for notational simplicity. Hence the operator

h̃α is nothing but the maximal operator associated in `2(Z≥0) with the Jacobi
(tri-diagonal) matrix

J =


a0 −b0 0 0 . . .
−b0 a1 −b1 0 . . .

0 −b1 a2 −b2 . . .
0 0 −b2 a3 . . .
. . . . . . . . . . . . . . .

 .(5.2.8)

Therefore, Theorem 3.1 establishes connections between the operator (5.0.3) and
spectral theory of Jacobi (tri-diagonal) matrices. We would like to present only one
claim regarding self-adjointness.

Theorem 5.15. Let h̃0
α be the minimal operator defined in `2(Z≥0) by the

Jacobi matrix (5.2.8) with Jacobi parameters (5.2.7). Then the deficiency indices

of H0
α and h̃0

α are equal and

n+(H0
α) = n−(H0

α) = n±(h̃0
α) ≤ 1.(5.2.9)

In particular, Hα is self-adjoint if and only if h̃α is self-adjoint.

Applying spectral theory of Jacobi matrices and using Theorem 3.1 we would
be able to investigate spectral properties of the operators Hα and this approach
was taken in [141, § 5.2] for the case µ = ν ≡ 1. Let us only provide some simple
self-adjointness criteria.

Lemma 5.16. Let Hα be the maximal operator defined by (5.0.3) in L2(I;µ).

(i) If the series ∑
k≥0

η2
k =

∑
k≥0

|ek|2
µk
νk

(5.2.10)

diverges, then Hα is self-adjoint for any α.
(ii) If I has infinite intrinsic length, i.e., (5.1.17) holds, and α : X → R is

such that h̃0
α is bounded from below, then Hα is self-adjoint and bounded

from below.
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Proof. (i) By the Carleman test [2, Problem I.1], h̃0
α is self-adjoint if the

series ∑
k≥0

1

bk
(5.2.11)

diverges. However,

1

bk
=
|ek|
√
m(k)m(k + 1)

νk
≥ |ek|r(k)

νk
≥

{
η2
k, ηk ≤ 1,

1, ηk > 1.
(5.2.12)

Therefore, (5.2.11) diverges if so is (5.2.10). It remains to apply Theorem 5.15.

(ii) By the Wouk test [2, Problem I.4], h̃0
α is self-adjoint if it is bounded from

below and ∑
k≥0

1√
bk

=∞.

It remains to take into account (5.2.12) and then apply Theorem 5.15. �

Remark 5.17. One can apply other self-adjointness tests (see, e.g, [2, Chap. I])
to J with the Jacobi parameters given by (5.2.7) in order to get various self-
adjointness conditions for the operator Hα (cf., e.g., [141, § 5]). For instance,
Berezanskii’s test [2, Prob. I.5] would lead to examples with nontrivial deficiency
indices even if (5.1.17) is satisfied.

5.3. Jacobi matrices and Krein–Stieltjes strings as boundary operators

The results in the previous subsection connect spectral properties of Sturm–
Liouville operators with a certain family of Jacobi matrices. The natural question
arising in this context is:

How large is the class of Jacobi matrices with Jacobi parameters (5.2.7)?

The next result shows that for each choice of Jacobi parameters (ak, bk)k≥0 one can
find weights µ, ν and strengths α such that (5.2.7) holds.

Proposition 5.18. For every symmetric Jacobi (tri-diagonal) matrix (5.2.8)
normalized by the condition bk > 0 for all k ≥ 0 there exist lengths (|ek|)k≥0 ⊂ R>0,
weights (νk)k≥0 ⊂ R>0 and strengths (αk)k≥0 ⊂ R such that:

(i) Normalization: lengths (|ek|)k≥0 and weights (νk)k≥0 satisfy

ηk =
|ek|√
νk
≤ 1(5.3.1)

for all k ≥ 0.
(ii) Jacobi parameters have the form

ak =
1

|ek−1|+ |ek|

(
αk +

νk−1

|ek−1|
+

νk
|ek|

)
,(5.3.2)

bk =
νk

|ek|
√

(|ek−1|+ |ek|)(|ek|+ |ek+1|)
,(5.3.3)

for all k ≥ 0.
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(iii) Boundary operator: the minimal operator h̃ associated in `2(Z≥0) with
the matrix (5.2.8) having Jacobi parameters (5.3.2)–(5.3.3) serves as a
boundary operator (in the sense of Proposition 3.11) for the minimal op-
erator H0 = H0

1,ν,α defined by the differential expression

τν,α = − d

dx
ν(x)

d

dx
+
∑
k≥0

αkδ(x− xk),(5.3.4)

in the Hilbert space L2(I). Here I = [0,L) and the weight ν : I → R>0 is
defined by

xk =

k−1∑
j=0

|ej |, L =
∑
k≥0

|ek|, ν(x) =
∑
k≥0

νk1[xk,xk+1)(x).(5.3.5)

Proof. Since αk ∈ R in (5.2.7) can be chosen arbitrary, the main difficulty
is of course to show that every sequence (bk)k≥0 of positive real numbers can be
realized as (5.2.7). Let (bk)k≥0 ⊂ (0,∞) be given. First set |e0| = 1 and hence by
(5.3.3) holds for k = 0 if

|e1| =
ν2

0

b20
− 1.

If b0 < 1, we set ν0 = 1 and define |e1| by the above equation, otherwise, we set

ν0 =
√

2b0 > 1 and |e1| = 1. Clearly, both (5.3.1) and (5.3.3) hold true for k = 0.
Next we proceed inductively. Assume we have already defined positive numbers

ν0, . . . , νn−1 and |e0|, . . . , |en| such that (5.3.3) holds for k = 0, . . . , n− 1. Set

sn :=
|en|√

|en−1|+ |en|
√
|en|+ 1

.(5.3.6)

If sn ≤ bn, we set

|en+1| = 1, νn =
bn
sn
|en|2 ≥ |en|2,(5.3.7)

and otherwise we choose

|en+1| =
s2
n

b2n
(1 + |en|)− |en| > 1, νn = |en|2.(5.3.8)

Clearly, by construction, both (5.3.1) and (5.3.3) hold true for k = n. Therefore,
proceeding inductively, we obtain sequences of lengths (|ek|)k≥1 and weights (νk)k≥1

such that (5.3.3) holds together with (5.3.1). �

Remark 5.19. A few remarks are in order.

(i) Combining Proposition 5.18 with Theorem 3.1, we conclude that basic
spectral theory of Jacobi matrices (e.g., self-adjointness, semiboundedness
etc.) can be included into the spectral theory of Sturm–Liouville operators
of the form (5.3.4)–(5.3.5).

(ii) The choice of lengths and weights is not unique. Indeed, taking into ac-
count that (3.1.1)–(3.1.6) are invariant under the scaling |e| → |e|c(e),
µ(e) → µ(e)

c(e) , and ν(e) → ν(e)c(e) for any c : E → (0,∞), one can rescale

parameters and construct lengths and weights with the following proper-
ties:
• |ek| ≤ 1 and µk = νk for all k ≥ 0 (hence µ = ν in (5.0.3)),
• νk = 1 and |ek|2µk ≤ 1 for all k ≥ 0 (hence ν ≡ 1 in (5.0.3)),
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• |ek| = 1 and µk ≤ νk for all k ≥ 0 (hence X = N in (5.0.3)).
(iii) Let us also stress that for Jacobi (tri-diagonal) matrices (5.2.8) still there is

no self-adjointness criterion formulated in closed form in terms of Jacobi
parameters (there are only various necessary and sufficient conditions).
This in particular means that even in the simplest case of a weighted
path graph one cannot hope for a transparent self-adjointness criterion
formulated in terms of weights and interaction strengths.

If α ≥ 0, then the Hamiltonian Hα generates a Markovian semigroup in L2(I;µ)
(assume, for a moment, that Hα is self-adjoint). However, the boundary operator

h̃α does not reflect the parabolic properties of Hα (it is not difficult to see that the

semigroup generated by h̃α in `2(Z≥0) is positivity preserving, however, in general
it is not `∞ contractive). From this perspective, let us look at the minimal op-
erator h0 defined in `2(Z≥0;m) by (5.2.5) with the coefficients (5.2.3) and (5.2.4)
and α ≡ 0. It serves as the boundary operator for the Sturm–Liouville operator H,
however, it also captures the parabolic properties of H (see Chapter 4). Following
the setting of Section 2.2, every weight function b given by (5.2.4) defines an infinite
path graph. Since the coefficients of b depend only on the weight ν and edge lengths,
it is clear that every weighted path graph can be obtained via (5.2.4). However, the
difference expression (5.2.5) (see (3.1.7)) also contains the vertex weight m defined
by (5.2.3). Thus, we can reformulate the question posed at the very beginning of
Section 5.3 as follows:

Does every path graph b over (Z≥0,m) arise as a boundary operator for H?

Taking into account Proposition 5.18, the answer may look a bit surprising.

Proposition 5.20. Let m : Z≥0 → (0,∞) and b : Z≥0 × Z≥0 → [0,∞) be
positive weights such that b defines an infinite path graph (i.e., b(k, n) = b(n, k) > 0
exactly when |k − n| = 1). Then the minimal operator h0 associated in `2(Z≥0;m)
with the weighted Laplacian

(τf)(k) :=
1

m(k)

∑
n≥0

b(n, k)(f(k)− f(n)), k ∈ Z≥0,(5.3.9)

arises as a boundary operator for some Sturm–Liouville operator (5.1.1) with the
weights (5.0.1) if and only if

n∑
k=0

(−1)n−km(k) > 0(5.3.10)

for all n ≥ 0.

Proof. The necessity of (5.3.10) follows from (5.2.3) since m(0) = r(0) > 0
and for all n ≥ 1 we have

n∑
k=0

(−1)n−km(k) = (−1)nm(0) +

n∑
k≥1

(−1)n−k
(
r(k − 1) + r(k)

)
= r(n) > 0.

To prove sufficiency, suppose that m : Z≥0 → (0,∞) satisfies (5.3.10) and set
b(k) := b(k, k + 1), k ≥ 0. Thus the LHS (5.3.10) defines a positive sequence
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r : Z≥0 → (0,∞). Setting

|ek| :=


√

r(k)
b(k) , r(k) ≤ b(k),

r(k)
b(k) , r(k) > b(k),

µ(k) :=


√
r(k)b(k), r(k) ≤ b(k),

r(k), r(k) > b(k),

for all k ≥ 0, we end up with a suitable and, in fact unique, choice of the weight
function

µ(x) =
∑
k≥0

µ(k)1[xk,xk+1), xk =

k−1∑
j=0

|ej |,

such that the minimal operator h0 associated in `2(Z;m) with (5.3.9) is the bound-
ary operator for H0 associated with (5.1.1) (with the weights µ = ν). �

Remark 5.21. Surprisingly enough, we are not able to obtain all difference
expressions of the form (3.1.7) even in the simplest case of a path graph. The
main restriction is the form of the weight function m. More precisely, the formal
Laplacian L associated to a path graph b over the measure space (Z≥0,m) can be
obtained via (5.2.3), (5.2.4) only if the weight function m belongs to the image of
the cone of strictly positive functions C+(Z≥0) under the map I + S, where S is
the right shift operator defined on C(Z≥0) by

S :
(
f(k)

)
k≥0
7→
(
f(k − 1)

)
k≥0

,(5.3.11)

where f(−1) := 0 for notational simplicity. Indeed, with this notation (5.2.3) takes
the form

m = (I + S)r,

and then the validity of (5.3.10) for all n ≥ 0 is exactly the inclusion m ∈ C+(Z≥0).

Remark 5.22 (Krein–Stieltjes strings). Set

`k =
1

b(k, k + 1)
=
|ek|
νk

, ξk =

k−1∑
j=0

`j , ωk = m(k)

for all k ≥ 0. Next define the positive measure ω on [0, `), where ` :=
∑
k≥0 `k, by

ω([0, ξ)) :=
∑
ξk≤ξ

ωk.

If αk = 0 for all k ≥ 0, then the spectral problem τf = zf associated with the
difference expression (5.2.5), (5.2.3), (5.2.4) admits a mechanical interpretation (see
[2, Appendix], [118, § 13]): it describes small oscillations of a string of length `
with mass density ω. The corresponding spectral problem can be written as

−y′′ = zωy, ξ ∈ [0, `),(5.3.12)

which is similar to the form of (5.1.1), however, the coefficient ω is a measure bearing
point masses only. Strings whose mass density has the above form are usually called
Krein–Stieltjes strings (the corresponding finite difference expressions appear in
the study of the Stieltjes moment problem and their mechanical interpretation
was observed by M.G. Krein [118]). Thus, the results of this section establish a
connection between two classes of strings: strings whose mass density is piecewise
constant and Krein–Stieltjes strings. However, Proposition 5.20 says that we can’t
cover the whole class of Krein–Stieltjes strings.



CHAPTER 6

Graph Laplacians as boundary operators

The results in the preceding chapters lead to the following question: which graph
Laplacians may arise as boundary operators (in the sense of Chapters 3 and 4) for
a Kirchhoff Laplacian on a weighted metric graph?

Let us be more specific in stating the above problem. Suppose a vertex set V
is given. Each graph Laplacian (2.2.3) is determined by the vertex weight m : V →
(0,∞), edge weight function b : V × V → [0,∞) having the properties (i), (ii) and
(iv) of Section 2.2, and the killing term c : V → [0,∞). We always assume that the
underlying graphs are connected. With each such b we can associate a locally finite
simple graph Gb = (V, Eb) as described in Remark 2.7.

Definition 6.1. A cable system for a graph b over (V,m) is a model of a
weighted metric graph (G, µ, ν) having V as its vertex set and such that the functions
defined by (3.1.1)–(3.1.5) and (3.1.6) coincide with m and, respectively, b. If in
addition the underlying graph (V, E) of the model coincides with Gb = (V, Eb), then
the cable system is called minimal.

Remark 6.2. Notice that the underlying combinatorial graph (V, E) of a cable
system for (V,m; b) can always be obtained from the simple graph Gb = (V, Eb) by
adding loops and multiple edges.

Since the killing term c is nothing but the strength of δ-couplings at the vertices
in (3.1.7), we can restrict our considerations to the case c ≡ 0:

Problem 6.1. Which locally finite graphs (V,m; b) have a minimal cable sys-
tem?

The case of a path graph shows that the answer to the above problem is not
trivial (see Proposition 5.20). However, we stress that a general cable system may
have loops and multiple edges and thus the simplicity assumption on the model
of (G, µ, ν) (that is, the minimality of a cable system for (V,m; b)) might be too
restrictive. In fact, as discussed in Remark 2.11 and Remark 2.12, we can allow
multi-graphs and this leads us to another question:

Problem 6.2. Which locally finite graphs (V,m; b) have a cable system?

Once the above problems will be resolved, the next natural question (also in
context with possible applications) is:

Problem 6.3. How can one describe all cable systems of a locally finite graph
b over (V,m)?

On the other hand, there is another closely connected class of second order
difference operators on graphs, however, acting in `2(V). In particular, the operator

81
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defined in `2(V) by the difference expression (3.2.38) is a special case of

(τf)(v) = β(v)f(v)−
∑
u∈V

q(u, v)f(u), v ∈ V,

where β : V → R and q is a graph over V satisfying the properties (i), (ii) and (iv)
of Section 2.2. This leads to a similar problem:

Problem 6.4. Given a graph q over V, which of the above difference expressions
arise as boundary operators for Laplacians with δ-couplings on a weighted metric
graph (G, µ, ν) over Gq = (V, Eq)?

Despite an obvious similarity and a clear connection between these problems,
as we learned in Section 5.3, they have very different answers even in the case of a
path graph (see Proposition 5.18 and Proposition 5.20).

Remark 6.3. Taking into account an obvious analogy between the above sec-
ond order difference expression and Jacobi matrices, it is tempting to call them
Jacobi matrices on graphs (cf., e.g., [8], [9], [10]).

6.1. Examples

Before studying Problems 6.1–6.4, let us first give several illustrative examples.

Example 6.4 (Normalized Laplacians/Simple random walks). Let Gd = (V, E)
be a locally finite simple graph. Let also | · | : E → (0,∞) be given and define edge
weights µ, ν : E → (0,∞) by setting

µ : e 7→ 1

|e|
, ν : e 7→ |e|.(6.1.1)

Notice that the intrinsic edge length is constant on E , that is,

η(e) = |e|

√
µ(e)

ν(e)
= 1

for all e ∈ E in this case, and hence (3.1.3), (3.1.5) and (3.1.6) give

m(v) =
∑
u∼v
|e|µ(e) = deg(v), v ∈ V,(6.1.2)

and

b(u, v) =

{
1, u ∼ v,
0, u 6∼ v,

(u, v) ∈ V × V.(6.1.3)

The corresponding graph Laplacian (3.1.7) (with α ≡ 0) has the form

(Lnormf)(v) :=
1

deg(v)

∑
u∼v

f(v)− f(u) = f(v)− 1

deg(v)

∑
u∼v

f(u),(6.1.4)

for all v ∈ V. It is known in the literature as a normalized Laplacian (or physical
Laplacian). This operator has a venerable history. In particular, it appears as the
generator of the simple random walk on Gd = (V, E), where “simple” refers to the
fact that the probabilities to move from v to a neighboring vertex are all equal
to 1

deg(v) (see, e.g., [209]). ♦
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Example 6.5 (Electrical networks/Random walks). Again, let Gd = (V, E) be
a locally finite simple graph. Suppose | · | : E → {1}, that is, the corresponding
metric graph G is equilateral (each e ∈ E can be identified with a copy of the
interval [0, 1]). Next, suppose that the edge weights µ, ν : E → (0,∞) coincide, that
is, µ(e) = ν(e) for all e ∈ E . Then

η(e) =

√
µ(e)

ν(e)
= 1

for all e ∈ E and hence, by (3.1.3), (3.1.5) and (3.1.6),

b(u, v) =

{
µ(eu,v), u ∼ v,
0, u 6∼ v,

m(v) = mb(v) :=
∑
e∈Ev

µ(e).(6.1.5)

The corresponding graph Laplacian (3.1.7) (with α ≡ 0) is given explicitly by

(6.1.6) (Lbf)(v) :=
1

mb(v)

∑
u∼v

b(u, v)(f(v)− f(u)), v ∈ V,

and arises in the study of random walks on Gd (a.k.a. reversible Markov chains),
where the jump probabilities are defined by (see, e.g., [12, Chap. 1.2], [89])

p(u, v) =
b(u, v)∑
x∈V b(u, x)

, u, v ∈ V.

On the other hand, considering informally an electrical network as a set of wires
(edges) and nodes (vertices), we can interpret b(u, v) as a conductance of a wire
eu,v connecting u with v, r(u, v) = 1

b(u,v) is the resistance of eu,v and m(v) is the

total conductance at v. Thus, the corresponding weighted Laplacian Lb arises in
the study of pure resistor networks (see [12], [192], [209]).

Therefore, every electrical network operator/generator of a random walk (re-
versible Markov chains) on a locally finite graph arises as a boundary operator for
a Kirchhoff Laplacian on a weighted metric graph. Notice also that by Lemma 2.9
the corresponding graph Laplacian is bounded (in fact, its norm is at most 2). ♦

Remark 6.6. The construction in Example 6.5 connecting a random walk on
a graph with a Brownian motion on a weighted metric graph can be found in [202].

The above examples show that a very important class of graph Laplacians arises
as boundary operators (in the sense of Proposition 3.11) for Laplacians on weighted
metric graphs. However, as we shall see next, the answer to Problem 6.1 is far from
trivial.

Example 6.7 (Combinatorial Laplacians on antitrees). Again, let Gd = (V, E)
be a locally finite simple graph. Set m = 1 on V and define a graph b over (V,m)
by

b(u, v) =

{
1, u ∼ v
0, u 6∼ v,

(u, v) ∈ V × V.(6.1.7)

Notice in particular that the associated combinatorial graph (V, Eb) coincides with
Gd = (V, E). The corresponding graph Laplacian acts in `2(V) and is given by

(6.1.8) (Lcombf)(v) :=
∑
u∼v

f(v)− f(u) = deg(v)f(v)−
∑
u∼v

f(u).
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o
S0

S1

S2

S3

Figure 6.1. Example of an antitree with sn = #Sn = n+ 1.

This operator is known as the combinatorial Laplacian† and A = (b(u, v))u,v∈V is
nothing but the adjacency matrix of the graph Gd = (V, E).

Suppose additionally that our graph Gd = (V, E) is a rooted antitree (see [210],
[47], [146] and also Section 8.1), that is, fix a root vertex o ∈ V and then order
the graph with respect to the combinatorial spheres Sn, n ∈ Z≥0 (Sn consists of all
vertices v ∈ V such that the combinatorial distance from v to the root o, that is,
the combinatorial length of the shortest path connecting v with o, equals n; notice
that S0 = {o}). The graph Gd is called an antitree if it is simple and every vertex
in Sn is connected to every vertex in Sn+1 and there are no horizontal edges, i.e.,
there are no edges with all endpoints in the same sphere (see Fig. 6.1). In this
particular situation (a combinatorial Laplacian on an infinite antitree) the next
result provides a complete answer to Problem 6.1.

Proposition 6.8. Let A = (V, E) be an (infinite) antitree with sphere numbers
sn := #Sn, n ∈ Z≥0. Then the corresponding combinatorial Laplacian (6.1.8) on
A arises as a boundary operator for a minimal Kirchhoff Laplacian on a weighted
metric antitree if and only if

(6.1.9)

n∑
k=0

(−1)ksn−k > 0

holds for all n ∈ Z≥0.

We shall give the proof of this result in Section 6.2. Let us only mention the
similarity between (6.1.9) and (5.3.10), which is, in fact, not at all surprising in
view of connections between Laplacians on family preserving graphs and Jacobi
matrices (see [30]). ♦

6.2. Life without loops I: Graph Laplacians

We begin with Problem 6.1. Its importance stems from the fact that every
regular Dirichlet form over (V,m) arises as the energy form qD for some graph
(b, c) over (V,m) (see [130, Theorem 7]).

Suppose a connected locally finite graph (b, c) over (V,m) is given. Let Gb =
(V, Eb) be the simple graph associated with (b, c): u ∼ v exactly when b(u, v) 6= 0

†Seems, there is no agreement how to call this difference operator and sometimes the name
‘physical Laplacian’ is used instead. However, taking into account its obvious connection with the

adjacency matrix, the name ‘combinatorial Laplacian’ looks more appropriate to us.
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(see Remark 2.7). Then for each weighted metric graph (G, µ, ν) over (V, Eb) the
functions defined by (3.1.1)–(3.1.5) and (3.1.6) take the following form:

mG(v) =
∑

u : b(u,v)6=0

r(eu,v),(6.2.1)

where r is defined by (3.1.1), (3.1.3)–(3.1.4), and

bG(u, v) =

{
ν(eu,v)
|eu,v| , b(u, v) > 0,

0, b(u, v) = 0.
(6.2.2)

Comparing the form of the boundary operator (3.1.7) with (2.2.3), it is clear that
the killing term c is nothing but the strength of δ-couplings at the vertices and hence
we can restrict our considerations to the case c ≡ 0. In fact, the next result shows
that Problem 6.1 can be reduced to a description of all possible vertex weights m:

Proposition 6.9. A locally finite graph (V,m; b) admits a minimal cable sys-
tem if and only if there is a function rb : Eb → (0,∞) such that

m(v) =
∑
e∈Ev

rb(e)(6.2.3)

for all v ∈ V.

Proof. Necessity immediately follows from (6.2.1). Let us prove sufficiency.
Suppose there is rb : Eb → (0,∞) such that (6.2.3) holds true for all v ∈ V. First
of all, we set |eu,v| ≡ 1 and ν(eu,v) := b(u, v) for all edges eu,v ∈ Eb. Moreover, if
supu,v rb(eu,v)/b(u, v) <∞, we define µ(eu,v) = rb(eu,v) and otherwise set

µ(eu,v) =

{
rb(eu,v), rb(eu,v) ≤ b(u, v),
rb(eu,v)2

b(u,v) , rb(eu,v) > b(u, v),

for each eu,v ∈ Eb. It is then straightforward to check that the corresponding
functions defined by (3.1.1)–(3.1.5) and (3.1.6) coincide with m and b. �

In fact, the above result shows that the answer to Problem 6.1 is analogous to
the answer in the case of a path graph (see Proposition 5.20 and Remark 5.21).
Indeed, let Gd = (V, E) be a simple locally finite graph and consider the map
D : C(V)→ C(E) given by

(Df)(eu,v) = f(u) + f(v).(6.2.4)

If we define the Hilbert space `2(E) as follows

`2(E) =
{
φ : E → C |

∑
e∈E
|φ(e)|2 <∞

}
,

then D defines a possibly unbounded operator from `2(V) to `2(E) (in fact, D is
bounded if and only if the graph Gd has bounded geometry, supv∈V deg(v) < ∞).
Its (formal) adjoint D∗ : C(E)→ C(V) is given by

(D∗φ)(v) =
∑
e∈Ev

φ(e), v ∈ V.(6.2.5)

Comparing this formula with (6.2.3), we immediately arrive at the following result:

Corollary 6.10. A locally finite graph (V,m; b) admits a minimal cable system
if and only if m belongs to the image of the positive cone C+(E) under the map D∗.
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Remark 6.11. Taking into account Example 6.5, Corollary 6.10 admits the
following reformulation: A locally finite graph (V,m; b) admits a minimal cable
system if and only if there are resistances R : Eb → R>0 such that total conductances
on V coincide with m.

Let us apply the above result to antitrees in order to prove Proposition 6.8.

Proof of Proposition 6.8. By Proposition 6.9, we need to show that for a
given antitree A = (V, E) with sphere numbers (sn)n≥0 the condition (6.1.9) holds
for all n ≥ 0 if and only if there is a strictly positive function r : E → (0,∞) such
that

∑
e∈Ev r(e) = 1 for all v ∈ V.

Suppose first that (6.1.9) holds for all n ≥ 0. Then setting

r(e) :=
1

snsn+1

n∑
k=0

(−1)ksn−k,

for all e ∈ En, where En the set of edges connecting the spheres Sn and Sn+1, we
get for each v ∈ Sn, n ≥ 0:∑

e∈Ev

r(e) =
∑

e∈En∩Ev

r(e) +
∑

e∈En−1∩Ev

r(e)

= sn+1
1

snsn+1

n∑
k=0

(−1)ksn−k + sn−1
1

sn−1sn

n−1∑
k=0

(−1)ksn−1−k = 1.

Conversely, suppose r : E → (0,∞) is such that D∗r = 1V . Then we have∑
e∈E0

r(e) =
∑
e∈Eo

r(e) = 1 = #S0 = s0,

and hence

0 <
∑
e∈En

r(e) =
∑
v∈Sn

∑
e∈Ev

r(e)−
∑

e∈En−1

r(e)

= sn −
∑

e∈En−1

r(e)

=

n∑
k=0

(−1)ksn−k

for all n ≥ 0, where the last equality follows immediately by induction. �

Remark 6.12. A few remarks are in order.

(i) Proposition 6.8 can be generalized to family preserving graphs (see [30]
for definitions).

(ii) We stress that, by the above results, the combinatorial Laplacian on an
infinite path graph Gd = Z≥0 has no minimal cable system. Indeed, every
infinite path graph is an antitree with sphere numbers sn = 1 for all n ≥ 0
and (6.1.9) clearly fails to hold in this case (see also Proposition 5.20).

Despite its simple form, for a given vertex weight it is not so easy to verify
the conditions in Proposition 6.9 and Corollary 6.10. In particular, returning to
Example 6.7, the corresponding vertex weight m is a constant function, m = 1V ,
and one may ask: for which graphs Gd = (V, E) the constant function 1V belongs
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to D∗(C+(E))? The answer to this question is provided by the following elegant
result:

Lemma 6.13. Let Gd = (V, E) be a simple graph satisfying Hypotheses 2.1.
Then 1V ∈ D∗(C+(E)) if and only if for each e ∈ E there is a disjoint cycle cover
of Gd containing e in one of its cycles.

Recall that a disjoint cycle cover of Gd is a collection of vertex-disjoint cycles
in Gd such that every vertex in Gd lies on some edge in one of the cycles. Here, by
a cycle of length n ∈ Z≥2 in a simple graph Gd, we mean a path P = (vk)nk=0 such
that v0 = vn and all other vertices are distinct. Notice that this definition differs
slightly from the one given in Section 2.1.1, that is, in the present section we allow
for a moment cycles of length two (consisting of “going back and forth” along one
fixed edge).

Remark 6.14. Lemma 6.13 is due to G. Zaimi and was published in MathOver-
flow† as the answer to a question posed by M. Folz. It is curious to mention that
Folz came up in [70] with a problem similar to Problem 6.1 when studying stochas-
tic completeness of weighted graphs and attempting to prove a volume growth test
by employing connections between Dirichlet forms on graphs and metric graphs,
which allow to transfer the results from strongly local Dirichlet forms to Dirichlet
forms on graphs [70], [71] (see Sections 4.2 and 4.6 for further information).

Remark 6.15. Notice that in the case of finite graphs, for each e ∈ E there is a
disjoint cycle cover containing e in one of its cycles if and only if removing an edge
decreases the permanent of the corresponding adjacency matrix. The appearance
of permanents is not at all surprising since

(D∗Df)(v) =
∑
u∼v

f(v) + f(u) = deg(v)f(v) +
∑
u∼v

f(u)

is the so-called signless Laplacian. Here the second summand is the usual adjacency
matrix.

6.3. Life with loops

As we have seen in Section 6.2, a minimal cable system for (V,m; b) may not
exist. Moreover, to verify its existence is a rather complicated task even in some
simple cases. It turns out that the situation changes once we drop the minimality
assumption. In particular, we obtain an affirmative answer to Problem 6.2:

Theorem 6.16. Every locally finite graph (V,m; b) has a cable system.

Proof. The proof is by construction. As before, denote by Gb = (V, Eb) the
simple graph associated with b (see Remark 2.7). Let Gloop = (V, Eloop) be the
(combinatorial) graph obtained from Gb = (V, Eb) by adding a loop ev = ev,v at
each vertex v ∈ V. More precisely, its edge set is given by

Eloop = Eb ∪ {ev| v ∈ V}.

†https://mathoverflow.net/questions/59117/: Assigning positive edge weights to a graph
so that the weight incident to each vertex is 1, (2011).

https://mathoverflow.net/questions/59117/
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Next, define the edge weight p : Eloop → (0,∞) by

p(eu,v)
2 =


1

2 max{1,Deg(u),Deg(v)} , u 6= v,

1, u = v,
(6.3.1)

where Deg is the weighted degree function (2.2.8). The edge lengths are then defined
by | · | = p(·) on Eloop and the edge weights µ and ν are given by

µ(eu,v) = ν(eu,v) =

b(u, v)p(u, v), u 6= v,

m(v)−
∑
u∼v b(u, v)p(eu,v)

2, u = v.
(6.3.2)

By construction, µ(ev) = ν(ev) > 0 and hence we indeed obtain well-defined weights
µ, ν : Eloop → (0,∞). Moreover, it it easy to check that (Gloop, | · |, µ, ν) is a cable
system for (V,m; b). �

Remark 6.17. A few remarks are in order:

(i) The above construction is taken from [70, Rem. 2, p. 2107], where it was
suggested in context with synchronizing Brownian motions and random
walks on graphs. However, we stress that, due to the presence of a loop
at every vertex, this cable system is never minimal.

(ii) After establishing existence of cable systems, the next natural question
is their uniqueness. In fact, every locally finite graph b over (V,m) has
a large number of cable systems. In particular, the above cable system
is a special case of a general construction using different metrizations of
discrete graphs. These connections will be discussed in the next section.

6.4. Intrinsic metrics

In this section we discuss connections between intrinsic metrics for the Kirch-
hoff Laplacian on a weighted metric graph (G, µ, ν) and the associated discrete
Laplacian on a fixed model. Notice that we cannot expect a close link between the
properties of the length metric %0 (see Section 2.1) and Kirchhoff Laplacians on
weighted metric graphs since %0 does not depend on µ and ν. However, it is known
that the spectral properties of an operator associated to a (regular) Dirichlet form
relate closely to its associated intrinsic metrics (see, e.g., [73], [195] for precise
definitions and further references).

Historically, intrinsic metrics appear first in context with strongly local forms
(see [51, Chap. 3.2], [26]). More precisely, to each strongly local, regular Dirichlet
form there is an associated intrinsic metric and this notion allows to generalize many
results known for the Laplace–Beltrami operator on a Riemannian manifold and
the Riemannian metric (see [195], [196], [197] for details and further references).

A rather general notion of intrinsic metrics for arbitrary (regular) Dirichlet
forms was introduced in [73]. With its help, a variety of results could be recov-
ered also in the non-local setting (see, e.g., [18], [73], [111], [114], [127] and the
references therein). One of the crucial differences is that it is no longer possible
to associate a unique intrinsic metric to a general Dirichlet form. More precisely,
if the Dirichlet form is strongly local, then the classical intrinsic metric is intrinsic
in the sense of [73]. Moreover, it is in a certain sense the largest one among all
such metrics (see [73, Theorem 6.1]) and hence provides a canonical choice. For
a non-local Dirichlet form (including the setting of graph Laplacians), there is in
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general no largest intrinsic metric and hence it is not possible to make a canonical
choice.

6.4.1. Intrinsic metrics on metric graphs. We define the intrinsic metric %
of a weighted metric graph (G, µ, ν) as the (largest) intrinsic metric of its Dirichlet
Laplacian HD (in particular, note that QD is a strongly local, regular Dirichlet
form). By [195, eq. (1.3)] (see also [73, Theorem 6.1]), %intr is given by

%intr(x, y) = sup
{
f(x)− f(y) | f ∈ D̂loc

}
, x, y ∈ G,

where the function space D̂loc is defined as

D̂loc =
{
f ∈ H1

loc(G)
∣∣ ν(x)|∇f(x)|2 ≤ µ(x) for a.e. x ∈ G

}
.

It turns out that %intr admits a rather explicit description. First of all, the above
suggest to define the intrinsic weight η : G → (0,∞),

η = ηµ,ν :=

√
µ

ν
on G.(6.4.1)

This weight gives rise to a new measure on G whose density w.r.t. the Lebesgue
measure is exactly η (as in the case of the edge weights on a metric graph, we
abuse the notation and denote with η both the edge weight and the corresponding
measure).

Recall from Remark 2.2 that a path P in G is a continuous and piecewise
injective map P : I → G defined on an interval I ⊆ R. In case that I = [a, b] is
compact, we call P a path with starting point x := P(a) and endpoint y := P(b).
The (intrinsic) length of such a path P in G is defined as

|P|η :=
∑
j

∫
P((tj ,tj+1))

η(ds),(6.4.2)

where a = t0 < · · · < tn = b is any partition of I = [a, b] such that P is injective
on each interval (tj , tj+1) (clearly, |P|η is well-defined).

Lemma 6.18. The metric %η defined by

(6.4.3) %η(x, y) := inf
P
|P|η = inf

P

∫
P
η(ds), x, y ∈ G,

where the infimum is taken over all paths P from x to y, coincides with the intrinsic
metric on (G, µ, ν) (w.r.t. QD), that is, %intr = %η.

Notice that in the case µ = ν, η coincides with the Lebesgue measure and hence
%η is nothing but the length metric %0 on G.

Proof. The proof is straightforward and can be found in, e.g., [95, Prop. 2.21],
however, we decided to present it for the sake of completeness. First, observe that
for any two points x, y on G and every path P from x to y, the following estimate

|f(x)− f(y)| ≤
∫
P
|∇f |ds ≤

∫
P

√
µ

ν
ds =

∫
P
η(ds) = |P|η(6.4.4)

holds true for every f ∈ D̂loc, and hence %intr ≤ %η. On the other hand, define f ∈
H1

loc(G) by fixing some y ∈ G and then set f(x) = %η(x, y), x ∈ G. It is immediate to

see that f is edgewise absolutely continuous and |∇f | =
√

µ
ν a.e. on G. Therefore,
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f ∈ D̂loc. Moreover, for each x ∈ G we clearly have %η(x, y) = f(x)− f(y) = f(x),
which finishes the proof. �

Remark 6.19. According to the above definition of the intrinsic weight, we get
for a path Pe consisting of a single edge e ∈ E

|Pe|η =

∫
e

η(ds) = |e|

√
µ(e)

ν(e)
= η(e),

which connects the intrinsic path metric %intr = %η on (G, µ, ν) with the notion of
the intrinsic edge length (3.1.1).

6.4.2. Intrinsic metrics on discrete graphs. The idea to use different met-
rics on graphs can be traced back at least to [52] and versions of metrics adapted
to weighted discrete graphs have appeared independently in several works, see, e.g.,
[70], [71], [90], [163]. Let us now recall the definition of intrinsic metrics for graph
Laplacians, where we follow [18], [73], [127].

For a given connected graph b over (V,m), a symmetric function p : V × V →
[0,∞) such that p(u, v) > 0 exactly when b(u, v) > 0 is called a weight function for
(V,m; b). Every weight function p generates a path metric %p on V with respect to
the graph b via

%p(u, v) := inf
P=(v0,...,vn) : u=v0, v=vn

∑
k

p(vk−1, vk).(6.4.5)

Here the infimum is taken over all paths in b connecting u and v, that is, all
sequences P = (v0, . . . , vn) such that v0 = u, vn = v and b(vk−1, vk) > 0 for
all k ∈ {1, . . . , n}. We stress that we always assume that b is locally finite (see
Section 2.2) and hence %p(u, v) > 0 whenever u 6= v.

Example 6.20. Let us provide a few important examples.

(i) Combinatorial distance: Let p : V × V → {0, 1} be given by

p(u, v) =

{
1, b(u, v) 6= 0,

0, b(u, v) = 0.
(6.4.6)

Then the corresponding path metric is nothing but the combinatorial dis-
tance %comb (also known as the word metric in the context of Cayley
graphs) on a graph b over V.

(ii) Natural path metric: Define pb : V × V → [0,∞) by

pb(u, v) =

{
1/b(u, v), b(u, v) 6= 0,

0, b(u, v) = 0.
(6.4.7)

Then the corresponding path metric %b depends only on the graph b and
not on the weight function m, and hence one may call it as a natural path
metric. Notice also that the edge weight (6.4.7) can be interpreted as
resistances (see Example 6.5).

(iii) Star path metric: Let m : V → (0,∞) be a vertex weight. Set

pm(u, v) =

{
m(u) +m(v), b(u, v) 6= 0,

0, b(u, v) = 0.
(6.4.8)
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Then the corresponding path metric %m is called the star metric on the
graph b over V. The following two choices of m are of particular interest:
the vertex weight

mb(v) :=
∑
u∈V

b(u, v), v ∈ V,(6.4.9)

corresponds to a simple random walk on graph b (see Remark 2.11). An-
other choice

m1/b(v) :=
∑
u∼v

1

b(u, v)
, v ∈ V.(6.4.10)

appears in [67]. In particular, if b : V × V → {0, 1}, then both mb and
m1/b coincide with the combinatorial degree function deg. In both cases
the vertex weight can be considered as a weight (or length) of the corre-
sponding star Ev at v ∈ V, which explains the name.

Recall (see [73] and also [113], [127]) the following important notion:

Definition 6.21. A metric % on V is called intrinsic with respect to (V,m; b)
if ∑

u∈V
b(u, v)%(u, v)2 ≤ m(v)(6.4.11)

holds for all v ∈ V.

Similarly, a weight function p : V × V → [0,∞) is called an intrinsic weight for
(V,m; b) if ∑

u∈V
b(u, v)p(u, v)2 ≤ m(v), v ∈ V.

If p is an intrinsic weight, then the associated path metric %p is called strongly
intrinsic (it is obviously intrinsic in the sense of Definition 6.21).

Remark 6.22. For any given locally finite graph (V,m; b) an intrinsic metric
always exists (see [113, Example 2.1], [127] and also [44]). Indeed, we obtain an
intrinsic weight by setting

p(u, v) =

{
1√

max{1,Deg(u),Deg(v)}
, b(u, v) 6= 0,

0, b(u, v) = 0,
(6.4.12)

where Deg is the weighted degree function (2.2.8), and hence the corresponding
path metric % = %p is strongly intrinsic. We are going to provide further examples
in the next sections.

Example 6.23. Let us continue with Example 6.20.

(i) If a graph b : V × V → {0, 1} is locally finite and m = deg on V, then the
combinatorial distance %comb on V is intrinsic.

(ii) If m = m1/b, then the path metric %b is intrinsic. Moreover, the weight
pb is intrinsic as well.

(iii) Let us stress that the star path metric %m is not intrinsic in general since it
does not contain any information on b except the underlying combinatorial
structure.
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Remark 6.24. Let us emphasize that the combinatorial distance %comb is not
intrinsic for the combinatorial Laplacian Lcomb (m ≡ 1 on V in this case). However,
%comb is equivalent to an intrinsic path metric if and only if deg is bounded on V,
that is, the corresponding graph has bounded geometry. If supV deg(v) =∞, then
Lcomb is unbounded in `2(V) and it turned out that %comb is not a suitable metric on
V to study the properties of Lcomb (in particular, this has led to certain controversies
in the past, see [133], [210]).

6.4.3. Connections between discrete and continuous. Consider a weigh-
ted metric graph (G, µ, ν) and its intrinsic metric %η defined in Section 6.4.1. With
each model of (G, µ, ν) we can associate the vertex set V together with the vertex
weight m : V → (0,∞) and the graph b : V × V → [0,∞), see (3.1.1)–(3.1.6). The
next result shows that the intrinsic metric %η of (G, µ, ν) gives rise to a particular
intrinsic metric for (V,m; b).

Lemma 6.25. Let (G, µ, ν) be a weighted metric graph and %η its intrinsic met-
ric. Fix further a model of (G, µ, ν) having finite intrinsic size and define the metric
%V on V as a restriction of %η onto V × V,

%V(u, v) := %η(u, v), (u, v) ∈ V × V.(6.4.13)

Then:

(i) %V is an intrinsic metric for (V,m; b).
(ii) (G, %η) is complete as a metric space exactly when (V, %V) is complete.

Proof. (i) Fix a model of (G, µ, ν) and consider the edge weight function
pη : V × V → [0,∞) given by

pη(u, v) =

{
mine∈Eu,v η(e), u ∼ v and u 6= v,

0, else,
(u, v) ∈ V × V.(6.4.14)

Here Eu,v denotes the set of edges between u and v (recall that we allow multi-
graphs). Using (3.1.1)–(3.1.6), notice that for every v ∈ V,∑

u∈V
b(u, v)pη(u, v)2 =

∑
u∈V\{v}

∑
e∈Eu,v

ν(e)

|e|
pη(u, v)2

≤
∑

u∈V\{v}

∑
e∈Eu,v

ν(e)

|e|
η(e)2

=
∑

u∈V\{v}

∑
e∈Eu,v

|e|µ(e)

≤ m(v),

where in the last inequality we used the fact that (G, µ, ν) has finite intrinsic size.
Hence pη is an intrinsic weight for (V,m; b). It remains to notice that each path
P without self-intersections from u ∈ V to v ∈ V in the metric graph G can be
identified with a path Pd = (eu,v1 , . . . , evn−1,v) in the fixed model from u = v0 to
v = vn without self-intersections. With respect to this identification,

|P|η =

n∑
k=1

η(evk−1,vk)
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which immediately implies that %pη = %η|V×V (notice that both the infima in (6.4.3)
and (6.4.5) can be taken over paths without self-intersections).

(ii) The remaining equivalence of the metric space completeness is straightfor-
ward to verify directly (one can also immediately observe it by comparing geodesic
completeness on both metric spaces and then using the corresponding versions of
the Hopf–Rinow theorems, see Section 6.4.5). �

Remark 6.26. Notice that the proof also implies that (6.4.14) is an intrinsic
weight for (V,m; b) and %V = %pη is the corresponding strongly intrinsic path metric.

Let us mention that Lemma 6.25 also has an interpretation in terms of quasi-
isometries (see, e.g., [12, Def. 1.12], [173, Sec. 1.3], [184]).

Definition 6.27. A map φ : X1 → X2 between two metric spaces (X1, %1) and
(X2, %2) is called a quasi-isometry if there are constants a,R > 0 and b ≥ 0 such
that

(6.4.15) a−1(%1(x, y)− b) ≤ %2(φ(x), φ(y)) ≤ a(%1(x, y) + b),

for all x, y ∈ X1 and, moreover,

(6.4.16)
⋃
x∈X1

BR(φ(x); %1) = X2.

One can check that quasi-isometries define an equivalence relation between
metric spaces. It turns out that the map ıV defined in Section 4.3 is closely related
with a quasi-isometry between weighted graphs and metric graphs:

Lemma 6.28. Assume the conditions of Lemma 6.25. Then the map

ϕ : V → G, ϕ(v) = v(6.4.17)

defines a quasi-isometry between the metric spaces (G, %η) and (V, %V). Moreover,
the map ϕ is bi-Lipschitz (i.e., b in (6.4.15) can be set equal to 0).

Proof. The proof is a straightforward check of (6.4.15) and (6.4.16) for the
map φ with a = 1, b = 0 and R = η∗(E) and we leave it to the reader. �

Remark 6.29. The notion of quasi-isometries was introduced in the works of
M. Gromov [92] and M. Kanai [121], [122]. It is well-known in context with Rie-
mannian manifolds and (combinatorial) graphs that roughly isometric spaces share
many important properties: e.g., geometric properties (such as volume growth and
isoperimetric inequalities) [121], parabolicity/transience [46], [121], [158], Nash
inequalities [46], Liouville-type theorems for harmonic functions of finite energy
[46], [104], [105], [149], [158], [191] and parabolic/elliptic Harnack inequalities
[14], [15], [46], [101]. However, we stress that most of these connections also
require additional conditions on the local geometry of the spaces. Typically, one
imposes a bounded geometry assumption for manifolds [121] and bounded geome-
try/controlled weights assumptions for graphs [12], [15], [192, Chap. VII].

Some of our conclusions are reminiscent of this notion (see, e.g., Theorem 4.17,
Theorem 4.30 and Proposition 7.38), but in fact our results go beyond this frame-
work. For instance, the strong/weak Liouville property (i.e., all positive/bounded
harmonic functions are constant) is not preserved under bi-Lipschitz maps in gen-
eral [153]. However, the equivalence holds true for our setting (this is a trivial
consequence of Lemma 6.46 below). In addition, we stress that in contrast to the
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above works, we do not require any additional local conditions (e.g., bounded geom-
etry). On the other hand, our results connect only two particular roughly isometric
spaces (G, %η) and (V, %V) and not the whole equivalence class of roughly isometric
weighted graphs or weighted metric graphs.

By Lemma 6.25, each cable system having finite intrinsic size† gives rise to
an intrinsic metric %V for (V,m; b) using a simple restriction to vertices. In view
of Problems 6.1–6.2, it is natural to ask which intrinsic metrics on graphs can be
obtained as restrictions of intrinsic metrics on weighted metric graphs. It turns out
that a rather large class can be covered in this way. Before stating the result, let
us recall one more definition.

Definition 6.30. Let b be a locally finite graph over V. A metric % on V has
finite jump size (with respect to b) if

s(%) := sup{%(u, v) |u, v ∈ V with b(u, v) > 0}(6.4.18)

is finite.

Lemma 6.31. Let (V,m; b) be a locally finite graph and let ρ : V × V → [0,∞)
be an intrinsic path metric having finite jump size s(%) < ∞. Then there is a
cable system for (V,m; b) satisfying η∗(E) ≤ max{s(%), 1} and such that ρV = ρ.
Moreover, (V, %V) is complete exactly when the corresponding weighted metric graph
(G, µ, ν) of the cable system equipped with its intrinsic metric %η is complete.

Proof. Our proof follows closely the ideas of [112, p. 128] and [70]. The edge
set E of the cable system (V, E , | · |, µE , νE) is defined as follows: first of all, we create
an edge e = eu,v between each pair of vertices u, v ∈ V with b(u, v) > 0. Moreover,
we add a loop edge at each vertex v ∈ V satisfying∑

u∈V\{v}

b(u, v)%(u, v)2 < m(v).

Notice that the resulting combinatorial graph Gd = (V, E) does not have any mul-
tiple edges. Specifying now the edge lengths and weight, assume first that eu,v ∈ E
is a non-loop edge, that is, u 6= v. Then we set

|eu,v| = %(u, v), µ(eu,v) = ν(eu,v) = %(u, v)b(u, v).

If e ∈ E is a loop at the vertex v ∈ V, then we define

|e| = 1, µ(e) = ν(e) = m(v)−
∑

u∈V\{v}

b(u, v)%(u, v)2 > 0.

By definition, η(eu,v) = |eu,v| = %(u, v) for each non-loop edge eu,v and it is straight-
forward to check that (V, E , | · |, µE , νE) is a cable system for (V,m; b). Moreover,
since % is a path metric, we easily infer that % = %V (see Remark 6.26 (ii)). �

Remark 6.32. A few remarks are in order.

(i) Notice that an intrinsic path metric with jump size s(%) ≤ 1 indeed exists
for every graph (V,m; b) (e.g., take the path metric in Remark 6.22).

†Since by definition a cable system is a model of a weighted metric graph, the notion of
intrinsic size (see Definition 3.16) immediately extends to cable systems.
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(ii) We stress that not every intrinsic metric is a path metric. However, in
some sense intrinsic path metrics correspond to particularly large intrinsic
metrics. Namely, for every intrinsic metric %, the choice p(u, v) := %(u, v)
whenever b(u, v) > 0 defines an intrinsic weight and the corresponding
path metric clearly satisfies % ≤ %p on V × V.

6.4.4. Description of cable systems. The results of the previous sections
naturally lead us to Problem 6.3. It does not seem realistic to obtain a complete
answer to this question since the class of all cable systems of (V,m; b) is rather
large. Hence our strategy will be to restrict to a certain class of “well-behaved”
cable systems and obtain a precise description of those.

Definition 6.33. A cable system (V, E , | · |, µ, ν) for a graph b over (V,m) is
called canonical if it satisfies the following additional assumptions:

(i) the underlying graph Gd = (V, E) has no multiple edges,
(ii) the edge weights µ and ν coincide,

(6.4.19) µ(e) = ν(e), e ∈ E ,
(iii) |e| = 1 whenever e is a loop and, moreover, supe∈E |e| <∞.

The set of canonical cable systems of (V,m; b) is denoted by Cab = Cab(V,m; b).

Notice that conditions (ii) and (iii) imply that canonical cable systems have
finite intrinsic size since in this case intrinsic edge length coincides with the edge
length and hence η∗(E) = supe∈E |e|.

The importance of canonical cable systems stems from the fact that the intrinsic
metric %η of the corresponding weighted metric graph coincides with the length
metric %0. Moreover, it turns out that canonical cable systems can be described in
terms of intrinsic metrics. More precisely, denote by W(V,m; b) the set of intrinsic
weights for (V,m; b) having finite jump size, that is, all intrinsic weights p : V×V →
R≥0 satisfying

(6.4.20) sup
u,v : b(u,v)>0

p(u, v) <∞.

We already observed that for every canonical cable system, the choice

(6.4.21) p(u, v) =

{
|eu,v| if u 6= v and u ∼ v,
0 else,

defines an intrinsic weight on (V,m; b) (see Remark 6.26). Hence (6.4.21) defines a
map

(6.4.22) Ψ: Cab(V,m; b)→W(V,m; b).

In fact this leads to a one-to-one correspondence between canonical cable systems
and intrinsic weights.

Theorem 6.34. Suppose b is a locally finite connected graph over (V,m). Then
the map Ψ defined by (6.4.21) and (6.4.22) is a bijection between the set of canonical
cable systems of (V,m; b) and intrinsic weights of (V,m; b) having finite jump size.

Proof. As noticed above, the map Ψ is well-defined and, moreover, its sur-
jectivity was established in Lemma 6.31. More precisely, if we replace %(u, v) by
p(u, v) in its proof, we obtain an explicit construction of a canonical cable system
for every p ∈W(V,m; b).
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To prove the injectivity of Ψ, we essentially invert the construction in Lem-
ma 6.31. Let C = (V, E , | · |, µ) be a canonical cable system for (V,m; b). First of
all, notice that the non-loop edges of E are determined by (3.1.6): there is an edge
eu,v between u 6= v exactly when b(u, v) > 0. Moreover, if Ψ(C) = p, then the
equalities (6.4.21) and (3.1.6) imply that

|eu,v| = p(u, v), µ(e) = b(u, v)p(u, v)

for each non-loop edge eu,v between u 6= v. However, this means that the location of
the loop edges of E is determined by (3.1.5) and the finite intrinsic size assumption.
Namely, it is easy to see that they are attached to exactly those vertices v ∈ V with

m(v)−
∑

u:b(u,v)>0

b(u, v)p(u, v)2 = m(v)−
∑

u:b(u,v)>0

|eu,v|µ(eu,v) > 0.

This proves that the edge set E of C is uniquely determined by p = Ψ(C). Moreover,
since we required that |e| = 1 for loop edges, it follows that

2µ(ev) = m(v)−
∑

u:b(u,v)>0

b(u, v)p(u, v)2 > 0

if there is a loop ev at a vertex v ∈ V. This shows that the weight function
µ : E → (0,∞) is determined by p = Ψ(C) as well and the injectivity of Ψ is
proven. �

Remark 6.35. Notice that from a cable system (V, E , | · |, µ, ν) of (V,m; b) we
can construct further ones by scaling, that is, we set

|e|′ = c(e)|e|, µ′(e) = c(e)−1µ(e), ν′(e) = c(e)ν(e), e ∈ E ,

for some (c(e))e∈E ⊆ (0,∞). The corresponding Kirchhoff Laplacians and energy
forms are (unitarily) equivalent as well. Among these equivalent cable systems there
is a unique one satisfying µ ≡ ν and this explains condition (ii) in Definition 6.33
(cf. also [95, Def. 2.18]). Conditions (ii) and (iii) exclude similar constructions
(i.e., by replacing single edges with multiple ones and different normalizations of
loop edges) and simplify the definition of m (see (3.1.1)–(3.1.5)).

6.4.5. Interlude: the Hopf–Rinow theorem on graphs. As it was al-
ready mentioned in Remark 2.1, a metric graph G equipped with its length metric
%0 is a length metric space (or simply a length space, see [36] for definitions).
Clearly, equipping a weighted metric graph (G, µ, ν) with the intrinsic metric %η,
which is defined by (6.4.3), turns G into a length space as well. A path P in G,
a continuous and piecewise injective map P : I → G defined on an interval I ⊆ R,
is called geodesic if it is locally a distance minimizer, i.e., for each x ∈ I there
is a neighborhood B(x) ⊂ I of x such that P|B(x) is a shortest path (w.r.t. the
corresponding length metric). In the following it would be convenient to assume
that each geodesic is parameterized by its arc-length.

Complete lengths spaces enjoy a number of very important properties. For
instance, if (G, %η) is complete as a metric space (recall that we always assume G
to be locally finite), then it is a geodesic metric space meaning that any two points
x, y ∈ G can be connected by a minimal geodesic, that is, by a shortest path (see,
e.g., [36, Theorem 2.5.23]). Moreover, the classical Hopf–Rinow theorem, which
connects completeness with geodesic completeness, as well as with compactness of
closed distance balls, extends from the smooth setting of Riemannian manifolds
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to locally compact length spaces [36, Theorem 2.5.28], and in the case of metric
graphs it reads as follows.

Theorem 6.36 (Hopf–Rinow’s theorem on metric graphs). Let G be a locally
finite connected weighted metric graph and let % be a path metric on G.† The
following assertions are equivalent:

(i) (G, %) is complete,
(ii) (G, %) is boundedly compact (every closed metric ball in (G, %) is compact),
(iii) every geodesic P : [0, a)→ G extends to a continuous path P : [0, a]→ G.

It is natural to expect that the Hopf–Rinow theorem extends to the case of
locally finite weighted graphs and this was done in [165] and [113, Theorem A.1]
(see also [127]).

Theorem 6.37 (Hopf–Rinow’s theorem on graphs). Let b be a locally finite
graph over V and let % be a path metric for (V; b). The following assertions are
equivalent:

(i) (V, %) is complete as a metric space,
(ii) every closed metric ball in (V, %) is finite,
(iii) every infinite geodesic has infinite length.‡

Remark 6.38. A few remarks are in order.

(i) Taking into account the connection between weighted graphs and cable
systems, it is not difficult to derive Theorem 6.37 from Theorem 6.36. For
instance, if additionally % is intrinsic for (V,m; b) and has finite jump size,
then by Theorem 6.34 there is a canonical cable system (G, µ, µ) such that
% coincides with the restriction of %η = %0 onto V×V. By Lemma 6.25(ii),
(V, %) is complete if and only if so is (G, %η) and hence it remains to apply
Theorem 6.36. Notice that this approach was used in [165, p. 24].

(ii) For a version of the discrete Hopf–Rinow theorem for graphs which are
not locally finite see the recent [135].

6.4.6. Volume growth. We finish this section with a simple but useful esti-
mate between the volume of balls with respect to the intrinsic metrics %η and %V .
For any x ∈ G and r > 0, we denote an intrinsic distance ball of radius r by

Br(x) := Br(x; %η) = {y ∈ G | %η(x, y) < r}.(6.4.23)

Similarly, for any vertex v ∈ V and r > 0, the ball of radius r in the induced metric
%V on V is denoted by

BVr (v) := BVr (v; %V) = {u ∈ V | %V(u, v) < r}.(6.4.24)

In particular, we have the obvious relation BVr (v; %V) = Br(v; %η) ∩ V for every
r > 0 and vertex v ∈ V.

Lemma 6.39. Assume the conditions of Lemma 6.25. Then

µ
(
Br(v; %η)

)
≤ m

(
BVr (v; %V)

)
≤ 2µ

(
Br+η∗(E)(v; %η)

)
(6.4.25)

for every r > 0 and vertex v ∈ V.

†In fact, we are going to use this result with only two particular metrics on G: the length

metric %0 and the intrinsic path metric %η .
‡In a discrete measure space, paths are parameterized by the combinatorial distance and

“infinite geodesic” simply means that as a path it has infinite combinatorial length.
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Proof. First of all, notice that

m
(
BVr (v)

)
=

∑
u∈BVr (v)

∑
~e∈~Eu

µ(e)|e| =
∑
e∈~E

µ(e)|e|
(
1Br(v)(eı) + 1Br(v)(eτ )

)
,

where as always 1Br(v) denotes the characteristic function of the subset Br(v) ⊆ G.
This implies the first inequality since clearly

m
(
BVr (v)

)
≥

∑
e∈E : e∩Br(v)6=∅

µ(e)|e| ≥
∑
e∈E

µ(e ∩Br(v)) = µ(Br(v)).

Conversely, every edge e ∈ E with at least one endpoint in Br(v) is contained in
the larger ball Br+η∗(E)(v). In particular,

m
(
BVr (v)

)
≤ 2

∑
e∈E

µ
(
e ∩Br+η∗(E)(v)

)
≤ 2µ(Br+η∗(E)(v)),

and the proof is complete. �

Remark 6.40. On the one hand, Lemma 6.39 establishes connections be-
tween volume growth of large balls in (G, %η) and (V, %V) (e.g., their polyno-
mial/subexponential/exponential growth rates are the same) and, in fact, this phe-
nomenon is well-known in context with quasi-isometries (indeed, a volume growth
is one of the most important quasi-isometric invariants). On the other hand,
Lemma 6.39 indicates a connection between small scales too and this is usually
not a part of the quasi-isometric setting.

6.5. Harmonic functions on graphs

6.5.1. Harmonic functions on weighted graphs. Let us begin by briefly
recalling basic definitions. Assume that b is a connected graph over (V,m) satisfying
the assumptions (i)–(iii) of Section 2.2 (at this point there is no need to assume that
b is locally finite). Also, by L we denote the corresponding formal Laplacian (2.2.3)
(the killing term c is assumed to be identically zero).

Definition 6.41. A function f : V → C is called harmonic (subharmonic,
superharmonic) w.r.t. (V,m; b) (or, simply, L-harmonic, L-subharmonic, L-super-
harmonic) if f belongs to Fb(V) and satisfies

(Lf)(v) = 0,
(

(Lf)(v) ≤ 0, (Lf)(v) ≥ 0)
)

(6.5.1)

for all v ∈ V.
If f ∈ Fb(V) satisfies (6.5.1) on a subset Y ⊆ V, then it is called harmonic on

Y (subharmonic on Y , etc.) w.r.t. (V,m; b).

Remark 6.42. Let us emphasize that the notion of harmonic/subharmonic/su-
perharmonic functions is independent of the weight m and hence one can sim-
ply set m ≡ 1 in Definition 6.41 and say harmonic/subharmonic/superharmonic
w.r.t. (V; b). On the other hand, when considering the maximal Laplacian h
(see (2.2.5)) in the Hilbert space `2(V;m), its kernel consists of L-harmonic func-
tions which belong to `2(V;m), and this subspace of course depends on the weight
m.

The following fact is trivial in the setting of weighted graphs.
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Lemma 6.43. Suppose f ∈ Fb(V) solves Lf +λf = 0 for some λ ∈ R≥0.† Then
|f | is subharmonic w.r.t. (V,m; b). If in addition f is real-valued, then both f+ and
f− are subharmonic w.r.t. (V,m; b). Here f± = (|f | ± f)/2.

Proof. First observe that Lf + λf = 0 means that

f(v)
(∑
u∈V

b(u, v) + λm(v)
)

=
∑
u∈V

b(u, v)f(u)

for all v ∈ V. Since the second factor on the LHS is positive, we get

|f(v)|
(∑
u∈V

b(u, v) + λm(v)
)

=
∣∣∣∑
u∈V

b(u, v)f(u)
∣∣∣ ≤∑

u∈V
b(u, v)|f(u)|,

which immediately implies that

(L|f |)(v) =
1

m(v)

∑
u∈V

b(u, v)(|f(v)| − |f(u)|)

=
1

m(v)

(
|f(v)|

∑
u∈V

b(u, v)−
∑
u∈V

b(u, v)|f(u)|
)

≤ −λ|f(v)|.
Therefore, L|f | ≤ −λ|f | ≤ 0 and hence |f | is subharmonic w.r.t. (V,m; b). It
remains to notice that for real-valued f by linearity we have

Lf± =
1

2

(
L|f | ± Lf

)
≤ 1

2

(
− λ|f | ∓ λf

)
≤ 0. �

6.5.2. Harmonic functions on metric graphs. In the case of metric graphs,
one can start with the definition for strongly local Dirichlet forms (see, e.g., [195]).

Definition 6.44. A function f : G → R is called harmonic w.r.t. (G, µ, ν) if
f ∈ H1

loc(G) and ∫
G
∇f(x)∇g(x)ν(dx) = 0,(6.5.2)

for all 0 ≤ g ∈ H1
c (G) = H1(G) ∩ Cc(G).

If for an open subset Y ⊆ G, (6.5.2) holds for all 0 ≤ g ∈ H1(G) ∩ Cc(Y ) with
compact support in Y , then f is called harmonic on Y .

Replacing the equality in (6.5.2) by the inequality “ ≤ ” (resp., by “ ≥ ”),
one gets the definition of a subharmonic (resp., superharmonic) function on Y ⊆ G
w.r.t. (G, µ, ν).

Remark 6.45. We stress that the notion of harmonic/subharmonic/superhar-
monic functions is independent of the weight µ : G → (0,∞) (since this obviously
holds for the space H1

loc(G)) and hence we could also call them harmonic/sub-
harmonic/superharmonic functions w.r.t. (G, ν). However, for our purposes we
will mainly be interested in functions which additionally belong to Lp(G;µ) and of
course these spaces do depend on the edge weight µ.

If it is clear from the context which graph (weighted graph or weighted metric
graph) is meant, we shall simply say harmonic, subharmonic, etc. Notice also
that on each edge the structure of the corresponding Sobolev space is very well
understood and hence we can rewrite the above definition in a more convenient

†Usually, for λ > 0 such a function is called λ-harmonic.
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form. Recall (see Section 4.3) that for each fixed model of (G, µ, ν), CA(G\V)
denotes the space of continuous edgewise affine functions on G.

Lemma 6.46. A function f : G → R is harmonic w.r.t. (G, µ, ν) exactly when
f ∈ CA(G\V) for some model of (G, µ, ν) and, moreover, f satisfies Kirchhoff
conditions at each vertex v ∈ V.

Proof. Clearly, we only need to prove the “only if” claim. Fix an arbitrary
model of (G, µ, ν). Upon choosing test functions g ∈ H1

c (G) whose support is
contained in single edges, it is straightforward to see that f is affine on each edge
e ∈ E (indeed, one simply needs to use the fact that a distributional solution to
f ′′ = 0 is a classical solution). Next, for each vertex v ∈ V, choosing test functions
supported in a sufficiently small vicinity of v, a straightforward integration by parts
shows that f must satisfy Kirchhoff conditions at v ∈ V. �

Remark 6.47. Let us stress that by Lemma 6.46 the set of harmonic functions
is independent of the choice of a model of G.

Using the same arguments one can easily show the following result:

Lemma 6.48. A function f ∈ CA(G\V) is subharmonic (superharmonic) w.r.t.
(G, µ, ν) exactly when∑

~e∈~Ev

ν(e)∂~ef(v) ≥ 0,
( ∑
~e∈~Ev

ν(e)∂~ef(v) ≤ 0
)

(6.5.3)

for all v ∈ V.

Remark 6.49. (i) Similar to the discrete situation, Definition 6.44 can
be reformulated in terms of the Laplacian ∆ (see (2.4.3)). More specif-
ically, the LHS in (6.5.2) allows us to define ∆ on locally H1 functions
in a standard way (as a distribution on the test function space H1

c (G)).
Then a locally H1 function f is called harmonic (resp., subharmonic,
superharmonic) if ∆f = 0 on G (resp., ∆f is a nonpositive/nonnegative
distribution on G). This definition becomes transparent for edgewise affine
functions. If f ∈ CA(G\V) for some model of (G, µ, ν), then a straightfor-
ward integration by parts shows that, as a distribution,

∆f =
∑
v∈V

( ∑
~e∈~Ev

ν(e)∂~ef(v)
)
δv.(6.5.4)

Comparing (6.5.4) with Lemma 6.46 and Lemma 6.48, one concludes that
f is harmonic (subharmonic or superharmonic) exactly when ∆f = 0
(∆f ≥ 0 or ∆f ≤ 0).

(ii) We stress that there are sub-/superharmonic functions which are not edge-
wise affine. For instance, it is easy to check that a continuous, edgewise
H2-function f is subharmonic exactly when f satisfies (6.5.3) and is sub-
harmonic on every edge. However, for our purposes it will suffice to con-
sider only edgewise affine sub-/superharmonic functions.

It is not difficult to notice that the above results immediately connect harmonic,
subharmonic, and superharmonic functions on graphs and on metric graphs.
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Lemma 6.50. Let (G, µ, ν) be a weighted metric graph together with a fixed
model. Let also (V,m; b) be the corresponding weighted graph defined by (3.1.3)–
(3.1.6). Then f ∈ CA(G\V) is harmonic (resp., subharmonic, superharmonic) if
and only if f = ıV(f) = f |V is harmonic (resp., subharmonic, superharmonic) w.r.t.
(V,m; b). Here the map ıV is defined by (4.3.2).

Proof. Notice that for an edgewise affine function f , its slope at v on an

oriented edge ~e ∈ ~Ev having vertices v and u is simply given by

∂~ef(v) =
f(u)− f(v)

|e|
.

Thus, comparing (6.5.4) with (3.1.6) and then using Lemma 6.46 (resp., Lemma 6.48),
one finishes the proof. �

We also need the following analog of Lemma 6.43.

Lemma 6.51. Suppose f ∈ H1
loc(G) solves ∆f = λf for some λ ∈ R≥0 and,

moreover, satisfies Kirchhoff conditions at all the vertices. Then |f | is subharmonic.
If in addition f is real-valued, then both f+ and f− are subharmonic.

Proof. Due to linearity, we can assume without loss of generality that f is
real-valued. Fix some model of (G, µ, ν). Then the equality ∆f = λf implies that f
is a classical solution to ν(e)f ′′ = λµ(e)f on each edge e ∈ E (upon an identification

of e with the interval Ie = [0, |e|]). Hence it is easy to show that |f |′′ ≥ λµ(e)
ν(e) |f |,

where the inequality is understood in the distributional sense (e.g., use the Kato
inequality [182, Theorem X.27]). It remains to notice that∑

~e∈~Ev

ν(e)∂~e|f |(v) ≥ 0,

for all vertices v ∈ V. Since f is continuous at v ∈ V, in the case f(v) 6= 0, |f |
coincides with sign(f(v))f in a small vicinity of v and hence Kirchhoff conditions
would imply that ∑

~e∈~Ev

ν(e)∂~e|f |(v) =
∑
~e∈~Ev

ν(e)∂~ef(v) = 0

at every such vertex. If f(v) = 0, then it is straightforward to see that in this case

0 =
∑
~e∈~Ev

ν(e)∂~ef(v) ≤
∑
~e∈~Ev

ν(e)∂~e|f |(v),

which finishes the proof. �

The following result is a standard characterization via the mean value property.

Lemma 6.52 (Mean value property). Let f ∈ CA(G\V) be real-valued. Then f
is harmonic (subharmonic, superharmonic) if and only if for each v ∈ V

1

µ(Br(v; %η))

∫
Br(v;%η)

f(x)µ(dx) = f(v),
(
≥ f(v), ≤ f(v)

)
(6.5.5)

for all sufficiently small r > 0. Here %η is the intrinsic metric on (G, µ, ν) and
Br(v; %η) is the distance ball in (G, %η) of radius r > 0 with the center at v.



102 6. GRAPH LAPLACIANS AS BOUNDARY OPERATORS

Proof. In fact, the mean value property is a straightforward consequence
of Lemma 6.46 (resp., and Lemma 6.48). Indeed, suppose r > 0 is such that the
corresponding distance ball Bη(v; r) is isomorphic to a star-shaped set (2.1.4). Then
taking into account that f is edgewise affine, we easily get∫

Br(v;%η)

f(x)µ(dx) =
∑
e∈Ev

∫
e∩Br(v;%η)

f(xe)µ(dxe)

=
∑
~e∈~Ev

1

2

(
2f(v) + ∂~ef(v)

r|e|
η(e)

) r|e|
η(e)

µ(e)

= f(v)r
∑
~e∈~Ev

√
µ(e)ν(e) +

r2

2

∑
~e∈~Ev

ν(e)∂~ef(v).

It remains to notice that

µ(Br(v; %η)) =
∑
~e∈~Ev

µ(e)
r|e|
η(e)

= r
∑
~e∈~Ev

√
µ(e)ν(e). �

Remark 6.53. We stress that the mean-value property on weighted metric
graphs holds only locally. That is, even for a harmonic function f on (G, µ, ν),
the equality (6.5.5) can fail when the integral is taken over a ball Br(v; %η) with
large radius r. Indeed, problems arise already if Br(v; %η) contains more than one
vertex of degree ≥ 3 and the latter is not at all surprising since these vertices can
be considered as singularities of one-dimensional manifolds (see Remark 2.4).

6.5.3. Liouville-type properties on graphs. An important question is which
subspaces of harmonic functions are trivial, that is, which conditions ensure the
uniqueness of solutions to the Helmholz equation

∆u = λu.

Such results are referred to as Liouville-type theorems. In Riemannian geometry
Lp-Liouville theorems for harmonic functions were studied for example by S.T. Yau
[214], L. Karp [123], P. Li and R. Schoen [151] and many others. Karp’s and Yau’s
theorems were later generalized by K.-T. Sturm [195] to the setting of strongly
local, regular Dirichlet forms. In particular, in the case of metric graphs Sturm’s
result reads as follows (cf. Corollary 1(a) in [195]).

Theorem 6.54 (Yau’s Lp-Liouville theorem on metric graphs [195]). If (G, µ, ν)
is a locally finite weighted metric graph such that (G, %η) is complete, then every
nonnegative subharmonic function which belongs to Lp(G;µ) for some p ∈ (1,∞)
is identically zero. In particular, if f ∈ Lp(G;µ) is harmonic, then f ≡ 0.

In the case of weighted graphs, Liouville-type theorems have been investigated
in, e.g., [106], [183], [162], [108] and the analogs of Yau’s and Karp’s theorems
were established quite recently by B. Hua and M. Keller [111].

Theorem 6.55 (Yau’s Lp-Liouville theorem on graphs [111]). Let b be a locally
finite connected graph over (V,m) and let % be an intrinsic path metric of finite jump
size. If (V, %) is complete as a metric space, then every nonnegative L-subharmonic
function which belongs to `p(V;m) for some p ∈ (1,∞) is identically zero. In
particular, if f ∈ `p(V;m) is L-harmonic, then f ≡ 0.
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Remark 6.56. We stated Corollary 1.2 from [111] in a weaker form in order
to simplify considerations. In fact, the assumption that % is a path metric can
be weakened. More precisely, the conclusion remains valid for a general intrinsic
metric % of finite jump size such that % generates the discrete topology on V and
(V, %) is complete (the latter follows by a simple comparison argument with the
path metric %p constructed in Remark 6.32(ii)).

In fact, the connection between intrinsic metrics on weighted graphs and cable
systems shows that Theorem 6.55 easily follows from Theorem 6.54:

Proof of Theorem 6.55. Let % be an intrinsic path metric for (V,m; b) hav-
ing finite jump size. Then by Lemma 6.31 there is a canonical cable system (G, µ, µ)
such that % coincides with the restriction of %η = %0 onto V × V. Clearly, (V, %) is
complete if and only if so is (G, %η).

Take now a nonnegative function f : V → R≥0 which is L-subharmonic. By

Lemma 6.50, the corresponding function f = ı−1
V (f) is nonnegative and subhar-

monic w.r.t. (G, µ, ν). If f ∈ `p(V;m) for some p ∈ (1,∞), then f ∈ Lp(G;µ)
according to Lemma 4.2. Applying Theorem 6.54, we conclude that f is trivial and
hence so is f = ıV(f). �

Remark 6.57. Using the same line of reasoning and also connections between
volume growth of metric graphs and weighted graphs (see Lemma 6.39), one can
easily connect, for example, Karp’s Lp Liouville theorems for metric graphs and
weighted graphs (see Section 7.4), Grigor’yan’s L1 theorem, etc.

6.6. Life without loops II: Jacobi matrices on graphs

This section deals with Problem 6.4. For a given β : V → R and a connected
graph q over V satisfying the properties (i), (ii) and (iv) of Section 2.2, consider a
second order symmetric difference expression

(6.6.1) (τf)(v) = β(v)f(v)−
∑
u∈V

q(u, v)f(u), v ∈ V.

Alternatively, its action can be described by the infinite symmetric matrix H =
(huv)u,v∈V given by

huv =

{
β(v), u = v,

−q(u, v), u 6= v.

As described in Section 2.2, we can associate in `2(V) the minimal and maximal
operator with the difference expression (6.6.1).

Remark 6.58. Every difference operator (6.6.1) is a Schrödinger-type operator
on `2(V) in the sense of Remark 2.10: the weight function m = 1V on V and its
coefficients are explicitly given by

b(u, v) = q(u, v), c(v) = β(v)−
∑
u∈V

q(u, v).(6.6.2)

Symmetric difference expressions (6.6.1) are also known as Jacobi matrices on
graphs (see, e.g., [8], [9], [10]).

On the other hand, every Schrödinger-type operator in `2(V;m) is unitar-
ily equivalent (by means of the map U : `2(V;m) → `2(V) defined by (3.2.40))
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to a Schrödinger operator in `2(V) and hence from this perspective the class of
Schrödinger-type operators on `2(V) is sufficiently large.

The next result answers Problem 6.4 in the affirmative.

Theorem 6.59. Let q : V × V → [0,∞) be a locally finite connected graph over
V and let Gq = (V, Eq) be the underlying simple graph (see Remark 2.7). Then there
exist edge weights ν : Eq → (0,∞) and edge lengths | · | : Eq → (0,∞) such that

(6.6.3) |e|2 ≤ ν(e)

for all e ∈ Eq, and

q(u, v) =
ν(eu,v)

|eu,v|
(∑

e∈Eu |e|
)1/2(∑

e∈Ev |e|
)1/2 ,(6.6.4)

for all eu,v ∈ Eq.

Notice that the difference expression (3.2.38) is a special case of (6.6.1):

β(v) =
1

m(v)

(
α(v) +

∑
u∈V

b(u, v)
)
, q(u, v) =

b(u, v)√
m(u)

√
m(v)

.(6.6.5)

Moreover, the minimal operator h̃α associated with (6.6.1), (6.6.5) shares many of
its basic spectral properties with the Laplacian Hα (see Theorem 3.1 and its proof),
however, there is in general no connection between their parabolic properties. The-
orem 6.59 implies the following result.

Corollary 6.60. Every second-order difference operator (6.6.1) arises as a
boundary operator of a Laplacian with δ-couplings. More precisely, there is a
weighted metric graph (G, µ, ν) such that for its simple model (V, Eq, | · |, µ, ν) and
a function α : V → R the relations (6.6.5) holds true, where the graph (V,m; b) is
given by (3.1.1)–(3.1.5) and (3.1.6).

The proof of Theorem 6.59 is based on the following two lemmas, however, first
we need to recall a few basic notions. A connected simple graph (V, E) without
cycles is called a tree. We shall denote trees by T . Notice that for any two vertices
u, v on a tree T there is exactly one path P connecting u and v, and hence the
combinatorial distance on T is exactly the number of edges in the path connecting
u and v. A tree T = (V, E) with a distinguished vertex o ∈ V is called a rooted tree
and o is called the root. Each vertex v ∈ V(T ) having degree 1 is called a leaf.

Lemma 6.61. Let T = (V, E) be a locally finite infinite tree. Then there is an
infinite subtree T∞ = (V∞, E∞) ⊆ T such that T∞ has at most one leaf and T is
obtained by attaching to each vertex v ∈ V∞ a (possibly empty) finite tree Tv.

Proof. The proof is by construction, which can informally be considered as
“cutting away” finite subtrees from a given tree. Fix a root o ∈ V for T and order
the vertices of T according to combinatorial spheres. The latter also introduces a
natural orientation on T : for every edge e its initial vertex eı belongs to the smaller
combinatorial sphere.

Next, let us define the standard partial ordering on T . For two edges e, ẽ ∈ E ,
we write ẽ ≺ e, if the path from the root o to the terminal vertex eτ of e passes
through ẽ. For any e ∈ E , denote by Te ⊆ T the subtree with the edge set

E(Te) = {ẽ ∈ E | e ≺ ẽ}.
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Since “ ≺ ” is transitive on E , e ∈ Tẽ implies that Te ⊆ Tẽ. Moreover, define

E∞v = {e ∈ E+
v | Te is infinite},(6.6.6)

where E+
v is the sets of outgoing edges at v, see (2.1.1), and then for each v ∈ V

denote by Tv the (possibly empty) finite subtree of T with the edge set

(6.6.7) E(Tv) =
⋃

e∈E+v \E∞v

E(Te).

After all these lengthy preparations, we finally begin our construction. For
every edge e ∈ E+

o = Eo consider the subtree Te. Since T is infinite, there is at least
one edge e ∈ E+

o such that the corresponding subtree Te is infinite and hence the
set E∞o is non-empty. Denote the set of terminal vertices of all edges e ∈ E∞o by
V∞1 . Notice that V∞1 is a subset of the first combinatorial sphere S1. Next for each
v ∈ V∞1 consider the corresponding edge sets E∞v . Again all of them are non-empty
since, by construction, each Te is infinite. The union of all terminal vertices of
e ∈ E∞v with v ∈ V∞1 is denoted by V∞2 . Clearly, V∞2 is a non-empty subset of
the second combinatorial sphere S2. Continuing this process, we end up with an
infinite sequence of vertex sets V∞n ⊆ Sn, n ≥ 1. Since our initial tree T is infinite
but locally finite, every vertex set V∞n , n ≥ 1 is non-empty.

Now we define T∞ as the subtree of T with the vertex set V∞ := {o}∪{V∞n }n≥1.
It follows from our construction that T∞ is an infinite tree with the only possible
leaf o (this happens exactly when #E∞o = 1). Moreover, it is immediate to see that
attaching to each v ∈ V∞ the finite subtree Tv defined by (6.6.7) we recover the
given tree T . �

The next result proves Theorem 6.59 for trees:

Lemma 6.62. Let q be a locally finite graph over V such that the associated
simple graph Gq (see Remark 2.7) is an infinite tree T = (V, E). Then there exist
edge weights ν : E → (0,∞) and edge lengths | · | : E → (0,∞) such that (6.6.3)
and (6.6.4) hold true for all e ∈ E.

Proof. We divide the proof in several steps.
(i) First of all, notice that the existence of ν and |·| satisfying (6.6.3) and (6.6.4)

for all e ∈ E is equivalent to the existence of edge lengths | · | satisfying

T (eu,v) :=
|eu,v|(∑

e∈Eu |e|
)1/2(∑

e∈Ev |e|
)1/2 ≤ q(u, v),(6.6.8)

for each u ∼ v, since in this case a suitable choice of the edge weight ν is simply
given by

(6.6.9) ν(e) := |e|2 q(e)
T (e)

, e ∈ E .

Here and below we use the obvious notation q(eu,v) = q(u, v) for each e = eu,v ∈ E .
(ii) Next, by Lemma 6.61, we can find an infinite rooted subtree T∞ = (V∞, E∞)

of T such that T∞ has at most one leaf at its root o and such that T is obtained
by attaching to each v ∈ V∞ a (possibly empty) finite tree Tv. Clearly,

E \ E∞ =
⋃

v∈V∞

E(Tv).
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(iii) We start by assigning edge lengths to each finite non-empty subtree Tv,
v ∈ V∞. Consider Tv as a rooted tree with the root at v, o(Tv) = v. Let h(v) be
the height of Tv, i.e., the maximal combinatorial distance of a vertex in Tv to v.
For n ∈ {1, . . . , h(v)}, denote by En(Tv) the set of edges e ∈ E(Tv) between the
combinatorial spheres Sn−1(Tv) and Sn(Tv) of Tv. We will assign lengths for the
sets En(Tv) inductively in n starting from the top of Tv and going downwards to
o(Tv). More precisely, we define positive reals `1, . . . , `h(v) by first setting `h(v) = 1
and, if h(v) > 1, inductively

`k−1 := max
e∈Ek(Tv)

`k
q(e)2

=
`k

(mine∈Ek(Tv) q(e))2

for all k ∈ {2, . . . , h(v)}. Next, we put |e| := `k for all e ∈ Ek(Tv), k ∈ {1, . . . , h(v)}.
Clearly, with this choice of lengths we have

T (e) =
`k(∑

e∈Eeı
|e|
)1/2(∑

e∈Eeτ
|e|
)1/2

≤ `k(∑
e∈E−eı

|e|
)1/2(∑

e∈E−eτ
|e|
)1/2 ≤√`k/`k−1 ≤ q(e)

for all e ∈ Ek(Tv) and k ∈ {2, . . . , h(v)}.
(iv) It remains to define edge lengths for edges in T∞ such that (6.6.8) then

holds true on E∞ and also on each non-empty edge set E1(Tv), v ∈ V. Again, we will
assign edge lengths inductively for the sets En(T∞), but now moving “upwards” the
tree T∞. Here En(T∞), n ≥ 1 is the set of edges e ∈ E∞ between the combinatorial
spheres Sn−1(T∞) and Sn(T∞) in T∞.

For n = 1, we set |e| = 1 for all e ∈ E1(T∞) if E1(T∞) = E∞o = Eo (that is, if
To is empty). Otherwise, we define

˜̀
1 := max

e∈E1(To)

|e|
q(e)2

=
`1(o)

(mine∈E1(To) q(e))2
,

and then set |e| = ˜̀
1 for all e ∈ E1(T∞). Hence for each e ∈ E1(To) we get

T (e) =
`1(o)(∑

e∈Eo |e|
)1/2(∑

e∈Eeτ
|e|
)1/2

≤ `1(o)(∑
e∈E1(To) |e|

)1/2(∑
e∈E1(T∞) |e|

)1/2
≤
√
`1(o)/˜̀1 ≤ q(e).

Now assume we have already defined edge lengths for edges in Ek(T∞) for all
k ≤ n, such that (6.6.8) holds true on each

Ẽk := Ek−1(T∞) ∪
⋃

v∈Sk−1

E1(Tv)

for k ≤ n. Now we define again

˜̀
n+1 := max

e∈Ẽn+1

|e|
q(e)2

,
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and then we set |e| = ˜̀
n+1 for all e ∈ En+1(T∞). By our choice of the root, every

vertex v ∈ Sn(T∞) is adjacent to at least one e ∈ En+1(T∞). Hence T (ẽ) ≤ q(ẽ) for

all ẽ in Ẽn+1. Since
⋃
n≥1 En(T∞) = E∞, by induction we obtain edge lengths on E

such that (6.6.8) holds true for all e ∈ E . �

Now we are ready to prove Theorem 6.59 and Corollary 6.60.

Proof of Theorem 6.59. As in the proof of Lemma 6.62, it suffices to show
the existence of lengths | · | satisfying (6.6.8) since in this case a suitable choice
of edge weights is provided by (6.6.9). The main idea behind our construction is
the observation that we assign weights and lengths to edges, and hence we can
“transform” in a suitable way our graph to a tree and then apply Lemma 6.62 .

Suppose that T is a spanning tree for the underlying combinatorial graph Gq.
Denote the edge set of T by E(T ) ⊆ Eq. Now we decouple each remaining edge
eu,v ∈ Eq \ E(T ) at exactly one vertex (say, v) and thereby transform it to a leaf
attached to the remaining vertex u.

Applying this to all edges e ∈ Eq \ E(T ) yields a new graph G̃q. Clearly, G̃q is

a tree and its edge set Ẽq can be identified in the above way with Eq. Hence every

choice of edge lengths | · | on Gq corresponds to a respective choice on G̃q. Moreover,
by construction we have

TGq (e) ≤ TG̃q (e)

for all e ∈ Eq, where TG̃q (e) and TGq (e) are given by (6.6.8). More precisely, within

the identification we have Ẽv ⊆ Ev for every v ∈ V and Ẽve = {e} for each of the
new vertices ve, e ∈ Eq \ E(T ). Hence

TGd(eu,v) =
|eu,v|(∑

e∈Eu |e|
)1/2(∑

e∈Ev |e|
)1/2 ≤

√
|eu,v|(∑

e∈Eu |e|
)1/2 = TG̃d(eu,v)

for every eu,v ∈ Eq \ E(T ) and similar for each e ∈ E(T ). Thus every choice of edge

lengths satisfying (6.6.8) for G̃q defines a suitable choice of edge lengths for Gq. It
remains to apply Lemma 6.62. �

Proof of Corollary 6.60. We simply need to set µ(e) = 1 for each e ∈ Eq
and then choose ν and | · | as in Theorem 6.59. By construction, this implies
η(e) ≤ 1 for all edges e ∈ Eq. Taking into account (6.6.4), it follows that q coincides
with (6.6.5). Moreover, choosing the function α : V → R in a suitable way, we can
achieve that β coincides with (6.6.5) as well. �

Remark 6.63. A few remarks are in order.

(i) Theorem 6.59 can be seen as an extension of Proposition 5.18 to an arbi-
trary locally finite graph.

(ii) According to the proof of Theorem 3.1, the graph Laplacian h0
α asso-

ciated in `2(V;m) with (3.1.7) is unitarily equivalent (by means of the
map U : `2(V;m)→ `2(V) defined by (3.2.40)) to the minimal symmetric

operator h̃0
α defined in `2(V) by (6.6.1) with the coefficients (6.6.5) and

therefore, by Theorem 3.1, h̃0
α shares its basis spectral properties with the

Laplacian H0
α. However, the map U does not preserve the Dirichlet form

structure (e.g., the quadratic form of h̃0
α may fail to be a Dirichlet form
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even if α ≡ 0) and hence there is in general no connection between their
parabolic properties.

6.7. Further comments and open problems

We would like to conclude this part with a few comments.

1. The results of this chapter suggest to view connections between weighted
graphs and metric graphs from geometric perspective. Namely, it is proved that
with every weighted locally finite graph (V,m; b) one can always associate at least
one cable system, that is, a weighted metric graph (G, µ, ν) such that for one of its
models the weight m and the graph b are expressed via (3.1.1)–(3.1.5) and (3.1.6).
Next, (G, µ, ν) is always equipped with the intrinsic path metric %η and it turns out
that the induced metric %V = %η|V×V is intrinsic w.r.t. the corresponding graph
(V,m; b). Moreover, the spaces (V, %V) and (G, %η) are quasi-isometric and this fact
connects their large scale geometric properties. However, their local combinatorial
structures are also connected in an obvious way and these facts together provide
a partial explanation for the close connections between graph Laplacians and met-
ric graph Laplacians established in Chapters 3 and 4. Notice also that (G, %η) is a
length space, a widely studied class of metric spaces, and this provides a lot of tools
and techniques. This is reminiscent of the following common practice in geomet-
ric group theory: a finitely generated group can be turned into a length space by
viewing its Cayley graph as an equilateral metric graph equipped with the length
metric %0; moreover, the word metric %comb in this case is nothing but the induced
metric %0|V×V .

2. It is hard to overestimate the role of intrinsic metrics in the progress achieved
for weighted graph Laplacians during the last decade. Surprisingly, the above de-
scribed procedure to construct an intrinsic metric for (V,m; b) in fact provides a
way to obtain all finite jump size intrinsic path metrics on (V,m; b). Moreover,
upon some normalization assumptions on cable systems (e.g., canonical cable sys-
tems) the correspondence between intrinsic weights on (V,m; b) and cable systems
becomes bijective (Theorem 6.34).

3. Let us also briefly mention the following perspective on the results of Chap-
ter 6 and on Problems 6.1–6.4. Suppose a vertex set V is given and consider a
weighted metric graph (V, E , | · |, µE , νE) over V, i.e., a model of a weighted met-
ric graph having V as its vertex set. To this weighted metric graph, the equa-
tions (3.1.5) and (3.1.6) associate a vertex weight m : V → (0,∞) and an edge
weight function b : V × V → [0,∞) with the properties (i)–(iv) of Section 2.2. In
other words, we obtain a map

ΦV : Graphmetr(V) → Graphdiscr(V),(6.7.1)

where Graphmetr and Graphmetr denote the sets of all connected, locally finite
weighted metric graphs and connected, locally finite weighted graphs over V, re-
spectively.

From this point of view, the results in Chapter 3 and Chapter 4 say that the map
ΦV connects the basic spectral and parabolic properties of the respective Laplacian-
type operators, as well as spectral properties of Laplacians with δ-couplings on



6.7. FURTHER COMMENTS AND OPEN PROBLEMS 109

weighted metric graphs and Schrödinger operators on weighted discrete graphs.
Moreover, the results of Section 6.4 connect certain basic geometric features (see
also Proposition 7.38). In terms of this map, the results of Sections 6.2–6.3 and
Section 6.4.4 can be formulated as follows:

• the map ΦV is surjective (see Theorem 6.16).
• when restricted to simple metric graphs, the map ΦV is no longer surjective

(Section 6.2).
• Unfortunately, the map ΦV is not injective, that is, the correspondence

between weighted metric and weighted discrete graphs is not one-to-one.
However, after restricting ΦV further to the class of canonical weighted
metric graphs over V, we can at least describe the preimage Φ−1

V (m, b) of
a locally finite graph (V,m; b) using intrinsic weights (see Theorem 6.34
and the map Ψ given by (6.4.22)).

4. The results of Section 6.6 show that similar connections work for Jacobi
matrices on graphs. We decided not to proceed in this direction and demonstrate
it by only one application in the next chapter. More specifically, in Section 7.1.3
we briefly discuss the self-adjointness problem for the minimal operator associated
with (6.6.1) in `2(V) and prove the analogs of some classical self-adjointness tests for
the usual Jacobi matrices, which also improve several recent results (Theorem 7.17).

5. Taking into account the said above, the following problems remain open.

Problem 6.5. Given a locally finite b graph over (V,m), is there an efficient
way to decide whether it admits a minimal cable system?

This problem can be reformulated in other terms (e.g., given a simple graph,
how can one describe the image of the positive cone C+(E) under the map D∗?).

Of course, stated this way, Problem 6.5 is too complicated to obtain a complete
answer and hence it makes sense either to restrict to some classes of weights (for
constant weights the answer is given by means of a disjoint cycle cover) or to
particular classes of graphs (seems, for antitrees the answer depends on sphere
numbers in a rather nontrivial way).

Taking into account the fact that each graph admits an infinite family of cable
systems, one can specify the above problem:

Problem 6.6. Given a locally finite b graph over (V,m), is there an efficient
procedure/algorithm to construct a cable system with certain desirable properties?

The same kind of questions can be asked about Jacobi matrices on graphs:

Problem 6.7. Given a Jacobi matrix (6.6.1) on a graph, is there an efficient
procedure/algorithm to construct a weighted metric graph such that Jacobi param-
eters admit the representation (6.6.5)?

The direction “from (V,m; b) to cable system” seems to be rather nontrivial
despite the fact that we have provided some constructions. Namely, Problems 6.6
and 6.7 are of practical importance since it is desirable to get as accurate informa-
tion as possible regarding the properties of the obtained cable system. For instance,
in Theorem 7.19 it is desirable to know the qualitative behavior of the correspond-
ing length function | · |, however, even for the usual Jacobi matrix it is not trivial
to get this information out of its Jacobi parameters (see (5.3.2)).





CHAPTER 7

From Continuous to Discrete and Back

Our main goal in this chapter is to employ the established connections between
graph Laplacians and metric graph Laplacians in order to prove new results for
Laplacians on metric graphs as well as to provide another perspective on recent
results for weighted graph Laplacians.

7.1. Self-adjointness

In this section we provide sufficient conditions for the self-adjoint uniqueness,
that is, the self-adjointness of both the minimal and the maximal Kirchhoff Lapla-
cians and hence the equality H0 = H.

7.1.1. Kirchhoff Laplacians. We begin our study with the case α ≡ 0. The
next result is an immediate corollary of Sturm’s extension of Yau’s Lp-Liouville
theorem for strongly local Dirichlet forms [195], see Theorem 6.54.

Theorem 7.1. Let (G, µ, ν) be a weighted metric graph and let %η be the corre-
sponding intrinsic metric defined in Section 6.4.1. If (G, %η) is complete as a metric
space, then the minimal Kirchhoff Laplacian H0 is self-adjoint and H0 = H.

Proof. Assume that H0 is not self-adjoint. Since H0 is nonnegative, this
means that ker(H + I) 6= {0}, that is, there is 0 6= f ∈ dom(H) such that ∆f = f
(see [182, Theorem X.26]). However, by Lemma 6.51, |f | is subharmonic. More-
over, |f | ∈ L2(G;µ) since f ∈ dom(H). On the other hand, if (G, %η) is complete as
a metric space, then Theorem 6.54 implies that f ≡ 0. This contradiction completes
the proof. �

Remark 7.2. A few remarks are in order.

(i) A different proof of Theorem 7.1 can be found in [95, Theorem 3.49].
Moreover, one more proof is provided by Theorem 7.9 below.

(ii) Simple examples show that the completeness with respect to the intrinsic
path metric is only sufficient. Indeed, take a path graph and assume for
simplicity that µ = ν. In this case, the intrinsic metric %η coincides with
the natural path metric %0 and hence completeness is equivalent to the
infinite length of the path. However, by Lemma 5.2, the self-adjointness
of the Kirchhoff Laplacian is equivalent to the divergence of the series
(5.1.4). For another example see [67, Example 4.14].

(iii) Notice also that by the Hopf–Rinow theorem for metric graphs (see The-
orem 6.36) completeness of (G, %η) is equivalent to bounded compactness
(compactness of distance balls), as well as to geodesic completeness.

As an immediate corollary of Theorem 7.1 and the results in Section 6.4, we ob-
tain the analog of the above result for graph Laplacians, which was first established
in [113, Theorem 2]:

111
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Corollary 7.3 ([113]). Let b be a locally finite graph over (V,m) and let % be
an intrinsic metric which generates the discrete topology on V. If (V, %) is complete
as a metric space, then h0 is self-adjoint and h0 = h.

Proof. We prove the claim in three steps.
(i) Assume first that % is an intrinsic path metric of finite jump size such that

(V, %) is complete. Then, by Lemma 6.31 there is a cable system (G, µ, ν) for
(V,m; b) such that ρ = ρV and (G, %η) is complete as a metric space. Hence the
corresponding minimal Kirchhoff Laplacian H0 is self-adjoint by Theorem 7.1 and
it remains to apply Theorem 3.1(i).

(ii) Suppose now that % = %p is a general intrinsic path metric with weight func-
tion p ≥ 0 such that (V, %) is complete. By the discrete Hopf–Rinow Theorem 6.37,
the completeness is equivalent to the fact that

(7.1.1)
∑
n≥0

p(vn, vn+1) =∞

for any infinite path P = (v0, v1, v2, . . . ) (i.e., b(vn, vn+1) > 0 for all n ≥ 0, see
(6.4.5)). However, introducing the new weight function p̃ := min{1, p}, we arrive at
another path metric %̃ := %p̃, which is strongly intrinsic with respect to (V,m; b) (by
construction) and, moreover, has jump size at most 1. It is not hard to show (e.g.,
by employing the Hopf–Rinow theorem 6.37 once again) that (V, %) is complete
exactly when so is (V, %̃) and this finishes the proof in this case.

(iii) Finally, assume that % is an intrinsic metric which generates the discrete
topology on V and such that (V, %) is complete. We show how to associate with %
an intrinsic path metric %̃ on V such that (V, %̃) is complete as well. Consider the
weight p : V×V → [0,∞) given by p(x, y) := %(x, y) whenever x ∼ y and p(x, y) = 0
if x 6∼ y. By construction, p is an intrinsic weight and the associated intrinsic path
metric %̃ = %p satisfies ρ ≤ %̃. Moreover, since both %̃ and % generate the discrete
topology on V, the completeness of (V, %̃) follows by comparison. This completes
the proof in the general case. �

Remark 7.4. In the context of manifolds, Theorem 7.1 and Corollary 7.3 are
known as Gaffney-type theorems.

The following results can be seen as a demonstration of the “from discrete
to continuous” approach. First one can replace the completeness condition by a
weaker one formulated in terms of the weighted degree function.

Lemma 7.5. Let (G, µ, ν) be a weighted metric graph. Suppose that for some
model of finite intrinsic size the weighted degree function (2.2.8) with the vertex and
edge weights defined by (3.1.5) and (3.1.6) is bounded on finite radius metric balls
of (V, %V). Then the minimal Kirchhoff Laplacian H0 is self-adjoint. In particular,
H0 is self-adjoint if Deg is bounded on V.

Here %V is the restriction of %η onto V × V defined by (6.4.13).

Proof. If Deg is bounded on V, then, by Lemma 2.9, the corresponding graph
Laplacian h0 is bounded and hence self-adjoint. Therefore, by Theorem 3.1(i), the
minimal Kirchhoff Laplacian H0 is also self-adjoint.

Assume now that Deg is bounded on distance balls of (V, %V). By Lemma 6.25
(see also Remark 6.26(i)), %V is intrinsic and hence applying Theorem 1 from [113]
we conclude that h0 is self-adjoint. It remains to apply Theorem 3.1(i). �
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Remark 7.6. Notice that Lemma 7.5 improves Theorem 7.1. Indeed, the
assumption of Lemma 7.5 is satisfied if (G, %η) is complete since in this case distance
balls in (V, %V) are finite by the Hopf–Rinow theorem 6.37.

Theorem 7.7. Let (G, µ, ν) be a weighted metric graph. Assume that for some
model of (G, µ, ν), the vertex set V equipped with the star metric %m (defined by
(6.4.8) and (3.1.5)) is a complete metric space. Then the minimal Kirchhoff Lapla-
cian H0 is self-adjoint.

Proof. By Theorem 3.1(i) (see also Corollary 3.15), H0 is self-adjoint if and
only if h0 is self-adjoint for some model of (G, µ, ν). However, by [130, Theorem 6],
the minimal graph Laplacian defined by (3.3.1) in `2(V;m) is self-adjoint if

(7.1.2)
∑
n≥0

m(vn) =∞

for any infinite path P = (v0, v1, v2, . . . ). However, our graph is locally finite and
hence, by Theorem 6.37, the latter is equivalent to completeness of (V, %m) with
respect to the star path metric (6.4.8). �

Remark 7.8. A few remarks are in order.

(i) Theorem 7.7 can be seen as an extension of Corollary 5.3 to the graph
setting (see also Remark 5.4). In turn, Corollary 5.3 shows that complete-
ness w.r.t. the star path metric %m is only sufficient even in the simplest
case of a path graph. It would be of great interest to find (at least some)
conditions which would guarantee the necessity of completeness w.r.t. the
star path metric for the self-adjointness of both H0 and h0.

(ii) It is not hard to see that the completeness conditions in Theorem 7.1 and
Theorem 7.7 are different. For example, if µ = ν, then the intrinsic metric
%η coincides with the natural path metric %0 and hence the completeness
in Theorem 7.1 is independent of the weight µ. On the other hand, the
completeness in Theorem 7.7 is independent of the weight ν. However, in
certain cases, Theorem 7.1 is a corollary of Theorem 7.7 (e.g., if µ = ν ≡ 1,
see [67, § 4.2]).

7.1.2. Laplacians with δ-couplings. We begin with the following result
proved recently in [143], which says that completeness combined with semibound-
edness guarantees self-adjointness:

Theorem 7.9 (The Glazman–Povzner–Wienholtz theorem on metric graphs).
Let (G, µ, ν) be a weighted metric graph such that (G, %η) is complete. Assume that
α : V → R is such that the minimal Laplacian H0

α is bounded from below. Then H0
α

is self-adjoint and H0
α = Hα.

Remark 7.10. A few remarks are in order.

(i) The proof of Theorem 7.9, which also provides another proof of Theo-
rem 7.1, can be found in [143] (see Theorem 5.1 there). The claim in
Theorem 7.9 remains valid if we add an additive potential V : G → R
to the operator H0

α, which preserves the semiboundedness. Of course,
some regularity assumptions on V must be imposed (e.g., V ∈ L2

loc(G)),
however, it is proved in [143, Theorem 5.1] that one may even allow dis-
tributional potentials V ∈ H−1

loc (G).
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(ii) It is tempting to replace in Theorem 7.9 the completeness w.r.t. %η by
the one w.r.t. the star path metric %m. However, simple counterexamples
show that it is not possible in general (see Remark 7.18(ii) and also the
detailed discussion in [143, § 6]).

(iii) In the simplest case of a path graph Theorem 7.9 was first proved in [4]
(see Theorem I.1 and Rem. III.2 there). However, notice also that in this
case Theorem 7.9 is nothing but Lemma 5.16(ii) (take into account also
Remark 3.24).

(iv) The Glazman–Povzner–Wienholtz theorem has a venerable history. To
the best of our knowledge (see also [28, Appendix D.1] for further infor-
mation), for Schrödinger operators in RN the result was conjectured by
I.M. Glazman and proved by A.Ya. Povzner in 1952 [180]. However, this
paper was published in Russian and was not widely known in the West
until its English translation in 1967. For instance, P. Hartman (1948)
and F. Rellich (1951) proved a one-dimensional version of this result, and
F. Rellich in his invited address at the ICM in Amsterdam (1954) posed
a multi-dimensional result as an open problem, which was solved later by
his student E. Wienholtz [207].

As an immediate application of Theorem 7.9 and the results connecting metric
graphs with weighted graphs, we arrive at the following version of the Glazman–
Povzner–Wienholtz theorem for weighted graphs (see [143, Theorem 6.1]).

Theorem 7.11 (The Glazman–Povzner–Wienholtz theorem on graphs). Let
b be a locally finite graph over (V,m) and assume that there exists an intrinsic
metric % which generates the discrete topology on V and such that (V, %) is complete.
Assume also that α : V → R is such that the minimal Schrödinger operator h0

α is
bounded from below in `2(V;m). Then h0

α is self-adjoint and h0
α = hα.

Proof. Arguing as in the proof of Corollary 7.3, it suffices to consider the case
when % is an intrinsic path metric of finite jump size. Then applying Lemma 6.31, we
obtain a cable system (G, µ, ν) for (V,m; b) such that ρ = ρV and (G, %η) is complete.
Moreover, by Theorem 3.22(i) and Remark 3.24, the corresponding operator H0

α is
bounded from below. Applying Theorem 7.9, we conclude that H0

α is self-adjoint.
It remains to apply Theorem 3.1(i). �

Remark 7.12. To the best of our knowledge the Glazman–Povzner–Wienholtz
theorem for graphs was established first in [165, Theorem 1.3] and [199, Theo-
rem 6.1] (however, under the additional bounded geometry assumption on (V, b))
and then independently in [7, Theorem 1] and [94, Theorem 2.16] (the latter allows
non-locally finite graphs, see also [187]).

Usually, it is not an easy task to find necessary and sufficient conditions which
guarantee semiboundedness. We begin with the simplest situation.

Lemma 7.13. Let (G, µ, ν) be a weighted metric graph together with a fixed
model. Assume that the weighted degree function (2.2.8) with the vertex and edge
weights defined by (3.1.5) and (3.1.6) is bounded on V. Then the Laplacian Hα

with δ-couplings on V is self-adjoint for any α : V → R. Moreover, Hα is bounded
from below exactly when

inf
v∈V

α(v)

m(v)
> −∞,(7.1.3)
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Proof. It suffices to notice that hα = h + α
m . Indeed, α

m is a multiplication

operator in `2(V;m) and hence it is self-adjoint since α is real-valued. Moreover,
it is bounded from below exactly when (7.1.3) holds true. Since h is a bounded
operator by Lemma 2.9, and both self-adjointness and semiboundedness are stable
under bounded perturbations, we complete the proof by applying Theorem 3.1. �

As an immediate corollary we arrive at the following result.

Corollary 7.14. Let (G, µ, ν) be a weighted metric graph together with a fixed
model. If

η∗(G) := inf
e∈E

η(e) > 0,(7.1.4)

then Hα is self-adjoint for any α : V → R. Moreover, it is bounded from below
exactly when (7.1.3) is satisfied.

Proof. Without loss of generality we can assume that the model is simple and
has finite intrinsic size (we can “cut” each loop and multiple edge in the middle, and
also each long edge by adding inessential vertices; clearly, this would not change
Hα and also the corresponding conditions (7.1.3) and (7.1.4) would hold true as
well). Since (7.1.4) means that

|e|µ(e) > η∗(G)2 ν(e)

|e|
for all e ∈ E by (7.1.4), it follows that

Deg(v) =

∑
e∈Ev

ν(e)
|e|∑

e∈Ev |e|µ(e)
≤

∑
e∈Ev

ν(e)
|e|∑

e∈Ev η∗(G)2 ν(e)
|e|

=
1

η∗(G)2
<∞,

and hence Lemma 7.13 applies. �

Remark 7.15. The most common restriction imposed in the quantum graphs
literature is that µ = ν ≡ 1 and infE |e| > 0 on G (see, e.g., [24]). For non-trivial
weights, a similar assumption is sometimes imposed: µ = ν on G and infE |e| > 0,
infE µ(e) > 0. Clearly, in both cases (7.1.4) holds true and Corollary 7.14 applies.

If the weighted degree Deg is unbounded on V, then one needs to proceed more
carefully.

Lemma 7.16. Let (G, µ, ν) be a weighted metric graph together with a fixed
model. Assume that at least one of the following conditions is satisfied:

• (G, %η) is complete as a metric space,
• (V, %m) is complete as a metric space, where %m is the star path metric.

If α : V → R satisfies (7.1.3), then H0
α is self-adjoint and bounded from below.

Proof. If (G, %η) is complete as a metric space, then according to Theorem 7.9
it suffices to show that H0

α is bounded from below. However, this easily follows from
Theorem 3.22(i) (take into account also Remark 3.24), since (7.1.3) implies that h0

α

is lower semibounded.
If (V, %m) is complete as a metric space, combining (7.1.3) with [130, Prop. 3.1]

implies that h0
α is self-adjoint and lower semibounded. By Theorem 3.1, H0

α is self-
adjoint and lower semibounded as well. �
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7.1.3. Jacobi matrices on graphs. Of course, the results from the previous
two subsections immediately apply to Jacobi matrices on graphs – Schrödinger-type
operators in `2(V) (that is, the vertex weight m is constant). Let us quickly recall
the setup (see Section 6.6). For a given β : V → R and a connected graph q over
V satisfying the properties (i), (ii) and (iv) of Section 2.2, consider a second order
symmetric difference expression

(7.1.5) (τf)(v) = β(v)f(v)−
∑
u∈V

q(u, v)f(u), v ∈ V.

As described in Section 2.2, we can associate in `2(V) the minimal J0 = J0
q,β and

maximal operator J = Jq,β with the difference expression (7.1.5).

Theorem 7.17. If at least one of the following conditions is satisfied

(i) There is C ≥ 0 such that

β(v)−
∑
u∈V

q(u, v) ≥ −M(7.1.6)

for all v ∈ V,
(ii) The minimal operator J0 is bounded from below and (V, %p) is complete

as a metric space, where %p is the path metric with the edge weights

p(u, v) =
1√

q(u, v) max(deg(u),deg(v))
(7.1.7)

whenever q(u, v) > 0 and 0 otherwise,

then the operator J is self-adjoint and J0 = J .

Proof. (i) If m ≡ 1V , then the corresponding star path metric %m is noth-
ing but the combinatorial distance on V. Taking into account that (V, %comb) is
complete (this can be either verified directly or by using the Hopf–Rinow theo-
rem 6.37), it remains to apply Lemma 7.16 since α(v) in this case coincides with
the LHS(7.1.6).

(ii) is a straightforward application of the Glazman–Povzner–Wienholtz theo-
rem on graphs. Indeed, choosing m ≡ 1V , b = q and α(v) = LHS(7.1.6), we get
that J0

q,β = h0
α in `2(V) = `2(V;m). It remains to notice that the weight (7.1.7) is

intrinsic:∑
u∼v

q(u, v)p(u, v)2 =
∑
u∼v

1

max(deg(u),deg(v))
≤
∑
u∼v

1

deg(v)
= 1,

for all v ∈ V. It remains to apply Theorem 7.11. �

Remark 7.18. A few remarks are in order.

(i) Theorem 7.17 can be seen as an extension of Wouk’s tests for Jacobi ma-
trices to the graph setting (compare (i) and (ii) with [212, Theorem 3(c)
and Theorem 3(d)], see also [2, Problems I.3 and I.4]). On the other
hand, Wouks test [212, Theorem 3(d)] can be seen as the analog of a
one-dimensional predecessor of the Glazman–Povzner–Wienholtz theorem
proved by P. Hartman (1948) and F. Rellich (1951) (see [143, Rem. 6.5]
for further details).



7.1. SELF-ADJOINTNESS 117

(ii) It is well known that even for Jacobi matrices (5.2.8) one cannot replace
(7.1.6) by the semiboundedness of the minimal operator J0. This, in
particular, implies that one cannot replace the intrinsic path metric by
the star path metric %m in the completeness assumption of Glazman–
Povzner-Wienholtz theorems.

(iii) Under the additional bounded degree assumption, supV deg(v) < ∞,
the above result was established in [199, Theorem 6.1] and [165, The-
orem 1.3].

Let us give one more sufficient condition for self-adjointness. Recall that, ac-
cording to Theorem 6.59, for any locally finite graph q over V one can find edge
lengths |·| and weights ν satisfying (6.6.3) and (6.6.4). For a given |·| : Eq → (0,∞),
define the vertex weight m : V → (0,∞) by setting

mq(v) =
∑
u∼v
|eu,v|, v ∈ V.(7.1.8)

Taking into account (6.6.4), let us also introduce the graph b = bq over V by setting

bq(u, v) =

{
ν(eu,v)
|eu,v| , q(u, v) > 0,

0, q(u, v) = 0.
(7.1.9)

Theorem 7.19. Let q be a locally finite graph over V and β : V → R. Suppose
that | · | : Eq → (0,∞) and ν : Eq → (0,∞) are edge lengths and weights satisfying
(6.6.3) and such that q admits the representation (6.6.4). If at least one of the
following conditions is satisfied

(i) (V, %m) is complete, where %m is the star path metric (see Example 6.20(iii))
with m = mq, and there is M ≥ 0 such that

β(v)−
∑
u∈V

q(u, v)

√
m(u)

m(v)
≥ −M(7.1.10)

for all v ∈ V,
(ii) The minimal operator J0 is bounded from below and (V, %b) is complete,

where %b is the natural path metric (see Example 6.20(ii)) with b = bq,

then the operator J is self-adjoint and J0 = J .

Proof. Notice that the minimal operator J0 is unitarily equivalent to the
operator h0

α acting in `2(V;m) and associated with the graph (V,m; b) whose coef-
ficients are defined via (6.6.5), that is,

b(u, v) = bq(u, v) = q(u, v)
√
m(u)m(v), α(v) = β(v)mq(v)−

∑
u∈V

bq(u, v).

If condition (i) is satisfied, then we simply need to apply Lemma 7.16(ii) to h0
α.

Assume now that (ii) holds true. Observe that the natural path metric %b is
intrinsic w.r.t. (V,m; b):∑

u∼v
b(u, v)pb(u, v)2 =

∑
u∼v

ν(eu,v)

|eu,v|
|eu,v|2

ν(eu,v)
=
∑
u∼v
|eu,v| = m(v), v ∈ V.

It remains to apply Theorem 7.11. �
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7.1.4. Semiboundedness and criticality theory on graphs. Condition
(7.1.3) means that the semiboundedness is preserved if the strength α : V → R
is not too negative. In fact, (7.1.3) can be improved by using the concept of
relatively bounded perturbations (see, e.g., [125], [182]). Assume for a moment
that α : V → (−∞, 0] is non-positive. Then α is called form bounded with respect
to h0 if there are ε ≥ 0 and γ ≥ 0 such that

∑
v∈V
|α(v)||f(v)|2 ≤ ε

2

∑
u,v∈V

b(u, v)|f(u)− f(v)|2 + γ
∑
v∈V

m(v)|f(v)|2(7.1.11)

for all f ∈ Cc(V). If (7.1.11) holds with some ε < 1, then α is called strongly form
bounded. Notice that (7.1.11) is nothing but〈 |α|

m
f, f
〉
`2(V;m)

≤ ε q[f ] + γ‖f‖2`2(V;m).

Clearly, if α satisfies (7.1.3), then we can take ε = 0 in (7.1.11), which further
means that the multiplication operator α is bounded in `2(V;m). The importance
of this concept stems from the KLMN theorem (see, e.g., [182]): if α : V → (−∞, 0]
is strongly form bounded, then the form qα = q + α defined as a form sum with
dom(qα) = dom(q) is closed and bounded from below. Combining this result further
with the Glazman–Povzner–Wienholtz theorem for graphs, we would be able to get
the self-adjoint uniqueness for Laplacians with δ-couplings once the negative part
of α satisfies (7.1.11) and (G, %η) is complete.

To proceed further, let us recall the following notion from [138]. For con-
venience reasons, for each real-valued function ω : V → R, we shall denote the
corresponding quadratic form by the same letter, that is,

ω[f ] :=
∑
v∈V

ω(v)|f(v)|2, f ∈ Cc(V).

Definition 7.20 ([138]). Let b be a connected, locally finite graph over (V,m)
and let q = qb,0 be the corresponding energy form in `2(V,m). For λ ≥ 0, the
weight ω : V → [0,∞) is called λ-critical w.r.t. (V,m; b) (for λ = 0, it is simply
called critical) if

• the form q+ λm−ω is nonnegative on Cc(V), that is, (q+ λm)[f ] ≥ ω[f ]
for all f ∈ Cc(V),

• for each weight ω̃ : V → [0,∞) satisfying ω̃ ≥ ω, the form q + λm − ω̃ is
not nonnegative on Cc(V).

If the last property does not hold true (i.e., there is ω̃ such that 0 6≡ ω̃−ω ≥ 0 and
the form q + λm− ω̃ is nonnegative), then the weight ω is called λ-subcritical.

Combining the notion of criticality with the Glazman–Povzner–Wienholtz the-
orem for graphs, we arrive at the following extension of Lemma 7.16.

Lemma 7.21. Let (G, µ, ν) be a weighted metric graph together with a fixed model
and let (V,m; b) be the corresponding weighted graph (3.1.5)–(3.1.6). If (G, %η) is
complete and α : V → R is such that α− := (|α| − α)/2 is λ-subcritical for some
λ ≥ 0, then the operator Hα is self-adjoint and bounded from below.

Conversely, if α : V → (−∞, 0] is such that H0
α is bounded from below, then

there is λ ≥ 0 such that the weight −α is λ-subcritical for h0.
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Proof. If α : V → R satisfies the assumptions of Lemma 7.21, then taking into
account that the form q + λm− α− is nonnegative on Cc(V), we conclude that

qα[f ] ≥ q−α− [f ] := q[f ]− α−[f ] ≥ −λ‖f‖2`2(V;m)

for all f ∈ Cc(V). Therefore, the form qα is bounded from below on Cc(V) and hence
so is the operator h0

α. By Theorem 3.1(ii) (see also Theorem 3.22 and Remark 3.24),
the operator H0

α is bounded from below. It remains to apply Theorem 7.9.
To prove the last claim it suffices to notice that the semiboundedness of h0

α,
which is equivalent to the semiboundedness of H0

α, means that there is λ > 0 such
that h0

α + λ ≥ 0, where the inequality is understood in the sense of forms. It is
straightforward to see that −α is (λ+ 1)-subcritical for h0 �

Remark 7.22. A few remarks are in order.

(i) The notion of criticality is closely connected with the notion of recurrence
(see, e.g., [138, Rem. 5.8]). In particular, for λ = 0, h0 is critical exactly
when it is recurrent.

(ii) A characterization of criticality is presented in [138, Theorem 5.3]. How-
ever, for a concrete graph b over V it is a highly nontrivial task to find
critical and (especially) λ-critical weights. One of the approaches is to
employ positive λ-harmonic/superharmonic functions, which also leads to
optimal Hardy weights, however, this requires an explicit form or at least
a rather qualified knowledge of their asymptotic behavior (see [137]).

(iii) Let us stress that the Glazman–Povzner–Wienholtz theorem enables us
to avoid the use of the KLMN theorem, however, the price to pay is the
completeness assumption on (G, %η).

7.2. Markovian uniqueness and finite energy extensions

In this section we briefly address the question of uniqueness of Markovian ex-
tension for the minimal Kirchhoff Laplacian H0. Notice that by Lemma 4.1 the
latter is equivalent to the self-adjointness of the Gaffney Laplacian HG. We also
stress that the self-adjoint uniqueness implies Markovian uniqueness, and hence the
results obtained in the previous section provide various sufficient conditions for the
Markovian uniqueness as well. In particular, completeness of G (with respect to
particular choices of path metrics) is sufficient for the Markovian uniqueness.

7.2.1. Markovian uniqueness and graph ends. Surprisingly enough, in
some cases of interest it is possible to provide a complete characterization of the
Markovian uniqueness in purely geometric terms. Intuitively, this problem (as well
as the self-adjoint uniqueness) is closely related to finding appropriate boundary
notions for infinite graphs. For unweighted metric graphs, that is, with µ = ν ≡ 1,
the question was studied in [144], [147] using graph ends, a graph boundary notion
going back to H. Freudenthal and R. Halin (see Section 2.1.3). For this purpose
recall the following notion introduced in [144].

Definition 7.23. A topological end γ ∈ C(G) of a metric graph G equipped
with the edge weight µ has finite volume (w.r.t. to µ) if there is a sequence U = (Un)
representing γ such that

µ(Un) =

∫
Un

µ(dx) <∞(7.2.1)
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for some n. Otherwise γ has infinite volume.
The set of all finite volume ends is denoted by C0(G;µ) and we equip it with

the induced topology from the end space C(G).

The above notion leads to a complete characterization of the Markovian unique-
ness in the unweighted setting µ = ν ≡ 1 (see [144, Cor. 3.12]): all ends of the
metric graph have infinite volume. In the present section, we briefly recall the
results of [144], [147] and also extend them to the following simple situation.

Theorem 7.24. Let (G, µ, ν) be a weighted metric graph whose weight functions
µ, ν : G → (0,∞) are uniformly positive, that is,

(7.2.2)
1

µ
,

1

ν
∈ L∞(G).

Then the deficiency indices of the minimal Gaffney Laplacian HG,min are equal to
the number of finite volume graph ends,

(7.2.3) n±(HG,min) = #C0(G;µ).

Moreover, the following statements are equivalent:

(i) H0 admits a unique Markovian extension,
(ii) HD = HN ,
(iii) the Gaffney Laplacian HG is self-adjoint,
(iv) H1

0 (G, µ, ν) = H1(G, µ, ν),
(v) all graph ends have infinite volume (w.r.t. µ), that is, C0(G;µ) = ∅.

Before giving the proof of Theorem 7.24, we recall a few standard facts on
Sobolev spaces in dimension one. First of all, for every I = [0, a), a ∈ (0,∞] the
embedding of H1(I) into Cb(I) = C(I) ∩ L∞(I) is bounded and

(7.2.4) sup
x∈I
|f(x)|2 ≤ Ca

∫
I
|f(x)|2 + |f ′(x)|2 dx

holds for all f ∈ H1(I), where Ca =
√

coth(a) (see [159]). Moreover, the limit
limx→a f(x) exists for every function f ∈ H1(I) (see, e.g., [31, Theorem 8.2] for
bounded intervals and [31, Cor. 8.9] in the unbounded case).

Returning to our setting, assume that (G, µ, ν) is a weighted metric graph.
Suppose further that P is a path in G. Notice that we can first identify P with a
subset of G, and then further with an interval IP = [0, |P|) of length

|P| :=
∫
P

dx,

where the integral is taken over the subset P ⊆ G w.r.t. the (unweighted) Lebesgue
measure on G (cf. (6.4.2)). The restriction f |P of a function f ∈ H1(G, µ, ν) to
P ⊆ G can be identified with a function on IP = [0, |P|). Notice that, in case
that (7.2.2) is satisfied, f |P belongs to the (unweighted) Sobolev space H1(IP). In
particular, (7.2.2) implies the following crucial property of H1-functions: if R =
(evn,vn+1

)n≥0 is a ray, then

(7.2.5) f(γR) := lim
n→∞

f(vn)

exists. Moreover, for each topological end γ ∈ C(G) this limit is independent of
the choice of the ray R in the corresponding graph end ωγ . Indeed, for any two
equivalent rays R and R′ there exists a third ray R′′ containing infinitely many
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vertices of both R and R′, which immediately implies that f(γR) = f(γR′′) =
f(γR′). Taking into account the relationship between topological ends and graph
ends (see Section 2.1.3), this enables us to introduce the following notion.

Definition 7.25. Assume that the weights µ, ν satisfy (7.2.2). Then for every
f ∈ H1(G, µ, ν) and a (topological) end γ ∈ C(G), we define

(7.2.6) f(γ) := f(γR),

where R is any ray belonging to the corresponding graph end ωγ .

As is easily verified, the values f(γ), γ ∈ C(G) are independent of the choice of
the model of (G, µ, ν). It turns out that we obtain a continuous extension of f to

the end compactification Ĝ = G ∪ C(G).

Proposition 7.26. Let (G, µ, ν) be a weighted metric graph satisfying (7.2.2).

Then for every function f ∈ H1(G, µ, ν), its extension f : Ĝ → C is continuous.

Proof. Let γ ∈ C(G) be a topological end represented by a sequence of open

subsets U = (Un). To prove that f : Ĝ → C is continuous in γ, we have to show

that (see Section 2.1.3 for the definition of the topology on Ĝ)

lim
n→∞

sup
x∈Un

|f(x)− f(γ)| = 0.

As is readily verified (for instance, we can always refine the fixed model of (G, µ, ν)),
it suffices to prove this statement for vertices v ∈ V, that is, to establish that

(7.2.7) lim
n→∞

sup
v∈V∩Un

|f(v)− f(γ)| = 0.

In order to obtain (7.2.7), we distinguish two cases. Assume first that each of the
open sets Un contains a ray Rn ⊆ Un with length |Rn| > 1. As is easily verified,
then each vertex v ∈ Un is contained in a path without self-intersections Pv ⊆ Un
of length |Pv| ≥ 1/2. Since

⋂
n Un = ∅, it follows from (7.2.4) and assumption

(7.2.2) that

lim
n→∞

sup
v∈V∩U

|f(v)|2 ≤ lim
n→∞

C1/2

∫
Un

|f(x)|2 + |∇f(x)|2 dx = 0.

Clearly this also implies f(γ) = 0 and hence proves (7.2.7) in the first case.
On the other hand, suppose that there exists a set UN such that all raysR ⊆ UN

have length |R| ≤ 1. Since every vertex v ∈ Un, n ≥ N is contained in some ray
Rv ⊆ Un with Rv ∈ ωγ , we have

sup
v∈V∩Un

|f(v)− f(γ)| ≤ sup
v∈V∩Un

∫
Rv
|∇f(x)|dx ≤

(∫
Un

|∇f(x)|2dx
)1/2

and assumption (7.2.2) again implies that (7.2.7) holds true. �

This leads to a description of H1
0 (G, µ, ν) = H1

c (G)
‖·‖H1(G,µ,ν) as the space of

H1-functions with vanishing boundary values.

Theorem 7.27. Assume that (7.2.2) holds true. Then

H1
0 (G, µ, ν) =

{
f ∈ H1(G, µ, ν)| f(γ) = 0 for all γ ∈ C(G)

}
.
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Proof. First of all, notice that supx∈Ĝ |f(x)| ≤ C‖f‖H1(G,µ,ν) for every func-

tion f ∈ H1(G, µ, ν) and some uniform constant C > 0 (this follows, e.g., from the
closed graph theorem). On the other hand, if f ∈ H1(G, µ, ν) has compact support,
then f(γ) = 0 for all graph ends γ ∈ C(G). This proves the first inclusion “⊆”.

The proof of the converse inclusion “⊇” follows line to line the proof of [144,
Theorem 3.12] (see also the proof of [82, Theorem 4.14]). First of all, we may
assume that f ∈ H1(G, µ, ν) is non-negative and vanishes on C(G). Then for every
s > 0, the following set

As = {x ∈ G| f(x) ≥ s}
is a compact subset of G. In particular, defining φn : R≥0 → R≥0 by

φn(s) =

{
s− 1

n , if s ≥ 1
n ,

0, if s < 1
n ,

(7.2.8)

the composition fn := φn ◦ f has compact support in G. Moreover, |φn(s)| ≤ |s|
and |φn(s) − φn(t)| ≤ |s − t| for all s, t ≥ 0 and hence fn belongs to H1

0 (G, µ, ν)
for all n. As is easily verified, limn→∞ fn = f in H1(G, µ, ν), which finishes the
proof. �

To prove the main results of this section, we also need the following lemma.

Lemma 7.28. Let (G, µ, ν) be a weighted metric graph satisfying (7.2.2). Then
for any finite collection of distinct finite volume ends (γi)

N
i=1, there is a function

g ∈ dom(HN ) with g(γ1) = 1 and g(γ2) = · · · = g(γN ) = 0.

Proof. Fix a representing sequence of open subsets U i = (U in) for each of the
topological ends γi, i = 1, . . . , N . Without loss of generality, we may suppose that
U := U1

0 has measure µ(U) < ∞ and U ∩ U i0 = ∅ for all i = 2, . . . , N . Moreover,
since ∂U is compact, the edge set E0 = {e ∈ E| e ∩ ∂U 6= ∅} is finite and hence its
union K :=

⋃
e∈E0 e is a compact subset of G. Clearly, we can easily construct a

function g ∈ H1(G, µ, ν)∩dom(H) which satisfies g ≡ 1 on U , {x | ∇g(x) 6= 0} ⊆ K
and g ≡ 0 on G \ (U ∪ K). Notice that in this step we need the finite volume
property of γ1 to ensure that g ∈ L2(G;µ). Taking into account that U ∩ U i0 = ∅
for i = 2, . . . , N , it is easily verified that g has the claimed boundary values in the
graph ends γi, i = 1, . . . , N .

It remains to prove that g belongs to dom(HN ). However, since g satisfies the
Kirchhoff conditions on G and is (componentwise) constant on G \K, integration
by parts gives

QN [g, h] =

∫
G
∇g(x)∇h(x)∗ ν(dx) =

∫
K

∇g(x)∇h(x)∗ ν(dx)

= −
∫
K

∆g(x)h∗(x)µ(dx) = −
∫
G

∆g(x)h∗(x)µ(dx)

for every function h ∈ H1(G, µ, ν). In particular, g belongs to dom(HN ) by the
first representation theorem (see, e.g., [125, Chapter 6]). �

After these preparations we proceed with the proof of Theorem 7.24.

Proof of Theorem 7.24. First of all, since HN is a self-adjoint extension of
HG,min, the second von Neumann formula (cf. [188, Theorem 13.10]) implies

n±(HG,min) = dim
(

dom(HN )/ dom(HG,min)
)
.
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The lower estimate “≥” in (7.2.3) then follows immediately from Lemma 7.28,
Theorem 7.27 and the fact that dom(HG,min) ⊆ H1

0 (G, µ, ν). This, in particular,
implies the equality if #C0(G;µ) = ∞. Hence we only need to prove (7.2.3) if
#C0(G;µ) <∞.

In this case, by Lemma 7.28, for every finite volume end γ ∈ C0(G;µ), we can
fix a function gγ ∈ dom(HN ) with gγ(γ) = 1 and gγ(γ′) = 0 for all γ′ ∈ C0(G;µ),
γ′ 6= γ. Then every function f ∈ dom(HN ) can be written as

f = f −
∑

γ∈C0(G;µ)

f(γ)gγ +
∑

γ∈C0(G;µ)

f(γ)gγ =: f0 + fC0
.

Clearly, f0 belongs to dom(HN ) and f0(γ) = 0 at all finite volume graph ends
γ ∈ C(G). In fact, f0(γ) = 0 for all graph ends (including ends of infinite volume)
since f0 extends continuously to the end compactification (see Proposition 7.26)
and belongs to L2(G;µ). Therefore, by Theorem 7.27, f0 belongs to H1

0 (G, µ, ν)
and, comparing (2.4.24) with (2.4.25), this implies that f0 ∈ dom(HG,min) and,
moreover, that dom(HN ) admits the following decomposition

(7.2.9) dom(HN ) = dom(HG,min) +̇ span
{
gγ | γ ∈ C0(G;µ)

}
.

In particular, we conclude that

n±(HG,min) = dim
(

dom(HN )/ dom(HG,min)
)

= #C0(G;µ),

The remaining equivalences follow from Lemma 4.1 (see also Lemma 2.15 and
(2.4.25)). �

Let us stress that finite volume graph ends do not provide a characterization
of Markovian uniqueness for general weighted graphs (G, µ, ν). This was already
observed in the simple case of weighted path graphs in Section 5.1 (see in particular
Lemma 5.11). Notice that Z≥0 has only one graph end γ and it has finite volume
exactly when the sum in (5.1.5) converges. Hence, by Lemma 5.11, the Gaffney
Laplacian HG is self-adjoint if either the quantity Lν = ∞ (and in this case the
volume of the graph end is irrelevant) or Lν <∞ and γ has infinite volume.

On the other hand, the result for path graphs suggests that finite volume
ends can be used under a suitable generalization of the condition Lν < ∞ from
Lemma 5.11. It turns out that this guess is indeed correct and we outline the idea
in the following. For any path P in G, we define its ν-length as (cf. (6.4.2))

|P|1/ν =

∫
P

ds

ν(s)
,

where the integral is taken over the corresponding subset P ⊆ G. Moreover, for
any subset U ⊆ G, its ν-diameter at infinity is defined as

D1/ν(U) := supP⊆U |P|1/ν ,

where the supremum is taken over all paths P without self-intersection in U . Sup-
pose γ ∈ C(G) is a topological end represented by a sequence of open subsets
U = (Un). Then we define its ν-diameter† by

D1/ν(γ) = inf
n
D1/ν(Un) = lim

n→∞
D1/ν(Un).

†Let us stress that D1/ν(U) does not coincide with the standard definition of the diameter

for metric spaces.
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Remark 7.29. As is readily verified, the value of D1/ν(γ) is independent of
the choice of the representing sequence U = (Un).

It turns out that the conclusions of Theorem 7.2.2 are also valid under the
assumption

(7.2.10) D1/ν(γ) <∞ for all graph ends γ ∈ C(G)

instead of (7.2.2). For instance, it is easy to see that for each f ∈ H1(G, µ, ν) and
ray R, ∫

R
|∇f |ds <∞

and in particular, the limits in (7.2.5) exist. A careful analysis of the rest of the
proof for Theorem 7.2.2 shows that it can be carried over as well and we omit the
details.

Remark 7.30. Assumption (7.2.10) can be seen as a generalization of the
condition Lν < ∞ in Lemma 5.11. On the other hand, neither of the conditions
(7.2.2) and (7.2.10) implies the other one.

7.2.2. Markovian and finite energy extensions. Let us now briefly com-
ment on the problem of describing the self-adjoint restrictions of the Gaffney Lapla-
cian HG. This class of extensions is called finite energy extensions in [144] and by

Lemma 2.18, these are exactly the self-adjoint extensions H̃ of the minimal oper-

ator H0 satisfying dom(H̃) ⊂ H1(G, µ, ν). Their importance stems from the fact
that they contain all Markovian extensions (see Lemma 4.1). Moreover, the kernels
of their heat semigroups and resolvents are well-behaved (the results of [144, § 5]
extend verbatim if at least one of the assumptions (7.2.2) or (7.2.10) is satisfied).

The preceding sections suggest to describe finite energy extensions in terms
of finite volume graph ends. It turns out that, if (7.2.2) or (7.2.10) holds true
and in addition #C0(G;µ) < ∞, this is indeed possible. Namely, in this case the
maximal Gaffney Laplacian HG is closed (this can be proved analogous to [147,
Theorem 3.12(i)]). Moreover, these assumptions allow to introduce a suitable notion
of a normal derivative for finite volume graph ends γ ∈ C0(G;µ) (modifying the
notions in [144, § 6] using the weights). This leads to a complete description of all
Markovian extensions of the minimal Laplacian H0 and all self-adjoint restrictions
of the maximal Gaffney Laplacian HG in terms of certain boundary conditions on
finite volume graph ends (analogous to [144, § 6.3] and [147, Rem. 3.13(ii)]). The
proofs of these claims can easily be carried over from [144], [147], however, the full
exposition reads a bit technical and hence we do not develop it here.

If #C0(G;µ) =∞, that is, the deficiency indices of the minimal Gaffney Lapla-
cian are infinite, then even in the unweighted case µ = ν ≡ 1 the above methods
are not sufficient for a description of finite energy extensions. We stress that in
this case the Gaffney Laplacian HG is not closed in general (see [147, § 4]) and,
moreover, in many interesting cases (see [147, § 4]), its closure equals the maximal
Laplacian H, HG = H (which is further equivalent to the equality of the minimal
Kirchhoff and Gaffney Laplacians), and hence the problem is essentially as difficult
as the description of self-adjoint extensions of the minimal Laplacian H0.

We would also like to stress that, by Theorem 4.12 and Theorem 6.16, the
problem of describing Markovian extensions is equivalent for weighted metric and
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discrete graphs. Moreover, for weighted graph Laplacians, a description of Markov-
ian extensions was obtained in [131] in terms of Dirichlet forms (in the wide sense)
on the corresponding Royden boundary (see, e.g., [82], [132], [192] for details and
definitions) equipped with a harmonic measure (in fact, on the so-called harmonic
boundary, which is a subset). It should also be stressed that there is no finiteness
assumption on the deficiency indices of the Gaffney Laplacian in [131]. However,
let us emphasize that this description is by means of quadratic forms and not via
boundary conditions. Moreover, the correspondence between Markovian extensions
and Dirichlet forms (in the wide sense) on the boundary is in general not one-to-
one and hence also does not lead to a complete characterization of the Markovian
uniqueness. On the other hand, if the weighted graph (V,m; b) has finite total mass,
m(V) <∞, it becomes a bijection and in this case the Royden boundary should be
the correct concept to study Markovian extensions.

In general, the Royden boundary of a graph (V,m; b) can be rather big and hard
to describe (see [213] for the toy model Gd = Z). Its relationship to the standard
one-point compactification is closely connected to the Liouville property for finite
energy harmonic functions [132, Theorem 6.2]. However, in the special case that∑
u,v 1/b(u, v) < ∞, the Royden boundary coincides with the space of graph ends

and several other graph boundaries (see [82, § 4.6] for details). Hence, under the
additional assumption that m(V) < ∞, we recover precisely the space of finite
volume ends (in the discrete setting). Moreover, one can show that under either
of the assumptions (7.2.10) and (7.2.2), the space of finite volume ends C0(G;µ) of
a weighted metric graph (G, µ, ν) can be embedded into the Royden boundary of
the discrete graph (V,m; b) for any model (the weights are defined by (3.1.5) and
(3.1.6)). However, in general it seems that these two boundaries do not compare.

7.2.3. A few more comments. Let us point out that, by Theorem 4.12 and
Theorem 6.16, the problem of characterizing Markovian uniqueness is equivalent
for Laplacians on weighted metric graphs and graph Laplacians. Moreover, for
weighted metric graphs (G, µ, ν) this question was studied in [95, Chapter 2] using
metric completions (w.r.t. to several different metrics). In the parallel settings of
discrete graphs and manifolds, results were obtained in terms of polarity of metric
boundaries in [113] and [91], [160], [161]. These techniques obviously apply to
weighted metric graphs as well (alternatively, the results from [113] can also be
transferred using the correspondence between H1-spaces and intrinsic metrics, see
Section 4.3 and Section 6.4). However, none of these approaches leads to a complete
description of the uniqueness of Markovian extensions (e.g., the characterization in
[113, Theorem 3] requires finite capacity of the metric boundary).

An important concept in context with graphs is the construction of boundaries
by employing C∗-algebra techniques (this includes both Royden and Kuramochi
boundaries, see [82], [124], [132], [166], [192] for further details and references).
Under the assumptions (7.2.2) or (7.2.10), finite volume graph ends can also be
constructed by using this method. Indeed, A := H1(G, µ, ν) ⊂ Cb(G) is a subalgebra

by Proposition 7.26 and hence its ‖ · ‖∞-closure Ã := A‖·‖∞ is isomorphic to

C0(X̃), where X̃ is the space of characters equipped with the weak∗-topology with

respect to Ã. In general, describing X̃ for some concrete C∗-algebra is a rather

complicated task. However, it turns out that in our situation X̃ coincides with

G̃ := G ∪C0(G;µ). Indeed, G̃ = G ∪C0(G;µ) equipped with the induced topology of
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the end compactification Ĝ is a locally compact Hausdorff space. Proposition 7.26
together with Theorem 7.27 shows that each function f ∈ H1(G, µ, ν) has a unique

continuous extension to G̃ and this extension belongs to C0(G̃). Moreover, by

Lemma 7.28, H1(G, µ, ν) is point-separating and nowhere vanishing on G̃ and hence

Ã = C0(G̃) by the Stone–Weierstrass theorem. Thus the resulting boundary notion
is precisely the space of finite volume graph ends.

7.3. Spectral estimates

The aim of this section is to obtain spectral estimates for Laplacians on a
weighted metric graph (G, µ, ν). For simplicity, we restrict to the Dirichlet Laplacian
HD and present estimates for the bottom of its spectrum,

λ0(HD) := inf σ(HD).

We also recall from Theorem 4.27 that if (G, µ, ν) has infinite intrinsic size, that
is, there is a model with η∗(E) = ∞, then λ0(HD) = 0 (in fact, this holds true
for all Markovian and all nonnegative extensions of the minimal Kirchhoff Lapla-
cian). Therefore, without loss of generality we can restrict our considerations in
this section to the case when

(G, µ, ν) has finite intrinsic size.

Let us mention that for weighted metric graphs of finite intrinsic size we can define
the so-called minimal model whose vertex set consists of all points having degree
not equal to 2 as well as all points with degree 2 which are not inessential.

7.3.1. Isoperimetric estimates. We begin with estimates for λ0(HD) in
terms of isoperimetric constants. Our exposition follows closely [145], where the
special case of unweighted metric graphs (i.e., µ = ν ≡ 1) was considered.

Assume that we have fixed a model of (G, µ, ν) with underlying combinatorial
graph Gd = (V, E). Then clearly every finite subgraph K = (V(K), E(K)) of Gd can
be identified with a compact subset of G. Moreover, its volume with respect to µ
and its topological boundary are given by

µ(K) =
∑

e∈E(K)

µ(e), ∂K = {v ∈ V(K)| degK(v) < degG(v)}.(7.3.1)

We introduce the boundary area of K as

area(∂K) = area(∂K, µ, ν) =
∑
v∈∂K

∑
~e∈~Ev(K)

√
µν(e).(7.3.2)

Definition 7.31. The isoperimetric constant of a weighted metric graph (G, µ, ν)
is defined as

(7.3.3) Ch(G) = Ch(G, µ, ν) := inf
K

area(∂K)

µ(K)
,

where the infimum is taken over all finite, connected subgraphs K = (V(K), E(K))
of a fixed model of (G, µ, ν).

The above definition of Ch(G) is given in terms of a fixed model of (G, µ, ν),
however, we have the following simple fact.

Lemma 7.32. The isoperimetric constant Ch(G) does not depend on the choice
of the model.
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Proof. First of all, it is not difficult to see that (7.3.3) remains unchanged
under refinement of the model (see Section 2.4.3). Namely, any subgraph in a refined
model can be completed to a subgraph in a coarser model by adding the “remaining
parts” of edges. It is also clear that this procedure decreases the quotient in (7.3.3).
Hence for two given models of (G, µ, ν), we can take their common refinement (take
all the vertices of both models as the vertex set) and hence the claim follows. �

The next result provides Cheeger and Buser-type estimates on weighted metric
graphs.

Theorem 7.33. For a weighted metric graph (G, µ, ν),

(7.3.4)
1

4
Ch(G)2 ≤ λ0(HD) ≤ π2

2η∗(G)
Ch(G),

where η∗(G) is defined by (7.1.4) with E being the edge set of the minimal model.

Proof. (i) Cheeger’s estimate. First of all, recall that λ0(HD) is given by the
variational characterization

(7.3.5) λ0(HD) = inf
06=f∈H1

0 (G)

‖∇f‖2L2(G;ν)

‖f‖2L2(G;µ)

.

Hence the lower estimate in (7.3.4) will follow from the inequality

(7.3.6) Ch(G)‖f‖L2(G;µ) ≤ 2 ‖∇f‖L2(G;ν), f ∈ H1
0 (G).

Without loss of generality we can assume that f is real-valued, compactly supported
and smooth on all edges e ∈ E . Recall also that for any compactly supported,
continuous and edgewise C1-function h : G → [0,∞), the following co-area formulae
hold true (see, e.g., [145, Lemma 3.6]):∫

G
h(x)µ(dx) =

∫ ∞
0

µ(Ωh(t)) dt∫
G
|∇h(x)|ω(dx) =

∫ ∞
0

area(∂Ωh(t)) dt

where Ωh(t) := {x ∈ G |h(x) > t} for all t ≥ 0, ω :=
√
µν, ω(dx) :=

√
µν(x)dx,

and
area(∂Ωh(t)) :=

∑
x∈∂Ωh(t)

ω(x).

Notice that for almost every t > 0, the boundary ∂Ωh(t) contains no vertices and
hence the above integral is well-defined. Indeed, every x ∈ ∂Ωh(t) satisfies h(x) = t
and hence the claim follows from the countability of the vertex set.

Moreover, if ∂Ωh(t) ∩ V = ∅, then we can associate with Ωh(t) the subgraph
Kt ⊆ Gd consisting of all edges e ∈ E with Ωh(t) ∩ e 6= ∅ and their endpoints. It is
then easily verified that (see also [145, proof of Lemma 3.7])

(7.3.7)
area(∂Ωh(t))

µ(Ωh(t))
≥ area(Kt)

µ(Kt)
≥ Ch(G).

By choosing h = f2, we conclude from the co-area formulae that

Ch(G)‖f‖2L2(G;µ) ≤ 2

∫
G
|∇f(x)f(x)|ω(dx) ≤ 2‖f‖L2(G;µ)‖∇f‖L2(G;ν),

where the last inequality follows from the Cauchy–Schwarz inequality.
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(ii) Buser’s estimate. Consider the minimal model of (G, µ, ν). The edge set of
a finite connected subgraph K = (V(K), E(K)) can be split into

E(K) = E0 ∪ E1 ∪ E2,
where E0, E1 and E2 denote the mutually disjoint sets of edges of E(K) with, respec-
tively, all endpoints in V(K) \ ∂K, exactly one endpoint in ∂K (and hence exactly
one endpoint in V(K) \ ∂K), and all endpoints in ∂K.† Notice in particular that

area(∂K) =
∑
e∈E1

√
µν(e) + 2

∑
e∈E2

√
µν(e).

Consider the test function f : G → R defined by

f |e =



1, e ∈ E0,

sin
(
π
|e| | · −eı|

)
, e ∈ E2,

sin
(
π

2|e| | · −u|
)
, e = eu,v ∈ E1 with u ∈ ∂K,

0, e /∈ E(K).

By construction, f belongs to H1
c (G) and its support coincides with K. Moreover,

‖f‖2L2(G;µ) =
∑
e∈E0

µ(e)|e|+
∑

e∈E1∪E2

µ(e)|e|
2

≥ µ(K)

2
,

‖∇f‖2L2(G;ν) =
π2

8

∑
e∈E1

ν(e)

|e|
+
π2

2

∑
e∈E2

ν(e)

|e|

=
π2

8

∑
e∈E1

√
µν(e)

η(e)
+
π2

2

∑
e∈E2

√
µν(e)

η(e)
≤ π2

4η∗(G)
area(∂K),

and then using (7.3.5), we arrive at the second inequality in (7.3.4). �

In a similar way, one can obtain isoperimetric estimates for λess
0 (HD), the

bottom of the essential spectrum of HD. More precisely, for any finite, connected
subgraph K = (V(K), E(K)) of our fixed model, define

H1
0 (G \ K) := {f ∈ H1

0 (G)| supp(f) ⊆ G \ K}.
Then a standard Persson-type argument (or Glazman’s decomposition principle in
the Russian literature, see [83]) implies that

(7.3.8) λess
0 (HD) = sup

K
inf

f∈H1
0 (G\K)

‖∇f‖2L2(G;ν)

‖f‖2L2(G;µ)

,

where the supremum is taken over all finite, connected subgraphs K of G. Setting
K1 ≤ K2 exactly when K1 is a subgraph of K2, we can see the set of all finite,
connected subgraphs of G as a directed set. Moreover, if K1 ≤ K2, then

H1
0 (G \ K2) ⊆ H1

0 (G \ K1),

and hence (7.3.8) can be rewritten as

(7.3.9) λess
0 (HD) = lim

K
inf

f∈H1
0 (G\K)

‖∇f‖2L2(G;ν)

‖f‖2L2(G;µ)

,

†Loop edges in E(K) are considered either as elements of E2 or E0, depending on their vertex
belonging to ∂K or not.
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where the limit is taken over all finite, connected subgraphs K of G in the sense
of nets. Thus, Theorem 7.33 together with (7.3.9) suggest that, roughly speaking,
λess

0 (G) is related to the isoperimetric behavior of (G, µ, ν) “at infinity”. This leads
to the following definition:

Definition 7.34. Let (G, µ, ν) be a weighted metric graph together with a
fixed model. For any finite, connected subgraph K = (V(K), E(K)) of G, define

ChK(G) = inf
K′⊆G\K

area(∂K′)
µ(K′)

where the infimum is over all finite, connected subgraphs K′ of G with K′ ⊆ G \ K.
The isoperimetric constant at infinity of (G, µ, ν) is given by

(7.3.10) Chess(G) := sup
K

ChK(G) = lim
K

ChK(G)

where both the supremum and the net limit are taken over all finite, connected
subgraphs K of G.

It turns out that (e.g., by an argument as in Lemma 7.32) the definition of
Chess(G) does not depend on the choice of the model of (G, µ, ν). Moreover, we
obtain the following estimates:

Theorem 7.35. Let E be the edge set of the minimal model of (G, µ, ν) and set
ηess
∗ (G) := supẼ finite infe∈E\Ẽ η(e). Then

(7.3.11)
1

4
Chess(G)2 ≤ λess

0 (HD) ≤ π2

2ηess
∗ (G)

Chess(G).

In particular, σ(HD) is purely discrete if Chess(G) =∞.

Proof. Following the proof of Theorem 7.33, we get

1

4
ChK(G)2 ≤ inf

f∈H1
0 (G\K)

‖∇f‖2L2(G;ν)

‖f‖2L2(G;µ)

≤ π2

2

ChK(G)

ηK∗ (E)

for any finite, connected subgraph K of G (with ηK∗ (E) := infe∈E\E(K) η(e)). For

instance, if f belongs to H1
0 (G \ K), then the set Ωf2(t) is contained in G \ K for

all t > 0. In particular, this means that the subgraph Kt in (7.3.7) is contained in
G \ K. The claim then follows from (7.3.8) together with (7.3.10). �

Remark 7.36. Going back to Cheeger’s inequality for manifolds [41], isoperi-
metric constants are known to provide spectral estimates for both manifolds and
graphs, see e.g. [5], [6], [18], [37], [41], [58], [60], [145], [170]. For unweighted
discrete graphs, the first works on this topic include [5], [6], [58], [60]. Employing
the notion of an intrinsic metric, an isoperimetric constant and the corresponding
estimate for weighted graphs (V,m; b) were introduced in [18] (see Section 7.3.2 for
more details). For unweighted metric graphs, µ = ν ≡ 1, Cheeger’s inequality was
proven in [170] for finite metric graphs and in [145] for infinite metric graphs.

7.3.2. Connection with discrete isoperimetric constants. The combi-
natorial structure of Ch(G) enables us to investigate it by combinatorial methods.
More precisely, in the case of unweighted metric graphs (i.e., µ ≡ ν ≡ 1), Ch(G)
was studied using discrete, curvature-like quantities in [145, § 6] and [171]. These
methods can be extended to the setting of weighted metric graphs as well and
this will be done elsewhere (see also Section 8.3.2 for the special case of tilings).
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Our main goal in this section is to discuss connections with discrete isoperimetric
constants of the corresponding weighted graphs.

Let (V,m; b) be a locally finite connected graph and let p : V × V → [0,∞)
be an intrinsic weight function (see Section 6.4.2). Following [18] (see also [145,
Appendix]), we define an isoperimetric constant Chd(V) for (V,m; b) by

(7.3.12) Chd(V) = Chd(V,m; b) := inf
X

|∂X|
m(X)

,

where the infimum is over all finite, connected subsets X ⊆ V and

∂X = {(u, v) ∈ X × (V \X)| b(u, v) > 0},(7.3.13)

|∂X| =
∑

(u,v)∈∂X

b(u, v)p(u, v), m(X) =
∑
v∈X

m(v).(7.3.14)

We recall that, by [18, Theorem 3.2 and Theorem 3.6] (see also [145, Ap-
pendix]), the Dirichlet Laplacian hD on (V,m; b) satisfies the following spectral
estimate

(7.3.15)
1

2
Chd(V)2 ≤ λ0(hD) ≤ Chd(V)

p∗(V)
,

where p∗(V) := infb(u,v)>0 p(u, v).

Remark 7.37. Notice that the isoperimetric constant Chd(V) is defined slightly
differently in [18]. Namely, the weight p(u, v) in the definition of |∂X| is replaced by
the distance %(u, v) in an intrinsic metric %. On the other hand, it is straightforward
to verify that [18, Theorem 3.2 and Theorem 3.6] remain valid also for our definition
(see [145, Appendix] for details).

Recall that we had assumed that the weighted metric graph (G, µ, ν) has finite
intrinsic size. Fix a model of (G, µ, ν) (which then also has finite intrinsic size).
Consider the locally finite graph (V,m; b) defined by (3.1.3)–(3.1.6) and the cor-
responding discrete Laplacian h (3.1.7). Recall also that we obtain an intrinsic
weight pη : V × V → [0,∞) (see Remark 6.26) given by

pη(u, v) =

{
mine∈Eu,v η(e), u ∼ v and u 6= v,

0, else,
(u, v) ∈ V × V.(7.3.16)

In Theorem 4.27 (see also Theorem 3.1(vii)) we have seen that there is a close con-
nection between λ0(hD) and λ0(HD). In fact, it is easy to notice also connections
between the corresponding isoperimetric constants. Namely, suppose that our fixed
model of the weighted metric graph (G, µ, ν) has no multiple edges. Then

(7.3.17) b(u, v)pη(u, v) =
√
µν(euv)

for all vertices u ∼ v, u 6= v. On the other hand, we can associate to every finite
subset X ⊂ V the subgraph KX of Gd consisting of all edges in the stars Ev, v ∈ X
(and all incident vertices). Clearly, we have

(7.3.18) µ(KX) ≤ m(X) ≤ 2µ(KX).

Taking into account the definitions (7.3.3) and (7.3.12), this indicates a connection
between Ch(G) and Chd(V). The following explicit estimates hold:
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Proposition 7.38. Let (G, µ, ν) be a weighted metric graph having finite in-
trinsic size and fix a model with underlying combinatorial graph Gd = (V, E) having
no multiple edges. Then

Ch(G) ≤ 2Chd(V),
2

Ch(G)
≤ 1

Chd(V)
+ η∗(E),(7.3.19)

where Chd(V) is the isoperimetric constant (7.3.12) of (V,m; b) for the intrinsic
weight given by (7.3.16). In particular,

(7.3.20) Ch(G) > 0 exactly when Chd(V) > 0.

Proof. Let X ⊂ V be a finite, connected vertex set. Consider the connected
subgraph KX of Gd having the edge set E(KX) :=

⋃
v∈X Ev. Using (7.3.17), it is

not hard to see that (see also [145, Lemma 4.2])

area(∂KX) ≤ |∂X|

Taking into account (7.3.18), we arrive at the first inequality in (7.3.19). The rest
of the proof can be carried over line to line from [145, Lemma 4.2] and we omit
the details. �

Remark 7.39. A few remarks are in order.

(i) The second estimate in Proposition 7.38 is sharp. For example, the equal-
ity holds true on every simple unweighted, equilateral metric graph, that
is, when Gd = (V, E) is simple and µ = ν ≡ 1 with |e| = 1 for all edges
e ∈ E (see [171, equation (4.5)]).

(ii) Surprisingly, Proposition 7.38 and even the equivalence (7.3.20) can fail
for models with multiple edges. The reason is precisely that (7.3.17) is no
longer valid in the presence of multiple edges (see also (7.3.16)). However,
the equivalence (7.3.20) holds true for models having finite intrinsic size
and satisfying the additional condition

inf
e∈E

pη(eı, eτ )

η(e)
> 0,

which clearly allows to recover an adapted version of (7.3.17).

7.3.3. Volume growth estimates. Going back to the work of R. Brooks [32],
another well-known tool for Laplacians on manifolds and graphs are spectral esti-
mates in terms of volume growth (see, e.g., [32], [71], [99], [195] and the references
therein). Moreover, these results can be formulated in the abstract framework of
Dirichlet forms (see [195] for the strongly local case and [99] for generalizations).
In this form, they directly apply to weighted metric graphs and we shortly discuss
this in the following.

Let %η be the intrinsic metric on a weighted metric graph (G, µ, ν) (see Sec-
tion 6.4.1). For any x ∈ G and r > 0, we denote an intrinsic distance ball of radius
r by

Br(x) = Br(x; %η) := {y ∈ G | %η(x, y) < r}.(7.3.21)

The exponential volume growth v(G) of G is defined by

(7.3.22) v(G) := lim inf
r→∞

1

r
logµ(Br(x0)),



132 7. FROM CONTINUOUS TO DISCRETE AND BACK

where x0 is any point of G (since G is connected, the limit in (7.3.22) does not
depend on x0). Moreover, we also introduce

v∗(G) := lim inf
r→∞

1

r
inf
x∈G

log
µ(Br(x))

µ(B1(x))
,

where by notational convention ∞a := ∞ for any a ∈ (0,∞]. Notice in particular
that v∗(G) ≤ v(G).

Applying the results of [195, Theorem 5] (see also [99, Theorem 1.1]), we arrive
at the following estimate:

Theorem 7.40. Suppose that (G, %η) is complete. Then

(7.3.23) λ0(HD) ≤ λess
0 (HD) ≤ 1

4
v∗(G)2 ≤ 1

4
v(G)2.

Remark 7.41. The assumptions in Theorem 7.40 are not optimal. For instance,
by Theorem 7.1, the completeness assumption implies that the maximal Kirchhoff
Laplacian H is self-adjoint and hence H0 = HD = HN = H. On the other hand,
the proof in [195, Theorem 5] shows that the Neumann extension HN on any
weighted metric graph (G, µ, ν) satisfies

λ0(HN ) ≤ 1

4
v∗(G)2 ≤ 1

4
v(G)2.

In particular, we obtain (7.3.23) whenever HD = HN , that is, when H0 admits
a unique Markovian extension. The latter is a much weaker condition than the
completeness of (G, %η) (see Section 7.2 and also Theorem 7.24).

7.4. Recurrence and transience

There are numerous characterizations of recurrence/transience and we refer
to [77] for further details. Intuitively one may explain recurrence of a Brownian
motion/random walk as insufficiency of volume in the state space. The qualitative
form of this heuristic statement in the manifold context has a venerable history
(we refer to the excellent exposition of A. Grigor’yan [88] for further details) and
in the case of complete Riemannian manifolds the corresponding result (see [88,
Theorem 7.3]) was proved in the 1980s independently by L. Karp, N.Th. Varopoulos,
and A. Grigor’yan. It was extended to strongly local Dirichlet forms by K.-T. Sturm
and in our setting of weighted metric graphs, [195, Theorem 3] reads as follows:

Theorem 7.42 ([195]). Assume that a weighted metric graph (G, µ, ν) is such
that (G, %η) is complete. Then the heat semigroup (e−tH)t>0 generated by the Kirch-

hoff Laplacian H‡ is recurrent if for some (and hence for all) x ∈ G∫ ∞
1

r

µ(Br(x))
dr =∞,(7.4.1)

where Br(x) is the intrinsic metric ball (7.3.21). That is, the following equivalent
properties hold true:

(i) Every nonnegative superharmonic function is constant,
(ii) Every bounded superharmonic function is constant,
(iii) Every bounded subharmonic function is constant,

‡Recall that by Theorem 7.1 completeness implies that the maximal Kirchhoff Laplacian H
is self-adjoint and hence coincides with both the Dirichlet HD and Neumann HN Laplacian.
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(iv) Every potential

Gf(x) = lim
N→∞

∫ N

0

(e−sHf)(x) ds, x ∈ G,

is identically ∞ for all nonzero 0 ≤ f ∈ L1(G;µ).

Remark 7.43. In fact, the above result is an immediate consequence of a Karp-
type theorem proved for strongly local regular Dirichlet forms in the same paper.
More specifically, by [195, Theorem 1], if (G, %η) is complete, then every nonzero
subharmonic function u ≥ 0 satisfying∫ ∞

1

r

‖u1Br(x)‖pLp(G;µ)

dr =∞,(7.4.2)

for some p ∈ (1,∞) and x ∈ G, is constant. Thus, if u ≥ 0 is a bounded subharmonic
function, then ‖u1Br(x)‖pLp(G;µ) ≤ Cµ(Br(x)) and hence (7.4.2) follows from (7.4.1),

which further implies that u is constant.

Remark 7.44. It appears that in the setting of weighted metric graphs the
completeness assumption in both Theorem 7.42 and Karp’s theorem is superfluous.
Namely, it seems to us that at least in the setting of Theorem 7.24, one can replace
this assumption by the Markovian uniqueness (which, according to Theorem 7.24,
is equivalent to the absence of finite volume ends).

We would like to demonstrate two applications of the above theorem. First of
all, employing connections between intrinsic metrics on weighted graphs and cable
systems, we arrive at the analogs of Karp’s theorem and Theorem 7.42 for graphs.

Theorem 7.45 ([111]). Let b be a locally finite, connected graph over (V,m).
Let also % be an intrinsic metric of finite jump size such that (V, %) is complete and
% generates the discrete topology on V. Then every nonzero subharmonic function
u ≥ 0 satisfying ∫ ∞

1

r

‖u1Br(v;%)‖p`p(V;m)

dr =∞,(7.4.3)

for some p ∈ (1,∞) and v ∈ V, is constant. In particular, if for some v ∈ V∫ ∞
1

r

m(Br(v; %))
dr =∞,(7.4.4)

then the heat semigroup (e−th)t>0 generated by the graph Laplacian h is recurrent.

Proof. The proof is analogous to the one of Theorem 6.55. Indeed, assume
first that % is an intrinsic path metric for (V,m; b) having finite jump size. Then
by Lemma 6.31 there is a cable system (G, µ, ν) such that % coincides with the
restriction %V of %η onto V × V and (G, %η) is complete.

Take now a nonnegative function f : V → R≥0 which is L-subharmonic. By

Lemma 6.50, the corresponding function f = ı−1
V (f) is nonnegative and subhar-

monic w.r.t. (G, µ, ν). Taking into account the relationships between the p-norms
(see Lemma 4.2) and using the corresponding results for weighted metric graphs,
one easily completes the proof of the first claim. The second one follows in a similar
way from Theorem 4.17, Lemma 6.39 and Theorem 7.42.

If % is not a path metric, then we proceed as in part (iii) of the proof of
Corollary 7.3. Namely, if % has finite jump size, then the construction there gives
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an intrinsic path metric %̃ of finite jump size such that (V, %̃) is complete and
% ≤ %̃. It remains to notice that Bs(x; %̃) ⊆ Bs(x; %) and then apply the above
arguments. �

Remark 7.46. Let us mention that Theorem 7.45 was first established in [111]
(see Theorem 1.1 and Corollary 1.6 there) by using an absolutely different approach,
which, in particular, allows to treat non-locally finite graphs.

To proceed with another application, notice that the characterization of recur-
rence either in terms of extended Dirichlet spaces (see Lemma B.7) or by means
of subharmonic functions indicates that it essentially depends on the energy form
only and not on the underlying Hilbert space. In our situation, the energy form
depends only on the underlying metric graph G and the edge weight ν, however, ν
enters Theorem 7.42 implicitly as a requirement that (G, %η) is complete. So, first
of all, we arrive at the following result.

Lemma 7.47. Let (G, µ, ν) be a weighted metric graph. Then the heat semigroup
(e−tHD )t>0 generated by the Dirichlet Laplacian HD is recurrent if G is complete
w.r.t. the length metric %0 and for some (and hence for all) x ∈ G∫ ∞

1

r

ν(Br(x; %0))
dr =∞,(7.4.5)

where Br(x; %0) is the metric ball in (G, %0).

Proof. Since the Dirichlet form of HD is regular, recurrence of the correspond-
ing semigroup implies the uniqueness of a Markovian extension for H0. Moreover,
taking into account the regularity of QD once again, we conclude that (e−tHD )t>0

is recurrent exactly when there is a sequence (fn) ⊂ H1
c (G) which approximates 1

and such that Q[fn] = o(1). Next recall that H1
c (G) is independent of µ. There-

fore, if (e−tHD )t>0 is recurrent for some choice of µ, it is automatically recurrent
for any other choice of µ. Now it remains to consider the weighted metric graph
(G, ν, ν), that is, to replace µ by ν, and apply [195, Theorem 3] (see Theorem 7.42)
by taking into account that the length metric %0 coincides with the intrinsic metric
%η for (G, ν, ν). �

Remark 7.48. The above proof indicates that one may come up with a more
clever choice of the weight µ (for instance, choosing µ(e) = ν(e)/|e|2 for each
e ∈ E , one arrives at Laplacians, which are closely connected with discrete time
random walks, see below). However, this of course depends on the concrete situation
since, at the same time, one wants to ensure the completeness of G w.r.t. the
corresponding intrinsic metric %η, which clearly depends on this choice.

The usefulness of the arguments in the proof of Lemma 7.47 can be demon-
strated by the following result. Before stating it, let us associate with the metric
graph G and the edge weight ν the following discrete time random walk: choose a
simple model (V, E , | · |, µ, ν) of (G, µ, ν) and set

bν(u, v) =

{
ν(eu,v)
|eu,v| , u ∼ v,
0, u 6∼ v,

(u, v) ∈ V,(7.4.6)

together with

mν(v) =
∑
u∼v

bν(u, v), v ∈ V.(7.4.7)
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Consider the corresponding graph Laplacian (let us denote it by hν). By Lemma 2.9,
it is bounded. Moreover, it generates a discrete time random walk on V (see Re-
mark 2.11). Namely, this random walk on V is a Markov chain (Xn)n≥0 with state
space V and transition probabilities Pν =

(
pν(u, v)

)
u,v∈V defined by

pν(u, v) = P (Xn+1 = v |Xn = u) =
bν(u, v)

mν(v)
.(7.4.8)

Since the graph b over V is connected by construction, the corresponding Markov
chain is irreducible. Moreover, it is reversible (again by construction).

Theorem 7.49. Let (G, µ, ν) be a weighted metric graph. Then the heat semi-
group (e−tHD )t>0 generated by the Dirichlet Laplacian HD is recurrent if and only
if for some (and hence for all) simple model of (G, µ, ν) the discrete time random
walk on V with transition probabilities Pν =

(
pν(u, v)

)
u,v∈V is recurrent.

Proof. First, by Theorem 4.17, (e−tHD )t>0 is recurrent if and only if the
semigroup (e−thD )t>0 is recurrent. Here hD is the Dirichlet Laplacian defined by
(3.1.7) (with α ≡ 0). Notice that the edge weight b given by (3.1.6) coincides with bν
defined by (7.4.6). Using exactly the same argument as in the proof of Lemma 7.47,
however, applied in the discrete graph setting, we conclude that the recurrence of hD
is independent of the choice of m and hence, in particular, (e−thD )t>0 is recurrent
if and only if (e−thν )t>0 is recurrent. However, the latter holds exactly when the
corresponding discrete time random walk is recurrent. �

Remark 7.50. Theorem 7.49 connects the study of recurrence on metric graphs
with the study of recurrence for discrete time random walks, which is a classical
topic (the standard reference is the book by W. Woess [209]). We shall demon-
strate these connections by concrete examples (Cayley graphs and tessellations) in
the next chapter. Let us only mention that the idea to relate Brownian motion
on a Riemannian manifold with random walks goes back at least to the work of
S. Kakutani [120] on the type problem for simply connected Riemann surfaces (see
[88] for further details).

7.5. Stochastic completeness

Here we follow the same line of reasoning as in the previous section. Recall the
following result of K.-T. Sturm [195, Theorem 4].

Theorem 7.51 ([195]). Assume that a weighted metric graph (G, µ, ν) is such
that (G, %η) is complete as a metric space. Then the heat semigroup (e−tH)t>0

generated by the Kirchhoff Laplacian H‡ is stochastically complete if for some (and
hence for all) x ∈ G ∫ ∞

1

r

logµ(Br(x))
dr =∞,(7.5.1)

where Br(x) is the metric ball (7.3.21).

Remark 7.52. A few remarks are in order.

‡Recall that by Theorem 7.1 completeness implies that the maximal Kirchhoff Laplacian H
is self-adjoint and hence coincides with both the Dirichlet HD and Neumann HN Laplacian.
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(i) Recall that stochastic completeness means that e−tH1 = 1 for some (and
hence for all) t > 0. There are various equivalent characterizations and
in terms of λ-harmonic/subharmonic functions stochastic completeness
means that:

– for some λ > 0 every bounded nonnegative λ-harmonic function is
constant,

– for all λ > 0 every bounded nonnegative λ-subharmonic function is
constant.

(ii) In the context of manifolds, the volume test is due to L. Karp and P. Li,
and A. Grigor’yan (for a detailed historical account we refer to [88]).

(iii) Similar to the recurrence statement (see Remark 7.44), we are convinced
that in the setting of weighted metric graphs the completeness assumption
in Theorem 7.51 is superfluous. At least in the setting of Theorem 7.24,
one can replace this assumption by the Markovian uniqueness and this
will be addressed elsewhere.

Taking into account the relationships between the parabolic properties of Lapla-
cians on metric graphs and weighted graphs (see Section 4.6), we arrive at the
following result.

Theorem 7.53 ([70], [112]). Let b be a locally finite, connected graph over
(V,m). Let % be an intrinsic metric of finite jump size such that (V, %) is complete
and % generates the discrete topology on V. If for some (and hence all) v ∈ V∫ ∞

1

r

logm(Br(v; %))
dr =∞,(7.5.2)

where Br(v; %) is the metric ball in (V, %), then the semigroup (e−th)t>0 is stochas-
tically complete.

Proof. For an intrinsic path metric of finite jump size, the proof follows by
combining Lemma 6.31 with Theorem 7.51 and Lemma 6.39. Finally, the argument
in the proof of Corollary 7.3 allows to reduce to this case. �

Remark 7.54. Theorem 7.53 was first proved by M. Folz [70] by using Sturm’s
theorem 7.51 and also by connecting stochastic completeness on graphs and metric
graphs via the corresponding transfer probabilities as described in Section 4.2 (see
also [112], where a different proof of the latter connection was given using the weak
Omori–Yau maximum principle). A different approach avoiding connections with
metric graphs was suggested in [114] and the Grigor’yan volume test is proved under
the only assumption that there exists an intrinsic pseudo metric whose distance balls
are finite, that is, there is no finite jump assumption and non-locally finite graphs
are allowed as well.



CHAPTER 8

Examples

The main aim of the final chapter is to demonstrate our findings by considering
several important and interesting classes of graphs.

8.1. Antitrees

Recall the following definition (see Section 6.1):

Definition 8.1. A connected simple rooted graph Gd is called an antitree if
every vertex in the combinatorial sphere Sn, n ≥ 1‡, is connected to all vertices in
Sn−1 and Sn+1 and no vertices in Sk for all |k − n| 6= 1.

Notice that combinatorial antitrees admit radial symmetry and every antitree
is uniquely determined by its sphere numbers sn = #Sn, n ∈ Z≥0 (see Fig. 6.1,
where the antitree with sphere numbers sn = n+ 1, n ∈ Z≥0 is depicted).

8.1.1. Radially symmetric antitrees. Both weighted graph Laplacians and
Kirchhoff Laplacians on weighted antitrees admit a very detailed analysis in the
situation when their coefficients respect the radial symmetry of the underlying
combinatorial antitree. In this subsection we focus on radially symmetric weighted
metric antitrees and follow [146] in our exposition. More specifically, we assume
that the weighted metric antitree (A, µ, ν) is radially symmetric, that is, for each
n ≥ 0, all edges connecting the combinatorial spheres Sn and Sn+1 have the same
length, say `n > 0, and the same weights µ and ν, say µn > 0 and νn > 0.

The next result plays a crucial role in further analysis, however, to state it, we
first need to introduce the following objects. Let

xn :=

n−1∑
k=0

`k, L :=
∑
n≥0

`n ∈ (0,∞],(8.1.1)

and then set

µA(x) =
∑
n≥0

µnsnsn+11[xn,xn+1)(x), νA(x) =
∑
n≥0

νnsnsn+11[xn,xn+1)(x),(8.1.2)

for all x ∈ [0,L). Notice that L can be interpreted as the height of a metric antitree.
Next, we define three different types of operators associated with the differential
expression

τA = − 1

µA(x)

d

dx
νA(x)

d

dx
.(8.1.3)

‡By definition, the root o is connected to all vertices in S1 and no vertices in Sk, k ≥ 2.
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• The operator HA is associated with τA in the Hilbert space L2([0,L);µA)
and acts on the maximal domain subject to the Neumann boundary con-
dition at x = 0, see (5.1.2).

• For each n ≥ 1, the operator H1
n is associated with τA in the Hilbert

space L2([xn, xn+1);µA) and with Dirichlet boundary conditions at the
endpoints,

dom(H1
n) =

{
f ∈ H2([xn, xn+1)) | f(xn) = f(xn+1) = 0

}
.

• For each n ≥ 1, the operator H2
n is associated with τA in the Hilbert

space L2([xn−1, xn+1);µA) and with Dirichlet boundary conditions at the
endpoints,

dom(H2
n) =

{
f ∈ H1

0 ([xn−1, xn+1)) | νAf ′ ∈ H1([xn−1, xn+1))
}
.

With these definitions at hand, we are in position to state the key result.

Theorem 8.2. Let (A, µ, ν) be a radially symmetric antitree. Then the corre-
sponding maximal Kirchhoff Laplacian H is unitarily equivalent to the orthogonal
sum

HA ⊕
⊕
n≥1

(
I(sn−1)(sn+1−1) ⊗H1

n

)
⊕
⊕
n≥1

(
Isn−1 ⊗H2

n

)
.(8.1.4)

Here sn = #Sn, n ≥ 0 are the sphere numbers of A and Ik is the identity operator
in Ck, k ∈ Z≥0.

Proof. Follows line by line the proof of [146, Theorem 3.5] (see also [29]),
where the case µ = ν ≡ 1 is considered, and we omit it. Let us only mention
that the operator HA is nothing but the restriction of H onto the subspace Fsym

of radially symmetric functions

Fsym = {f ∈ L2(A;µ) | f(x) = f(y) if %0(x, o) = %0(y, o)},(8.1.5)

which follows easily by comparing the corresponding quadratic forms. Here %0(x, o)
denotes the distance from x ∈ A to the root o of A w.r.t. the length metric %0. �

Thus, Theorem 8.2 reduces the analysis of the Kirchhoff Laplacian H on (A, µ, ν)
to the analysis of Sturm–Liouville operators (8.1.3). In particular, since both H1

n

and H2
n are self-adjoint and have purely discrete simple spectra for each n ≥ 1, the

operator HA acting in L2([0,L);µA) encodes the main spectral and parabolic prop-
erties of H. Moreover, take into account that HA allows a rather detailed treatment
(see Chapter 5). First of all, we easily obtain the following characterization of the
self-adjoint and Markovian uniqueness.

Theorem 8.3. Let (A, µ, ν) be a radially symmetric antitree.

(i) The Kirchhoff Laplacian H is self-adjoint if and only if the series∑
n≥0

snsn+1µn`n

(∑
k≤n

`k
sksk+1νk

)2

(8.1.6)

diverges. If the series converges, then the deficiency indices of the minimal
Kirchhoff Laplacian H0 = H∗ equal 1.
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(ii) The Kirchhoff Laplacian H admits a unique Markovian restriction if and
only if either it is self-adjoint or the series

LAν :=
∑
n≥0

`n
snsn+1νn

(8.1.7)

diverges.

Proof. Taking into account the decomposition (8.1.4) and the self-adjointness
of the second and the third summands, the self-adjoint uniqueness (resp., Markovian
uniqueness) for H is equivalent to the self-adjoint uniqueness (resp., Markovian
uniqueness) for HA. Thus, applying Lemma 5.2 and Lemma 5.11, we prove (i) and,
respectively, (ii). �

Remark 8.4. It might be useful to compare the self-adjointness criterion ob-
tained in Theorem 8.3 with the Gaffney-type results from Section 7.1.1. Taking
into account that by the Hopf–Rinow theorem (see Section 6.4.5), completeness is
equivalent to the geodesic completeness, we conclude:

(i) (A, %η) is complete exactly when
∑
n≥0 `n

√
µn
νn

=∞ (cf. Theorem 7.1).

(ii) if, for simplicity,† supn `n
√

µn
νn

< ∞, then (V, %m) is complete exactly

when
∑
n≥0(sn + sn+1)`nµn =∞ (cf. Theorem 7.7).

On the one hand, the last condition is equivalent to (8.1.6) only under the restrictive
assumptions that (a) LAν <∞, and (b) snsn+1 . sn + sn+1 for all n. On the other
hand, its main drawback that it does not take ν into account.

The next immediate corollary is of some interest when one looks at the self-
adjointness and Markovian uniqueness by using graph ends (cf. Section 7.2.1).

Corollary 8.5. Let (A, µ, ν) be a radially symmetric antitree.

(i) If

µ(A) =

∫
A
µ(dx) =

∑
n≥0

snsn+1µn`n =∞,(8.1.8)

then the Kirchhoff Laplacian H is self-adjoint. Moreover, (8.1.8) is also
necessary for the self-adjointness if LAν <∞.

(ii) If LAν < ∞, then the Kirchhoff Laplacian H admits a unique Markovian
restriction if and only if µ(A) =∞.

Remark 8.6. Every infinite antitree has exactly one graph end. By Defini-
tion 7.23, this graph end has finite volume if and only if the total volume of a given
antitree is finite, µ(A) <∞. By Corollary 8.5, the absence of finite volume ends is
equivalent to both self-adjoint and Markovian uniqueness exactly when LAν < ∞,
that is, when the series in (8.1.7) converges.

Remark 8.7. If H is not self-adjoint, then one can describe its self-adjoint
restrictions in the following way. First of all, the decomposition (8.1.4) implies that

†Here we need to take into account the definition of the vertex weight in Section 3.1
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it suffices to restrict to the subspace of spherically symmetric functions: for each
f ∈ dom(H), define the function fsym : [0,L)→ C by setting

fsym(x) =
1

s(x)

∑
y∈A : %0(o,y)=x

f(y), s(x) =
∑
n≥0

snsn+11[xn,xn+1)(x).(8.1.9)

It is straightforward to check that fsym ∈ dom(HA) (cf. [146, Lemma 3.2]). Next,
define

fsym(L) := lim
x→L

(
fsym(x)− νA(x)f ′sym(x)

∫ x

0

ds

νA(s)

)
,

f ′sym(L) := lim
x→L

νA(x)f ′sym(x).

By Lemma 5.5, both limits exist for each f ∈ dom(H) and applying (5.1.8), we
conclude that the one-parameter family Hθ, θ ∈ [0, π) of self-adjoint restrictions of
H is explicitly given by

dom(Hθ) =
{
f ∈ dom(H) | cos(θ)fsym(L) + sin(θ)f ′sym(L) = 0

}
.(8.1.10)

Corollary 8.8. Let H be non-self-adjoint. If LAν <∞, then the corresponding
Dirichlet Laplacian is given by

dom(HD) =
{
f ∈ dom(H) | lim

x→L
fsym(x) = 0

}
,(8.1.11)

Otherwise, the Dirichlet Laplacian coincides with the Neumann Laplacian

dom(HN ) = dom(Hπ/2) =
{
f ∈ dom(H) | lim

x→L
νA(x)f ′sym(x) = 0

}
,(8.1.12)

Proof. If LAν =
∫ L

0
ds

νA(s) <∞, then boundary conditions can be written in a

standard way since in this case

fsym(L) = lim
x→L

fsym(x)− LAν f ′sym(L),

which implies that the limit on the right-hand side exists and is finite for all f ∈
dom(H). Hence we can replace fsym(L) in (8.1.10) by f̃sym(L) := limx→L fsym(x).
Taking into account the definition of the Dirichlet Laplacian, this implies the first
claim. The second one follows from Theorem 8.3(ii). �

If H is not self-adjoint, then the spectral analysis is reduced to that of HA and
Lemma 5.5. Therefore, in the following results we restrict to the case when H is
self-adjoint, that is, the series (8.1.6) diverges. Using Lemma 5.7, we arrive at the
next result.

Lemma 8.9. Suppose that the Kirchhoff Laplacian H is self-adjont. Then:

(i) λ0(H) > 0 if and only if

LAν <∞ and sup
n≥0

∑
k≤n

sksk+1µk`k
∑
k≥n

`k
sksk+1νk

<∞.(8.1.13)

(ii) λess
0 (H) > 0 if and only if either (8.1.13) holds true or

LAν =∞ and sup
n≥0

∑
k≤n

`k
sksk+1νk

∑
k≥n

sksk+1µk`k <∞.(8.1.14)

(iii) The spectrum of H is purely discrete if and only if
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either LAν <∞ and

lim
n→∞

∑
k≤n

sksk+1µk`k
∑
k≥n

`k
sksk+1νk

= 0,(8.1.15)

or µ(A) <∞ and

lim
n→∞

∑
k≤n

`k
sksk+1νk

∑
k≥n

sksk+1µk`k = 0.(8.1.16)

Proof. Taking into account the decomposition (8.1.4), observe that

λ0(H) = λ0(HA), λess
0 (H) = λess

0 (HA)

since λ0(HA) ≤ λ0(Hj
n) for all n ≥ 1, as well as λess

0 (HA) ≤ lim infn→0 λ0(Hj
n),

j ∈ {1, 2}, which follows by using the variational characterization of λ0 provided
by the Rayleigh quotient. Thus, applying Lemma 5.7, we complete the proof. �

Remark 8.10. A few remarks are in order.

(i) If H is not self-adjoint, then one can conclude that the spectrum of each
self-adjoint restriction Hθ (see (8.1.10)) is purely discrete. Furthermore,
taking into account that

σ(H1
n) =

{π2k2

η2
n

}
k∈Z≥1

,

where ηn = `n
√
µn/νn, n ≥ 0 are the intrinsic edge lengths, the Weyl

law (5.1.9) for HA together with the standard Dirichlet–Neumann brack-
eting argument applied to H2

n (see the proof of Corollary 5.1 in [146]),
one arrives at the Weyl law for self-adjoint restrictions of H:†

lim
λ→∞

N(λ; Hθ)√
λ

=
1

π
× intrinsic volume of A,(8.1.17)

and the intrinsic volume of A is

η(A) =

∫
A
η(dx) =

∑
n≥0

snsn+1ηn =
∑
n≥0

snsn+1`n

√
µn
νn
.(8.1.18)

(ii) If H is self-adjoint, however, has purely discrete spectrum, then Weyl’s
law (8.1.17) still takes place. If η(A) = ∞, then one can prove criteria
for the inclusion (H + I)−1 ∈ Sp, p ∈ (1/2,∞) (see Remark 5.8 and [146,
Theorem 5.6 and Rem. 5.7]).

The next result provides an explicit form of the isoperimetric constant for
(A, µ, ν) in the radially symmetric case.

Proposition 8.11. The isoperimetric constant of a radially symmetric metric
antitree (A, µ, ν) is

(8.1.19) Ch(A) = inf
n≥0

snsn+1
√
µnνn∑n

k=0 sksk+1µk`k
.

†Here N(λ;A) is the eigenvalue counting function of a (bounded from below) self-adjoint
operator A with purely discrete spectrum:

N(λ;A) = #{k |λk(A) ≤ λ},

where {λk(A)}k≥0 are the eigenvalues of A (counting multiplicities) in increasing order.
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In particular, the following estimate holds true

λ0(HD) ≥ 1

4
Ch(A)2.(8.1.20)

Proof. The decomposition (8.1.4) as well as the proof of Lemma 8.9 suggests
to take the infimum in (7.3.3) only over radially symmetric subgraphs. Thus, eval-
uating (7.3.3) over subantitrees An, where one cuts out the part of A above the
combinatorial sphere Sn, the inequality “≤” in (8.1.19) is trivial. The proof of the
converse inequality “≥” follows line by line the proof of [146, Theorem 7.1] and we
leave it to the reader. �

Applying the volume growth estimates from Section 7.3.3, we arrive at the
following upper bounds.

Proposition 8.12. Suppose that the radially symmetric antitree (A, µ, ν) has
infinite intrinsic height (i.e., (A, %η) is complete),∑

n≥0

ηn =
∑
n≥0

`n

√
µn
νn

=∞.

Then H is self-adjoint and

λ0(H) ≤ 1

4
v(A)2, v(A) = lim inf

n→∞

1∑
k≤n ηk

log
(∑
k≤n

sksk+1µk`k

)
.(8.1.21)

Remark 8.13. It might be useful to compare the isoperimetric and volume
growth bounds with the positive spectral gap criterion obtained in Lemma 8.9(i)-
(ii). It is rather curious that the volume of the sub-antitrees An,∑

k≤n

sksk+1µk`k

enters all the estimates and criteria. However, it appears there in rather different
ways. The meaning of the quantity∑

k

`k
sksk+1νk

in both (8.1.13) and (8.1.14) remains unclear to us, however, it plays crucial role in
understanding both spectral and parabolic properties of the Kirchhoff Laplacian.

Let us finish this subsection by quickly discussing basic parabolic properties.

Lemma 8.14. Let HG be the Gaffney Laplacian on a radially symmetric antitree
(A, µ, ν). If HG is self-adjoint, then it is recurrent if and only if LAν = ∞. If HG

is not self-adjoint, then Hθ is recurrent if and only if θ = π/2.

Proof. By Lemma B.5, recurrence is equivalent to the fact that there is a
sequence approximating (in a suitable sense) the constant function 1. However, 1
is radially symmetric and thus belongs to the reducing subspace Fsym of all radially
symmetric functions. Thus, HG is recurrent exactly when so is its radial part HA.
It remains to apply Lemma 5.13. �

Lemma 8.15. Let HG be the Gaffney Laplacian on a radially symmetric antitree
A. If HG is self-adjoint, then it is stochastically incomplete if and only if

LAν <∞, and
1

νA(x)

∫ x

0

µA(s)ds ∈ L1([0,L)).(8.1.22)
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Proof. By the very definition of stochastic completeness (B.2.5), the decom-
position (8.1.4) clearly reduces the problem to the stochastic completeness of the
operator HA since 1A ∈ Fsym. It remains to apply Lemma 5.14. �

8.1.2. General case. Removing the symmetry assumption, that is, if at least
one of the weights µ or ν or the lengths | · | are no longer radially symmetric, the
analysis of the Kirchhoff Laplacian becomes much more complicated. The very
first problem – the self-adjoint uniqueness – remains open and, as the next example
from [144, § 7] demonstrates, far from being trivial.

Example 8.16 (Antitrees with arbitrary deficiency indices). We shall assume
that the metric antitree is unweighted, that is, µ = ν = 1 on A (notice that both
weights are radially symmetric). Fix N ∈ Z≥1 and consider the antitree AN with
sphere numbers sn = n + N , n ∈ Z≥1 (for N = 1 this antitree is depicted on
Fig. 6.1). To assign lengths, let us enumerate the vertices in every combinatorial
sphere Sn by (vni )sni=1 and then denote the edge connecting vni with vn+1

j by enij ,
1 ≤ i ≤ sn, 1 ≤ j ≤ sn+1 and n ≥ 0. For a sequence of positive real numbers
(`n)n≥0, we first assign edge lengths

|enij | =

{
2`n, if 1 ≤ i = j ≤ N,
`n, otherwise,

(8.1.23)

for all n ∈ Z≥0. It turns out that for the corresponding metric antitree AN the
space of harmonic functions has dimension N+1 (see Lemma 7.4 in [144]). Choos-
ing lengths such that vol(AN ) ≈

∑
n≥1 n

2`n < ∞, the deficiency indices of the

minimal Kirchhoff Laplacian H0 are equal to the dimension of the space of har-
monic functions belonging to L2(A). By [144, Prop. 7.5], if we choose lengths such
that

`n = O
( 1

(36N)n((n+N + 3)!)2

)
, n→∞,

then all harmonic functions belong to L2(A) and hence n±(H0) = N + 1. ♦

Remark 8.17. A few concluding remarks are in order.

(i) Slightly modifying the antitree in Example 8.16 one can construct an ex-
ample of a metric antitree such that the corresponding minimal Kirchhoff
Laplacian has infinite deficiency indices (see [144, § 7.4]). The above ex-
ample also demonstrates that the space of harmonic functions, even in
the unweighted case, depends in a complicated way on the choice of edge
lengths (notice that in the radially symmetric case constants are the only
harmonic functions). Therefore, the self-adjoint uniqueness becomes a
highly nontrivial problem already in the case µ = ν = 1.

(ii) In contrast to the self-adjoint uniqueness in the case of no radial symmetry,
the Markovian uniqueness problem can be answered in several situations of
interest. For example, in the case µ = ν = 1 it was observed in [144] that
the Markovian uniqueness is equivalent to the infinite total volume of A
(and the latter is independent of whether the antitree is radially symmetric
or not). Moreover, the results of Section 7.2 extend this claim to a much
wider setting: if at least one the two conditions (a) 1/µ, 1/ν ∈ L∞(A), or
(b) A has finite ν-diameter D1/ν(A) < ∞, see (7.2.10), is satisfied, then
the minimal Kirchhoff Laplacian admits a unique Markovian uniqueness
if and only if µ(A) = ∞. If µ(A) < ∞, then H admits a one-parameter
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family of Markovian extensions and their description is very much similar
to the one in the radial case.

Let us also stress that in the radially symmetric case the condition
relating Markovian uniqueness with infinite total volume is LAν < ∞
(see (8.1.7)), and this condition is much weaker than both (a) and (b).

8.1.3. Historical remarks and further references. Antitrees also appear
in the literature under the name neural networks and to a certain extent the corre-
sponding graph Laplacians can be seen a generalization of Jacobi matrices (one may
interpret the recurrence relations as “the values on Sn depend only on the values
on Sn−1 and Sn+1”). Seems, exactly this fact allows to perform a rather detailed
analysis of Laplacians (both weighted graph and Kirchhoff) on antitrees. Below we
collect some further information.

8.1.3.1. Spectral analysis in the radially symmetric case. The decomposition
(8.1.4) of the maximal Kirchhoff Laplacian in the radially symmetric case reduces
the spectral analysis to the study of a Sturm–Liouville operator HA. One may
employ a number of results and techniques available in the 1D setting. In par-
ticular, we briefly listed the very basic results (self-adjointness, positive spectral
gap, discreteness etc.). However, one can prove a number of results characterizing
the structure of the spectrum of H in the self-adjoint case. In particular, [146,
§ 8] shows that the occurrence of absolutely continuous spectrum is a rather rare
event. Antitrees with zero-measure spectrum can be found in [49]. However, using
Lemma 5.9, one can construct a rather large and nontrivial class of antitrees whose
absolutely continuous spectrum fills the positive semi-axis [0,∞) (see [146, § 9]).

8.1.3.2. Family preserving graphs. An antitree is just a particular example of
an infinite graph having a lot of symmetry. Actually, antitrees belong to the wider
class of family preserving graphs (see [30] for definitions), which, in particular, in-
cludes rooted radially symmetric trees. The decomposition (8.1.4) is motivated by
a similar decomposition for Laplacians on radially symmetric metric trees observed
by K. Naimark and M. Solomyak [167], [168], [193]. For this very reason Lapla-
cians on radially symmetric trees form the most studied class of operators on metric
graphs. The literature is enormous and we refer for further references to [29].

Notice that the analog of the decomposition (8.1.4) for family preserving metric
graphs was obtained in [29], however, in contrast to graph Laplacians [30], the
setting of [29] excludes graphs with horizontal edges.

8.1.3.3. Historical remarks. Antitrees appear in the study of discrete Lapla-
cians on graphs at least since the 1980’s [59] (see [47, § 2] for a historical overview).
They played an important role in context with the notion of intrinsic metrics on
graphs (see Section 6.4). More precisely, in [210] (see also [133, § 6] and [90])
R.K. Wojciechowski constructed antitrees of polynomial volume growth (with re-
spect to the combinatorial metric %comb, which is in general not intrinsic) for which
the (discrete) combinatorial Laplacian Lcomb (see Example 6.7) is stochastically
incomplete and the bottom of the essential spectrum is strictly positive. At first,
these examples presented a sharp contrast to the manifold setting (cf. [32], [88]),
but the discrepancies were resolved later by the notion of intrinsic metrics. In this
context, antitrees appear as key examples for certain thresholds (see [99], [105],
[127]). During the recent years, antitrees were also actively studied from other
perspectives and we only refer to a brief selection of articles [29], [30], [47], [146],
where further references can be found.
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8.2. Cayley graphs

Let G be a countable finitely generated group and let S be a generating set of
G. We shall always assume that

• G is countably infinite,
• S is symmetric, S = S−1 and finite, #S <∞,
• the identity element of G does not belong to S (this excludes loops).

The Cayley graph GC = C(G, S) of G with respect to S is the simple graph whose
vertex set coincides with G and two vertices x, y ∈ G are neighbors x ∼ y if and
only if xy−1 ∈ S.

The main aim of this subsection is to demonstrate some of our findings as well as
their relationships with large scale properties of groups. Notice that Cayley graphs
corresponding to two different generating sets are quasi-isometric as metric spaces
when equipped with the combinatorial distance (word metric), which in particular
indicates that many properties of interest are independent of the choice of S (see,
for instance, [53], [173], [184] for further details). To simplify our considerations
we shall restrict throughout most of Section 8.2 to weighted metric graphs with
µ = ν, that is, the edge weights µ and ν are assumed to coincide.

8.2.1. Markovian uniqueness. The self-adjointness for Kirchhoff Laplacians
is a very complicated problem already for abelian groups (ZN ,+) with N ≥ 2 (it
does not seem to us that a complete answer even in this “simplest” situation is
feasible, see also Remark 8.25 below). One can obtain various sufficient conditions
by directly applying the results of Section 7.1 (e.g., Gaffney-type theorems) and we
leave this to the interested reader. Our first goal is to investigate the Markovian
uniqueness on metric Cayley graphs, which is equivalent to the self-adjointness of
the corresponding Gaffney Laplacian HG.

Proposition 8.18. Let GC = C(G, S) be a Cayley graph.‡ Suppose (GC , µ, µ)
is a weighted metric graph whose edge weight µ satisfies 1/µ ∈ L∞(G). Then the
deficiency indices of the corresponding minimal Gaffney Laplacian HG,min = H∗G
coincide with the number of finite volume graph ends of (GC , µ, µ).

Proof. Immediately follows from Theorem 7.24. �

Figure 8.1. Cayley graphs of the abelian groups Z, Z2 and the
free nonabelian group F2 (the Bethe lattice or infinite Cayley tree).

‡If it is not explicitly stated otherwise, we shall denote by GC both a Cayley graph and a

metric graph GC equipped with some edge lengths.
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Remark 8.19 (Ends of Cayley graphs). Graph ends of countable finitely gener-
ated groups are rather well understood (see, e.g., [81]). It is not difficult to see that
the graphs depicted in Fig. 8.1 have, respectively, 2, 1 and infinitely many ends.
However, by the Freudenthal–Hopf theorem, only these three options are possible:
a Cayley graph of an infinite finitely generated group has 1, 2 or infinitely many
ends. Moreover, the end space (equipped with the topology of the end compacti-
fication) of C(G, S) is independent of the choice of the finite generating set S and
hence we shall denote the set of ends by C(G). By Hopf’s theorem, #C(G) = 2 if and
only if G is virtually infinite cyclic† (equivalently, G has a finite normal subgroup Γ
such that the quotient group G/Γ is either infinite cyclic or infinite dihedral). The
classification of finitely generated groups with infinitely many ends (equivalently,
with exactly 1 end) is due to J.R. Stallings (see, e.g., [81, Chap. 13]). In particular,
if G is amenable, then it has finitely many ends (actually, either 1 or 2).

Thus, we arrive at the following result.

Corollary 8.20. Assume the conditions of Proposition 8.18. Let also HG be
the corresponding Gaffney Laplacian.

(i) If #C(G) = 1, then HG is self-adjoint if and only if µ(G) =∞. Otherwise,
n±(HG,min) = 1.

(ii) If #C(G) = 2 (i.e., G is virtually infinite cyclic), then n±(HG,min) ≤ 2. In
particular, HG is self-adjoint if and only if both ends have infinite volume.

(iii) If #C(G) > 2 and at least one of its ends has finite volume, then HG,min

has infinite deficiency indices.
(iv) If µ(G) <∞, then the deficiency indices of HG,min are equal to the number

of ends of G, n±(HG,min) = #C(G).

Proof. (i), (ii) and (iv) are an immediate consequence of Proposition 8.18.
(iii) By the Freudenthal–Hopf theorem, #C(G) = ∞ if #C(G) > 2 (see Re-

mark 8.19). Moreover, the end space is known to be homeomorphic to the Cantor
set (see, e.g., [81, Addendum 13.5.8]), and hence there are no free graph ends. Thus,
having 1 finite volume end would immediately imply the presence of infinitely many
finite volume graph ends. It remains to apply Proposition 8.18. �

Taking into account that the self-adjointness of HG is equivalent to the Mar-
kovian uniqueness for the minimal Kirchhoff Laplacian, we arrive at the following
characterization in the case of amenable groups.

Corollary 8.21. Assume the conditions of Proposition 8.18. If G is amenable
and not virtually infinite cyclic, then the minimal Kirchhoff Laplacian admits a
unique Markovian extension if and only if µ(GC) =

∫
GC µ =∞.

Remark 8.22. For Cayley graphs of infinite groups with finitely many ends
one can describe the sets of Markovian and finite energy extensions of the minimal
Kirchhoff Laplacian in a rather transparent way (see, e.g., Section 7.2.2 and [144,
§ 6], [147]). If G has infinitely many ends and the Gaffney Laplacian is not self-
adjoint, then it is not closed (see [147, Corollary 3.14]) and the description of its
closure is an open problem (even if µ ≡ 1). Moreover, in some cases its closure
may coincide with the maximal Kirchhoff Laplacian (for instance, if GC is a Cayley
graph of the free group F2 and µ(GC) <∞, see [147, Lemma 4.6]). In our opinion,

†If a finite index subgroup of G has property “P”, then G is called virtually “P”.
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the description of finite energy extensions (via boundary conditions) in the general
case is a highly nontrivial problem (see Sections 7.2.2–7.2.3). On the other hand,
Markovian extensions can still be described in terms of Dirichlet forms (in the wide
sense) on the Royden boundary [131], however this correspondence is in general
not bijective (see Section 7.2.2 for a detailed discussion).

Since the deficiency indices of the minimal Kirchhoff Laplacian are not smaller
than the deficiency indices of the Gaffney Laplacian, Corollary 8.20 immediately
provides us with the following result.

Corollary 8.23. Assume the conditions of Proposition 8.18. Let also H0 be
the corresponding minimal Kirchhoff Laplacian. If #C(G) > 2 and at least one of
its ends has finite volume, then n±(H0) =∞.

Let us consider the simplest example.

Example 8.24 (Infinite cyclic group). Let G = (Z,+) be the infinite cyclic
group and S = {−1, 1} the standard set of generators. Then C(Z, S) is nothing but
the infinite path graph (see the first graph on Fig. 8.1). In this case the study of self-
adjoint and Markovian extensions of the weighted Kirchhoff Laplacian is reduced
to the analysis in Section 5.1. Lemma 5.2 and Lemma 5.11 provide a complete
characterization of self-adjoint and Markovian uniqueness, however, now one needs
to deal with two ends and hence one has to replace one series (5.1.4) by two series
with summations to −∞ and ∞, respectively. ♦

Remark 8.25. A few remarks are in order.

(i) Unfortunately, the above example seems to be the only case when a com-
plete answer to the self-adjoint uniqueness for Kirchhoff Laplacians on
weighted metric graphs can be obtained. Moreover, this characterization
employs Weyl’s limit point/limit circle alternative for Sturm–Liouville op-
erators (see the proof of Lemma 5.2 and also [205]). Therefore, upon
changing either the generating set S in the above example or by consid-
ering a Cayley graph of an arbitrary virtually infinite cyclic group (e.g.,
Γ×Z with a finite group Γ, see Fig. 8.2), the problem of finding deficiency
indices of the minimal Kirchhoff Laplacian on the corresponding weighted
metric graph seems rather nontrivial. In particular, the answer clearly
depends on both the generating set S and the group Γ.

(ii) The free abelian group (Zn,+), n ∈ Z≥2 and the free non-abelian group
Fn, n ∈ Z≥2 are the most natural candidates if one wishes to study the case
of groups with 1 and, respectively, infinitely many ends (see Fig. 8.1). The
Gaffney-type theorems (Theorem 7.1 and Theorem 7.7) provide rather
transparent sufficient conditions guaranteeing the self-adjoint uniqueness
(for instance, one can employ the Hopf–Rinow theorem to verify the com-
pleteness assumption, see Section 6.4.5). Imposing the radial symmetry
assumption for Cayley graphs of Fn, one would be able to reduce the
analysis to the one in Section 8.1.1 (see also Section 8.1.3.2), and the self-
adjointness in this case can be characterized analogously to Theorem 8.3
(see [193]).
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• •

Figure 8.2. Cayley graphs of G = Z2 × Z (with Z2 = Z/2Z the
cyclic group of order 2) for two different generating sets.

8.2.2. Spectral gap. For a finitely generated group G and a generating set
S, the isoperimetric constant of its Cayley graph GC = C(G, S) is defined by

ChS(G) = inf
X⊂G

#∂X

#X
, ∂X =

{
(u, v) ∈ X × (G\X) |uv−1 ∈ S

}
,(8.2.1)

where the infimum is taken over all finite subsets.†.

Remark 8.26. Notice that the discrete isoperimetric constant defined in Sec-
tion 7.3.2 for a weighted graph (V,m; b) looks very much similar to (8.2.1). In fact,
upon choosing b and m as in Example 6.23(i), that is, the corresponding graph
Laplacian is the normalized graph Laplacian, the combinatorial distance is intrin-
sic. Taking into account that C(G, S) is a regular graph and each vertex has degree
equal to the cardinality of S, we get |∂X| = #∂X, m(X) = #S ·#X for any X ⊂ G
and hence (7.3.12) implies

ChS(G) = #S · Chd(GC).

Let us recall the following notion (see, e.g., [173, Chapter 3], [209, Sec. 12.A]).
A group is called amenable if it admits a left-invariant mean. For discrete groups
one can define amenability in a more transparent way: a countable group G is
amenable if it admits a Følner sequence, that is, there is a sequence (Xn) of non-
empty finite subsets Xn ⊂ G which exhausts G, ∪n≥0Xn = G and for each group
element g ∈ G

lim
n→∞

#(gXn ∩Xn)

#Xn
= 1,(8.2.2)

where gX = {gx |x ∈ X} is the left translation of a set X ⊂ G by g.

Remark 8.27. Amenability was introduced by J. von Neumann in 1929 and
now it is one of the most important concepts in analytic group theory. Amenability
is known for many important classes of groups. For instance, all abelian or more
generally all (virtually) nilpotent groups as well as all (virtually) solvable groups are
amenable. The free non-abelian groups Fn, n ≥ 2 as well as any group containing
F2 as a subgroup (e.g., a modular group PSL(2,Z)) are not amenable (however,
there are non-amenable groups without free subgroups). Moreover, amenability is
invariant under quasi-isometries.

The analysis of spectral gaps of both weighted graph Laplacians and Kirchhoff
Laplacians heavily relies on Kesten’s amenability criterion [140], which can be seen
as another instance of Følner’s amenability criterion (see also [209, Prop. 12.4]):

†This definition extends to all connected graphs in an obvious way. A graph Gd has the strong
isoperimetric property if its isoperimetric constant is positive (see [209]).
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Theorem 8.28 (H. Kesten [140]). Let GC = C(G, S) be a Cayley graph of a
finitely generated group G. Then the isoperimetric constant ChS(G) equals zero if
and only if G is amenable.

Remark 8.29. Notice that for amenable groups the isoperimetric constant is
independent of the choice of S since it always equals 0. For non-amenable groups,
ChS(G) depends on S, however, it always stays strictly positive. Thus, we can say
that a group G has the strong isoperimetric property if one (and hence all) of its
Cayley graphs satisfies ChS(G) > 0. By Kesten’s theorem, the strong isoperimetric
property for finitely generated groups is equivalent to non-amenability.

Using connections between discrete isoperimetric constants and isoperimetric
constants for weighted metric graphs, we arrive at the following result.

Proposition 8.30. Let GC = C(G, S) be a Cayley graph of a finitely generated
group G. Also, let (GC , µ, µ) be a weighted metric graph having finite intrinsic size
and HD the corresponding Dirichlet Laplacian.

(i) If G is non-amenable and the weight µ satisfies

1/µ ∈ L∞(G) and sup
e∈E

µ(e)|e| <∞,

then λ0(HD) > 0.
(ii) If G is amenable, then λ0(HD) = λess

0 (HD) = 0 whenever

µ ∈ L∞(G) and inf
e∈E

µ(e)|e| > 0.

Proof. (i) By assumption, (GC , µ, µ) has finite intrinsic size. Moreover, the
intrinsic length coincides with the edge length and hence the corresponding discrete
isoperimetric constant is given by (see (7.3.12))

Chd(GC) = inf
X⊂G

|∂X|
m(X)

, |∂X| =
∑
e∈∂X

µ(e), m(X) =
∑
v∈X

∑
e∈Ev

µ(e)|e|.

Therefore, we get the estimate

|∂X|
m(X)

≥ infe∈E µ(e)

supe∈E µ(e)|e|
#∂X

#S ·#X
,

for all finite subsets X ⊂ G. This immediately implies that Chd(GC) ≥ CChS(G)
with some positive C > 0. Hence, by Theorem 8.28, Chd(GC) > 0. Therefore, the
estimate (7.3.20) together with the Cheeger-type bound (7.3.4) imply the claim.

(ii) Combining Theorem 8.28 with the straightforward estimate

|∂X|
m(X)

≤
supe∈E µ(e)

infe∈E µ(e)|e|
#∂X

#S ·#X
,

we conclude that Chd(GC) = 0 if G is amenable. Since infe∈E |e| ≥ infe∈E µ(e)|e|
supe∈E µ(e) > 0,

we can apply Proposition 7.38 and the Buser-type bound (7.3.4) to conclude that
λ0(HD) = 0. Finally, if λess

0 (HD) > 0, then λ = 0 is an eigenvalue of HD with
eigenfunction f ≡ 1G . However, our assumptions imply that G has infinite total
volume and hence 1G /∈ L2(G, µ). This contradiction completes the proof. �

As an immediate corollary we arrive at the following metric graph analog of
Kesten’s amenability criterion:



150 8. EXAMPLES

Corollary 8.31. Let GC = C(G, S) be a Cayley graph. The following asser-
tions are equivalent:

(i) G is non-amenable,
(ii) Ch(GC) > 0 for all (GC , µ, µ) having finite intrinsic size with the edge

weight satisfying µ, 1/µ ∈ L∞(G),
(iii) λ0(HD) > 0 for all (GC , µ, µ) having finite intrinsic size with the edge

weight satisfying µ, 1/µ ∈ L∞(G).

Remark 8.32. If G is an amenable group, then the analysis of λ0(HD) and
λess

0 (HD) in the case infe∈E µ(e)|e| = 0 remains an open (and, in our opinion,
rather complicated) problem. On the other hand, volume growth estimates (see
Section 7.3.3 and the follow-up section) can be used to establish the equality
λ0(HD) = 0 for Cayley graphs of amenable groups in the case infe∈E µ(e)|e| = 0.
In particular, for polynomially growing groups or for groups of intermediate growth
(see Section 8.2.3 for definitions) one may clearly allow a certain qualitative decay
of edge lengths and weights at “infinity” in order to ensure the zero spectral gap.

8.2.3. Interlude: Growth in groups. A growth of a group is one of the
most important quasi-isometric invariants (see [53], [157], [173]). Considering the
identity element of G as the root o of its Cayley graph C(G, S), one defines the
growth function γG : Z≥0 → Z>0 by setting

γG(n) = #{g ∈ G | %comb(g, o) ≤ n},(8.2.3)

where %comb is the combinatorial distance (a.k.a. word metric) on GC = C(G, S)
(see Example 6.20(i)). Behavior of γG for large n is independent of a choice of a
generating set, that is, if γ̃G is the growth function of G corresponding to another

generating set S̃, then there is C > 0 such that C−1γG(n) ≤ γ̃G(n) ≤ CγG(n) for
all n ∈ Z≥0.

Clearly, γG(n) ≤ exp(C n) for all n ∈ Z≥0. A group G has subexponential growth
if log γG(n) = o(n) as n → ∞; otherwise, G is of exponential growth. Notice that
non-amenable groups have exponential growth. If

dG := lim sup
n→∞

log γG(n)

log n

is finite, then G has polynomial growth and in this case dG is its degree.
For large classes of groups the behavior of γ is well understood (e.g., Gromov’s

characterization of groups of polynomial growth, the Milnor–Wolf theorem for solv-
able groups, the Tits alternative for linear groups, etc. The subject is enormous and
we only refer to [157] for further details and references). For instance, if G is virtu-
ally nilpotent, then the degree of growth dG of γG is a natural number and it can be
efficiently computed by the Bass–Guivarc’h formula (see, e.g., [157, Theorem 4.2],
[209, f-la (3.15)]). For example, for the Heisenberg group over the integers U(3,Z),
γ(n) � n4 as n → ∞. The celebrated Gromov’s Polynomial Growth Theorem
states that only virtually nilpotent groups have polynomial growth.

There are also groups of intermediate growth: those are groups of subexponen-
tial growth with dG = ∞, that is, γG grows faster than any polynomial, however,
slower than any exponential function. Let us stress, however, that for groups of in-
termediate growth finding the precise rate of growth is a subtle issue. For instance,
for the first Grigorchuk group this question was settled in the very recent work of
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A. Erschler and T. Zheng [64]: in this case

log log γ(n)

log n
=

log 2

log s0
+ o(1)

as n→∞, where s0 is the positive root of s3 − s2 − 2s = 4.

8.2.4. Transience and recurrence. As before, GC = C(G, S) is a Cayley
graph of a finitely generated group G. Also, let (GC , µ, ν) be a weighted metric graph
(notice that in this subsection we allow µ 6= ν!) and let HD be the corresponding
Dirichlet Laplacian. Define

bν(u, v) =

{
ν(eu,v)
|eu,v| , u−1v ∈ S,
0, u−1v /∈ S,

(u, v) ∈ G.(8.2.4)

We begin with the following straightforward application of Theorem 7.49:

Corollary 8.33. (e−tHD )t>0 is recurrent if and only if the discrete time ran-
dom walk on G with transition probabilities Pν =

(
pν(u, v)

)
u,v∈G defined by

pν(u, v) = P (Xn+1 = v |Xn = u) =
bν(u, v)∑

g∈S bν(u, ug)
(8.2.5)

is recurrent.

The above result reduces the problem of recurrence on weighted metric graphs
to a thoroughly studied field – recurrence of random walks on groups. The litera-
ture on the subject is enormous and we only refer to the classic text [209]. Recall
that a group G is called recurrent if the simple random walk on its Cayley graph
C(G, S) is recurrent for some (and hence for all) S. The classification of recurrent
groups was accomplished in the 1980s and it is a combination of two seminal the-
orems – relationship between decay of return probabilities and growth in groups
established by N.Th. Varopoulos [203] and M. Gromov’s characterization of groups
of polynomial growth (see, e.g., [203, Chapter VI.6], [209, Theorem 3.24]).

Theorem 8.34 (N.Th. Varopoulos). The following assertions are equivalent:

(i) G is recurrent,
(ii) The growth function γG has polynomial growth of degree at most two, i.e.,

γG(n) ≤ C(1 + n2) for all n ∈ Z≥0,
(iii) G contains a finite index subgroup isomorphic either to Z or to Z2.

Remark 8.35. In fact, the original statement is much stronger. Suppose p
is a symmetric probability measure on G which generates G. It defines a random
walk on G by setting P (Xn+1 = v |Xn = u) = p({u−1v}), u, v ∈ G. The problem
to characterize groups admitting a recurrent random walk was formulated by H.
Kesten in 1967. It turns out that only recurrent groups admit recurrent random
walks. Moreover, if G is recurrent, then every random walk generated by a symmet-
ric probability measure p with finite second moment is recurrent (we refer to [209,
Chap. I.3] for further details and information).

Therefore, we arrive at the following result.

Theorem 8.36. Let GC = C(G, S) be a Cayley graph, (GC , µ, ν) a weighted
metric graph, HD the corresponding Dirichlet Laplacian.
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(i) If G is recurrent, i.e., G contains a finite index subgroup isomorphic either
to Z or to Z2, and the edge weight ν satisfies

sup
e∈E

ν(e)

|e|
<∞,(8.2.6)

then the heat semigroup (e−tHD )t>0 is recurrent.
(ii) If G is transient (i.e., G does not contain a finite index subgroup isomor-

phic either to Z or to Z2) and the edge weight ν satisfies

inf
e∈E

ν(e)

|e|
> 0,(8.2.7)

then the heat semigroup (e−tHD )t>0 is transient.

Proof. The proof is a straightforward application of Corollary 8.33 and The-
orem 8.34. Namely, Corollary 8.33 reduces the study of recurrence/transience
for (e−tHD )t>0 to the study of recurrence/transience of the discrete time random
walk (8.2.5) on G. On the other hand, the energy form of the simple random walk
on GC = C(G, S) is given by

qG,S [f ] =
1

2

∑
v∈G

∑
u∈S
|f(v)− f(u−1v)|2.

By definition, G is recurrent/transient if and only if the energy form qG,S is re-
current/transient. Taking into account that the energy form associated with the
random walk (8.2.5) is given by

qν [f ] =
1

2

∑
v∈G

∑
u∈S

ν(eu,v)

|eu,v|
|f(v)− f(u−1v)|2,

it remains to use Lemma B.7 to complete the proof of both claims. �

Let us finish this subsection with one immediate corollary.

Corollary 8.37. Let GC = C(G, S) be a Cayley graph and let (GC , | · |) be an
unweighted metric graph, µ = ν ≡ 1.

(i) If G contains a finite index subgroup isomorphic either to Z or to Z2 and
infe∈E |e| > 0, then (e−tHD )t>0 is recurrent.

(ii) If G does not contain a finite index subgroup isomorphic either to Z or to
Z2 and supe∈E |e| <∞, then the heat semigroup (e−tHD )t>0 is transient.

Remark 8.38. A few remarks are in order.

(i) If G = (Z,+) and C is the Cayley graph of G with the standard set of
generators S = {−1, 1}, one can show (cf. Lemma 5.13) that (e−tHD ) is
recurrent if and only if∑

n∈Z<0

|en|
νn

=∞, and
∑
n∈Z>0

|en|
νn

=∞.(8.2.8)

(ii) Using the volume test, one can slightly improve both Theorem 8.36(i)
and Corollary 8.37(i) in the case when G contains a finite index subgroup
isomorphic to Z2.
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(iii) Applying the volume test (Section 7.4), one may obtain some sufficient
conditions for recurrence for groups which grow faster than quadratic poly-
nomials, however, in this case one needs to know the qualitative behavior
of the corresponding growth function.

8.2.5. Ultracontractivity and eigenvalue estimates. In fact, the results
in the previous section have a number of further and much stronger consequences.
However, to simplify the exposition we restrict to unweighted metric graphs, that
is, we shall assume throughout this subsection that µ = ν ≡ 1 on G.

We begin with the following result.

Theorem 8.39. Let GC = C(G, S) be a Cayley graph, (GC , | · |) a (unweighted)
metric graph, and HD the corresponding Dirichlet Laplacian. Assume also that G
is not recurrent (i.e., it does not contain a finite index subgroup isomorphic either
to Z or to Z2) and the edge lengths satisfy

sup
e∈E
|e| <∞.(8.2.9)

Then (e−tHD )t>0 is ultracontractive and, moreover,

(i) If γG(n) ≈ nN as n→∞ with some N ∈ Z≥3, then

‖e−tHD‖1→∞ ≤ CN t−N/2, t > 0.(8.2.10)

(ii) If G is not virtually nilpotent (i.e., γG has superpolynomial growth†),
then (8.2.10) holds true for all N > 2.

Proof. Notice that we only need to prove (8.2.10) since ultracontractivity is its
immediate consequence. By Theorem 4.30, (8.2.10) is equivalent to the analogous
ultracontractivity bound for the associated weighted graph Laplacian hD:

‖e−thD‖1→∞ ≤ Ct−N/2, t > 0.(8.2.11)

However, by Theorem C.2) the latter is equivalent to the Sobolev-type inequal-
ity (4.8.6): (∑

v∈G

|f(v)|
2N
N−2m(v)

)2

≤ C
∑
v∈G

∑
u∈S

1

|eu,v|
|f(v)− f(u−1v)|2,(8.2.12)

for all f ∈ dom(qD). Here the vertex weight m is given by (take into account that
the model has finite size by assumption and µ ≡ 1)

m(v) =
∑
u∈S
|ev,uv|.(8.2.13)

However, (8.2.9) implies that (8.2.12) would follow from the inequality(∑
v∈G

|f(v)|
2N
N−2

)2

≤ C
∑
v∈G

∑
u∈S
|f(v)− f(u−1v)|2.(8.2.14)

Now it remains to notice that the latter inequality is a consequence of our growth
assumptions on G. If γG grows polynomially and γG(n) ≈ nN for some N ≥ 3 as
n → ∞, then (8.2.14) holds true by [203, Theorem VI.5.2]). If G is not virtually
nilpotent, then, by the Gromov theorem, γG has superpolynomial growth and it
remains to apply [203, Theorem VI.3.2]. �

†This means that for each N > 0 there is c > 0 such that γG(n) ≥ cnN for all large n.
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Remark 8.40. Let us stress that (8.2.9) is necessary for the validity of (8.2.10)
with N > 2 (see Lemma 4.32).

For groups having at most quadratic growth, the next result is an immediate
consequence of recurrence:

Corollary 8.41. Let G be recurrent (i.e., G contains a finite index subgroup
isomorphic either to Z or to Z2). Let also GC = C(G, S) be its Cayley graph and
(GC , | · |) an unweighted metric graph. If infe∈E |e| > 0, then

lim sup
t>0

t ‖e−tHD‖1→∞ ∈ (0,∞].

Let us mention that removing the assumption infe∈E |e| > 0 in the above corol-
lary, one may construct metric graphs such that the corresponding Dirichlet Lapla-
cian satisfies (8.2.10) with some N > 2.

We would like to finish this subsection with a remark on the so-called Cwikel–
Lieb–Rozenblum inequality. Let us consider Laplacians Hα with δ-couplings on
the vertices, that is, α : G → R and at each vertex v ∈ G we replace the Kirchhoff
condition by (2.4.5). As before, if Hα is not self-adjoint, we shall consider the
Friedrichs extension of the minimal operator (of course, if it is bounded from below)
and by abusing the notation we shall denote it by the same letter Hα. Moreover,
we shall use the standard notation α± = (|α| ± α)/2.

Theorem 8.42. Let GC = C(G, S) be a Cayley graph, (GC , | · |) a (unweighted)
metric graph, α : G→ R, and Hα the corresponding Laplacian.

(i) If γG(n) ≤ C(1 + n2) for all n and infe∈E |e| > 0, then Hα has at least
one negative eigenvalue whenever 0 6≡ α = −α− ∈ Cc(V).

(ii) If γG(n) � nN as n → ∞ with some N ∈ Z≥3 and (8.2.9) is satisfied,

then the operator Hα is bounded below whenever α−/m ∈ `N/2(G;m).
Moreover, its negative spectrum is discrete and

κ−(Hα) ≤ C
∑
v∈G

α−(v)N/2m(v)1−N/2,(8.2.15)

where m is given by (8.2.13) and the constant C > 0 depends only on the
underlying metric graph.

(iii) If G is not virtually nilpotent, (8.2.9) is satisfied and α− ∈ `N/2(G;m) for
some N > 2, then the operator Hα is bounded below, its negative spectrum
is discrete and the bound (8.2.15) holds true.

Proof. To simplify the proof, let us assume that Hα is self-adjoint.† First
of all, by Theorem 3.1(iv), κ−(Hα) = κ−(hα) and hence we need to prove the
corresponding claims for hα.

(i) By Corollary 8.37(i) and Theorem 4.17, the heat semigroup generated by
hD is recurrent, which immediately implies the claim.

To prove (ii) and (iii) we just need to apply Theorem 1.2 and Theorem 1.3
from [150], which relate the ultracontractivity estimates established by Theo-
rem 8.39 and Theorem 4.30 for hα with Cwikel–Lieb–Rozenblum bounds. �

†One may assume that GC is complete w.r.t. the natural path metric, and then by Theo-
rem 7.9, the operator Hα is self-adjoint once it is bounded from below; see also Lemma 7.16.
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Remark 8.43. Notice that applying Theorem 1.2 and Theorem 1.3 from [150]
directly to the Dirichlet Laplacian HD we arrive at the Cwikel–Lieb–Rozenblum
estimates for additive perturbation, that is, for Schrödinger operators −∆ + V (x).
It is also well known (see [74]) that ultracontractivity estimates and Sobolev-type
inequalities lead to Lieb–Thirring bounds (Sp estimates on the negative spectra,
see also Theorem 3.1(viii)), however, we are not going to pursue this goal here.

Let us also stress that Theorem 8.42(iii) makes sense only for amenable G since
otherwise HD has a positive spectral gap (see Proposition 8.30).

8.2.6. Historical remarks and further references. The theory of random
walks on groups was founded by H. Kesten [139] (in fact, in his PhD thesis). The
idea to relate growth of groups with recurrence is also due to Kesten (Kesten’s
conjecture). The literature on the subject is enormous and in this respect we only
refer to the excellent book by W. Woess [209].

Kesten’s amenability criterion has been heavily exploited to study random
walks on groups. However, we are aware of at least two cases when Kesten’s cri-
terion has been used in the “opposite” direction: S.I. Adyan in [1] proved that a
simple random walk on the free Burnside group B(m,n) of rank m ≥ 2 with odd
exponent n ≥ 665 has a spectral radius < 1, which implies non-amenability of
B(m,n) for this range of m and n (notice that the latter also provides a counterex-
ample to the so-called “von Neumann conjecture”, disproved by A.Yu. Ol’shanskii
in 1979); L. Bartholdi and B. Virág [16] proved that the so-called Basilica group is
amenable by showing that return probabilities of the simple random walk decay at
subexponential rates.

Let us mention that one of the motivations to investigate random walks on
groups came from manifolds. By the Švarc–Milnor Lemma, the fundamental group

π1(M) of a compact manifold M and its universal cover M̃ are quasi-isometric
and thus there are close relationships between them. For instance, it was proved
independently by R. Brooks [33] and N.Th. Varopoulos [200] that the Laplace–

Beltrami operator on M̃ has a positive spectral gap if and only if π1(M) is not

amenable. Moreover, Varopoulos [200] showed that the Brownian motion on M̃ is
recurrent if and only if the group π1(M) is recurrent.

The importance of Sobolev-type inequalities for ultracontractivity estimates
was realized by N.Th. Varopoulos. The subject is enormous and we even did
not touch here Nash-type inequalities. We refer for further details and references
to [203], [209].

Concluding this section, let us mention recent very active work related to un-
derstanding spectra of groups. More specifically, the spectrum of G is the spectrum
of a generator of a simple random walk on G, i.e., the spectrum of the normal-
ized Laplacian (or, equivalently, combinatorial Laplacian since C(G, S) is a regular
graph) on a Cayley graph C(G, S) of a given group G. The study of a spectral gap
is the simplest (and rather widely studied) issue in this topic. In particular, to
understand the support of the spectrum as well as its structure are much harder
tasks. A complete picture is known only in some specific cases (e.g., abelian groups
(Zn,+), free group Fp [139], the Lamplighter group [87], however, this list is by no
any means complete). In particular, it is not completely clear what kind of spectra
groups may have (it is still open whether Cantor spectrum can occur on a Cayley
graph, however, it is shown in [35] that the support of the Kesten–von Neumann–
Serre spectral measure of the Basilica group is a Cantor set). Another interesting



156 8. EXAMPLES

question is how the spectrum depends on the chosen generating set or on the choice
of weights on the generators. The subject is rapidly developing and we only refer
to a very brief selection of recent articles [35], [48], [62], [86] for further results
and information.

8.3. Tessellations

In the present section, we discuss graphs arising from tessellations of R2 (see
Figure 8.3 for examples) and combine their distinctive combinatorial properties
with our previous findings.

Figure 8.3. (a) The Kagome lattice, (b) a Penrose tiling in R2

and (c) a tessellation of the Poincaré disc by heptagons (see p. 163
for image credit).

In order to formalize this setting, we first need a few definitions. Recall that
a plane graph is a planar graph Gd = (V, E) embedded in R2 by some fixed planar
embedding. In particular, any plane graph Gd can be regarded as a subset of the
Euclidian plane R2, which we always assume to be closed. We denote by F the set
of faces of Gd, i.e., the closures of the connected components of R2 \ Gd. We stress
that, since Gd may be infinite, it may have several unbounded faces and all of them
are included in F ; we denote by Fb the set of bounded faces of Gd.

In order to avoid technical difficulties, we impose the following assumptions.

Definition 8.44. A plane graph Gd = (V, E) is tessellating if the following
additional conditions hold:

(i) F is locally finite, i.e., each compact subset K ⊂ R2 intersects only finitely
many faces.

(ii) Each bounded face F ∈ Fb is a closed topological disc and its boundary
∂F consists of a finite cycle of at least three edges.

(iii) Each unbounded face F ∈ F\Fb is a closed topological half-plane and its
boundary ∂F consists of a (countably) infinite chain of edges.

(iv) #Fe = 2 for all e ∈ E , where Fe := {F ∈ F | e ⊂ ∂F}.
(v) Each vertex v ∈ V has degree ≥ 3.

Here a subset A ⊆ R2 is called a closed topological disc (half-plane) if it is an
image of the closed unit ball in R2 (the closed upper half-plane) under a homeo-
morphism φ : R2 → R2. For a face F ∈ F , we define

EF := {e ∈ E| e ⊆ ∂F}, dF (F ) := #EF ,(8.3.1)
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where the latter is called the degree of a face F ∈ F . Notice that according to
Definition 8.44, dF (F ) ≥ 3 for all faces F and deg(v) ≥ 3 for all vertices v. In
particular, the graph Gd = (V, E) has no loops and vertices of degree one or two.
Moreover, every tessellating graph Gd is an infinite, locally finite graph.

The above assumptions imply that F is a locally finite tessellation (or tiling)
of R2, i.e., a locally finite, countable family T of closed subsets T ⊂ R2 such that
the interiors are pairwise disjoint and

⋃
T∈T T = R2. In addition, the original

graph Gd = (V, E) coincides with the edge graph of the tessellation F : by calling a
connected component of the intersection of at least two sets in F an F-vertex, if
it has only one point and an F-edge otherwise, we recover precisely the vertex and
edge sets V and E . In fact, this connection is the motivation behind our terminology.

Remark 8.45. Tessellating graphs include all infinite trees T = (V, E) satisfy-
ing deg(v) ≥ 3 for each vertex v ∈ V.

A plane weighted metric graph is a weighted metric graph (G, µ, ν) together
with a fixed model whose underlying combinatorial graph Gd = (V, E) is planar
and embedded into R2. If the plane graph Gd is tessellating, then (G, µ, ν) is called
a tessellating weighted metric graph. Let us also stress that the edge lengths and
weights of (G, µ, ν) are in general not related to the Euclidian arc lengths of the
corresponding plane graph Gd.

Remark 8.46. Notice that the fixed model in the definition of a tessellating
weighted metric graph (G, µ, ν) is unique according to (v) in Definition 8.44, which
excludes inessential vertices. Moreover, it is easily seen that the weighted metric
graph (G, µ, ν) has finite intrinsic size exactly when this particular model has finite
intrinsic size.

Notice that the fixed model in the definition of a tessellating weighted metric
graph (G, µ, ν) is unique according to (v) in Definition 8.44, which excludes inessen-
tial vertices. Moreover, it is easily seen the weighted metric graph (G, µ, ν) has finite
intrinsic size exactly when this particular model has finite intrinsic size. On the
other hand, let us emphasize that the embedding of a planar graph Gd = (V, E)
into R2 is not unique. For instance, the degree of the faces depends on the em-
bedding (whereas their number is invariant by Euler’s formula) and, in general,
different embeddings lead to non-isomorphic dual graphs (see, e.g., [72, Chap. 5.5
and Fig. 5.7] for further details).

8.3.1. Markovian uniqueness. The combinatorial structure of plane graphs
leads to simple criteria for Markovian uniqueness.

Corollary 8.47. Let (G, µ, ν) be a tessellating graph such that all faces are
bounded, F = Fb. Assume that either 1/µ, 1/ν ∈ L∞(G) or G has finite ν-diameter
(see (7.2.10)). Then the following are equivalent:

(i) H0 admits a unique Markovian extension,
(ii) HD = HN ,
(iii) the Gaffney Laplacian HG is self-adjoint,
(iv) H1

0 (G, µ, ν) = H1(G, µ, ν),
(v) G has infinite volume, µ(G) =∞.

If one (equivalently, all) of the above properties fails, then the deficiency indices of
the minimal Gaffney Laplacian HG,min are equal to

(8.3.2) n±(HG,min) = 1.
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Proof. The claims follows immediately from Theorem 7.24 (see also (7.2.10))
and the fact that G has exactly one graph end since F = Fb. �

Remark 8.48. If F contains unbounded faces, then the graph might have
more than one end. For instance, every infinite tree T = (G, E) with deg(v) ≥ 3
for all v ∈ V can be embedded in R2 as a tessellating graph with infinitely many
unbounded faces. On the other hand, T has uncountably many graph ends.

8.3.2. Spectral gap estimates. In this section, we discuss lower estimates
for the isoperimetric constant of tessellating weighted metric graphs. To simplify
our considerations, in this section we consider only weighted metric graphs with
equal weight functions (G, µ, µ), that is, we assume that µ = ν. Without loss of
generality we shall also assume that (G, µ, µ) has finite intrinsic size since otherwise

0 = Ch(G) = λ0(HD),

according to Corollary 3.18 and the estimate (7.3.4). For each edge e ∈ E of Gd, we
define its characteristic value as

(8.3.3) c(e) :=
1

|e|µ(e)
−
∑
v : v∈e

1

m(v)
−

∑
F∈Fe∩Fb

1

µ(∂F )
,

and also set

(8.3.4) c(E) := inf
e∈E

c(e).

All summands on the RHS(8.3.3) admit a clear interpretation in terms of the edge
weight µ:

- the first summand is the reciprocal of
∫
e
µ,

- m(v) =
∑
e∈Ev |e|µ(e) = µ(Ev) =

∫
Ev µ because of finite intrinsic size,

- finally, µ(∂F ) is the weighted perimeter of F .

Remark 8.49. A few remarks are in order.

(i) Setting µ(e) = |e| = 1 for all e ∈ E in (8.3.3),

c(e) = 1−
∑
v : v∈e

1

deg(v)
−

∑
F∈Fe∩Fb

1

deg(F )
,

which coincides with the characteristic number φ(e) of edge e introduced
in [208].

(ii) As is easily shown, the characteristic values c(e), e ∈ E depend on the
embedding of the planar graph Gd = (V, E) in R2. Namely, the definition
of c(e) takes into account all edges e′ ∈ E which share a face with e, and
this edge set depends heavily on the embedding.

(iii) As is discussed below in Section 8.3.3.2, the characteristic values are re-
lated to discrete curvature notions for plane graphs. However, our choice
of the sign differs from the standard one in the literature and this explains
why our results are formulated in terms of positive curvature.

It turns out that, if the weight function µ : G → (0,∞) is uniformly positive on
G, that is, it additionally satisfies

(8.3.5) 1/µ ∈ L∞(G),

then the characteristic edge values give rise to lower estimates for the isoperimetric
constant Ch(G).
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Theorem 8.50. Let (G, µ, µ) be a tessellating graph. Then

(8.3.6)
c(E)

‖1/µ‖∞
≤ Ch(G).

In particular, if c(E) ≥ 0, the following spectral estimate

(8.3.7)
1

4

( c(E)

‖1/µ‖∞

)2

≤ λ0(HD)

holds true for the Dirichlet Laplacian HD.

The method of proof follows closely [208] and consists in a rather elegant
application of Euler’s identity for finite plane graphs K = (V(K), E(K)),

(8.3.8) #V(K)−#E(K) + #Fb(K) = #C(K).

where Fb(K) denotes the set of bounded faces of K and C(K) is the set of connected
components of K (see, e.g., [27, Chap. 1.4]).

Proof of Theorem 8.50. Notice that the estimates in Theorem 8.50 are
trivial if c(E) ≤ 0, thus we can assume without loss of generality that c(E) is
positive. Therefore, taking into account (7.31) and the Cheeger-type bound in
Theorem 7.33, it suffices to prove that the estimate

(8.3.9)
c(E)

‖1/µ‖∞
≤ area(∂K)

µ(K)

holds true for all finite subgraphs K = (V(K), E(K)) of Gd. Here (see (7.3.1)
and (7.3.2))

µ(K) =
∑

e∈E(K)

µ(e), area(∂K) = area(∂K, µ, µ) =
∑
v∈∂K

∑
e∈Ev(K)

µ(e),

where ∂K = {v ∈ V(K)| degK(v) < degG(v)}. Clearly,

c(E)µ(K) = c(E)

∫
K
µ(dx) ≤

∫
K

c(x)µ(dx),

and hence it is enough to show that∫
K

c(x)µ(dx) ≤ ‖1/µ‖∞ area(∂K).

By (8.3.3), the LHS in the above equation is equal to∫
K

c(x)µ(dx) =
∑

e∈E(K)

c(e)|e|µ(e)

= #E(K)−
∑
v∈V

µ(Ev ∩ E(K))

m(v)
−
∑
F∈Fb

µ(EF ∩ E(K))

µ(∂F )
.

Notice that for a non-boundary vertex v ∈ V(K) \ ∂K, the inequality

µ(Ev ∩ E(K)) = µ(Ev) =
∑
e∈Ev

µ(e)|e| = m(v)

holds true (recall that our graph has finite intrinsic size and hence we have equality
instead of ≥ on the RHS). Consider the subgraph K◦ = (V(K◦), E(K◦)) of K which
consists of all vertices in V(K◦) := V(K) \ ∂K and all edges between such vertices.
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Notice also that each face F ∈ F whose boundary consists only of edges in K◦, that
is ∂F ⊆ E(K◦), defines a bounded face of K◦ and satisfies

µ(EF ∩ E(K)) = µ(EF ∩ E(K◦)) = µ(EF ) = µ(∂F ).

Denoting by P(K◦) the set of all such faces F ∈ F , we arrive at the estimate∫
K

c(x)µ(dx) ≤ #E(K)−#V(K◦)−#P(K◦).(8.3.10)

Clearly, we also have the elementary inequality

#(E(K) \ E(K◦)) ≤ ‖1/µ‖∞ area(∂K).

Hence, if all bounded faces of K◦ are of the above form, that is,

(8.3.11) Fb(K◦) = P(K◦),

we can apply Euler’s formula (8.3.8) to the subgraph K◦ and conclude that

RHS (8.3.10) = #E(K)−#E(K◦)−#C(K◦) ≤ ‖1/µ‖∞ area(∂K).

In particular, we have established the estimate (8.3.9) in this special case.
On the other hand, if (8.3.11) fails for some finite subgraph K of the fixed

model, we can construct a new subgraph K̂ by “filling up its holes”. That is, we
consider all faces F ∈ F which are contained in some bounded face F of K◦ and
add all vertices and edges of such faces to K. It is easily shown that the obtained

subgraph K̂ satisfies the estimates

µ(K) ≤ µ(K̂) and area(∂K̂) ≤ area(∂K).

together with the condition (8.3.11). Hence the inequality (8.3.9) holds in the
general case and the proof is complete. �

Remark 8.51. The estimate in Theorem 8.50 is not optimal and can be im-
proved using methods similar to [171, Theorem 3.3], where the case µ = ν ≡ 1 was
considered (see also [136, Theorem 1] and [126, Theorem 6]). On the other hand,
these results look more technical and, for the sake of a clear exposition, we decided
not to include them.

Notice that Theorem 8.50 applies to infinite trees:

Proposition 8.52. Let (T , µ, µ) be a weighted metric tree having a model such
that all vertices satisfy deg(v) ≥ 3. Then

Ch(G) ≥ 1

‖1/µ‖∞
inf
e∈E

( 1

µ(e)|e|
−
∑
v∈e

1

m(v)

)
.(8.3.12)

Example 8.53. Consider graphs depicted in Figure 8.3. For simplicity, we
consider unweighted, equilateral metric graphs: µ = ν ≡ 1 and |e| = 1 for all e ∈ E .

(a) Kagome lattice: all vertices have degree deg(v) = 3 and each edge is
adjacent to a triangle and a hexagon. In particular, the characteristic
value of all edges e ∈ E is equal to

c(e) = 1− 2 · 1

4
− 1

3
− 1

6
= 0.
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(b) Penrose tiling: notice first that each face is a rhombus. However, the
characteristic edge value is not constant in this case, since the degrees of
the adjacent vertices vary. For instance, there are infinitely many edges
e = euv such that deg(u) = 3 and deg(v) = 5 and in this case

c(e) = 1− 1

3
− 1

5
− 2 · 1

4
= − 1

30
.

(c) Hyperbolic tessellation: each face is a hyperbolic heptagon, hence dF (F ) =
5 for all F ∈ F and all vertices have degree deg(v) = 3. More generally, we
can consider (p, q)-regular tessellations (i.e., deg(v) = p for all vertices v
and dF (F ) = q for all faces F ) for some p ∈ Z≥3 and q ∈ Z≥3∪{∞} (q =∞
corresponds to p-regular trees, in which case all faces are unbounded). In
this case, the characteristic value c(e) of all edges e ∈ E is equal to

cp,q := 1− 2

p
− 2

q
.

It turns out that cp,q ≥ 0 for every (p, q)-regular tessellation of R2 (see,
e.g., [56, Theorem 1.7]). Clearly, cp,q = 0 exactly when

(p, q) ∈ {(4, 4), (3, 6), (6, 3)},

and in these cases Gd is isomorphic to the square, hexagonal or triangle
lattice in R2. In particular, one easily shows that Ch(G) = 0 in all three
cases.

On the other hand, if cp,q > 0, then Gd is isomorphic to the edge
graph of a tessellation of the Poincaré disc H2 with regular q-gons of
interior angle 2π/p (see [96, Rem. 4.2]). Moreover, Theorem 8.50 implies
that Ch(G) > 0. The explicit value is given by (see [171, eq. (4.6)])

(8.3.13) Ch(Gp,q) =
p− 2

p− 1 + p
2

(√
(p−2)(q−2)
pq−2(p+q) − 1

)
and can be found from results on isoperimetric constants of discrete graphs
(see [96], [103]).

Notice that Theorem 8.50 leads to trivial bounds for the Kagome lattice and
the Penrose tiling in Example 8.53. However, one can easily show directly that
Ch(G) = 0 for these examples. It turns out that these graphs actually satisfy a
stronger property:

Proposition 8.54. Let (G, µ, µ) be a tessellating graph such that infe∈E |e| > 0
and supF∈F µ(∂F ) <∞. Suppose further that

inf
F∈F

mes(F ) > 0 and sup
F∈F

sup
x,y∈∂F

‖x− y‖R2 <∞,

where mes(F ) denotes the Lebesgue measure of the subset F ⊆ R2 and ‖x− y‖R2 is
the Euclidian distance in R2. Then the Kirchhoff Laplacian H is self-adjoint and
the corresponding heat semigroup (e−tH)t>0 is recurrent. In particular,

λ0(H) = Ch(G) = 0.

Proof. Under the above assumptions, the intrinsic metric %η of (G, µ, µ) co-
incides with the length metric %0 and (G, %0) is complete. Hence, by Theorem 7.1,



162 8. EXAMPLES

the Kirchhoff Laplacian H is self-adjoint. Moreover, by Theorem 7.42, it suffices to
prove that

µ(Br(x)) = O(r2) as r →∞
for some fixed (and hence all) points x on G. Here, Br(x) = Br(x; %0) ⊂ G denotes
the distance ball of radius r centered at x ∈ G with respect to the length metric %0.

By assumption, the Lebesgue measure of all faces F of G is uniformly bounded
below. Using the condition on the diameter of the faces, it follows that for some
uniform constant b > 0, each Euclidian ball in R2 of (large) radius r can intersect
at most br2 faces of G. Moreover, observe that for some a > 0,

‖u− v‖R2 ≤ a%0(u, v), u, v ∈ V.
Indeed, by our assumptions, the length |e| of each edge e ∈ E is comparable to the
distance of its endpoints in R2 and the estimate immediately follows. Altogether,
for every vertex u ∈ V and large r,

µ(Br(u))

supF∈F µ(∂F )
≤ #

{
F ∈ F | ∂F ∩ V ∩Br(u) 6= ∅

}
≤ ba2r2

and this completes the proof. �

Remark 8.55. A few remarks are in order.

(i) The recurrence of random walks on edge graphs of tessellations was stud-
ied by P.M. Soardi [190] and W. Woess [209]. By [209, Theorem 6.29],
the simple random walk on the edge graph of every quasi-regular tessel-
lation of R2 is recurrent (see [209, Def. 6.28] for definitions and [190] for
a preceding result). In fact, [209, Theorem 6.29] can be used to show
that Proposition 8.54 holds for weighted metric graphs on quasi-regular
tessellations, allowing general edge lengths and weights µ 6= ν with the
only assumption (8.2.6) (see the proof of Theorem 8.36). However, the
assumptions in Proposition 8.54 allow to give an elegant short proof and
we decided to include only this elementary statement.

(ii) The same arguments apply in case when Gd = (V, E) is an infinite semipla-
nar graph with nonnegative vertex curvature (see [109], [110] for details
and definitions). Again, in this case [109, Theorem 1.3] implies that the
simple random walk on Gd is recurrent, and under the assumption (8.2.6),
the same holds for the semigroup (e−tHD )t>0 on a weighted metric graph
(G, µ, ν) over Gd = (V, E).

8.3.3. Historical remarks and further comments.
8.3.3.1. Markovian uniqueness. The strong assumptions on the weights in Corol-

lary 8.47 are indeed necessary. For instance, it was proved in [39] (see also [21], [22]
for preceding results) that every locally finite, vertex-nonamenable† planar graph
Gd = (V, E) admits a non-constant Lcomb-harmonic function of finite energy, where
Lcomb is the combinatorial Laplacian from Example 6.7. Notice that all graphs Gp,q
in Example 8.53(iii) with cp,q > 0 are vertex-nonamenable and have exactly one
graph end if q < ∞. Hence, setting |e| = ν(e) = 1 for all edges e ∈ E , one can

†This means that there is some ε > 0 such that #{u ∈ V \X | ∃v ∈ X with u ∼ v} ≥ ε#X
for all finite vertex sets X ⊂ V.
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obtain a weighted metric graph (Gp,q, µ, ν) admitting at least two linearly indepen-
dent harmonic functions of finite energy. Choosing edge weights µ sufficiently small,
these finite energy harmonic functions would also belong to H1. In particular, this
immediately implies that the corresponding (minimal) Gaffney Laplacian has defi-
ciency indices n±(HG,min) ≥ 2 regardless of the number of ends (for example, one
can choose µ sufficiently small in order to ensure a positive spectral gap).

8.3.3.2. Discrete curvature for plane graphs. The results in Section 8.3.2 can
also be seen in context with discrete curvature notions for plane graphs and their
relation to geometric properties. Going back to earlier works such as [93], [116],
[194], several notions of curvature have been introduced for plane graphs and they
have been used to investigate their geometric properties (see, e.g., the survey [128]
and the works [19], [56], [96], [102], [109], [110], [126], [136], [175], [194], [208],
[215]). In particular, these curvature notions have been used to investigate isoperi-
metric constants (see, e.g., [102], [136], [171], [174], [175], [208], [215]) and the
obtained spectral estimates resemble an estimate by H.P. McKean in the mani-
fold setting [164]. In the unweighted case µ = ν ≡ 1, the characteristic edge
values (8.3.3) coincide with the ones introduced in [208], [171] for (unweighted)
discrete and metric graphs, respectively (up to the choice of sign). Theorem 8.50
can be seen as the analogue of [171, eq. (1.3)] in the weighted setting.

8.3.3.3. Parabolic properties. The above recurrence results (see Proposition 8.54
and Remark 8.55) are also connected to the notion of quasi-isometries between met-
ric spaces (see Remark 6.29). In fact, by [190, Theorem 4.11] the edge graph of
every normal tessellation of R2 is quasi-isometric to R2 and in this case, the re-
currence of the associated discrete Laplacians (and related Kirchhoff Laplacians on
metric graphs) follows from the equivalence of recurrence between quasi-isometric
spaces, see [46, Théorème 7.2] and also [121], [158]. Clearly, similar consider-
ations apply to (sufficiently well-behaved) tessellations of other two-dimensional
Riemannian manifolds (e.g., the Poincaré disc), however, we cannot point to an
explicit reference. On the other hand, it should be stressed that the quasi-isometry
property breaks down for general quasi-regular tessellations of R2 (see [190, Section
7]) and hence the results of [190], [209] indeed go beyond this setting.

As for the question of stochastic completeness on weighted tessellating graphs,
one can either proceed with the volume tests or by employing various curvature
conditions. Notice that, similar to the manifold setting, stochastic incompleteness
is related to a very fast decay of curvature to negative infinity (see, e.g., [211, § 8]).

8.3.4. Image credit for Figure 8.3. (a) Kagome lattice:
WilliamSix, CC BY-SA 2.5, via Wikimedia Commons;
https://commons.wikimedia.org/wiki/File:Kagome-lattice-bw.svg

(b) Penrose tiling in R2:
xJaMderivative work: Sprak, Public domain, via Wikimedia Commons;
https://commons.wikimedia.org/wiki/File:Pen0305c.svg

(c) Tessellation of the Poincaré disc by heptagons:
Theon, CC BY-SA 3.0, via Wikimedia Commons;
https://commons.wikimedia.org/wiki/File:PavageHypPoincare2.svg

https://commons.wikimedia.org/wiki/File:Kagome-lattice-bw.svg
https://commons.wikimedia.org/wiki/File:Pen0305c.svg
https://commons.wikimedia.org/wiki/File:PavageHypPoincare2.svg




APPENDIX A

Boundary triplets and Weyl functions

A.1. Linear relations

Let H be a separable Hilbert space. A (closed) linear relation in H is a (closed)

linear subspace in H×H. The set of all closed linear relations is denoted by C̃(H).
Since every linear operator in H can be identified with its graph, the set of linear
operators can be seen as a subset of all linear relations in H. In particular, the set

of closed linear operators C(H) is a subset of C̃(H).
Recall that the domain, the range, the kernel and the multivalued part of a

linear relation Θ are given, respectively, by

dom(Θ) = {f ∈ H | ∃g ∈ H such that (f, g) ∈ Θ},
ran(Θ) = {g ∈ H | ∃f ∈ H such that (f, g) ∈ Θ},
ker(Θ) = {f ∈ H | (f, 0) ∈ Θ},

mul(Θ) = {g ∈ H | (0, g) ∈ Θ}.

The adjoint linear relation Θ∗ is defined by

Θ∗ =
{

(f̃ , g̃) ∈ H ×H | 〈g, f̃〉H = 〈f, g̃〉H for all (f, g) ∈ Θ
}
.

Θ is called symmetric if Θ ⊆ Θ∗. If Θ = Θ∗, then it is called self-adjoint. Note
that mul(Θ) is orthogonal to dom(Θ) if Θ is symmetric. For a closed symmetric
Θ satisfying mul(Θ) = mul(Θ∗) (the latter is further equivalent to the fact that Θ

is densely defined on mul(Θ)⊥), setting Hop := dom(Θ) = mul(Θ)⊥ we obtain the
following orthogonal decomposition

Θ = Θop ⊕Θ∞,(A.1.1)

where Θ∞ = {0} × mul(Θ) and Θop is the graph of a closed symmetric linear
operator inHop, called the operator part of Θ. Notice that for non-closed symmetric
linear relations the decomposition (A.1.1) may not hold true as the next example
shows.

Example A.1. Let H = Hop ⊕ M, where Hop and M are closed infinite-
dimensional subspaces. Suppose A0 is a non-closed, densely defined symmetric
operator in Hop and M0 (M a non-closed subspace such that M0 =M. Let A
be the closure of A0, fix f0 ∈ dom(A) \ dom(A0) and g0 ∈M \M0 and define

f0 = (f0, g0 +Af0) ∈ Θ := Gr(A)⊕ ({0} ×M),

where Gr(A) is the graph of A. Define the linear relation Θ0 as the linear (non-
closed) span of Gr(A0) ⊕ ({0} × M0) and f0. Clearly, Θ0 ( Θ and hence it is

symmetric. Moreover, by construction dom(Θ0) = mul(Θ0)⊥. However, (A.1.1)
fails to hold for Θ0. Indeed, if P2 is the projection in H × H onto the second

165
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component and PM is the projection in H onto M, then (A.1.1) would imply
M0 = mul(Θ0) = PMP2(Θ0). However,

g0 = PM (g0 +Af0) = PMP2f0 /∈M0.

This is a clear contradiction to the definition of Θ0. ♦

The inverse of the linear relation Θ is given by

Θ−1 = {(g, f) ∈ H ×H | (f, g) ∈ Θ}.
The sum of linear relations Θ1 and Θ2 is defined by

Θ1 + Θ2 = {(f, g1 + g2) | (f, g1) ∈ Θ1, (f, g2) ∈ Θ2}.
Hence one can introduce the resolvent (Θ− z)−1 of the linear relation Θ, which is
well defined for all z ∈ C. However, the set of those z ∈ C for which (Θ − z)−1 is
the graph of a closed bounded operator in H is called the resolvent set of Θ and is
denoted by ρ(Θ). Its complement σ(Θ) = C \ ρ(Θ) is called the spectrum of Θ. If
Θ is self-adjoint, then taking into account (A.1.1) we obtain

(Θ− z)−1 = (Θop − z)−1 ⊕Omul(Θ).(A.1.2)

This immediately implies that ρ(Θ) = ρ(Θop), σ(Θ) = σ(Θop) and, moreover, one
can introduce the spectral types of Θ as those of its operator part Θop. Let us
mention that self-adjoint linear relations admit a very convenient representation,
which was first observed by F.S. Rofe-Beketov [185] in the finite dimensional case
(see also [188, Exercises 14.9.3-4]).†

Proposition A.2. Let C and D be closed bounded operators on H and

ΘC,D :=
{

(f, g) ∈ H ×H |Cf = Dg
}
.(A.1.3)

Then ΘC,D is self-adjoint if and only if

CD∗ = DC∗, ker

(
C −D
D C

)
= {0}.(A.1.4)

The second condition in (A.1.4) is equivalent to rank(C|D) = dim(H) whenever
dim(H) <∞.

We also need the following definition. For a symmetric linear relation Θ in H,
its defect subspace at z ∈ C is defined by Nz(Θ) = ker(Θ∗ − z). The numbers

n±(Θ) := dimN±i(Θ) = dim ker(Θ∗ ∓ i)

are called the deficiency indices of Θ.
Let us mention that the adjoint relation Θ∗C,D to ΘC,D is given by

Θ∗C,D =
{

(D∗f, C∗f) | f ∈ H
}
.

In particular, Θ∗C,D is symmetric exactly when the first equality in (A.1.4) holds
true. Moreover, in this case the deficiency indices are given by

n±(Θ∗C,D) = dim ker(C ∓ iD).

Further details and facts about linear relations in Hilbert spaces can be found in,
e.g., [55, Chap. 6.1], [188, Chap. 14].

†This representation was rediscovered later by many authors; in the context of self-adjoint
vertex conditions for metric graphs, the reference usually goes to [148].
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A.2. Boundary triplets and proper extensions

Let A be a densely defined closed symmetric operator in a separable Hilbert
space H with equal deficiency indices n±(A) = dimN±i ≤ ∞, Nz := ker(A∗ − z).

Definition A.3 ([85]). A triplet Π = {H,Γ0,Γ1} is called a boundary triplet
for the adjoint operator A∗ if H is a Hilbert space and Γ0,Γ1 : dom(A∗) → H are
bounded linear mappings such that the abstract Green’s identity

(A.2.1) 〈A∗f, g〉H − 〈f,A∗g〉H = 〈Γ1f,Γ0g〉H − 〈Γ0f,Γ1g〉H

holds for all f, g ∈ dom(A∗) and the mapping

Γ: dom(A∗) → H×H
f 7→ (Γ0f,Γ1f)

(A.2.2)

is surjective.

A boundary triplet for A∗ exists if and only if the deficiency indices of A are
equal (see, e.g., [55, Prop. 7.4], [188, Prop. 14.5]). Moreover, n±(A) = dim(H) and
A = A∗ � ker(Γ). Note also that the boundary triplet for A∗ is not unique.

An extension Ã of A is called proper if dom(A) ⊂ dom(Ã) ⊂ dom(A∗). The set
of all proper extensions is denoted by Ext(A).

Theorem A.4 ([54, 155]). Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗.
Then the mapping Γ defines a bijective correspondence between Ext(A) and the set
of all linear relations in H:

Θ 7→ AΘ := A∗ � {f ∈ dom(A∗) | Γf = (Γ0f,Γ1f) ∈ Θ}.(A.2.3)

Moreover, the following holds:

(i) A∗Θ = AΘ∗ .

(ii) AΘ ∈ C(H) if and only if Θ ∈ C̃(H).
(iii) AΘ is symmetric if and only if Θ is symmetric and n±(AΘ) = n±(Θ)

holds. In particular, AΘ is self-adjoint if and only if Θ is self-adjoint.
(iv) If AΘ = A∗Θ and AΘ̃ = A∗

Θ̃
, then for every p ∈ (0,∞] the following

equivalence holds

(AΘ − i)−1 − (AΘ̃ − i)−1 ∈ Sp(H) ⇐⇒ (Θ− i)−1 − (Θ̃− i)−1 ∈ Sp(H).

Notice that according to (A.1.2), a self-adjoint linear relation Θ is said to belong
to the von Neumann–Schatten ideal Sp if its operator part Θop belongs to Sp(Hop).

Remark A.5. The proof of Theorem A.4(i)–(ii) can be found in [55, Prop. 7.8],
[188, Prop. 14.7]; (iii) was obtained in [155, Prop. 3], see also [55, Prop. 7.14].

A.3. Weyl functions and extensions of semibounded operators

With a boundary triplet Π = {H,Γ0,Γ1} one can associate two linear operators

A0 := A∗ � ker(Γ0), A1 := A∗ � ker(Γ1).

Clearly, (A.2.3) implies A0 = AΘ0
and A1 = AΘ1

, where Θ0 = {0} × H and
Θ1 = H× {0}. Hence, by Theorem A.4(iii), A0 = A∗0 and A1 = A∗1.
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Definition A.6 ([54]). Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗. The
operator-valued function M : ρ(A0)→ B(H) defined by

(A.3.1) M(z) := Γ1(Γ0 � Nz)−1, z ∈ ρ(A0),

is called the Weyl function corresponding to the boundary triplet Π.

The Weyl function is well defined and holomorphic on ρ(A0). Moreover, it is
a Herglotz–Nevanlinna function (see [54, §1], [55, §7.4.2] and also [188, §14.5]). If
AΘ ∈ Ext(A), then one has the Krein resolvent formula [54, §1], [55, §7.6.1]

(AΘ − z)−1 = (A0 − z)−1 + γ(z)(Θ−M(z))−1γ(z∗)∗(A.3.2)

for all z ∈ ρ(AΘ) ∩ ρ(A0). Here γ(z) := (Γ0 � Nz)−1 is the so-called γ-field.
Assume now that A ∈ C(H) is a lower semibounded operator, i.e., A ≥ a IH

with some a ∈ R. Let a0 be the largest lower bound for A,

a0 := inf
06=f∈dom(A)

〈Af, f〉H
‖f‖2H

.

The Friedrichs extension of A is denoted by AF . If Π = {H,Γ0,Γ1} is a boundary
triplet for A∗ such that A0 = AF , then the corresponding Weyl function M is
holomorphic on C \ [a0,∞). Moreover, M is strictly increasing on (−∞, a0) (that
is, for all x, y ∈ (−∞, a0), M(x) −M(y) is positive definite whenever x > y) and
the following strong resolvent limit exists (see [54])

M(a0) := s−R− lim
x↑a0

M(x).(A.3.3)

However, M(a0) is in general a closed linear relation, which is bounded from below.

Theorem A.7 ([54, 154]). Let A ≥ a IH with some a ≥ 0 and let Π =
{H,Γ0,Γ1} be a boundary triplet for A∗ such that A0 = AF . Also, let Θ = Θ∗ ∈
C̃(H) and AΘ be the corresponding self-adjoint extension (A.2.3). If M(a) ∈ B(H),
then:

(i) AΘ ≥ a IH if and only if Θ−M(a) ≥ OH.
(ii)

κ−(AΘ − a I) = κ−(Θ−M(a)).

If additionally A is positive definite, that is, a > 0, then:

(iii) AΘ is positive definite if and only if Θ(0) := Θ−M(0) is positive definite.
(iv) For every p ∈ (0,∞] the following equivalence holds

A−Θ ∈ Sp(H) ⇐⇒ Θ(0)− ∈ Sp(H),

where Θ(0)− := Θ(0)−op ⊕Θ(0)∞.

Remark A.8. For the proofs of (i) and (ii) consult Theorems 5 and 6 in [54];
the proofs of (iii)–(iv) can be found in [154, Theorem 3]. If A is not positive
definite, then “⇔” in Theorem A.7(iv) is replaced by the implication “⇐”.

We also need the next result (see [54, Theorem 3] and [55, Theorem 8.22]).

Theorem A.9 ([54]). Assume the conditions of Theorem A.7. Then the fol-
lowing statements

(i) Θ ∈ C̃(H) is lower semibounded,
(ii) AΘ is lower semibounded,
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are equivalent if and only if M(x) tends uniformly to −∞ as x→ −∞, that is, for
every N > 0 there exists xN < 0 such that M(x) < −N · IH for all x < xN .

The implication (ii) ⇒ (i) always holds true (cf. Theorem A.7(i)), however,
the validity of the converse implication requires that M tends uniformly to −∞.
Let us mention in this connection that the weak convergence of M(x) to −∞, i.e.,
the relation

lim
x→−∞

〈M(x)h, h〉H = −∞

holds for all h ∈ H \ {0} whenever A0 = AF . Moreover, this relation characterizes
Weyl functions of the Friedrichs extension AF among all nonnegative (and even
lower semibounded) self-adjoint extensions of A (see [54, Prop. 4]).

The next result establishes a connection between the essential spectra of AΘ

and Θ and also it can be seen as an improvement of Theorem A.7 (iv).

Theorem A.10 ([67]). Let A ≥ a0 IH > 0 and let Π = {H,Γ0,Γ1} be a
boundary triplet for A∗ such that A0 = AF . Also, let M be the corresponding Weyl

function and let Θ = Θ∗ ∈ C̃(H) be such that AΘ = A∗Θ is lower semibounded.
Then the following equivalences hold:

inf σess(AΘ) ≥ 0 ⇐⇒ inf σess(Θ−M(0)) ≥ 0,(A.3.4)

inf σess(AΘ) > 0 ⇐⇒ inf σess(Θ−M(0)) > 0,(A.3.5)

inf σess(AΘ) = 0 ⇐⇒ inf σess(Θ−M(0)) = 0.(A.3.6)

A.4. Direct sums of boundary triplets

Let J be a countably infinite index set. For each j ∈ J, let Aj be a closed
densely defined symmetric operator in a Hilbert space Hj such that 0 < n+(Aj) =
n−(Aj) ≤ ∞. Also, let Πj = {Hj ,Γ0,j ,Γ1,j} be a boundary triplet for the operator
A∗j , j ∈ J. In the Hilbert space H := ⊕j∈JHj , consider the operator A := ⊕j∈JAj ,
which is symmetric and n+(A) = n−(A) =∞. Its adjoint is given by A∗ = ⊕j∈JA∗j .
Let us define a direct sum Π := ⊕j∈JΠj of boundary triplets Πj by setting

H := ⊕j∈JHj , Γ0 := ⊕j∈JΓ0,j , Γ1 := ⊕j∈JΓ1,j .(A.4.1)

The next result provides several criteria for (A.4.1) to be a boundary triplet for the
operator A∗ = ⊕j∈JA∗j .

Theorem A.11 ([141]). Let A = ⊕j∈JAj and let Π = {H,Γ0,Γ1} be defined
by (A.4.1). Then the following conditions are equivalent:

(i) Π = {H,Γ0,Γ1} is a boundary triplet for the operator A∗.
(ii) The mappings Γ0 and Γ1 are bounded as mappings from dom(A∗) equipped

with the graph norm to H.
(iii) The Weyl functions Mj corresponding to the triplets Πj, j ∈ J, satisfy the

following condition

(A.4.2) sup
j∈J

(
‖Mj(i)‖Hj + ‖(ImMj(i))

−1‖Hj
)
<∞.

(iv) If in addition A is nonnegative, then (i)–(iii) are further equivalent to

(A.4.3) sup
j∈J

(
‖Mj(−1)‖Hj + ‖M ′j(−1)‖Hj + ‖

(
M ′j(−1)

)−1‖Hj
)
<∞.

Remark A.12. Theorem A.11 was proved in [141, § 3], however, it is essentially
contained in [156, § 3].





APPENDIX B

Dirichlet forms

In this section, we collect necessary definitions and facts about Dirichlet forms.
The standard reference is [77]. We stress that most of the literature treats Dirichlet
forms on real Hilbert spaces (i.e., restricting to real-valued functions), however the
theory easily extends to complex Hilbert spaces (see, e.g., [97, Appendix B]).

B.1. Basic notions

In the following, let X be a locally compact separable metric space and µ a
positive Radon measure on X of full support. The associated Hilbert space of
complex-valued, square integrable functions is denoted by H := L2(X;µ). For a
quadratic form t : dom(t)→ C, whose domain dom(t) is a subspace of H, we denote
by t[u, v], u, v ∈ dom(t) its corresponding sesquilinear form.

Definition B.1. A Dirichlet form in H is a densely defined, non-negative and
closed quadratic form t satisfying the Markovian condition: for all f ∈ dom(t) and
any normal contraction‡ ϕ, ϕ ◦ f ∈ dom(t) and

(B.1.1) t[ϕ ◦ f ] ≤ t[f ].

A Dirichlet form in the wide sense is a quadratic form t satisfying all the above
conditions, except that dom(t) ⊆ H is (possibly) not dense.

By the first representation theorem (see [125, Chapter VI.2.1]), to each Dirich-
let form we can associate a non-negative, self-adjoint operator A : dom(A) → H.
The corresponding heat semigroup Tt := e−tA, t ≥ 0 is then Markovian, that is, all
Tt’s satisfy 0 ≤ Ttf ≤ 1 for functions f with 0 ≤ f ≤ 1. The latter means that e−tA

is positivity preserving (i.e., maps non-negative functions to non-negative functions)
and contractive (i.e., it is a contraction in L∞) . Moreover, the heat semigroup has
a canonical extension from L1(X;µ)∩L∞(X;µ) to a positive contraction semigroup
on Lp(X;µ) for all p ∈ [1,∞] (see, e.g., [50, Theorem 1.4.1] and also [77, p. 56] for
details).

Definition B.2. A Dirichlet form t is called strongly local if t[f, g] = 0 for any
functions f, g ∈ dom(t) with compact support†† and such that f is constant in a
neighborhood of supp(g).

Moreover, a Dirichlet form t is called regular if the set dom(t) ∩ Cc(X) is

(i) dense in Cc(X) with respect to the uniform norm ‖ · ‖∞, and
(ii) dense in (dom(t), ‖·‖t) with respect to the graph norm ‖·‖2t = t[·]+‖·‖2L2 .

‡A function ϕ : C→ C is called a normal contraction if ϕ(0) = 0 and |ϕ(x)− ϕ(y)| ≤ |x− y|
for all x, y ∈ C.

††The support of a mesurable function f is defined as the support of the measure f dµ. If f

is continuous, this coincides with the closure of {x ∈ X | f(x) 6= 0}.
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Remark B.3. Let us remark that a regular Dirichlet form t has an additional
stochastic interpretation: there is an associated (unique up to equivalence) Hunt
processM = ((Xt)t≥0, (Px)x∈X) on X such that for t ≥ 0 and E ⊆ X measurable,

Tt1E(x) = Px(Xt ∈ E), µ-a.e.

For details on Hunt processes and their relationship to Dirichlet forms we refer to
[77, Appendix A.2, Theorem 4.2.8 and Theorem 7.2.1]).

B.2. Transience, recurrence and stochastic completeness

Let t be a Dirichlet form in H and let Tt := e−tA, t > 0 be the corresponding
heat semigroup. For a non-negative function f ∈ L1(X;µ), we define its potential
Gf : X → [0,∞] by

Gf(x) = lim
N→∞

∫ N

0

(Tsf)(x) ds,(B.2.1)

where the limit exists for µ-a.e. x ∈ X. We call the Dirichlet form t/Markovian
semigroup (Tt)t>0 transient if

Gf(x) <∞ µ-a.e. for any 0 ≤ f ∈ L1(X;µ),(B.2.2)

and recurrent if

Gf(x) = 0 µ-a.e. or Gf(x) =∞ µ-a.e. for each 0 ≤ f ∈ L1(X;µ).

(B.2.3)

Note that an arbitrary Dirichlet form might be neither recurrent nor transient.
However, the dichotomy holds for irreducible Dirichlet forms‡, that is, every irre-
ducible Dirichlet form is either transient or recurrent (but not both!).

Remark B.4. One can reformulate transience/recurrence by means of qua-
dratic forms. For instance (see [77, Theorem 1.5.1]), the Dirichlet form t in H is
transient exactly when there exists 0 < g ∈ L1(X;µ) ∩ L∞(X;µ) such that∫

X

|f(x)|g(x)µ(dx) ≤
√
t[f ](B.2.4)

for all f ∈ dom(t).

We also need the following convenient characterization of recurrence (e.g., [77,
Theorem 1.6.3]).

Lemma B.5. Let t be a Dirichlet form in H. Then the following are equivalent:

(i) t is recurrent,
(ii) There exists a sequence (fn) in dom(t) such that limn→∞ fn = 1 µ-a.e.

on X and limn→∞ t[fn] = 0.

A Dirichlet form is stochastically complete (or conservative) if its L∞-semigroup
satisfies

Tt1 = 1 µ-a.e.(B.2.5)

for some (equivalently for all) t > 0. For a regular Dirichlet form, this means that
the associated stochastic process has infinite lifetime almost surely (see [77, p. 187]

‡A measurable set Y ⊆ X is called t-invariant if 1Y f,1X\Y f ∈ dom(t) for any f ∈ dom(t)

and, moreover, t(f) = t(1Y f)+ t(1X\Y f). This is also equivalent to the equality Tt1Y f = 1Y Ttf

for all f ∈ H. The form t is irreducible if µ(Y ) = 0 or µ(X \ Y ) = 0 for each t-invariant set Y .
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for details). If A is the generator of the corresponding heat semigroup (Tt)t>0, then
stochastic completeness is equivalent to the equality

λ(A+ λ)−1
1 = 1 µ-a.e.(B.2.6)

for some (and hence for all) λ > 0. Similarly to Lemma B.5, one can characterize
stochastic completeness in terms of the quadratic form (e.g., [77, Theorem 1.6.6]).

Lemma B.6. Let t be a Dirichlet form in H. Then the following are equivalent:

(i) t is stochastically complete,
(ii) There exists a sequence (fn) in dom(t) such that 0 ≤ fn ≤ 1, limn→∞ fn =

1 µ-a.e. on X, and

lim
n→∞

t[fn, g] = 0

for all g ∈ dom(t) ∩ L1(X;µ).

B.3. Extended Dirichlet spaces

Let t : dom(t) → [0,∞) be a Dirichlet form on H = L2(X;µ). A sequence
(fn) ⊂ dom(t) is called an approximating sequence for a function f : X → C, if
limn→∞ fn = f µ-a.e. on X and (fn)n is a t-Cauchy sequence, that is,

lim
m,n→∞

t[fn − fm] = 0.

The extended Dirichlet space of t is the space of all measurable functions on X
which admit at least one approximating sequence. It turns out that (see [77,
Theorem 1.5.2]) for a function f ∈ dom(te), where dom(te) is the extended Dirichlet
space of t, the limit

te[f ] := lim
n→∞

t[fn]

exists and is independent of the approximating sequence (fn). In particular, this
extends the Dirichlet form t to a non-negative quadratic form te on dom(te):

te : dom(te) −→ [0,∞)
f 7→ te[f ]

.

The obtained form te is called the extended Dirichlet form of t.
The Markovian condition also carries over from t to te: for each normal con-

traction ϕ : C → C and f ∈ dom(te), ϕ ◦ f belongs to dom(te) and (B.1.1) holds
(see, e.g., [77, Corollary 1.6.3]). Moreover, the form domain of t (see [77, Theo-
rem 1.5.2]) can be recovered from te by the relation

(B.3.1) dom(t) = dom(te) ∩ L2(X;µ).

The above notions lead to another convenient characterization of recurrence
(see [77, Theorem 1.6.3]):

Lemma B.7. Let t be a Dirichlet form on H. Then t is recurrent if and only if
1 belongs to dom(te) and te[1] = 0.





APPENDIX C

Heat Kernel Bounds

In this appendix, we collect some useful results relating heat kernel decay with
Sobolev and Nash-type inequalities. Throughout this section we shall assume that
A = A∗ ≥ 0 is a generator of a Markovian semigroup in L2(X;µ) (see Appen-
dix B for details). The corresponding quadratic form, which is a Dirichlet form on
L2(X;µ), is denoted by QA, that is,

QA[f ] = ‖A1/2f‖22, dom(QA) = dom(A1/2),

where Aγ , γ > 0 is a non-negative self-adjoint operator. Recall that (see, e.g., [50,
§ 2.1]), the semigroup Tt = e−tA is called ultracontractive if e−tA is bounded as an
operator from L2(X;µ) to L∞(X) for all t > 0. By duality, the latter is equivalent
to e−tA being bounded from L1(X;µ) to L∞(X) for all t > 0.

We begin with the following simple result (see [50, Theorem 2.4.1]).

Proposition C.1. Let γ > 0 be fixed. If ‡

‖f‖∞ ≤ C1‖(A+ I)γ/2f‖2(C.0.1)

for all f ∈ dom(A + I)γ/2, then e−tA is ultracontractive and there is a positive
constant C2 > 0 such that

‖e−tA‖1→∞ ≤ C2t
−γ(C.0.2)

for all t ∈ (0, 1). Conversely, if (C.0.2) holds on (0, 1) for some γ > 0, then

‖f‖∞ ≤ C(ε)‖(A+ I)γ/2+εf‖2, f ∈ dom(A+ I)γ/2+ε,(C.0.3)

is valid for any ε > 0.

The next result is a famous theorem of N.Th. Varopoulos (see [201], [203,
Theorem II.5.2], [50, Theorem 2.4.2]).

Theorem C.2 ([201]). Let D > 2 be fixed. Then a bound of the form

‖e−tA‖1→∞ ≤ C1t
−D/2(C.0.4)

for all t > 0 is equivalent to the validity of the Sobolev-type inequality

‖f‖22D
D−2
≤ C2 QA[f ](C.0.5)

for all f ∈ dom(QA).

As an immediate corollary we get the following claim relating the behavior of
the heat kernel as t→ 0 with the Sobolev inequality (see [50, Corollary 2.4.3]).

‡Throughout this section we use the standard notation ‖f‖p := ‖f‖Lp(X;µ) for f ∈ Lp(X;µ)

and ‖T‖p→q denotes the norm of a linear operator T acting from Lp(X;µ) to Lq(X;µ).
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Corollary C.3. Let D > 2 be fixed. Then (C.0.4) holds for all t ∈ (0, 1) if
and only if

‖f‖22D
D−2
≤ C(QA[f ] + ‖f‖22)(C.0.6)

for all f ∈ dom(QA).

Notice that ‖ · ‖Q = QA[·] + ‖ · ‖22 is the graph norm and it is equivalent to the
energy (semi-)norm QA[·] if and only if A has a positive spectral gap, λ0(A) > 0.

Let us also recall the following result relating on-diagonal heat kernel estimates
with Nash-type inequalities ([38, Theorem 2.1], [50, Theorem 2.4.6]).

Theorem C.4 ([38]). The estimate (C.0.4) holds true for all t > 0 with some
fixed D > 0 if and only if the inequality

‖f‖2+ 4
D

2 ≤ CQA[f ] ‖f‖
4
D
1(C.0.7)

holds true for all f ∈ dom(QA) ∩ L1(X;µ). Moreover, the inequality

‖f‖2+ 4
D

2 ≤ C
(
QA[f ] + ‖f‖22

)
‖f‖

4
D
1(C.0.8)

holds for all f ∈ dom(QA)∩L1(X;µ) if and only if (C.0.4) holds for all t ∈ (0, 1).

Remark C.5. Taking into account that both (C.0.7) and (C.0.8) are homoge-
neous (w.r.t. f → cf , c ∈ C), one can restrict in (C.0.7) to functions with ‖f‖1 = 1
or ‖f‖1 = c for any fixed c > 0. Moreover, QA[|f |] ≤ QA[f ] for all f ∈ dom(QA)
since QA is a Dirichlet form. Therefore, in all the above theorems one can further
restrict to non-negative functions.

The following extension of Theorem C.2 and Theorem C.4 to sub-exponential
scales is due to T. Coulhon (see [45, Theorem II.5]).

Theorem C.6. Let m : R>0 → R>0 be a decreasing bijection such that its
logarithmic derivative has polynomial growth, i.e., M := − logm satisfies for some
α > 0

M ′(x) ≥ αM ′(s), for all s > 0 and x ∈ [s, 2s].(C.0.9)

Then the following conditions are equivalent:

(i) e−tA is ultracontractive and there is C1 > 0 such that

‖e−tA‖1→∞ ≤ m(C1t)(C.0.10)

for all t > 0,
(ii) there is C2 > 0 such that for all f ∈ dom(Q) with ‖f‖L1 = 1,

θm(‖f‖22) ≤ C2QA[f ],(C.0.11)

where θm := −m′ ◦m−1.



APPENDIX D

Glossary of notation

Basic notation.

Z, R, C have their usual meaning;
For a ∈ R, Z≥a := Z ∩ [a,∞), R≥a := R ∩ [a,∞), and R>a := R ∩ (a,∞).
z∗ denotes the complex conjugate of z ∈ C.
I ⊆ R usually denotes an interval, that is, a connected subset of R;
I` = [0, `], ` ∈ R>0.
For a given set S, #S denotes its cardinality if S is finite; otherwise we set #S =∞.
We shall denote by (xn) or sometimes (xn)n≥0 a sequence (xn)∞n=0.

Graphs.

Gd = (V, E) is a graph with the vertex set V and the edge set E .
Ev is the set of edges at v ∈ V.
~Gd = (V, ~E) is a directed graph and ~E the set of directed edges.
~Ev is the set of directed (both incoming and outgoing) edges at v.
eı and eτ are the initial and terminal vertices of ~e.
deg is the vertex degree function.
Deg is the weighted vertex degree.

b or (V,m; b) is a weighted graph on V,
(b, c) or (V,m; b, c) is a weighted graph with killing term c on V,
Gb = (V, Eb) is the underlying simple graph of b.
G = (Gd, | · |) is a metric graph or its model,
(G, µ, ν) = (Gd, | · |, µ, ν) is a weighted metric graph or its model.
%0 is the length metric on G, i.e., the natural path metric on G.
%η is the intrinsic metric on (G, µ, ν) and η =

√
µ
ν is the intrinsic weight.

%m is the star path metric on V corresponding to the star weight m.
Sn is the n-th combinatorial sphere of a rooted graph Gd = (V, E).
C(G) is the space of topological ends of a metric graph G.
C0(G;µ) is the set of finite volume (w.r.t. µ) ends of G.

Function spaces.

X is a locally compact Hausdorff space X, and µ is a Borel measure on X.
C(X) is the space of continuous functions on X,
C(X) is the set of complex-valued functions on X if X is countable.
Cb(X), C0(X), and Cc(X) are, respectively, the spaces bounded, vanishing at in-
finity, and compactly supported continuous functions on X.
C+(X) is a cone of positive functions on X.

Fb(V) denotes the domain of definition of the formal graph Laplacian Lc,b,m.
CA(G\V) is the set of continuous, edgewise affine functions on a metric graph G.
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Lp(X;µ) is the complex Banach space of measurable functions, p ∈ [1,∞],
Lpc(X;µ) is the subspace of compactly supported functions in Lp(X;µ).
`p(X;m) := Lp(X;m), `pc(X;m) := Lpc(X;m) if X is countable.
H1

0 (G \ V) is the subspace of H1(G)-functions vanishing at all vertices,

H1
loc(G \ V) is the space of all H1 edgewise functions,

H1
loc(G) = H1

loc(G \ V) ∩ C(G),
H1
c (G) = H1

loc(G) ∩ Cc(G),
H1(G) = H1(G;µ, ν) is the first (weighted) Sobolev space on G,

H1
0 (G) = H1

0 (G;µ, ν) = H1
c (G)

‖·‖H1(G;µ,ν) ,

Ḣ1(G) = Ḣ1(G, ν) is the space of functions of finite energy on G.

Laplacians and their quadratic/energy forms.

L = Lc,b,m is the formal graph Laplacian on (V,m; b, c),
h, h′ and h0 are the maximal, pre-minimal and minimal graph Laplacians in
`2(V;m).
hD and hN are the Dirichlet and Neumann Laplacians in `2(V;m).
q = qc,b is the energy form on (b, c),
qD and qN are the maximal and the minimal forms in `2(V;m).

∆ is the weighted Laplacian on (G, µ, ν),
H, H′ and H0 are the maximal, pre-minimal and minimal Kirchhoff Laplacians in
L2(G;µ).
HD and HN are the Dirichlet and Neumann Laplacians in L2(G;µ).
HG and HG,min are the maximal and minimal Gaffney Laplacians in L2(G;µ).
Hα, H′α and H0

α are the maximal, pre-minimal and minimal Laplacians with δ-
couplings.
Q is the energy form on (G, µ, ν),
QD and QN are the maximal and the minimal forms in L2(G;µ).

Operator theory.

H and H are separable complex Hilbert spaces.
B(H) is the algebra of bounded linear operators on H.
Sp(H), p ∈ (0,∞] are the Schatten–von Neumann ideals in B(H).
IH is the identity operator in H, and In := ICn .
OH is the zero operator in H, and On := OCn .
For a self-adjoint operator A in H, λ0(A) and λess

0 (A) denote the bottoms of the
spectrum, respectively, of the essential spectrum,

λ0(A) = inf σ(A), λess
0 (A) = inf σess(A).

A− := A1(−∞,0)(A), where 1(−∞,0)(A) is the spectral projection on the negative
subspace of A.
For a closed symmetric operator A,
– Ext(A) is the set of its proper extensions;
– ExtS(A) is the set of its self-adjoint extensions;
For a non-negative symmetric operator A,
– Ext+

S (A) is the set of its non-negative self-adjoint extensions;
– ExtκS(A), κ ∈ Z≥0∪{∞} are self-adjoint extensions of A with the total multiplicity
of the negative spectrum equal to κ.
– ExtM (A) is the set of Markovian extensions of A.
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antitree, 84, 137

boundary

of a metric subgraph, 126

of a subgraph, 130

boundary triplet, 167

– direct sum, 169

boundary condition,

– δ-coupling, 23

– Kirchhoff (or standard), 23

– Rofe-Beketov, 166

CA(G\V), 50

cable system, 81

– canonical, 95

– minimal, 81

cycle, 15

– disjoint cycle cover, 87

combinatorial

– distance, 84, 90

– sphere, 84

– Laplacian, 84

degree,

– combinatorial, 15

– weighted, 20

deficiency index,

– of a symmetric operator, 167

– of a symmetric linear relation, 166

δ-coupling, 23

Dirichlet form, 171

– extended, 173

– in the wide sense, 171

– irreducible, 172

– recurrent, 172

– regular, 171

– stochastically complete, 172

– strongly local, 171

– transient, 172

edge,

– multiple, 15

– weight, 18,

– on metric graph, 18, 27

end,

– (Freudenthal) compactification, 18

– finite volume, 119

– free, 18

– infinite volume, 120

– non-free, 18

– of a graph, 17

– of a group, 146

– topological, 18

extended Dirichlet space, 173

extension,

– Markovian, 47

– proper, 167

finite energy extension, 124

function

– harmonic on a graph, 98

– harmonic on a metric graph, 99

– of finite energy, 19

– sub-/superharmonic on a graph, 98

– sub-/superharmonic on a weighted

metric graph, 99

geodesic 96

– metric space 96

graph 15

– of bounded geometry, 15

– Cayley, 145

– connected, 15, 19

– locally finite, 15

– locally finite weighted, 20

– metric, 16

– multi, 15

– oriented, 15

– plane, 156

– simple, 15

– tessellating, 156

– undirected, 15

– weighted, 18

ıV , 50

intrinsic

– edge length, 29

– metric, 91, 89

– weight for a graph, 91
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– weight for a weighted metric graph, 89

– size (of a metric graph), 41

– size (of a model), 41

– essential size (of a metric graph), 41

– weight, 91

isoperimetric constant,

– for metric graph, 126

– for weighted graph, 130

Jacobi matrix, 76

– on a graph, 82, 103

killing term, 18

Kirchhoff

– Laplacian, 24

– vertex condition, 23

Krein resolvent formula, 168

Laplacian,

– with δ-couplings, 24

– combinatorial, 84

– graph, 19

– Dirichlet, 19

– minimal, 20

– maximal, 20

– Neumann, 19

– pre-minimal, 20

– Kirchhoff, 23

– Dirichlet, 26

– Gaffney, 26

– minimal, 24

– maximal, 24

– Neumann, 25

– pre-minimal, 24

– normalized, 82

length metric, 16

linear relation, 165

– adjoint, 165

– closed, 165

– domain, 165

– kernel, 165

– range, 165

– resolvent, 166

– resolvent set, 166

– multivalued part, 165

– operator part, 165

– self-adjoint, 165

– spectrum, 166

– symmetric, 165

loop 15

Markovian

– condition, 171

– semigroup, 171

metric

– intrinsic,

– for a graph 91,

– for a metric graph, 89

– path, 90

– of finite jump size, 94
metric graph, 16

– model, 16

– refinement, 17, 28
– simple, 17

– weighted, 27

– minimal model, 126
– model, 27

– finite size, 41

– infinite size, 41
model (see metric graph)

normal contraction, 171

path

– in a graph, 15
– in a metric graph, 16

path metric, 90

– natural, 90
– star, 90

– strongly intrinsic, 91

perturbation
– form bounded, 118

– strongly form bounded, 118

quasi-isometry, 93

ray, 17

– equivalent, 17
refinement, 17, 28

Semigroup,
– heat, 171

– L∞-contractive, 171

– Markovian, 171
– positivity preserving, 171

– recurrent, 172
– transient, 172

– ultracontractive, 175

Schrödinger operator on a graph, 20

tessellation, 157

tree, 104

rooted, 104
theorem,

– Gaffney for metric graphs, 111
– Gaffney for weighted graphs, 112

– Glazman–Povzner–Wienholtz, 113, 114

– Hopf–Rinow, 97

Vertex 15
– initial, 15
– terminal, 15
– inessential, 27

Weyl function, 168
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graphs, Ann. Henri Poincaré 19, no. 11, 3457–3510 (2018).
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Entwicklungen willkürlicher Funktionen, Math. Ann. 68, no. 2, 220–269 (1910).

[207] E. Wienholtz, Halbbeschränkte partielle Differentialoperatoren zweiter Ordnung vom ellip-
tischen Typus, Math. Ann. 135, 50–80 (1958).

[208] W. Woess, A note on tilings and strong isoperimetric inequality, Math. Proc. Cambridge

Phil. Soc. 124, 385–393 (1998).
[209] W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge Univ. Press, Cam-

bridge, 2000.

[210] R. K. Wojciechowski, Stochastically incomplete manifolds and graphs, in: “Random Walks,
Boundaries and Spectra”, D. Lenz et. al. (Eds.), 163–179, Progr. Probab. 64, Birkhäuser,
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