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Preface

These short notes grew out from an advanced course given in University
of Vienna in 2015. The main goal is to give a quick introduction into a
lively and beautiful area connecting theory of Hardy spaces in the unit disc
with spectral theory of operators in Hilbert spaces. Another motivation
is a recent work of P. Gerard and S. Gréllier [7]–[10] on the cubic Szegö
equation, connecting non-dispersive PDEs with Hankel operators and hence
motivating the study of inverse spectral problems for this class of operators.

The first part of the notes serves as an introduction to Hankel matrices
and their basic properties. In Section 1.1, we introduce the class of Hankel
operators as operators in `2 = `2(Z+) with matrices of the form (ai+j)i,j∈Z+

and then answer the question whether this matrix defines a bounded opera-
tor on `2 (Nehari’s Theorem). The key role in solving this problem plays the
most important realization of Hankel matrices as operators from the Hardy
space H2 to H2

− := L2 	H2. Section 1.2 deals with one of the earliest re-
sults on Hankel operators — Kronecker’s Theorem, which describes all finite
rank Hankel matrices. Next, we present Hartman’s theorem describing com-
pact Hankel operators as well the results of D. Sarason connecting compact
Hankel operators with the space of functions of vanishing mean oscillation
(Section 1.3). In Section 1.4 we briefly discuss vectorial Hankel operators.

The second part deals with applications of Hankel operators. We focus
only on two such applications out of many. Perhaps, the most commonly
known appearance of Hankel matrices is in the moment problem. In Section
2.1, we briefly introduce the classical moment problems (Hamburger and
Stieltjes) and then proceed with the beautiful results of H. Widom [39],
who characterized bounded/compact positive Hankel operators by means of
the corresponding measures. Section 2.2 deals with the newly discovered
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x Preface

cubic Szegö equation [7], [10]. It turns out that this Hamiltonian equation
is completely integrable — it enjoys the Lax pair structure and the Lax
operator in this case is nothing but a Hankel operator. The latter motivates
the study of the so-called inverse spectral problems for Hankel operators
and we review this material in Sections 2.3–2.4. Most of this material is
given without proofs (e.g., a solution of the inverse spectral problem for
self-adjoint Hankel operators by A. V. Megretskii, V. V. Peller and S. R.
Treil [25, Chapter XII] is far beyond the scope of these notes).

The familiarity with basic functional analysis (e.g., bounded and com-
pact operators in separable Hilbert spaces) and Fourier series is assumed.
In fact, these notes can be considered as a good source of examples for stu-
dents trying to learn the theory of linear operators in Hilbert spaces since
the very basic questions on boundedness and compactness of a particular
class of linear operators (or infinite matrices) lead to connections with deep
results in a very rich and beautiful area of Hardy spaces. It is desirable
to have some knowledge of the latter, however, in appendices basic facts
on Fourier series (convergence and summability), Hardy spaces in the unit
disc (boundary values and factorization), BMO and VMO spaces (including
Fefferman’s and Sarason’s theorems) are provided.

Aleksey Kostenko



Chapter 1

Hankel, Kronecker and
Nehari

1.1. Boundedness

Let α = {αn}∞n=0 be a sequence of complex numbers. An infinite matrix
A = (aij)i,j≥0 is called a Hankel matrix if aij = αi+j for all i, j ≥ 0. That
is, the Hankel matrices are the matrices whose entries depend only on the
sum of coordinates:

A =


α0 α1 α2 α3 . . .
α1 α2 α3 α4 . . .
α2 α3 α4 α5 . . .
α3 α4 α5 α6 . . .
. . . . . . . . . . . . . . .

 . (1.1)

In the sequel we shall denote the Hankel matrix A by Hα (sometimes α
is called a symbol of a Hankel matrix).

The classical framework for the theory of Hankel operators is the usual
Hilbert space of square summable sequences `2 := `2(Z+). By {en}∞n=0 we
denote the standard orthonormal basis in `2. It is well known that every
bounded operator on a Hilbert space H admits a matrix representation in an
orthonormal basis. However, it is a notoriously difficult problem to decide
whether an infinite matrix defines a bounded operator on a Hilbert space.
We begin with the following simple fact.

Lemma 1.1.1. If the Hankel matrix Hα generates a bounded operator on
`2, then α ∈ `2.

1



2 1. Hankel, Kronecker and Nehari

Proof. It suffices to note that α = Hαe0 ∈ `2. �

The problem whether Hα is bounded on `2 or not was solved by Z.
Nehari in 1957. Before formulate his result, we need another representation
of Hankel operators. It turns out that the theory of Hankel operators is
closely connected with the theory of functions on the unit circle. More
precisely, consider the Hilbert space of function on the unit circle H = L2(T)
equipped with the inner product1

(f, g)L2 =
1

2π

∫
T
f(θ)g(θ)∗dθ.

Then the Hardy space H2 is a subspace of L2(T) such that its negative
Fourier coefficients vanish,2

H2 = {f ∈ L2(T) | f̂n = 0, n < 0}. (1.2)

Denote by P+ and P− the orthogonal projections in L2(T) onto H2 and,
respectively, its orthogonal complement H2

− := L2(T) 	 H2. The operator
P+ is also known as the Riesz projection. The standard orthonormal basis
of L2(T) is given by the family of exponents {en}n∈Z, en(θ) = einθ, θ ∈ T. In
particular, {en}n≥0 and {en}n<0 are the orthonormal bases of H2 and H2

−,
respectively.

Take ϕ ∈ L2(T) and denote its Fourier coefficients by ϕ̂n, n ∈ Z. Note
that by Parceval’s formula, ϕ ∈ L2(T) exactly when ϕ̂ ∈ `2(Z). Consider
now the following operator Hϕ : H2 → H2

− defined by

Hϕ : f 7→ P−(ϕf). (1.3)

It is easy to see that

Hϕek = P−(ϕek) = P−

(∑
n∈Z

ϕ̂n−ken

)
=
∑
n∈N

ϕ̂−(n+k)e−n (1.4)

for all k ∈ Z+. Therefore, the matrix representation of Hϕ is given by the
Hankel matrix with coefficients αn = ϕ̂−(n+1), n ≥ 0.

Now we are in position to formulate Nehari’s theorem.

Theorem 1.1.2 (Nehari). Let α ∈ `2. The Hankel matrix Hα generates a
bounded operator on `2 if and only if there is a function ϕ ∈ L∞(T) such
that

αn = ϕ̂n, n ≥ 0. (1.5)

1Throughout the text z∗ denotes the complex conjugate of z ∈ C.
2The Hardy space on the unit disk H2(D) can be identified with `2:

f ∈ H2(D) ⇐⇒ f(z) =
∑
n≥0

f̂nz
n, {f̂n}∞n=0 ∈ `2.

Moreover, it turns out that H2 = H2(D), that is, every function from H2(D) can be identified

with its boundary values and vise versa (see Appendix A.2.2).



1.1. Boundedness 3

Moreover, in this case,

‖Hα‖ = inf{‖ψ‖∞| ψ̂n = αn, n ≥ 0}. (1.6)

Proof. Sufficiency. Suppose there is ϕ ∈ L∞(T) satisfying (1.5). For every
f , g ∈ `2 having finitely many nonzero entries, consider the bilinear form
associated with the matrix Hα:

(Hαf, g) =
∑
k,n≥0

αk+nfkg
∗
n. (1.7)

Let f(θ) =
∑

k≥0 fkek(θ) and g(θ) =
∑

n≥0 gnen(θ) be polynomials in the

Hardy space H2. Then we can rewrite (1.7) as follows

(Hαf, g) =
∑
k,n≥0

ϕ̂k+nfkg
∗
n =

∑
k≥0

ϕ̂k

k∑
n=0

fng
∗
k−n

=
∑
k≥0

ϕ̂kq̂
∗
k =

1

2π

∫
T
ϕ(θ)q(θ)∗dθ,

(1.8)

where

q(θ) = f(θ)∗g(θ) =
∑
k≥0

qke
ikθ, qk =

k∑
n=0

f∗ngk−n.

Therefore,

|(Hαf, g)| ≤ ‖ϕ‖∞‖q‖L1 ≤ ‖ϕ‖∞‖f‖L2‖g‖L2 = ‖ϕ‖∞‖f‖`2‖g‖`2 , (1.9)

which shows that this bilinear form is bounded on `2 and ‖Hα‖ ≤ ‖ϕ‖∞.

Necessity. Assume now that Hα is a bounded operator on `2. Consider
the linear functional defined in H1(D) on the set of analytic polynomials
Pol+ by

lα(q) :=
∑
n≥0

αnq̂n, q ∈ Pol+. (1.10)

By the Hahn–Banach theorem, lα extends by continuity to a bounded func-
tional on H1 if and only if there is ϕ ∈ L∞ such that lα(q) = (q, ϕ∗)L2

and ϕ̂n = αn, n ≥ 0. In particular, ‖lα‖ = inf{‖ψ‖∞| ψ̂n = αn, n ≥ 0}.
Therefore, we need to show that ‖lα‖ ≤ ‖Hα‖.

Assume additionally that α ∈ `1. Then lα defines a bounded functional
on H1(D). Assume that q ∈ H1 with ‖q‖H1 ≤ 1. Then q admits a represen-
tation q = fg∗ with f , g ∈ H2 with ‖f‖H2 , ‖g‖H2 ≤ 1. Hence, similar to
(1.8), we can show that

lα(q) = (Hαf, g)`2 , f = {f̂k}k≥0, g = {ĝk}k≥0. (1.11)

Therefore, we get

‖lα‖ = sup
q∈H1,‖q‖1≤1

|lα(q)| ≤ ‖Hα‖, (1.12)
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and hence the claim follows.

Assume now that α is an arbitrary sequence such that Hα is bounded.
For r ∈ (0, 1) we set

αr = {αrn}n≥0, αrn := αnr
n.

Since αrk+n = αk+nr
k+n = rkαk+nr

n, the matrix Hαr admits the following
factorization

Hαr = DrHαDr, Dr := diag(1, r, r2, . . . , rn, . . . ). (1.13)

Clearly, ‖Dr‖ = 1 and we immediately conclude that

‖Hαr‖ ≤ ‖Dr‖‖Hα‖‖Dr‖ = ‖Hα‖ (1.14)

for all r ∈ (0, 1). On the other hand, αr ∈ `1 whenever r ∈ (0, 1) and hence,
as we already proved, we get

‖lαr‖H1→C ≤ ‖Hαr‖ ≤ ‖Hα‖.

It remains to note that lαr converges strongly to lα as r → 1 (that is,
lαr(q) → lα(q) for all q ∈ H1) since this family of functionals is uniformly
bounded on H1. Therefore, lα is bounded too. �

Remark 1.1.3. Nehari’s theorem allows to reduce the problem of bounded-
ness of a Hankel operator on `2 to the question of existence of an extension of
the sequence α to the sequence of Fourier coefficients of a bounded function.
This problem is non-trivial as the next example shows.

Example 1.1.4 (The Hilbert matrix). The Hankel matrix with the coeffi-
cients αn = 1

n+1 , n ≥ 0 is called the Hilbert matrix:

H =


1 1/2 1/3 1/4 . . .

1/2 1/3 1/4 1/5 . . .
1/3 1/4 1/5 1/6 . . .
1/4 1/5 1/6 1/7 . . .
. . . . . . . . . . . . . . .

 . (1.15)

The Hilbert inequality [13, Chapter IX] states that the bilinear form gener-
ated by H (and hence the operator H) is bounded on `2:

|(Hf, g)`2 | =
∣∣∣ ∑
k,n≥0

fkg
∗
n

k + n+ 1

∣∣∣ ≤ π ‖f‖2‖g‖2. (1.16)

By Theorem 1.1.2, there is a function ϕ ∈ L∞(T) such that ϕ̂n = 1
n+1 for

all n ≥ 0. However, it is easy to see that the function

ϕ+(θ) =
∑
n≥0

einθ

n+ 1
, θ ∈ T,
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does not belong to L∞(T). On the other hand, the function ϕ(θ) =
∑

n∈Z
einθ

|n|+1

belongs to L∞.

Exercise 1.1.1. Compute ϕ and ϕ+
3.

After the work of C. Fefferman on the space BMO (see Appendix A.4)
it has become possible to judge whether Hα is bounded or not in terms of
the sequence α itself.

Theorem 1.1.5. The matrix Hα generates a bounded operator on `2 if and
only if the function

α(z) =
∑
n≥0

αnz
n, z ∈ D, (1.17)

belongs to the space BMOA := BMO ∩H1.

Proof. Straightforward from Nehari’s Theorem 1.1.2 and Fefferman’s The-
orem A.4.4 (see also Remark A.3.4). �

Of course we can immediately reformulate Theorems 1.1.2 and 1.1.5 for
the operator Hϕ defined by (1.3).

Theorem 1.1.6. Let ϕ ∈ L2(T). The following statements are equivalent:

(i) Hϕ is bounded,

(ii) there is a function ψ ∈ L∞(T) such that

ϕ̂−n = ψ̂−n, n ∈ N, (1.18)

(iii) P−ϕ ∈ BMO(T).

If one of the above conditions is satisfied, then

‖Hϕ‖ = inf{‖ψ‖∞|ψ satisfies (1.18)} (1.19)

Remark 1.1.7. Let ϕ ∈ L∞(T) and ψ ∈ H∞. Then

Hϕ+ψf = P−
(
(ϕ+ ψ)f

)
= P−(ϕf + ψf) = P−(ϕf) = Hϕ.

This in particular implies that

‖Hϕ‖ ≤ ‖ϕ+ ψ‖∞
for all ψ ∈ H∞. Moreover, Nehari’s theorem states that

‖Hϕ‖ = inf{‖ϕ− ψ‖∞|ψ ∈ H∞} = dist(ϕ,H∞). (1.20)

The problem of approximation of an L∞ function by bounded analytic func-
tions is called Nehari’s problem.

3Note that ϕ(θ) =
∑
n≥0

cos(nθ)
n+1

∈ L∞(T) and its harmonic conjugate ϕ̃(θ) =
∑
n∈N

sin(nθ)
n+1

as well as ϕ+ = P+ϕ do not belong to L∞(T). Therefore, it might happen that ϕ ∈ L∞, however
P+ϕ /∈ L∞. In other words, the Riesz projection P+ and the Hilbert transform are
unbounded on L∞!
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A standard compactness argument shows that the norm is always at-
tained:

Lemma 1.1.8. Let ϕ ∈ L∞. Then there is f ∈ H∞ such that

‖ϕ− f‖∞ = dist(ϕ,H∞).

Proof. Let {fn}n∈N be a sequence of H∞ functions such that

lim
n→∞

‖ϕ− fn‖∞ = dist(ϕ,H∞).

Clearly, this sequence is bounded and hence there is a subsequence (also
denoted by fn) which converges in the weak-∗ topology to some function
f ∈ H∞. Hence

dist(ϕ,H∞) ≤ ‖ϕ− f‖∞ ≤ lim
n→∞

‖ϕ− fn‖∞ = dist(ϕ,H∞),

which proves the claim. �

Thus, we proved that for any bounded Hankel operator there exists a
symbol of minimal norm. A natural question arises whether such a symbol is
unique. The first results in this direction were obtained by S. Ya. Khavinson
(1951) and W. Rogosinski and H. Shapiro (1953). For further details we refer
to [6, Chapter IV], [25, Chapter I.1].

We complete this section with the description of bounded Hankel oper-
ators in terms of certain commutation relations.

Theorem 1.1.9. Let A be a bounded operator on `2. Then A is a Hankel
operator if and only if

S∗A = AS, (1.21)

where S is the shift operator on `2, S : (f0, f1, f2, . . . ) 7→ (0, f0, f1, . . . ), and
S∗ is its adjoint, S∗ : (f0, f1, f2, . . . ) 7→ (f1, f2, . . . ).

Proof. Let A = Hα be a bounded Hankel matrix. Note that

Hαf =
∑
n≥0

(f,S∗nα)en, (1.22)

for every f ∈ `2. Therefore, we get

S∗Hαf = S∗
(∑
n≥0

(f,S∗nα)en

)
=
∑
n≥0

(f,S∗nα)S∗en

=
∑
n≥0

(f,S∗(n+1)α)en =
∑
n≥0

(Sf,S∗nα)en = HαSf.

Assume now that A satisfies (1.21). Then

ak,n = (Aek, en)`2 = (Aek,Sen−1)`2 = (S∗Aek, en−1)`2

= (ASek, en−1)`2 = (Aek+1, en−1)`2 = ak+1,n−1,
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for all k, n ∈ N. The latter immediately implies that ak,n = αk+n for all k,
n ∈ Z+ and hence A = Hα. �

Corollary 1.1.10. Let A be a bounded operator from H2 to H2
−. Then A

is a Hankel operator if and only if

P−SA = AS, (1.23)

where S is the shift operator on H2 and S is the bilateral shift on L2.

Exercise 1.1.2. Prove Corollary 1.1.10.

Corollary 1.1.11. Let Hϕ be a bounded Hankel operator on H2. Then
ker(Hϕ) is an invariant subspace of S.

If ker(Hϕ) 6= {0}, then by the Beurling Theorem A.2.12, there is an inner
function G ∈ H2 such that ker(Hϕ) = GH2. This in particular implies that
either dim ker(Hϕ) = 0 or dim ker(Hϕ) =∞.

1.2. Finite Rank

One of the first results about Hankel matrices was a theorem of L. Kro-
necker (1881) that describes the Hankel matrices of finite rank. Corollary
1.1.11 allows to answer this question too, however, it requires the additional
boundedness assumption and uses a heavy machinery (Beurling’s descrip-
tion of invariant subspaces of the shift operator). Hence we would like to
present the elementary proof.

We need to recall the following definition. A function f is called a
rational function if it can be written in the following form

f(z) =
P (z)

Q(z)
,

where P and Q are polynomials and Q 6≡ 0. Without loss of generality
we shall always assume that P and Q are prime, that is, there are no
non-constant polynomial R and polynomials P1 and Q1 such that P (z) =
R(z)P1(z), Q(z) = R(z)Q1(z). The degree of a rational function is the max-
imum of the degrees of its constituent polynomials P and Q. In other words,
deg f is the multiplicity of poles of f (including a possible pole at infinity).

If z = 0 is not a pole of f , then f can be expanded into a Taylor series

f(z) =
∑
n≥0

fnz
n,

and its radius of convergence equals the distance from z = 0 to the set of
zeros of Q(z). For such a series let us define the shift operator S

S : f(z) 7→ zf(z) =
∑
n≥0

fnz
n+1, (1.24)
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and the backward shift S∗

S∗ : f(z) 7→ f(z)− f0

z
=
∑
n≥0

fn+1z
n. (1.25)

Note that

SkS∗jf = Sk−jf − Sk−j
j−1∑
n=0

fnz
n, S∗kSjf = S∗(k−j)f, (1.26)

for all k, j ∈ Z+ with k ≥ j.

Theorem 1.2.1. Let Hα be a Hankel matrix with symbol α = {αn}n∈Z+.
Then Hα has a finite rank if and only if the formal power series α(z) =∑

n≥0 αnz
n determines a rational function. In this case,

rank(Hα) = deg zα(z). (1.27)

Proof. Necessity. Suppose rank(Hα) = N <∞. Then the first N + 1 rows
are linearly dependent and hence there are complex numbers c0, c1, . . . , cN
(not identically zero) such that

c0α+ c1S∗α+ · · ·+ cNS∗Nα = 0. (1.28)

Applying SN to both sides in (1.28) and using (1.26), we get

0 = SN
( N∑
k=0

ckS∗kα
)

=

N∑
k=0

ckSnS∗kα

=

N∑
k=0

ckSN−kα− p = qα− p,

(1.29)

where q(z) =
∑N

n=0 cnz
N−n and p is a polynomial of degree deg p ≤ N − 1,

p(z) =
N−1∑
n=0

pnz
n. (1.30)

Therefore, (1.29) shows that α = p/q is a rational function and

deg zα(z) ≤ max(deg q,deg zp) = N.

In particular, cN 6= 0 since rank(Hα) = N by the assumption.

Sufficiency. Suppose that α(z) = p(z)/q(z) is a rational function with
deg p ≤ N − 1 and deg q ≤ N . Hence we get

p = qα =

N∑
n=0

cnSN−nα, q(z) =

N∑
n=0

cnz
N−n.
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Applying S∗N to both sides and using the second identity in (1.26), we get

0 = S∗Np = S∗N
N∑
n=0

cnSN−nα =
N∑
n=0

cnS∗nα,

which means that the first N + 1 rows of Hα are linearly dependent.

Set
m = max{n |n ≤ N, cn 6= 0}.

Clearly, S∗mα is a linear combination of S∗nα with n ≤ m− 1, i.e.,

S∗mα =
m−1∑
n=0

dnS∗nα,

with some constants d0, d1, . . . , dm−1. Then

S∗(m+j)α =
m−1∑
n=0

dnS∗(n+j)α,

and S∗(m+j)α is a linear combination of m rows S∗(m+n)α with 0 ≤ n ≤
m− 1. Therefore, rank(Hα) ≤ m. �

Let us reformulate Kronecker’s theorem for Hankel operators on H2.

Corollary 1.2.2. Let ϕ ∈ L∞. Then the Hankel operator Hϕ has a finite
rank if and only if P−ϕ is a rational function. In particular,

rank(Hϕ) = degP−ϕ. (1.31)

Proof. One can deduce the proof from Theorem 1.2.1, however, one can
get an alternative proof based on the Beurling theorem A.2.12.

Suppose that rank(Hϕ) = N <∞. Hence ker(Hϕ) 6= {0} and by Corol-
lary 1.1.11 and Beurling’s theorem A.2.12, ker(Hϕ) = GH2 with some inner
function G ∈ H∞. Clearly, rank(Hϕ) = N <∞ only if dimH2	GH2 = N .
The latter holds if and only if G = B is a finite Blaschke product and
rank(Hϕ) = degB. Thus we proved that rank(Hϕ) = N < ∞ if and only
HBϕ = 0, i.e., Bϕ ∈ H∞ with some finite Blaschke product B.

Conversely, if P−ϕ is a rational function of degree N , then there is a
finite Blaschke product B of degree N such that Bϕ ∈ H∞ (the zeros of G
are the poles of P−ϕ). This observation completes the proof. �

Corollary 1.2.3. The Hankel operator Hϕ has finite rank if and only if
there exists a finite Blaschke product B such that Bϕ ∈ H∞.

Remark 1.2.4. In the finite rank case, Hϕf can be computed explicitly.
Namely, assume first that

P−ϕ =
1

z − λ
, λ ∈ D.



10 1. Hankel, Kronecker and Nehari

Then ϕ = 1
z−λ + ϕ̃ with some ϕ̃ ∈ H∞ and hence we can assume without

generality that ϕ = 1
z−λ . Therefore,

Hϕf = P−

( 1

z − λ
f(z)

)
= P−

(f(z)− f(λ)

z − λ
+
f(λ)

z − λ

)
=

f(λ)

z − λ
.

Similarly, if P−ϕ = (z − λ)−N with some λ ∈ D and N ∈ N, then

Hϕf = P−

( 1

(z − λ)N
f(z)

)
=

N−1∑
n=0

f (n)(λ)

n!(z − λ)n

=
1

(N − 1)!

∂N−1

∂ζ(N−1)

(
f(ζ)

z − ζ

)
(z, λ).

Hence in the general case

P−ϕ =
N∑
n=1

mn∑
j=1

cnj
(z − λn)j

we get

Hϕf =
N∑
n=1

mn∑
j=1

cnj
(j − 1)!

∂j−1

∂ζ(j−1)

(
f(ζ)

z − ζ

)
(z, λn) (1.32)

1.3. Compactness

Nehari’s and Kronecker’s theorems suggest that the class of compact Hankel
operators is closely connected with the space of continuous functions. At
least, it is not difficult to show by approximation that the Hankel operator
Hϕ with ϕ ∈ H∞ + C is compact. Here

H∞ + C := {f + g | f ∈ H∞(T), g ∈ C(T)}.

P. Hartman proved that the converse is also true. This naturally leads us
to the study of the linear space H∞ + C.

Theorem 1.3.1 (Sarason). H∞ + C is a closed subalgebra of L∞.

Proof. Let A(D) be the disc algebra, A(D) = H∞(D) ∩ C(D). Clearly, for
any ϕ ∈ C,

dist(ϕ,H∞) ≤ dist(ϕ,A(D)).

On the other hand, take any f ∈ L∞(T) and consider its harmonic extension
into the disc D. Note that fr(z) = f(rz), z ∈ D belongs to A(D) for every
r ∈ (0, 1). If ϕ ∈ C(T) and g ∈ H∞(T), then by the Young inequality (A.5)
we get

‖ϕ− g‖L∞ ≥ lim
r→1
‖(ϕ− g)r‖L∞ .
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Since ϕ ∈ C(T), ‖ϕ − ϕr‖L∞ → 0 as r → 1 (cf. Theorem A.1.11(iii)).
Therefore,

‖ϕ− g‖L∞ ≥ lim
r→1
‖ϕ− gr‖L∞ ≥ dist(ϕ,A(D)),

and we end up with the equality

dist(ϕ,H∞) = dist(ϕ,A(D)). (1.33)

Suppose that ϕ belongs to the closure of H∞ + C. Then there are
{fn} ⊂ H∞(T) and {gn} ⊂ C(T) such that

‖ϕ− ϕn‖L∞ ≤
1

2n
, ϕn := fn + gn,

for all n ∈ N. Hence

dist(gn − gn+1, H
∞) <

1

2n−1

and by (1.33) there is hn ∈ A(D) such that

‖(gn − gn+1)− hn‖L∞ <
1

2n−1
, n ∈ N.

Set h1 = 0 and hn = h1+· · ·+hn−1 for all n > 1. Hence gn := gn+hn ∈ C(T)
and ‖gn − gn+1‖L∞ ≤ 1/2n−1 for all n ∈ N. Therefore, there is g ∈ C(T)
such that gn → g as n→∞. However,

fn := fn − hn = (fn + gn)− gn ∈ H∞(T)

for all n ∈ N. It remains to note that fn converges to ϕ− g in the uniform
norm. Since H∞(T) is closed, we conclude that f ∈ H∞(T) and hence
ϕ = f + g ∈ H∞ + C. �

Remark 1.3.2. A closed algebra B such that H∞ ⊂ B ⊂ L∞ is called
a Douglas algebra. Sarason’s Theorem 1.3.1 states that H∞ + C is the
Douglas algebra. Note that H∞ + C = [H∞, z∗], that is, H∞ + C is the
closed algebra generated by the set H∞ ∪ z∗. S. Chang and D. Marshall in
1977 proved a conjecture by R. Douglas that every Douglas algebra B has
the form B = [H∞, B∗], where B is a set of inner functions from H∞. For
further details and results we refer to [6, Chapter IX].

Before formulate the next result we need the following definition.

Definition 1.3.3. Let A be a bounded operator on a Hilbert space H. The
essential norm of A is defined by

‖A‖ess := inf
K∈S∞(H)

‖A−K‖H. (1.34)

Here S∞(H) is the ideal of compact operators in H.

Exercise 1.3.1. Prove that ‖A‖ess = 0 if and only if A ∈ S∞(H).
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Theorem 1.3.4. Let ϕ ∈ L∞(T) and Hϕ be the corresponding Hankel op-
erator. Then

‖Hϕ‖ess = dist(ϕ,H∞ + C). (1.35)

Before proving Theorem 1.3.4 we need the following simple lemma.

Lemma 1.3.5. Let K be a compact operator from H2 to H2
−. Then

lim
n→∞

‖KSn‖ = 0,

where S is the shift operator on H2, S : f(z) 7→ zf(z).

Proof. Since finite rank operators are dense in S∞, it suffices to prove
the claim for rank 1 operators. Take K : f 7→ (f, ϕ)ψ, where ϕ ∈ H2 and
ψ ∈ H2

−. Hence KSnf = (f,Snϕ)ψ and therefore we get

‖KSn‖ = ‖Snϕ‖H2‖ψ‖H2
−
→ 0

as n→∞. �

Proof of Theorem 1.3.4. By Corollary 1.2.2, Hϕ ∈ S∞ if ϕ is a trigono-
metric polynomial. Therefore, Hϕ ∈ S∞ if ϕ ∈ C(T) and hence

dist(ϕ,H∞ + C) = inf
ψ∈C(T)

‖Hϕ −Hψ‖ ≥ ‖Hϕ‖ess.

On the other hand, for any K ∈ S∞(H2, H2
−) we get

‖Hϕ −K‖ ≥ ‖(Hϕ −K)Sn‖ ≥ ‖HϕSn‖ − ‖KSn‖
= dist(znϕ,H∞)− ‖KSn‖
= dist(ϕ, (z∗)nH∞)− ‖KSn‖
≥ dist(ϕ,H∞ + C)− ‖KSn‖.

Applying Lemma 1.3.5, we end up with the following inequality

‖Hϕ‖ess ≥ dist(ϕ,H∞ + C),

which completes the proof. �

Remark 1.3.6. Similar to Nehari’s problem, the problem of approximation
by H∞ +C functions was posed by V. M. Adamyan, D. Z. Arov and M. G.
Krein in 1978. However, in contrast to Nehari’s problem, it was shown by
S. Axler, I. D. Berg, N. Jewell and A. Shields (1979) that for any ϕ ∈ L∞
there are infinitely many best approximants in H∞ + C.

Combining Theorem 1.3.1 with Theorem 1.3.4 we arrive at the following
description of compact Hankel operators.

Theorem 1.3.7 (Hartman). Let ϕ ∈ L∞. The following statements are
equivalent:
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(i) Hϕ ∈ S∞(H2, H2
−),

(ii) ϕ ∈ H∞ + C,

(iii) there is ψ ∈ C(T) such that Hϕ = Hψ,

(iv) P−ϕ ∈ VMO(T).

Proof. Clearly, (ii) ⇔ (iii). The equivalence (i) ⇔ (ii) follows from The-
orem 1.3.4 and Exercise 1.3.1. It remains to apply the description of the
space VMO(T) (see Theorem A.4.7) in order to see that (ii)⇔ (iv). �

Let us also mention the following important result.

Corollary 1.3.8. Let ϕ ∈ L∞. Then

‖Hϕ‖ess = inf
ψ∈C(T)

‖Hϕ −Hψ‖ = inf
Hψ∈S∞

‖Hϕ −Hψ‖. (1.36)

Remark 1.3.9. For a compact operator A ∈ S∞(H) in a Hilbert space H,
its singular numbers are given by

sn+1(A) = min
rank(K)≤n

‖A−K‖, n ≥ 0.

Clearly, (sn)n∈N determines the rate of approximation of A by finite rank
operators in H. In fact, it was observed by V. M. Adamyan, D. Z. Arov and
M. G. Krein that in order to compute singular numbers of compact Hankel
operators it suffices to look only at finite rank Hankel perturbations (see
[25, Chapter IV.1]).

We finish this section with the following

Remark 1.3.10. It is a natural question to describe the Schatten–von Neu-
mann ideals Sp of Hankel operators for p ∈ (0,∞). The simplest case is
the Hilbert–Schmidt ideal. Indeed, the Hankel matrix Hα (operator Hϕ)
belongs to S2 if and only if its Hilbert–Schmidt norm (also known as the
Frobenius norm for finite matrices) is finite. However, for Hankel matrices
the Hilbert–Schmidt norm equals

‖Hα‖2S2
=
∑
n≥0

n|αn| <∞ (P−ϕ ∈W 1,2(T)).

For p 6= 2 the problem was solved by V. V. Peller in 1980. He proved that

Hϕ ∈ Sp for p ∈ (0,∞) if and only if P−ϕ ∈ B1/p
p , where B

1/p
p is the Besov

space. The proof of this fact as well as further results can be found in [25,
Chapter VI].
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1.4. Vectorial Hankel operators

The form (1.3) of the Hankel operator suggests that every bounded Hankel
operator can be lifted to a bounded operator on the Hilbert space `2(Z).
Using Parrott’s theorem (see below), we can obtain another proof of Nehari’s
Theorem 1.1.2. The advantage of this proof is that it applies to vectorial
Hankel operators, i.e., Hankel operators on `2(Z+,H), where H is a Hilbert
space.

Before we start, let us recall that every bounded operator T on a Hilbert
space H admits a polar decomposition

T = UT |T |,
where |T | = (T ∗T )1/2 is a nonnegative operator on H and UT is a partial
isometry with kerUT = kerT and ranUT = ranT . This decomposition is
unique. Since T ∗ = UT ∗ |T ∗| = |T |U∗T and U∗T ∗T

∗ = U∗T ∗UT ∗ |T ∗| = |T ∗|, we
get

T = |T ∗|U∗T ∗ = U∗T ∗(UT ∗ |T ∗|U∗T ∗) = UT |T |.
Since a polar decomposition is unique4, we conclude that

U∗T ∗ = UT , UT |T | = |T ∗|UT . (1.37)

Exercise 1.4.1. Let f be a continuous function. Show that UT f(|T |) =
f(|T ∗|)UT . (Hint: prove it first when f is a polynomial).

Now we are in position to formulate the following

Theorem 1.4.1 (Parrott [24]). Let H = H1 ⊕H2 be a Hilbert space and let
TX ∈ [H] be given by

TX =

(
A B
C X

)
. (1.38)

Define the operators T1 : H→ H1 and T2 : H1 → H by

T1 =
(
A B

)
, T2 =

(
A
C

)
. (1.39)

Then
inf

X∈[H2]
‖TX‖ = max{‖T1‖, ‖T2‖}. (1.40)

Proof. The inequality

‖TX‖ ≥ max{‖T1‖, ‖T2‖}
is obvious since T1 = P1TX and T2 = TXP1, where P1 is the orthogonal
projection in H onto H1. Hence we only need to show that

inf
X∈[H2]

‖TX‖ ≤ max{‖T1‖, ‖T2‖}. (1.41)

4Verify that kerU∗T∗ = kerT !
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Without loss of generality we can assume that max{‖T1‖, ‖T2‖} = 1.
Suppose that T1T

∗
1 = AA∗ + BB∗ = IH1 and T ∗2 T2 = A∗A + C∗C = IH1 .

Consider the polar decomposition of operators A, B and C: A = UA|A|,
B = UB|B| and C = UC |C|. Set

X = −UCA∗UB (1.42)

and consider the corresponding operator TX . First observe that

T ∗XTX =

(
A∗A+ C∗C A∗B + C∗X
B∗A+X∗C B∗B +X∗X

)
. (1.43)

By the assumption, (T ∗XTX)11 = IH1 . Using (1.42), we get

C∗X = −|C|U∗CUCA∗UB = −|C|A∗UB
= −(IH1 −A∗A)1/2|A|U∗AUB = −|A|(IH1 −A∗A)1/2U∗AUB

= −|A|U∗A(IH1 −AA∗)1/2UB = −|A|U∗A|B∗|UB = −A∗B.
Therefore, (T ∗XTX)12 = 0 and, moreover, (T ∗XTX)21 = 0 since T ∗XTX is self-
adjoint. Finally, note that

(T ∗XTX)22 =B∗B +X∗X

= U∗BBB
∗UB + U∗BAU

∗
CUCA

∗UB

≤ U∗BBB∗UB + U∗BAA
∗UB

= U∗B(AA∗ +BB∗)UB = U∗BUB.

Therefore, T ∗XTX = IH1 ⊕ U∗BUB ≤ IH and hence ‖TX‖ = 1.

Now consider the general case, F := AA∗ + BB∗ ≤ IH1 and G :=

A∗A + C∗C ≤ IH1 . Define HF = ran(IH1 − F ) and HG = ran(IH1 −G) and

consider the operator T̃ : H⊕ HF → H⊕ HG defined by

T̃ =

 A B (IH1 − F )1/2

C 0 0

(IH1 −G)1/2 0 0


Clearly, with respect to the decompositions H = H1 ⊕ (H2 ⊕ HF ) and H =

H1 ⊕ (H2 ⊕ HG) the operator T̃ has the form

T̃ =

(
A B̃

C̃ 0

)
, B̃ =

(
B (IH1 − F )1/2

)
, C̃ =

(
C

(IH1 −G)1/2

)
.

Moreover, by definition we get A∗A + C̃∗C̃ = IH1 and AA∗ + B̃B̃∗ = IH1 .

Therefore, there is X̃ : H2 ⊕ HF → H2 ⊕ HG such that

T̃X̃ =

(
A B̃

C̃ X̃

)
satisfies ‖T̃X̃‖ = 1. It remains to choose X by X = PH2X̃PH2 and hence the

operator TX = PHT̃X̃PH will be a contraction. This proves the claim. �
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Let H be a Hilbert space and {Ωn}n∈Z+ be a sequence of bounded op-
erators on H. In `2(Z+,H), consider the block matrix

HΩ =


Ω0 Ω1 Ω2 Ω3 . . .
Ω1 Ω2 Ω3 Ω4 . . .
Ω2 Ω3 Ω4 Ω5 . . .
Ω3 Ω4 Ω5 Ω6 . . .
. . . . . . . . . . . . . . .

 . (1.44)

Such matrices are called block Hankel matrices. As in the scalar case, we
can consider vectorial Hankel operators as operators on the Hardy space
H2(T,H), which is defined as follows:

H2(T,H) = {Φ ∈ L2(T,H)| Φ̂n = 0, n < 0}.

Here L2(T,H) is the Hilbert space of weakly measurable H-valued functions
Φ such that

‖Φ‖L2(T,H) :=
1

2π

∫
T
‖Φ(θ)‖2Hdθ <∞.

By P− we denote the orthogonal projection in L2(T,H) onto H2
−(T,H) =

L2(T,H)	H2(T,H).

Also, by L∞(T, [H]) we denote the space of bounded weakly measurable

[H]-valued functions. Fourier coefficients Φ̂n ∈ [H] of Φ ∈ L∞(T, [H]) are
defined by

Φ̂nf =
1

2π

∫
T

e−inθΦ(θ)f dθ, n ∈ Z, f ∈ H.

For a function Ψ ∈ L∞(T, [H]) we can also define the operatorHΨ : H2(T,H)→
H2
−(T,H) by

HΨ : F 7→ P−(ΨF ), F ∈ H2(T,H). (1.45)

As in the scalar case, the operators HΩ and HΨ are closely connected.
Namely, the operator matrix representation of HΨ has the form (1.44) with

Ωn = Ψ̂−n−1, n ∈ Z+. (1.46)

Theorem 1.4.2. Let {Ωn}n∈Z+ be a sequence of bounded operators on H.
The block Hankel matrix (1.44) determines a bounded linear operator on
`2(Z+,H) if and only if there is a function Φ ∈ L∞(T, [H]) such that

Φ̂n = Ωn (1.47)

for all n ∈ Z+. Moreover, in this case

‖HΩ‖ = inf{‖Φ‖L∞(T,[H])| Φ̂n = Ωn, n ∈ Z+}. (1.48)
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Proof. The proof of sufficiency follows immediately from (1.45) and (1.46).
Let us prove necessity. Assume that HΩ is a bounded operator on `2(Z+,H)
and consider the matrix

TX :=



X Ω0 Ω1 Ω2 Ω3 . . .
Ω0 Ω1 Ω2 Ω3 Ω4 . . .
Ω1 Ω2 Ω3 Ω4 Ω5 . . .
Ω2 Ω3 Ω4 Ω5 Ω6 . . .
Ω3 Ω4 Ω5 Ω6 Ω7 . . .
. . . . . . . . . . . . . . . . . .

 , (1.49)

where X ∈ [H]. Clearly, TX has the form

TX =

(
X C
B A

)
with

A =


Ω1 Ω2 Ω3 . . .
Ω2 Ω3 Ω4 . . .
Ω3 Ω4 Ω5 . . .
. . . . . . . . . . . .

 , C =
(
Ω0 Ω1 Ω2 . . .

)
, B =


Ω0

Ω1

Ω2

. . .

 .

Clearly,

‖
(
B A

)
‖ = ‖HΩ‖,

∥∥∥∥(CA
)∥∥∥∥ = ‖HΩ‖.

By Parrott’s Theorem 1.4.1, there exists X = Ω−1 ∈ [H] such that ‖TΩ−1‖ =
‖HΩ‖. Continuing this process, we would end up with the sequence of
bounded operators {Ωn}n∈Z− such that the matrix

Λm := (Λmjk)j∈Z,k∈Z+ , Λmjk =

{
Ωj+k, j ≥ −m,
0, j < −m

,

defines a bounded operator and ‖Λm‖ = ‖HΩ‖ for all m ∈ N . Clearly, Λm

converges to Λ = (Ωj+k)j∈Z,k∈Z+ in the weak operator topology and hence
‖Λ‖ = ‖HΩ‖.

Consider the matrix Q = (Ωj+k)j∈Z,k∈Z. It is not difficult to see that
‖(Ωj+k)j∈Z,k≥−m‖ = ‖HΩ‖ and hence ‖Q‖ = ‖HΩ‖. Thus, Q defines a
bounded operator on `2(Z,H).

Let us identify `2(Z,H) with L2(T,H) in a standard way,

{xn}n∈Z 7→
∑
n∈Z

einθxn,

and consider Q as an operator on L2(T,H). In particular, Qx ∈ `2(Z,H)
for every x ∈ H and hence

(Qx)(θ) =
∑
n∈Z

einθΩnx ∈ L2(T,H).



18 1. Hankel, Kronecker and Nehari

Since H is a separable Hilbert space, we can define a [H]-valued function for
almost all θ ∈ T by

Φ(θ)x :=
∑
n∈Z

eınθΩnx.

It is easy to see that for all trigonometric polynomials F ,

(QF )(θ) = Φ(θ)F (−θ).
This implies that the operator of multiplication MΦ : F → ΦF extends to
a bounded operator on L2(T,H) and its norm equals ‖Q‖. To prove that
Φ ∈ L∞(T, [H]) and ‖Φ‖L∞(T,[H]) ≤ Q, it suffices to show that

sup
‖f‖,‖g‖≤1

‖〈Φ(·)f, g〉H‖L∞(T) ≤ ‖Q‖.

However, setting ϕ(θ) := 〈Φ(·)f, g〉H, this inequality immediately follows
from the fact that a multiplication operator Mϕ by a scalar function ϕ in
L2(T) is bounded if and only if ϕ ∈ L∞(T). Moreover, ‖Mϕ‖ = ‖ϕ‖L∞(T).

�

Remark 1.4.3. For further results (compactness, finite rank etc.) we refer
to [25, Chapter II].



Chapter 2

Applications

We start with H. Widom’s characterization of bounded and compact positive
Hankel matrices. Then we’ll proceed with the newly discovered cubic Szegö
equation, a non dispersive nonlinear evolution equation for which Hankel
operators serve as isospectral operators. This discovery leads to the study
of direct and inverse spectral problems for Hankel matrices.

2.1. Hankel matrices and moment sequences

A connection between Hankel matrices and moment problems goes back at
least to the works of H. L. Hamburger and T. J. Stieltjes. More precisely,
we will be concerned with two basic moment problems. Let {sk}k∈Z+ be a
sequence of real numbers.

The classical Hamburger moment problem is to find a positive measure
µ on R such that sk are its moments of order k, i.e.,

sk =

∫
R
λkdµ(λ), k ∈ Z+. (2.1)

If µ ∈M+(R) satisfies (2.1), then µ is called a solution of the power moment
problem with data {sk}k∈Z+ .

The Stieltjes moment problem is to find a positive measure µ on R+ =
[0,∞) such that sk, k ∈ Z+ are its moments of order k, i.e.,

sk =

∫
R+

λkdµ(λ), k ∈ Z+. (2.2)

There are two main questions: (i) For which sequences {sk}k∈Z+ the
Hamburger/Stieltjes moment problem is solvable? (ii) If such a measure µ
exists, is it unique? If no, how to describe the set of solutions?

19
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We are not going to give neither a comprehensive historical details nor a
complete solution to both problems. In this respect we refer to the excellent
book by N. I. Akhiezer [1] (see also [33]).

Let us start with the following simple observation. Suppose µ ∈M+(R)
is a solution to the Hamburger moment problem. Let p = {pk}k∈Z+ ∈ `2,c
and p(λ) =

∑
k pkλ

k ∈ Pol+(R). Consider the integral

0 ≤
∫
R
|p(λ)|2dµ(λ) =

∫
R

∣∣∣∑
k

pkλ
k
∣∣∣2dµ(λ) =

∫
R

∑
k

pkp
∗
jλ

k+jdµ(λ)

=
∑
k,j

pkp
∗
j

∫
R

N∑
k,j=0

pkp
∗
jλ

k+jdµ(λ) =
∑
k,j

sk+jpkp
∗
j = (Hsp,p)`2 ,

whereHs = (sk+j)k,j∈Z+ is the Hankel matrix with the symbol s = {sk}k∈Z+ .
The Hankel matrix Hs satisfying

(Hsp,p)`2 ≥ 0 (2.3)

for all p ∈ `2,c is called nonnegative.

Exercise 2.1.1. Let ∆0
N := detHs(N) be the leading minor of the Hankel

matrix Hs, where Hs(N) = (sk+j)
N
k,j=0. Show that Hs is nonnegative if and

only if ∆0
N ≥ 0 for all N ∈ Z+.

Exercise 2.1.2. Let Hs be a nonnegative Hankel matrix. Show that if
∆0
N0

= 0 for some N0 ∈ Z+, then ∆0
N = 0 for all N > N0. Show also that

∆0
N = 0 for some N ∈ Z+ if and only if the solution µ ∈ M+(R) to the

moment problem (2.1) is supported on a finite set of points of R.

Thus the positivity of the Hankel matrix Hs is necessary for the exis-
tence of solutions to the Hamburger moment problem. It turns out that the
converse is also true!

Theorem 2.1.1. Let {sk}k∈Z+ be a sequence of reals and Hs be the corre-
sponding Hankel matrix with symbol s. Then:

(i) There is a solution µ ∈M+(R) to the Hamburger moment problem
(2.1) if and only if the Hankel matrix Hs is nonnegative.

(ii) There is a solution µ ∈ M+(R+) to the Stieltjes moment problem
(2.2) if and only if the Hankel matrices Hs and HS∗s are nonnega-
tive.

Remark 2.1.2. Theorem 2.1.1 (i) is due to Hamburger. The second part of
Theorem 2.1.1 was proved by Stieltjes. Further details as well as the proof
of Theorem 2.1.1 can be found in [1, 33].
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Nehari’s and Hartman’s theorems provide criteria for a Hankel matrix
Hα with symbol α ∈ `2 to be bounded/compact. It turns out that in the
case of positive Hankel matrices the answer is much more transparent. First
we need the following simple fact.

Lemma 2.1.3. Let s ∈ `2 be such that the Hankel matrix Hs is positive (the
Hankel matrices Hs and HS∗s are positive). Then there is a unique positive
measure µ on [−1, 1] (on [0, 1]) such that

sk =

∫
(−1,1)

λkdµ(λ),

(
sk =

∫
[0,1)

λkdµ(λ)

)
k ∈ Z+. (2.4)

Note that the moment problem (2.4) is called the Hausdorff moment
problem.

Proof. Since Hs is positive, there is µ ∈ M+(R) such that (2.1) holds.
Moreover, such a measure µ is unique since s ∈ `2 (see, e.g., the Carleman
test, [1, Problem II.11] or [33, Proposition 1.5]). Hence it remains to show
that supp(µ) ⊆ [−1, 1] and µ({−1}) = µ({1}) = 0. Notice that

s2k =

∫
R
λ2kdµ(λ) ≥ µ(R \ (−1, 1)).

However, sk → 0 since s ∈ `2 and hence µ(R \ (−1, 1)) = 0. �

Consider the Hilbert matrix H = ((k + j + a)−1)k,j∈Z+ with a /∈ Z−.
Clearly, H = Hs with

sk =
1

k + a+ 1
=

∫ 1

0
λkdρa(λ), k ∈ Z+,

where ρa(λ) = λa+1

a+1 1l[0,1](λ). The Hilbert matrix generates a bounded oper-

ator on `2. The next result shows that the estimate sk = O(k−1) as k →∞
is necessary and sufficient for a positive Hankel matrix to be bounded.

Theorem 2.1.4 (Widom). Let α ∈ `2 be such that the Hankel matrix Hα

is positive. Then the following statements are equivalent:

(i) The Hankel matrix Hα is bounded on `2,

(ii) αk = O(k−1) as k →∞,

(iii) There exists a positive measure µ on (−1, 1) such that

αk =

∫
(−1,1)

λkdµ(λ) (2.5)

holds for all k ∈ Z+ and µ is a Carleson measure, i.e.,

µ((−1,−t) ∪ (t, 1)) = O(1− t) (2.6)

as t ↑ 1.



22 2. Applications

(iv) H2(D) is continuously embedded into L2((−1, 1); dµ), i.e., there is
C > 0 such that ‖f‖L2(dµ) ≤ C‖f‖H2 for all f ∈ H2(D).

Proof. (iii)⇒ (ii) Note that

|αk| =
∣∣∣ ∫

(−1,1)
λkdµ(λ)

∣∣∣ ≤ ∫
[0,1)
|λ|kdµ(λ) +

∫
(−1,0]

|λ|kdµ(λ).

Integrating by parts (see, for example, [5, Exercise 5.8.112]) and using (2.6),
we get ∫

[0,1)
|λ|kdµ(λ) =µ([0, 1))−

∫
[0,1)

kλk−1µ([0, λ))dλ

=

∫
[0,1)

kλk−1µ([λ, 1)))dλ

≤ C
∫

[0,1)
kλk−1(1− λ)dλ =

C

k + 1
.

Similarly, ∫
(−1,0]

|λ|kdµ(λ) ≤ C

k + 1

for all k ∈ Z+ and hence we are done.

(ii) ⇒ (i) This implication follows from Hilbert’s inequality (1.16). In-
deed, for any f , g ∈ `2,0 we get

|(Hαf, g)|`2 =
∣∣∣∑
k,j

αk+jfkg
∗
j

∣∣∣ ≤ C∑
k,j

|fk||g∗j |
k + j + 1

≤ Cπ‖f‖`2‖g‖`2 ,

which immediately implies that ‖Hα‖ ≤ Cπ.

(i) ⇒ (iv) If f ∈ `2,c and f(λ) ∈ Pol+(R) is the corresponding polyno-
mial, then

‖f‖2L2(dµ) = (Hαf, f)`2 ≤ ‖Hα‖‖f‖2`2 = ‖Hα‖‖f‖2H2 .

Since Hα is bounded on `2, the latter extends by continuity for all f ∈
H2(D).

It remains to show that (iv)⇒ (iii). Let

fr(λ) =

√
1− r2

1− rλ
=
√

1− r2
∑
k∈Z+

(rλ)k ∈ L2(−1, 1)

for all r ∈ (0, 1). Moreover, f̂r = {
√

1− r2rk}k∈Z+ and ‖f̂r‖`2 = 1. Clearly,

‖fr‖2L2(dµ) =

∫
(−1,1)

1− r2

(1− rλ)2
dµ(λ) = (Hαf̂r, f̂r) ≤ ‖Hα‖ <∞
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for all r ∈ (0, 1). On the other hand,

µ((r, 1))

1− r2
=

∫
(r,1)

dµ(λ)

1− r2
≤
∫

(r,1)

1− r2

(1− rλ)2
dµ(λ) ≤ ‖Hα‖.

Similarly, one gets (1− r2)−1µ(−1, r) ≤ ‖Hα‖ and we are done. �

Compactness of positive Hankel operators can be characterized in a sim-
ilar way.

Theorem 2.1.5 (Widom). Let α ∈ `2 be such that the Hankel matrix Hα

is positive. Then the following statements are equivalent:

(i) The Hankel matrix Hα is compact on `2,

(ii) αk = o(k−1) as k →∞,

(iii) There exists a positive measure µ on (−1, 1) such that (2.5) holds
for all k ∈ Z+ and µ is a vanishing Carleson measure, i.e.,

µ((−1,−t) ∪ (t, 1)) = o(1− t) (2.7)

as t ↑ 1.

(iv) H2(D) is compactly embedded into L2((−1, 1); dµ).

Proof. The equivalence (i)⇔ (iv) follows from the equalityHα = FJ∗JF−1,

where F : H2 → `2 is the Fourier transform, F : f 7→ f̂ , and J : H2(D) →
L2((−1, 1); dµ) is the embedding, J : f(z) 7→ f(λ). Indeed, for all f ∈ Pol+

‖Jf‖2L2(dµ) = (Jf, Jf)L2(dµ) = (J∗Jf, f)L2(dµ) = (Hαf̂ , f̂)`2 .

(iii)⇒ (ii) For any ε > 0 there exists λε ∈ (0, 1) such that

µ((−1,−λ) ∪ (λ, 1)) = o(1− λ)

for all λ ∈ (λ0, 1). Arguing as in the the proof of Theorem 2.1.4, it suffices
to show the following estimate∫

[0,1)
|λ|kdµ(λ) =

∫
[0,1)

kλk−1µ([λ, 1)))dλ =

∫
[0,λε]

+

∫
(λε,1)

kλk−1µ([λ, 1)))dλ

≤ kµ([0, 1))λkε + ε

∫
(λε,1)

kλk−1(1− λ)dλ ≤ 2ε

k + 1
,

which holds for all k large enough.

(ii) ⇒ (i) Again, choose Nε ∈ N such that αk < εk−1 for all k > Nε.
Let us represent Hα as a sum of two Hankel matrices Hα = Hα,1 + Hα,2,
where H1

α and H2
α are defined by

αk,1 =

{
αk, k ≤ Nε,

0, k > Nε

, αk,2 =

{
0, k ≤ Nε,

αk, k > Nε

.
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Clearly, H1
α is a finite rank Hankel matrix. By the proof of the implication

(ii)⇒ (i) of Theorem 2.1.4, we conclude that ‖H2
α‖ ≤ επ. Thus Hα can be

approximated (in the uniform operator topology) by finite rank operators
and hence it is compact.

(iv)⇒ (iii) By Hartman’s theorem, there is ϕ ∈ C(T) such that ϕ̂k = αk
for all k ∈ Z+. Consider ϕr = Pr ∗ ϕ. Since ϕ ∈ C(T), ‖ϕr − ϕ‖∞ → 0
as r → 1. Set αk,r := ϕ̂rk = rkαk, k ∈ Z+ and consider the corresponding
Hankel matrix Hαr . By Nehari’s theorem, for every ε > 0 there is rε ∈ (0, 1)
such that ‖Hαr −Hα‖ → 0 for all r ∈ (rε, 1). On another hand,

αk,r = rkαk = rk
∫

(−1,1)
λkdµ(λ) =

∫
(−1,1)

λkdµr(λ),

where µr((a, b)) = µ((ra, rb)) for all (a, b) ⊂ (−1, 1). Thus we get

|((Hα −Hαr)f̂s, f̂s)| =
∣∣∣ ∫

(−1,1)

1− s2

(1− sλ)2
d(µ− µr)

∣∣∣ ≤ ε
for all r ∈ (rε, 1). Since supp(µr) ⊆ [−r, r], one can choose sε such that∫

(−1,1)

1− s2

(1− sλ)2
dµr(λ) ≤ ε

and hence ∫
(−1,1)

1− s2

(1− sλ)2
dµ ≤ 2ε

for all s ∈ (sε, 1). The last inequality immediately implies that

µ((r, 1)) + µ((−1,−r))
1− r2

≤ ε

for all r ∈ (rε, 1), which completes the proof. �

Remark 2.1.6. The family of functions

fζ(z) =

√
1− |ζ|2
1− ζz

, ζ ∈ D,

is called the normalized reproducing kernel. It is possible to show that the
Hankel operator Hϕ is bounded (compact) if and only if the set {Hϕfζ | ζ ∈
D} is uniformly bounded (uniformly tends to 0 as |ζ| → 0) in H2

− (see [25,
Chapter I.6]). This result provides another way of proving the implication
(iv)⇒ (iii).

Let µ be a finite complex Borel measure on D. Set

αk =

∫
D
zkdµ(z), k ∈ Z+. (2.8)
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and consider the Hankel matrix Hα with the symbol α = {αk}k∈Z+ . Then
for any f , g ∈ Pol+ one easily gets

(Hαf, g)`2 =

∫
D
f(z)g(z∗)∗dµ(z).

Hence similar to the proof of Theorem 2.1.4, it is not difficult to show that
the Hankel matrix Hα is bounded if the embedding J : H2(D)→ L2(D, dµ)
is bounded. The Carleson embedding theorem states that the embedding J
is bounded if and only if µ is a Carleson measure on D. The latter means
that

sup
I

|µ|(RI)
|I|

<∞, (2.9)

where sup is taken over all subarcs of T, |I| = 1
2π

∫
I dθ is the arc length, and

RI is the so-called Carleson window RI = {reiθ | eiθ ∈ I, |I| < r < 1}.
If

lim
|I|→0

|µ|(RI)
|I|

= 0, (2.10)

then µ is called a vanishing Carleson measure. Note that in the case when
µ is a positive measure and supp(µ) ⊆ [−1, 1], conditions (2.9) and (2.10)
are equivalent to (2.6) and (2.7), respectively.

It turns out that every function f ∈ BMO(T) (f ∈ VMO(T)) is a convo-
lution of the Poisson kernel with the Carleson measure (vanishing Carleson
measure). Thus applying the Nehari and Hartman theorems one can prove
the following result.

Theorem 2.1.7. The Hankel matrix Hα is bounded (compact) on `2 if and
only if there exists a Carleson measure (a vanishing Carleson measure) µ
on D such that (2.8) is satisfied.

Remark 2.1.8. Further details about Carleson measures and the Carleson
embedding theorem can be found in [6]. Connection between BMO, VMO
and Carleson measures was noticed by P. Jones [15] and E. Amar and A.
Bonami [3].

Remark 2.1.9. If Hα is a positive Hankel matrix, then it belongs to the
trace class if and only if its trace is finite, that is,∑

k∈Z+

s2k =
∑
k∈Z+

∫
(−1,1)

λ2kdµ =

∫
(−1,1)

dµ

1− λ2
<∞.

2.2. The cubic Szegö equation

Let P+ be the Szegö projection in L2(T) onto H2. Consider the following
nonlinear equation

i∂tu = P+(|u|2u), (t, x) ∈ R+ × T. (2.11)
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This equation first appeared in [7, 8] as a toy model for totally non dispersive
evolution equations. The study of (2.11) is motivated by the study of the
nonlinear Schrödinger equation

i∂tu+ ∆u = |u|2u, (t, x) ∈ R+ ×M, (2.12)

whereM is a Riemannian manifold. Note that the boundary value problem
for another non dispersive equation (which is similar to (2.11))

i∂tu = |u|2u, u(0, x) = u0(x), (2.13)

admits an explicit solution u(t, x) = e−it|u0(x)|2u0(x). Clearly, it generates
a nonsmooth map in L2. On the other hand, replacing ∆ in (2.12) by the
Grushin operator G = ∂2

x + x2∂2
y acting on L2(R2) and making a separation

of variables leads to a system of coupled transport equations

i(∂t ± (2m+ 1)∂y)um = P±m(|u|2u), (2.14)

That is why the study of (2.11) is important in understanding the interaction
between the Szegö projection P+ and the nonlinearity |u|2u.

Denote by W s,2(T), s ≥ 0 the standard Sobolev spaces (u ∈ W s,2(T)

if
∑

k∈Z(1 + |k|2)s|ûk| < ∞) and set W s,2
+ (T) = W s,2(T) ∩ H2(T). Note

that W 0,2(T) = L2(T) and W 0,2
+ (T) = H2(T). We begin with following

well-posedness result.

Theorem 2.2.1. Let s ≥ 1/2. Then for any u0 ∈ W s,2
+ (T) there exists

a unique solution u ∈ C(R,W s,2
+ (T)) of (2.11) such that u(0, x) = u0(x).

Moreover, for every T > 0, the mapping u ∈W
1
2
,2

+ (T) 7→ C([−T, T ],W
1
2
,2

+ (T))
is continuous.

Remark 2.2.2. The proof of this result can be found in [7].

Consider the following symplectic form on H2(T)

ω(f, g) := 4Im(f, g)L2(T) =
2

π
Im

∫
T
fg∗dθ. (2.15)

Let D be a dense subspace of H2(T). Let also F be a real valued functional
defined on D. F is called Gâteaux differentiable if the following limit

dF (u;h) = lim
t→0

F (u+ th)− F (u)

t
(2.16)

exists for all h ∈ D. We shall say that F admits a Hamiltonian vector field
if there exists a mapping

XF : D → H2(D)

such that the Gâteaux derivative of F satisfies

dF (u;h) = ω(h,XF (u)). (2.17)
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A Hamiltonian curve associated to F is a solution u = u(t) of

u̇ = XF (u).

Finally, for two functionals F and G admitting Hamiltonian vector fields,
the Poisson bracket of F , G is defined on D by

{F,G}(u) = ω(XF (u), XG(u)).

Define the energy functional

E(u) := ‖u2‖2L2(T) =
1

2π

∫
T
|u|4dθ, u ∈ DE := L4(T) ∩H2(T). (2.18)

Lemma 2.2.3. Equation (2.11) is the equation of Hamiltonian curves for
E, that is,

u̇ = XE(u) = −iP+(|u|2u). (2.19)

Proof. First observe that for any u, h ∈ L4(T) ∩H2(T)

lim
t→0

E(u+ th)− E(u)

t
= lim
t→0

1

2πt

∫
T
|u+ th|4 − |u|4dθ

=
1

π

∫
T
(uh∗ + u∗h)|u|2dθ = 4Re(h, |u|2u)L2(T).

Since h ∈ H2(T), we get

4Re(h, |u|2u)L2(T) =4Re(h, P+(|u|2u))L2(T)

= 4Im(h,−iP+(|u|2u))L2(T) = ω(h,XE(u)).

Therefore, E admits a Hamiltonian vector field and Hamiltonian curves
associated to E are solutions of (2.19). �

Remark 2.2.4. This lemma implies that the cubic Szegö equation (2.11)
is formally Hamiltonian. In particular, the Hamiltonian E generates a con-
servation law: the energy is conserved E(u(t)) = E(u(0)) for all t ∈ R.

Exercise 2.2.1. Show that the functionals

Q(u) := ‖u‖2L2(T), M(u) := −i(u′, u), (2.20)

defined on H2(T) and W 1,2
+ (T), respectively, admit Hamiltonian vector fields

XQ(u) = − i

2
u, XM (u) = −1

2
u′. (2.21)

Exercise 2.2.2. Show that Q and M are integrals of motion for E, i.e.,

{Q,E} = 0, {M,E} = 0.

Moreover, Q and M are in involution, {Q,M} = 0.
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Our main aim is to show that the cubic Szegö equation is formally in-
tegrable (admits a Lax pair representation). The latter will enable us to
construct infinitely many conserved quantities for (2.11) and to describe
finite dimensional isospectral tori.

Let u ∈ W
1
2
,2

+ (T) and consider the anti-linear Hankel operator with
symbol u:

Hu : H2(T) → H2(T)
h 7→ P+(uh∗)

. (2.22)

Note that the matrix representation of Hu is given by

(Huh)k =
∑
n≥0

ûn+kh
∗
n.

Clearly, Hu is Hilbert–Schmidt. Indeed, according to Remark 1.3.10,

‖Hu‖2S2
=
∑
k,n

|ûk+n|2 =
∑
k∈Z+

(1 + k)|ûk|2 = ‖u‖2
W

1
2 ,2
.

Moreover, using the functionals Q and M , one gets

‖Hu‖2S2
= Q(u) +M(u), (2.23)

and hence the Hilbert–Schmidt norm of Hu is a conserved quantity under
the cubic Szegö flow (2.11).

Finally, since (Huh, f) = (Huf, h), the operatorH2
u = HuHu is a positive

self-adjoint (linear! since the product of two nonlinear operators is a linear
operator) operator and its matrix representation is given by

(H2
u)kn =

∑
j∈Z+

ûk+j û
∗
j+n.

The main result of this section is the following

Theorem 2.2.5. Let u ∈ C(R,W s,2
+ (T)) with some s > 1

2 . Then u is a
solution to the cubic Szegö equation (2.11) if and only if the Hankel operator
Hu satisfies the following evolution equation

d

dt
Hu = [Bu, Hu] = BuHu −HuBu, (2.24)

where Bu is a skew-self-adjoint operator given by

Bu :=
i

2
Hur − iT|u|2 , (2.25)

and T|u|2 : h 7→ P+(|u|2h) is a Toeplitz operator.

Proof. If u solves (2.11), then we get

d

dt
Huh =

d

dt
P+(uh∗) = P+(u̇h∗) = −iP+

(
P+(|u|2u)h∗

)
= −iHP+(|u|2u)h,
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and hence we only need to show that

HP+(|u|2u) = T|u|2Hu +HuT|u|2 −H3
u.

Since P+(I − P+) = 0,

P+

(
P+(|u|2u)h∗

)
= P+(|u|2uh∗)

for all h ∈ H2(T). Further, note that

P+(|u|2uh∗) = P+(|u|2P+(uh∗)) + P+(|u|2(I − P+)(uh∗)).

The first summand gives

P+(|u|2P+(uh∗)) = (T|u|2Hu)(h).

Since |u|2 = uu∗ and u((I − P+)(uh∗))∗ ∈ H2(T), we get

P+(|u|2(I − P+)(uh∗)) = Hu(u((I − P+)(uh∗))∗)

= Hu(P+u((I − P+)(uh∗))∗)

= Hu(P+(|u|2h− u(P+uh
∗)∗) = (HuT|u|2)(h)− (H3

u)(h). �

The representation (2.24) is called the Lax pair. If U(t) is a family of
unitary operators solving the equation

d

dt
U(t) = Bu(t)U(t), U(0) = I,

then the family of Hankel operators Hu(t) are unitary equivalent and satisfy

Hu(t) = U(t)−1Hu(0)U(t), t ∈ R. (2.26)

In particular, this immediately implies the following result.

Corollary 2.2.6. The family Hu(t) is isospectral under the cubic Szegö flow.
In particular, every eigenvalue of Hu(t) is a constant of motion.

Let us state some immediate consequences. First of all, ‖Hu(t)‖ =
‖Hu(0)‖ and by Nehari’s theorem 1.1.5, these norms are equivalent to the
BMO norm of u. Moreover, Hu ∈ Sp for some p if and only if Hu(t) ∈ Sp

for all t ∈ R; their von Neumann–Schatten norms are equal and, by Peller’s

theorem, are further equivalent to the norm of u in the Besov space B
1/p
p .

The most interesting case is the trace class. In this case, ‖Hu‖S1 is equiv-
alent to ‖u′′‖L1(D) and this allows to improve some long time estimates for
u(t) (see [7, Corollary 2]).

Finally, for N ∈ N denote by M(N) the set of rational functions u of
the form

u(z) =
P (z)

Q(z)
,

where P , Q are polynomials with complex coefficients having no common
zeros and such that degP = N − 1, degQ = N , Q(0) = 1 and Q(z) 6= 0 if
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|z| ≤ 1. By Kronecker’s theorem 1.2.1, rankHu = N . Thus, Corollary 2.2.6
implies the following

Theorem 2.2.7. Let u0 ∈ M(N) and u(t) be a solution to (2.11) with
u(0) = u0. Then u(t) ∈ M(N) for all t ∈ R, that is, the submanifolds
M(N) are invariant under the cubic Szegö flow (2.11).

Exercise 2.2.3. Since dimM(N) = 2N , equation (2.11) is reduced to a
finite dimensional Hamiltonian system on M(N). Take

u =
N∑
k=1

ak
1− bkz

, bk ∈ D, k ∈ {1, . . . , N},

and find the system of equations for ak and bk if u solves (2.11).

2.3. Inverse spectral problems for Hankel operators

The results in the previous section motivate the study of the inverse spectral
problem for Hankel matrices. The general inverse spectral problem can be
stated as follows. Given a spectral data S (e.g., spectrum), describe Hankel
matrices with this spectral data. If Hα is a bounded Hankel operator, then
there are some necessary restrictions on its spectrum. First of all, as we
already mentioned in Corollary 1.1.11, the kernel of Hα is either empty or
infinite dimensional. On the other hand, by Theorem 1.1.9,

S∗kHα = HαSk

for all k ∈ N. Therefore,

Hαek = HαSke0 = S∗kHαe0 = S∗kα→ 0 (2.27)

as k →∞. Thus, by Weyl’s criterion, we arrive at the following

Lemma 2.3.1. Let Hα be a bounded Hankel operator. Assume also that
rankHα =∞. Then

0 ∈ σess(Hα). (2.28)

Thus, Hankel operators satisfy the following two conditions:

(i) 0 ∈ σ(H) and 0 ∈ σess(H),

(ii) if ker(H) 6= {0}, then dim ker(H) =∞.

So, the following question naturally arises in this context: Let σ ⊂ C
be a closed bounded subset such that 0 ∈ σ. Does there exists a bounded
Hankel operator H such that σ(H) = σ? In a particular case σ = {0} this
problem was posed by S. C. Power. The next result shows that there is no
nilpotent Hankel operators.

Lemma 2.3.2 (Power). If ϕ ∈ L∞(T) is such that Hϕ is nilpotent, i.e.,
HN
ϕ = O for some N ∈ N, then Hα = O.
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Proof. Let us consider Hankel operators in the following form Hϕf =
P+(J(ϕf)), where J(f)(z) = f(z∗). It is straightforward to check that the
matrix of the operator Hϕ in the basis {ek}k∈Z+ coincides with the Hankel
matrix with coefficients αk = ϕ̂−k, k ∈ Z+.

Since Hϕ is nilpotent, its kernel kerHϕ is nontrivial and hence by Beurl-
ing’s theorem A.2.12, kerHϕ = ΘH2, where Θ is an inner function. Noting
that HϕΘ = O, we conclude

ϕΘ = zh, h ∈ H∞.

Without loss of generality we can assume that Θ and h have no common
inner divisors. Consider the operator HzΘ∗ . It is easy to see that HzΘ∗ is a
partial isometry with the initial space KΘ := H2	ΘH2 and the final space
KΘ# := H2 	Θ#H2, where Θ#(z) := Θ(z∗)∗. Indeed,

HzΘ∗(Θf) = P+(J(z|Θ|2f)) = P+(J(zf)) = 0

for all f ∈ H2. On another hand, for any g ∈ KΘ we get

HzΘ∗g = P+(J(zΘ∗g)) = P+(Θ#J(zg)).

Since J(zKΘ) = H2
− 	 (JΘ)H2

−, we get Θ#J(zKΘ) = KΘ# .

Noting that Hϕf = HzΘ∗(hf) and using the nilpotence of Hϕ we con-
clude that there exists f ∈ KΘ# such that hf ∈ ΘH2. Therefore, f1 :=
f/Θ ∈ H2. However, f ∈ KΘ# and hence

P+((Θ#)∗f) = P+((Θ#)∗Θf1) = 0.

Therefore, the Toeplitz operator T(Θ#)∗Θ has a nontrivial kernel. Noting
that

kerT ∗(Θ#)∗Θ = kerTΘ#Θ∗ = kerT(Θ(Θ#)∗)# = (kerT(Θ#)∗Θ)#.

However, Coburn’s alternative (see [25, Theorem III.1.4]) states that ei-
ther a kernel or a co-kernel of a non-zero Toeplitz operator is trivial. This
contradiction completes the proof. �

Remark 2.3.3. An explicit example of a quasi-nilpotent1 Hankel operator
was constructed by A. V. Megretskii. For instance, the matrix

H =



i 1/2 0 1/4 0 . . .
1/2 0 1/4 0 0 . . .
0 1/4 0 0 0 . . .

1/4 0 0 0 1/8 . . .
0 0 0 1/8 0 . . .
. . . . . . . . . . . . . . . . . .


1An operator T is called quasi-nilpotent if ‖Tn‖1/n → 0 as n → ∞. Clearly, the latter is

equivalent to the condition σ(T ) = {0}.
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is compact and σ(H) = {0} (for further details we refer to [25, Chapter
X.3]).

Motivated by numerous applications, S. V. Khruschev and V. V. Peller
conjectured in 1984 that every positive bounded operator T satisfying condi-
tions (i) and (ii) is unitarily equivalent to a modulus of a Hankel operator.
This problem was solved in affirmative by V. V. Vasyunin and S. R. Treil
(see [36]). Moreover, it turns out that the condition 0 ∈ σ is the only
restriction on the spectrum of Hankel operators.

Theorem 2.3.4 ([20]). Let σ be any compact subset of the complex plane
containing 0. Then there exists a Hankel operator H such that σ(H) = σ.

Note that it is easy to construct a linear operator T such that σ(T ) = σ,
where σ ⊂ C is any given compact set. Indeed, take a disjoint sequence of
points {λk}Nk=1, N ∈ N ∪ {∞} which is dense in σ, {λk} = σ, and then set

T = diag(λk). Clearly, every λk is an eigenvalue of T and σ(T ) = {λk}.
Unfortunately, there are no simple ”building blocks” for Hankel operators.
Detailed proof of Theorem 2.3.4 can be found in [20].

Theorem 2.3.4 describes all possible spectra of bounded Hankel opera-
tors. The next question is about the spectral structure of Hankel operators.
We start with the following result.

Theorem 2.3.5 (Abakumov). Let {λj}Nj=1 be a finite set of non-zero points

and let {kj}Nj=1 ⊂ N. Then there is a finite rank Hankel operator such that

its non-zero eigenvalues are precisely λj and their algebraic multiplicities2

are kj, j = 1, . . . , N .

According to Theorem 2.3.5, Hankel operator might have eigenvalues of
an arbitrary algebraic multiplicity. However, the situation with the geomet-
ric multiplicity is a bit different.

Theorem 2.3.6 (Peller). Let H be a Hankel operator. Then

|dim ker(H − z)− dim ker(H + z)| ≤ 1 (2.29)

for all z ∈ C.

Proof. Let H = Hα be a Hankel matrix in `2. Set Nz := ker(H−z), z ∈ C.
Clearly, it suffices to show that

dimN−z ≥ dimNz − 1 (2.30)

2The algebraic multiplicity of an eigenvalue is the dimension of the corresponding root sub-

space ∪n∈N ker(T − z)n. The number dim ker(T − z) is called the geometric multiplicity of an
eigenvalue.
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for all z ∈ C. Using (1.21), we get for all f ∈ `2

S∗Hαf −HαSf = 0, (2.31)

and, moreover,

SHαf −HαS∗f = (f, e0)`2Sα− (Sα, f∗)`2 . (2.32)

Assume first that there is f ∈ Nz such that f0 = (f, e0)`2 6= 0. Take any
g ∈ Nz such that g0 = (g, e0)`2 = 0. By (2.31) and (2.32) we get

Hα(S + S∗)g − (S + S∗)Hαg = −(Sα, g∗)e0.

Furthermore,(
(Hα(S + S∗)− (S + S∗)Hα)g, f∗

)
`2

= −(Sα, g∗)f0,

where f0 6= 0 by the assumption. On the other hand,(
(Hα(S + S∗)− (S + S∗)Hα)g, f∗

)
`2

=
(
(S + S∗)g,H∗αf∗

)
`2
−
(
Hαg, (S + S∗)f∗

)
`2

= z
(
(S + S∗)g, f∗

)
`2
− z
(
g, (S + S∗)f∗

)
`2

= 0,

which implies that (Sα, g∗) = 0 and hence

Hα(S + S∗)g = (S + S∗)Hαg, HαS∗g = SHαg. (2.33)

These equalities imply that

Hα(S − S∗)g = −(S − S∗)Hαg = −z(S − S∗)g,

that is, (S −S∗)g ∈ N−z whenever g ∈ Nz and g0 = 0. Since ker(S −S∗) =
{0}, we conclude that S −S∗ is a 1-to-1 map of {g ∈ Nz | g0 = 0} into N−z.
This proves (2.30).

Finally, if (f, e0) = 0 for all f ∈ Nz, then (2.31) and (2.32) imply that
(2.33) holds for all f such that (Sα, f∗)`2 = 0. As before, this implies that
S − S∗ is a 1-to-1 map of {f ∈ Nz | (Sα, f∗)`2 = 0} into N−z, which proves
(2.30) �

A complete description of a spectral structure of self-adjoint Hankel op-
erators was obtained by A. V. Megretskii, V. V. Peller and S. R. Treil.
Before formulate their result, let us recall that by von Neumann’s theo-
rem, every self-adjoint operator T on separable Hilbert space H is unitarily
equivalent to multiplication by the independent variable on a direct integral∫
⊕H(t)dµ(t):

(Mf)(t) = tf(t), f ∈
∫
⊕
H(t)dµ(t). (2.34)
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Without loss of generality we can assume that H(t) 6= {0} µ-almost every-
where. In this case, µ is called a scalar spectral measure and

νA : t 7→ dimH(t) (2.35)

is the spectral multiplicity of A. Two self-adjoint operators are unitarily
equivalent if and only if their scalar spectral measures are mutually abso-
lutely continuous and spectral multiplicities are equal almost everywhere.

Theorem 2.3.7 (Megretskii–Peller–Treil). Let T ∈ [H] be self-adjoint. Let
also µ be its scalar spectral measure and νT its spectral multiplicity func-
tion. Then T is unitarily equivalent to a Hankel operator if and only if the
following conditions are satisfied:

(i) either kerT = {0} or dim kerT =∞,

(ii) 0 ∈ σ(T ),

(iii) |νT (t)−νT (−t)| ≤ 2 µac-almost everywhere and |νT (t)−νT (−t)| ≤ 1
µs-almost everywhere.

The proof of this result can be found in [25, Chapter XII]. We complete
this section with the following corollary.

Corollary 2.3.8. Let T ∈ [H] be self-adjoint and positive. Then T is uni-
tarily equivalent to a Hankel operator if and only if the following conditions
are satisfied:

(i) either kerT = {0} or dim kerT =∞,

(ii) 0 ∈ σ(T ),

(iii) νT (t) ≤ 2 µac-almost everywhere and νT (t) ≤ 1 µs-almost every-
where.

In particular, if T is compact and kerT = {0}, then it is similar to a
positive Hankel operator if and only if the operator T is simple.

2.4. Inverse spectral problem for self-adjoint compact
Hankel operators

We start with the following identity.

Lemma 2.4.1. Let Hα = (αj+k)j,k∈Z+ be a bounded Hankel matrix and
HS∗α = (αj+k+1)j,k∈Z+. Then

HαH
∗
α = HS∗αH

∗
S∗α + (·, α)α. (2.36)

Proof. Indeed, using (1.21) we get

HS∗α = S∗Hα = HαS, H∗S∗α = S∗H∗α = H∗αS.
Noting that SS∗ = I − (·, e0)e0 and Hαe0 = α, we end up with (2.37). �
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Remark 2.4.2. Since H∗α = Hα∗ , we get

H∗αHα = H∗S∗αHS∗α + (·, α∗)α∗. (2.37)

Assume now that α = α∗ and α(z) =
∑

k∈Z+
αkz

k ∈ VMOA, that is,

Hα is a compact self-adjoint Hankel operator. Let {λj} be the sequence of
non-zero eigenvalues of Hα ordered in decreasing order

0 < . . . ... ≤ |λn| ≤ · · · ≤ |λ2| ≤ |λ1|.

Theorem 2.3.6 immediately implies the following restrictions on multi-
plicities of non-zero eigenvalues of Hα.

Corollary 2.4.3. If λ ∈ σ(Hα) and λ 6= 0, then

| dim ker(Hα − λ)− dim ker(Hα + λ)| ≤ 1. (2.38)

If in addition Hα is a nonnegative Hankel operator, then all its non-zero
eigenvalues are simple.

Remark 2.4.4. In general, one can not say much on the spectrum of HS∗α.
In particular, the positivity of Hα does not imply the positivity of HS∗α
(cf. Lemma 2.1.3). On the other hand, there are certain restriction on their
absolute values. Namely, by (2.37), H2

S∗α is a rank 1 perturbation of H2
α,

which suggests certain interlacing properties (see Lemma 2.4.7 below).

We need the following simple result.

Lemma 2.4.5. Let A1 and A0 be bounded self-adjoint operators on a Hilbert
space H such that

A1 = A0 + 〈·, φ〉φ. (2.39)

Set
Mj := span{Anj φ}n∈Z+ , j ∈ {0, 1}. (2.40)

Then:

(i) M0 =M1,

(ii) Mj is a reducing subspace for Aj,

(iii) A0|M⊥0 = A1|M⊥1 .

Exercise 2.4.1. Prove Lemma 2.4.5 (Hint: Show that every f = An1φ ∈
M0. To prove (iii), use the implication f ⊥Mj ⇒ f ⊥ φ.)

Remark 2.4.6. Note that the operators A0|M0 and A1|M1 are simple, that
is, they are unitarily equivalent to a multiplication operator in L2(dµj),
where the measures dµj are defined by the Stieltjes inversion formula applied
to Herglotz–Nevanlinna functions

mj(z) = 〈(Aj − z)−1φ, φ〉 =

∫
R

dµj(s)

s− z
=

∫
R

1

s− z
d〈Ej(s)φ, φ〉, (2.41)
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where Ej is the distribution of identity for Aj , j ∈ {0, 1}. Further informa-
tion about simple operators can be found in [2].

Since M0 = M1, let us denote these spaces by M. By Lemma 2.4.5,
the operators A0 and A1 admit the following representation with respect to
the decomposition H =M⊕M⊥:

Aj = Aj |M ⊕Aj |M⊥ , j ∈ {0, 1}. (2.42)

In particular, σ(Aj) = σ(Aj |M) ∪ σ(Aj |M⊥) and, by Lemma 2.4.5(iii),
σ(A0|M⊥) = σ(A1|M⊥).

Lemma 2.4.7. Let A1 and A0 be compact self-adjoint operators on a Hilbert
space H such that (2.39) holds. Suppose also that M = H, i.e., A0 and A1

are simple. Then the eigenvalues of A0 and A1 interlace.

Proof. Let {λk} and {µk} be the eigenvalues of A0 and A1, respectively.
Define the functions m0 and m1 by (2.41). Then

m1(z) =
m0(z)

1 +m0(z)
, z ∈ C \ R. (2.43)

Indeed, by (2.39),

(A0 − z)−1φ− (A1 − z)−1φ = 〈(A1 − z)−1φ, φ〉(A0 − z)−1φ,

which immediately gives (2.43).

Now observe that m0 and m1 are analytic away of σ(A0) = {0} ∪ {λk}
and σ(A1) = {0} ∪ {µk}. Moreover, each eigenvalue of Aj is a pole of mj .
By (2.43), m1 is analytic at λk for all k and hence {λk} /∈ σ(A1).

Assume now that λk and λk+1 are two consecutive (positive) eigenvalues
of A0. By (2.43), we only need to show that 1 + m0(z) = 0 has precisely
one solution in the interval (λk+1, λk). But this follows from the Herglotz
properties of m0. Indeed, m0(λk+1+) = −∞ and m0(λk−) = +∞. On the
other hand, m0 is strictly increasing on (λk+1, λk) since

m′0(x) =

∫
R

1

|s− x|2
dµ0(s) > 0, x ∈ R \ σ(A0).

Finally, since

m0(z) =
m1(z)

1−m1(z)
, z ∈ C \ R,

an analogues arguments show that between any two consecutive eigenvalues
µk and µk+1 of A1 there is precisely one eigenvalue of A0. �

The following result was obtained in [11].

Lemma 2.4.8. If Hα and HS∗α are positive bounded Hankel operators, then
ranHα =M, that is, the operator Hα|ker(Hα)⊥ (as well as HS∗α) is simple
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Proof. Consider the subspace

M̃ = span{H2n
α α}n∈Z+ .

Actually, M̃ =M, however, it would more convenient for us to deal with M̃.
By (2.37) and Lemma 2.4.5, M̃ = span{H2n

S∗αα}n∈Z+ . Clearly, M̃ ⊆ M.

By Lemma 2.4.5, H2
α|M̃⊥ = H2

S∗α|M̃⊥ . Since both operators are positive,
the decomposition (2.42), implies that Hα|M̃⊥ = HS∗α|M̃⊥ . Hence for each

f ∈ M̃⊥ we get

Hαf = HS∗αf = S∗Hαf.

Since ker(S∗ − I) = {0}, we obtain Hαf = 0 and HS∗αf = 0. Therefore,

M̃⊥ ⊂ kerHα and M̃⊥ ⊂ kerHα, which implies that

ranHα ⊂ M̃, ranHS∗α ⊂ M̃.

It remains to note that α = Hαe0 and hence PMe0 ∈M, which implies that
M⊂ ranHα. �

Remark 2.4.9. It might happen that the inclusion ranHS∗α ⊂M is strict.
Indeed, take α = e0. Then Hα = (·, e0)e0 and ranHα = span{e0}, however,
HS∗α = O and ranHS∗α = {0}.

As an immediate consequence of Lemma 2.4.8 and Lemma 2.4.7 we ob-
tain the following result.

Corollary 2.4.10. Let Hα and HS∗α be positive compact Hankel operators.
Then their eigenvalues arranged in the decreasing order satisfy

0 < · · · < λk+1 < µk < λk < µk−1 < · · · < µ1 < λ1. (2.44)

Remark 2.4.11. It is absolutely unclear what happens without the double
positive condition (Hα and HS∗α are positive). First of all, one needs to
clarify the relationship between M and ranHα. Another problem is the
relationship between the spectral of Hα|M and Hα|M⊥ .

We finish this section with the following result due to P. Gérard and S.
Grellier.

Theorem 2.4.12 ([9]). Let {λk} and {µk} be two real sequences such that
λk → 0 and µk → 0 as k →∞, and their absolute values satisfy

0 < · · · < |λk+1| < |µk| < |λk| < |µk−1| < · · · < |µ1| < |λ1|. (2.45)

Then there is a unique α such that the corresponding Hankel operator Hα

is compact and {λk} are the non-zero eigenvalues of Hα and {µk} are the
non-zero eigenvalues of HS∗α.

The proof of this result can be found [9].
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Corollary 2.4.13. Let {λk} and {µk} be two positive sequences such that
λk → 0, µk → 0 as k →∞, and (2.44) holds. Then there is a unique α such
that the Hankel operators Hα and HS∗α are positive and compact and their
non-zero eigenvalues are {λk} and {µk}, respectively.

A few remarks are in order.

Remark 2.4.14. (i) An explicit formula for α given in terms of {λk}
and {µk} can be found in [9, Theorem 3].

(ii) An extension of Corollary 2.4.13 to the case of bounded Hankel
operators can be found in [11].

(iii) It turns out that kerHα is trivial (and hence so is kerHS∗α) if and
only if∑

j∈Z+

(
1−

µ2
j

λ2
j

)
=∞, sup

N

1

λ2
N+1

N∏
j=1

µ2
j

λ2
j

=∞. (2.46)



Appendix A

Function Theory on
the Unit Circle

A.1. Fourier Series: Convergence and Summability

For any Borel measure µ on the unit circle T := R/2πZ one can associate a
Fourier series

µ ∼
∑
n∈Z

µ̂neinθ, µ̂n :=
1

2π

∫
T

e−inθdµ(θ). (A.1)

If µ = fdθ with some f ∈ L1(T), then we shall write f̂n instead of µ̂n.

It is natural to ask to what extent µ is determined by its Fourier coeffi-
cients and how one can recover µ from {µ̂n}n∈Z?

A.1.1. The Dirichlet Kernel. Consider the partial sums of the Fourier
series of f

(SNf)(θ) :=

N∑
n=−N

f̂nen(θ) =

N∑
n=−N

einθ 1

2π

∫
T
f(t)e−intdt

=
1

2π

∫
T
f(t)

N∑
n=−N

ein(θ−t)dt

=
1

2π

∫
T
f(t)DN (θ − t)dt

= (f ∗DN )(θ),

39
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where DN is the Dirichlet kernel,

DN (θ) =
N∑

n=−N
einθ =

sin((N + 1
2)θ)

sin(1
2θ)

, θ ∈ T. (A.2)

Exercise A.1.1. Verify (A.2).

The next lemma summarizes the basic properties of the convolution.

Lemma A.1.1. The operation of convolution satisfies:

(i) If f , g ∈ L1(T), then f(·)g(t− ·) ∈ L1(T) for almost all t ∈ T and

‖f ∗ g‖L1 ≤ ‖f‖L1‖g‖L1 . (A.3)

Moreover,

(̂f ∗ g)n = f̂nĝn, n ∈ Z. (A.4)

(ii) (Young’s inequality) If 1 ≤ p, q, r ≤ ∞ satisfy 1 + 1/r = 1/p+ 1/q,
then

‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq , (A.5)

(iii) If f ∈ C(T) and µ ∈M(T), then f ∗ µ is well defined and

‖f ∗ µ‖Lp ≤ ‖f‖Lp‖µ‖, (A.6)

where ‖µ‖ is the total variation of µ, ‖µ‖ = |µ|(T).

Remark A.1.2. Lemma A.1.1 (i) states that L1(T) is a commutative Ba-
nach algebra (with convolution as a multiplication). Moreover, Young’s
inequality states that Lp(T) is an ideal of L1(T) for every p ∈ (1,∞].

Exercise A.1.2. Let µ ∈ M(T) satisfy µ̂ ∈ `1(Z), i.e.,
∑

n∈Z |µ̂n| < ∞.
Show that µ = fdθ with f ∈ C(T).

Definition A.1.3 (Wiener algebra). The subspace of measures with the
above summability property is called the Wiener algebra and is denoted by
A(T). Show that A(T) is an algebra under multiplication and

(̂fg)n =
∑
m∈Z

f̂nĝn−m.

Moreover, ‖fg‖A ≤ ‖f‖A‖g‖A, where ‖f‖A := ‖f̂‖`1 .

Note that the constant function 1l is a unit inA(T) and hence 1/f ∈ A(T)
whenever f 6= 0 on T (this is the content of Wiener’s Lemma).

The family of exponents en(θ) = einθ, n ∈ Z is an orthonormal basis in
the Hilbert space L2(T) and hence

f(θ) =
∑
n∈Z

f̂neinθ, f̂n = (f, en)L2 , n ∈ Z, (A.7)
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where the convergence is understood in the L2 sense. In particular, f ∈
L2(T) if and only if f̂ ∈ `2(Z). It is possible to show that SNf approximates
f ∈ Lp in the Lp norm whenever p ∈ (1,∞). However, there is no nice
characterization (as in the L2 space) of Fourier coefficients in this case.
Moreover, this sort of approximation fails if p = 1 or p =∞.

Theorem A.1.4. There is f ∈ C(T) (∈ L1(T)) such that

‖SNf − f‖∞ 6→ 0 (‖SNf − f‖L1 6→ 0) (A.8)

as N →∞.

However, as for the space C(T) it is possible to show that SNf approx-
imates f under certain additional regularity assumptions on f .

Theorem A.1.5. If f ∈ Lipα(T)1 with some α ∈ (0, 1], then ‖SNf−f‖∞ →
0 as n→∞.

A.1.2. Cesáro Means and Fejer’s Kernel. According to the Weier-
strass approximation theorem, polynomials are dense in C(T). Hence this
result suggests that there exists another way to approximate f by trigono-
metric polynomials. An approximate identity is the key concept in our fur-
ther considerations.

We begin with the Cesáro means defined by

σNf :=
1

N

N−1∑
n=0

SNf =

N∑
n=−N

(
1− |n|

N

)
f̂neinθ =

∑
n∈Z

(
1− |n|

N

)+
f̂neinθ (A.9)

for all N ∈ N. Clearly,

σNf = KN ∗ f, KN :=
1

N

N−1∑
n=0

Dn =
1

N

(
sin(N2 x)

sin(1
2x)

)2

. (A.10)

The function KN is called the Fejer kernel.

Exercise A.1.3. Verify (A.10).

The properties of Fejer’s kernels are summarized in the following lemma.

Lemma A.1.6. The family {KN}N∈N is an approximate identity, that is:

(i) KN (θ) ≥ 0 for all θ ∈ T and N ∈ N,

(ii)
1

2π

∫
T
KN (θ)dθ = 1, N ∈ N, (A.11)

1Lipα(T) is the class of Hölder continuous functions, i.e., f ∈ Lipα(T) if there exists a
constant c > 0 such that |f(x)− f(y)| < c|x− y|α for all x, y ∈ T.



42 A. Function Theory on the Unit Circle

(iii) for all δ ∈ (0, π),

lim
N→∞

∫ 2π−δ

δ
KN (θ)dθ = 0. (A.12)

The basic convergence properties of families that form an approximate
identity are collected in the following theorem.

Theorem A.1.7. Let {Φn}n∈N be an approximate identity. Then:

(i) If f ∈ C(T), then ‖ΦN ∗ f − f‖∞ → 0 as N →∞,

(ii) If f ∈ Lp(T) with p ∈ [1,∞), then ‖ΦN ∗ f − f‖Lp → 0 as N →∞,

(iii) If µ ∈M(T), then ΦN ∗ µ converges to µ in the weak-∗ topology.

As an immediate corollary of Lemma A.1.6 and Theorem A.1.7 we obtain
the following result.

Corollary A.1.8. (i) If f ∈ C(T), then ‖σNf−f‖∞ → 0 as N →∞,

(ii) If f ∈ Lp(T) with p ∈ [1,∞), then ‖σNf − f‖Lp → 0 as N →∞,

(iii) If µ ∈M(T), then σNµ converges to µ in the weak-∗ topology.

If µ̂ = 0, then σNµ = KN ∗ µ = 0, n ∈ Z+. Hence Corollary A.1.8(iii)
implies uniqueness:

Corollary A.1.9. If µ ∈M(T) and µ̂n = 0 for all n ∈ Z, then µ ≡ 0.

If f ∈ L1(T) and |n| > N , then we get

|f̂n| = |(̂σNf)n − f̂n| =
∣∣∣ 1

2π

∫
T
(σNf − f)e−inθdθ

∣∣∣ ≤ ‖σNf − f‖L1 .

Applying Corollary A.1.8(ii), we arrive at the Riemann–Lebesgue lemma.

Corollary A.1.10. If f ∈ L1(T), then f̂n = o(1) as N →∞, i.e., L̂1(T) ⊆
c0.

Exercise A.1.4. Show by examples that the Riemann–Lebesgue lemma is
not valid for measures.

Moreover, Fourier coefficients of L1 functions can go to 0 arbitrarily
slowly and the inclusion in Corollary A.1.10 is strict2. However, one can
characterize the properties of f in terms of Cesáro means of its formal Fourier
series.

Theorem A.1.11. Let µ ∼
∑

n∈Z µ̂nen be a formal Fourier series and let
σN , N ∈ N be the corresponding Cesáro means. Then:

2For example, the series
∑
n≥2

sin(nθ)
log(n)

is not a Fourier series of an L1 function
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(i) µ = fdθ with f ∈ Lp(T) for some p ∈ (1,∞] if and only if
supN ‖σN‖Lp <∞,

(ii) µ = fdθ with f ∈ L1(T) if and only if σN converges in the L1

norm,

(iii) µ = fdθ with f ∈ C(T) if and only if σN converges uniformly,

(iv) µ ∈M(T) if and only if supN ‖σN‖L1 <∞,

(v) µ ∈M+(T) if and only if σN ≥ 0 for all N ∈ Z+.

A.2. Hardy Spaces

A.2.1. Harmonic Functions: The Poisson Kernel. Let f ∈ L1(T).
Consider the Abel means of its formal Fourier series

fr(θ) :=
∑
n∈Z

f̂nr
|n|einθ, r ∈ (0, 1). (A.13)

Clearly, fr ∈ A(T) for all r ∈ (0, 1). Moreover, by Lemma A.1.1(i)

fr = Pr ∗ f, (A.14)

where

Pr(θ) :=
∑
n∈Z

r|n|einθ = Re
(1 + reiθ

1− reiθ

)
=

1− r2

1− 2r cos(θ) + r2
(A.15)

is the Poisson kernel.

Lemma A.2.1. The family Pr, r ∈ (0, 1) is an approximate identity.

Therefore, one can immediately formulate the analogs of Theorem A.1.7
and Theorem A.1.11 for the Abel means of a Fourier series. We left that as
an exercise.

Theorem A.2.2 (Fatou). Let µ ∈ M(T). If µ = 1
2πfdθ + µs, where µs

is a singular measure, then the following limit limr→1(Pr ∗ µ)(θ) exists and
equals f(θ) for almost all θ ∈ T.

In particular, if µ is absolutely continuous, µ = 1
2πfdθ, and θ0 ∈ T is a

Lebesgue point of f , then limr→1(Pr ∗ f)(θ) = limr→1 fr(θ) = f(θ).

Now let us consider the function f(reiθ) := fr(θ) as a function of a

complex variable z = reiθ ∈ D. Since r|n|einθ is harmonic in D and the
series in (A.13) converges on compact subsets of D, the function f(reiθ) is
harmonic in D. Hence the Poisson integral Pr ∗ f provides an extension of
f(θ) =: f(eiθ) from the circle T = ∂D to a harmonic function f(reiθ) in the
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disc D. On the other hand, we infer from Fatou’s Theorem that f(reiθ) is a
Poisson integral of its boundary values:

f(reiθ) =
1

2π

∫
T
Pr(θ − t)f(eit)dt. (A.16)

Let us state the analog of Theorem A.1.11 for functions harmonic in D.

Theorem A.2.3. Let u be a function harmonic in the unit disc D. Set
u(r, θ) := u(reiθ)

(i) if u ∈ C(D), then u(reiθ) = (Pr ∗ f)(θ) for all r ∈ (0, 1), where
f(eiθ) := u(eiθ),

(ii) u(reiθ) = (Pr ∗ f)(θ) with some f ∈ Lp(T), p ∈ (1,∞] if and only
if supr∈(0,1) ‖u(r, ·)‖Lp <∞,

(iii) u(reiθ) = (Pr ∗ µ)(θ) with some µ ∈M(T) if and only if

sup
r∈(0,1)

‖u(r, ·)‖L1 <∞,

(iv) u is positive in D if and only if u(reiθ) = (Pr ∗ µ)(θ), where µ is a
positive Borel measure on T, µ ∈M+(T).

A.2.2. Hp Spaces. Let f be a function analytic in the unit disc D, i.e., it
is the sum of a convergent power series

f(z) =
∑
n≥0

fnz
n, z ∈ D. (A.17)

In polar coordinates, z = reiθ, we can rewrite the above series as follows

f(reiθ) =
∑
n≥0

fnr
neinθ. (A.18)

The results from the previous subsection on harmonic functions clearly apply
to analytic functions.

Definition A.2.4. If p ∈ (0,∞], we denote by Hp(D) the Hardy space of
analytic functions in the disc D such that the functions fr(θ) = f(reiθ),
r ∈ (0, 1) are uniformly bounded in the Lp norm, i.e.,

‖f‖Hp := sup
r∈(0,1)

‖fr‖Lp = sup
r∈(0,1)

(
1

2π

∫
T

∣∣f(reiθ)
∣∣pdθ)1/p

<∞. (A.19)

In fact, it turns out that ‖fr‖Lp is increasing as r → 1 and hence ‖f‖Hp =
limr→1 ‖fr‖Lp . By Theorem A.2.3, if p ∈ (1,∞], then the space Hp(D) can
be identified with the subspace Hp of Lp(T), which consists of functions
f ∈ Lp(T) such that their Poisson integral is analytic in D, i.e., all f ∈ Lp(T)

such that f̂−n = 0 for all n ∈ N. When p = 1 we obtain an identification of
H1(D) with the subspace H1 of analytic measures, i.e., µ ∈ H1 if µ̂−n = 0
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for all n ∈ N. However, in contrast to harmonic functions, according to the
theorem of F. and M. Riesz the space H1 is a subspace of L1!

Theorem A.2.5 (F. and M. Riesz). If µ ∈ M(T) is analytic, µ̂−n = 0 for
all n ∈ N, then dµ = 1

2πfdθ and |{f(eiθ) = 0 | θ ∈ T}| = 0, i.e., µ and the
Lebesgue measure are equivalent on T.

In particular, the theorem of Riesz brothers implies that f ≡ 0 whenever
f ∈ H1 and f = 0 on a subset of a positive Lebesgue measure. One can say
even more.

Theorem A.2.6 (Szegö–F. Riesz). If f ∈ H1(D), then

1

2π

∫
T

log
(
|f(eiθ)|

)
dθ > −∞. (A.20)

A.2.3. Factorization for Hp Functions. Let f ∈ H1(D) be a non-zero
function. Then f has non-tangential limits at almost every point of the unit
circle,

f(eiθ) = lim
z→eiθ

f(z),

and f is a Poisson integral its of boundary values,

f(reiθ) =
1

2π

∫
T
Pr(θ − t)f(eit)dt.

Moreover, f satisfies (A.20) and hence we can define the following function

F (z) = exp

(
1

2π

∫
T

eiθ + z

eiθ − z
log
(
|f(eiθ)|

)
dθ

)
(A.21)

for all z ∈ D. Clearly, F is analytic in D and |F (z)| = eu(z), where u is
a Poisson integral of log |f(eiθ)|. The later implies that F ∈ H1(D) and
|F | = |f | almost everywhere on T. Moreover, F has no zeros in D and hence
log(|F |) is a harmonic function in D,

log
(
|F (reiθ)|

)
= (log(|F |) ∗ Pr)(θ) = (log(|f |) ∗ Pr)(θ). (A.22)

Thus, applying Jensen’s inequality3, we get |F (z)| ≥ |f(z)| for all z ∈ D.
Therefore, the function

G(z) :=
f(z)

F (z)
, z ∈ D, (A.23)

is an inner function, that is, G is analytic in D and satisfies the following
conditions

|G(z)| ≤ 1, z ∈ D; |G(eiθ)| = 1 a. e. on T. (A.24)

3Let µ ∈ M+(T) be a probability measure on T, µ(T) = 1, and let ϕ be a convex function

on T. Then ϕ
( ∫

T fdµ
)
≤
∫
T ϕ(f)dµ for any real-valued function f ∈ L1(T).
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The function F ∈ H1(D) is called an outer function if there is a positive
function k ∈ L1(T) and a number λ ∈ T such that

F (z) = λ exp

(
1

2π

∫
T

eiθ + z

eiθ − z
k(θ)dθ

)
, z ∈ D. (A.25)

Lemma A.2.7. Let F ∈ H1(D), F 6≡ 0. Then the following are equivalent:

(i) F is an outer function,

(ii)

log
(
|F (0)|

)
=

1

2π

∫
T

log
(
|F (eiθ)|

)
dθ, (A.26)

(iii) if f ∈ H1(D) satisfies |f | = |F | a.e. on T, then |f(z)| ≤ |F |(z) for
all z ∈ D.

Summarizing, we see that every non-zero function f ∈ H1(D) admits
the factorization f = FG, where F is outer and G is an inner function.
Moreover, this factorization is unique up to a multiplicative constant λ ∈ T.
Note also that f ∈ H1 ∩Hp with some p > 1 if and only if F ∈ Hp. Thus
we get the following useful result.

Corollary A.2.8. Let f ∈ H1(D). Then f = f1f2, where fj ∈ H2(D) and
‖fj‖H2 ≤ ‖f‖H1, j = 1, 2.

Proof. Since f = FG, we can set f1 = F 1/2 and f2 = GF 1/2. �

Our next aim is to show that every inner function can be factored into
a product of two more specialized inner functions.

Lemma A.2.9. Let f ∈ H∞(D). Then the the sequence of its zeros {zk} ⊂
D (counting multiplicities and arranged such that |z1| ≤ |z2| ≤ . . . ) satisfies
the Blaschke condition ∑

k

(1− |zk|) <∞. (A.27)

Let us form the Blaschke product4

B(z) = zp
∏
zk 6=0

z∗k
|zk|

zk − z
1− z∗kz

, z ∈ D. (A.28)

Clearly, if {zk} is a finite sequence, then B is a rational inner function since
so is each of its multiple.

Lemma A.2.10. Let {zk} ⊂ D be a sequence of nonzero numbers. Then the
Blaschke product (A.28) converges locally uniformly in D if and only if {zk}
satisfies the Blaschke condition (A.27). In this case B is an inner function
whose zeros are {zk}.

4Here p = #{k | zk = 0} is the multiplicity of z = 0 as the zero of B.
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Lemma A.2.10 implies that every f ∈ H∞(D) admits a unique factor-
ization

f(z) = B(z)S(z), z ∈ D, (A.29)

where B is a Blaschke product (A.28) and S ∈ H∞(D) has no zeros in D.
In particular, if f is an inner function, then S is an inner function without
zeros. An example of an inner function without zeros is the function

S(z) = exp

(
1

2π

∫
T

eiθ + z

eiθ + z
dµ(θ)

)
, (A.30)

where µ ∈ M+(T) is a singular measure. The function (A.30) is called a
singular inner function. It turns out that all inner functions that have no
zeros in D has the form (A.30). Thus we arrive at the following factorization
of H1 functions.

Theorem A.2.11. If f ∈ H1(D) is a non-zero function, then f admits a
unique (up to a constant multiple λ ∈ T) representation

f(z) = λB(z)S(z)F (z), (A.31)

where B is a Blaschke product, S is a singular inner function, and F is an
outer function.

We complete this subsection with a description of invariant subspaces of
the shift operator

S : `2 → `2
en 7→ en+1.

Note that S can be identified with the multiplication operator on H2(D),

(Sf)(z) := zf(z). (A.32)

A (closed) subspace H ⊆ H2(D) is called an invariant subspace of S, H ∈
Lat(S), if Sf ∈ H for every f ∈ H.

Theorem A.2.12 (Beurling). If H ∈ Lat(S) and H 6= {0}, then there is a
unique (up to a constant multiple λ ∈ T) inner function G such that

H = GH2 := {Gf | f ∈ H2(D)}. (A.33)

Corollary A.2.13. A function F ∈ H2(D) is outer if and only if the set
{Ff | f ∈ Pol+} is dense in H2(D).

A.3. A Conjugate Function and the Hilbert Transform

Let f be a function analytic in the disc D. Consider its real and imaginary
parts

u(z) := f(z) + f(z)∗, v(z) := −i(f(z)− f(z)∗).
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Then the Taylor series expansion (A.17) implies

ur(θ) = u(reiθ) =
∑
n∈Z

cnr
|n|einθ, cn =


fn, n > 0,

2Ref0, n = 0,

f∗−n, n < 0,

(A.34)

and

vr(θ) = v(reiθ) =
∑
n∈Z

dnr
|n|einθ, dn = −i


fn, n > 0,

2Imf0, n = 0,

−f∗−n, n < 0.

(A.35)

Both functions are harmonic in D and their sum is an analytic function.
This suggests the following definition.

Definition A.3.1. (i) Let f ∈ L1(T) and let f̂n, n ∈ Z be its Fourier
coefficients. The Fourier series

f̃ ∼ −i
∑
n∈Z

sgn(n)f̂neinθ (A.36)

is called a conjugate Fourier series and the corresponding function
f̃ is called a (formal) conjugate function.

(ii) If f(reiθ) = (Pr ∗ f)(θ) is a Poisson transform of f ∈ L1(T), then
the function

f̃(reiθ) := −i
∑
n∈Z

sgn(n)f̂nr
|n|einθ (A.37)

is called a harmonic conjugate of f .

First of it is not at all clear whether a conjugate Fourier series converges
and in what sense. Concerning a harmonic conjugate, take a look at the
kernel

Qr(θ) := −i
∑
n∈Z

sgn(n)r|n|einθ =
2r sin(θ)

1− 2r cos(θ) + r2
= Im

(1 + reiθ

1− reiθ

)
,

(A.38)
which is called the conjugate Poisson kernel (normalized by the condition
Q(0, θ) = sgn(0) = 0). It is not difficult to check that the family Qr is not
an approximate identity (Qr(θ) = −Qr(−θ) and ‖Qr‖1 ∼ − log(1− r)) and
hence we cannot apply the previous results. However, it turns out that a
harmonic conjugate has non-tangential limits almost everywhere on T.

Lemma A.3.2. Let f ∈ L1(T) and let f̃ be its harmonic conjugate defined

by (A.35). Then f̃(eiθ) := limr→1 f̃(reiθ) exists for a.a. θ ∈ T.
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This lemma enables us to define a harmonic conjugate of f ∈ L1(T) as

the boundary values f̃(eiθ) of its harmonic conjugate (A.35). In particular, if
(A.34) is a Fourier series of some function g ∈ L1(T), then the corresponding

harmonic conjugate (A.34) is a Poisson integral of g and hence f̃(eiθ) = g(θ)
almost everywhere on T. Thus this new definition of a conjugate function
extends the definition of a formal conjugate function.

For 1 < p <∞, SNf approximate f ∈ Lp(T) in the Lp norm as N →∞,

and hence it is straightforward to show that a conjugate function f̃ of f ∈
Lp(T) belongs to Lp(T) if 1 < p < ∞. However, in view of Lemma A.1.4,
we cannot define a harmonic conjugate of f ∈ L1(T) in this way5.

Theorem A.3.3 (M. Riesz). For p ∈ (1,∞), the mapping f 7→ f̃ is a

bounded map on Lp(T). If f ∈ L1(T), then the conjugate function f̃ belongs
to the weak L1 space.

Remark A.3.4. (i) It is immediate from the Parseval identity that
for f ∈ L2(T),

‖f̃‖2L2 = ‖f‖2L2 − |f̂0|2. (A.39)

(ii) Consider the Riesz projection P+, the operator which transforms

a Fourier series
∑

n∈Z f̂nen into
∑

n≥0 f̂nen, i.e., P+ discards the

f̂n for n < 0. Clearly, P+ considered on L2(T) is an orthogonal
projection onto H2(T). Notice that

P+f =
1

2
(f + if̃) +

1

2
f̂0. (A.40)

Therefore, in any norm under which the linear functional f 7→ f̂0

is continuous, the Riesz projection is bounded if and only if the
conjugation operator is bounded. In particular, P+ is bounded on
Lp(T) whenever p ∈ (1,∞). However, it is unbounded when either
p = 1 or p =∞!

Now our strategy would be to investigate the non-tangential limits of
harmonic conjugates and then to establish a connection between boundary
values of a harmonic conjugate (A.35) and a conjugate Fourier series (A.34).
Since the limit

Q1(θ) := lim
r→1

Qr(θ) =
sin(θ)

1− cos(θ)
= cot(θ/2), θ ∈ T, (A.41)

is so explicit, it would be natural to try to change the order of operations in
Lemma A.3.2 and to write f̃ = Q1 ∗ f . The difficulty is that Q1 /∈ L1 and

5For instance,
∑
n≥2

cos(θ)
log(n)

is a Fourier series of an L1 function, however, its conjugate∑
n≥2

sin(θ)
log(n)

is not!
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hence one cannot define the convolution in a straightforward way. However,
the following result is true.

Theorem A.3.5. Let f ∈ L1(T). Then for almost all θ ∈ T the limit

(Hf)(θ) = P.V.
1

2π

∫
T
f(θ − t) cot(t/2)dt

:= lim
ε→0

1

2π

∫ 2π−ε

ε
f(θ − t) cot(t/2)dt,

(A.42)

exists and, moreover, (Hf)(θ) = f̃(eiθ).

The mapping H is called the Hilbert transform.

A.4. BMO and VMO

Let f ∈ L1(T). We shall say that f ∈ BMO(T), the space of functions of
bounded mean oscillation, if

sup
I

1

|I|

∫
I
|f − fI |dθ =: ‖f‖∗ <∞. (A.43)

Here I is any arc on T, |I| =
∫
I dθ and

fI :=
1

2π

∫
I
fdθ (A.44)

is the average of f over I.

Exercise A.4.1.

(i) ‖f‖∗ = 0 if and only if f ≡ const on T.

(ii) Show that ‖ · ‖∗ is a semi-norm.

Hence we can make BMO into a normed space by defining on it the
norm

‖f‖BMO = ‖f‖∗ + |fT|. (A.45)

If f ∈ L∞(T), then by the Cauchy–Schwarz inequality

‖f‖∗ ≤ sup
I

(
1

|I|

∫
I
|f − fI |2dθ

)1/2

≤ sup
I

(
1

|I|

∫
I
|f |2dθ

)1/2

≤ ‖f‖∞,

and hence f ∈ BMO(T). In particular,

‖f‖∗ ≤ inf
c∈C
‖f − c‖∞.

However, the inclusion L∞/C ⊂ BMO is proper, that is, BMO contains
unbounded functions.

Exercise A.4.2.

(i) Show that log |θ − π| is in BMO.
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(ii) Show that log |θ − π| · 1l(0,π)(θ) /∈ BMO(T).

The space BMO was introduced by F. John and L. Nirenberg in 1961.
The John–Nirenberg inequality provides a characterization of functions in
BMO in terms of their distribution functions.

Theorem A.4.1 (John–Nirenberg). If f ∈ BMO(T), then for every arc
I ⊂ T and λ > 0

|{θ ∈ T | |f(θ)− fI | > λ} ∩ I| ≤ K|I|e−
λk
‖f‖∗ , (A.46)

where K, k > 0 are absolute constants.

Conversely, if f ∈ L1(T) and for every arc I there is cI ∈ C such that

|{θ ∈ T | |f(θ)− cI | > λ} ∩ I| ≤ K|I|e−λk (A.47)

with some constants K, k > 0 independent of I, then f ∈ BMO(T) and
‖f‖∗ ≤ 2K/k.

Remark A.4.2. The John–Nirenberg inequality shows that the distribution
function of |f − fI | is not worse than the distribution of the logarithm. The
papers [34, 37] discuss sharp constants in the John–Nirenberg inequality.

One of the first results establishing a deep connection between BMO
and the Hilbert transform is due to S. Spanne and E. Stein.

Theorem A.4.3 (Spanne–Stein). If f ∈ L∞(T), then f̃ ∈ BMO.

The following remarkable result of C. Fefferman shows that BMO can
be characterized in terms of the Hilbert transform.

Theorem A.4.4 (Fefferman). Let f ∈ L∞(T). Then the following condi-
tions are equivalent:

(i) f ∈ BMO(T),

(ii) f = u+ ṽ, where u, v ∈ L∞(T),

(iii) the measure |∇f(z)|2(1− |z|)dxdy is a Carleson measure on D6.

Remark A.4.5. Theorem A.4.4 is called the Fefferman duality theorem and
sometimes it is informally stated as follows: BMO is the dual of H1. In
fact, BMOR is the dual of H1

R.

We also need the following space of functions, which was introduced by
D. Sarason in the 1970s.

6Let µ be a positive finite measure on D. If supr∈(0,1), θ∈T r
−1µ(Br(eiθ) ∩ D) < ∞, then µ

is called a Carleson measure. Carleson measures play an important role in analysis because they

allow to answer the question whether the embedding of L2(T) into L2(D, µ) is bounded or not
(the Carleson embedding theorem)
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Definition A.4.6. The BMO function f is said to have vanishing mean
oscillation, f ∈ VMO(T) if

lim
ε→0

sup
|I|<ε

1

|I|

∫
I
|f − fI |dθ = 0. (A.48)

Clearly, C(T) ⊂ VMO(T). On another hand, any f ∈ BMO(T) having
a jump discontinuity on T does not belong to VMO. However, the are
unbounded and discontinuous function on T that belong to VMO. It is
immediate to verify that VMO is a closed subspace of BMO and hence it
contains the closure of C(T) with respect to the BMO norm. It turns out
that this closure coincides with VMO and the relation between BMO and
VMO is similar to that of L∞(T) and C(T).

Theorem A.4.7 (Sarason). Let f ∈ BMO(T). Then the following are
equivalent:

(i) f ∈ VMO(T),

(ii) there is a sequence {fn} ∈ C(T) such that ‖f−fn‖∗ → 0 as n→∞,

(iii) f = u+ ṽ, where u, v ∈ C(T).

Notes and comments on the literature:

Here I would like to document sources from which I have learned the material
and which I have used during the preparation of this text. General references
for Appendix are the monographs [6, 14, 18, 21, 30]. As a reference for
general background on Fourier series I can recommend Katznelson’s classical
book [18] and the recent book by Muscalu and Schlag [21]. Concerning
Hardy spaces, I would recommend the classics by Hoffman [14] and Garnett
[6]. The books of Hoffman [14] and Nikolski [22] give a comprehensive
discussion of invariant subspaces of the shift operator. The material in
Appendix A.4 is taken from [6] and [30].
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