Raziskovalno delo
Iz Jernej Kozak
za
Raziskovalno delo
Skoči na:
navigacija
,
iskanje
[[Nekaj člankov]] ===Some papers=== <!-- * Y.Y. Feng, J. Kozak, On the generalized Euler-Frobenius polynomial. J. approx. theory, 1981, let. 32, št. 4, pp. 327-338. * Y.Y. Feng, J. Kozak, L [sub] [infinity] -lower bound of L [sub] 2-projections onto splines on a geometric mesh. J. approx. theory, 1982, let. 35, št. 1, pp. 64-76. * J. Kozak, Shape preserving approximation. Comput. Ind., 7 (1986), pp. 435-440. * Y.Y. Feng, J. Kozak, An approach to the interpolation of nonuniformly spaced data, J. Comput. Appl. Math., 23 (1988), pp. 169-178. * Y.Y. Feng, J. Kozak, The convexity of families of adjoint patches for a Bézier triangular surface. J. Comput. Math., 1991, let. 9, št. 4, pp. 301-304. --> * Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/ASEX/ASEX.pdf Asymptotic expansion formula for Bernstein polynomials defined on a simplex], Constr. approx., 8 (1992), pp. 49-58. <!-- * Y.Y. Feng, J. Kozak, Cutting corners preserves Lipschitz continuity. Gao-xiao yingyong shuxue xuebao, 1994, let. 9, št. 1, pp. 31-34. * F.L. Chen, J. Kozak, The intersection of a triangular Bézier patch and a plane. J. Comput. Math., 1994, let. 12, št. 2, pp. 138-146. * Y.Y. Feng, J. Kozak, On convexity and Schoenberg's variation diminishing splines. Zhongguo Kexue Jishu Daxue xueb., 1994, let. 24, št. 2, pp. 129-134. * J. Kozak, On the choice of the exterior knots in the B-spline basis. Zhongguo Kexue Jishu Daxue xueb., 1995, let. 25, št. 2, pp. 172-177. --> * Y.Y. Feng, J. Kozak, M. Zhang, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/DIMS1N/fengetal.pdf On the dimension of the C_1 spline space for the Morgan-Scott triangulation from the blossoming approach]. In: F. Fontanella, K. Jetter, J. P. Laurent (eds.), Advanced Topics in Multivariate Approximation, World Scientific, 1996, str. 71-86. * Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/G2/G2.pdf On G_2 continuous interpolatory composite quadratic Bézier curves], J. Comput. Appl. Math., 72 (1996), pp. 141-159. * Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/BBPOL/BBPOL.pdf The theorem on the B-B polynomials defined on a simplex in the blossoming form], J. Comput. Math., 14 (1996), pp. 64-70. * F.L. Chen, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/NINTER/NINTER.pdf On computing zeros of a bivariate Bernstein polynomial], J. Comput. Math., 14 (1996), pp. 237-248. * Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/GG/GG.pdf On G_2 continuous cubic spline interpolation], BIT Numerical Mathematics, 27 (1997), pp. 312-332. '''Acknowledgement'''. The original publication is available at [http://www.springerlink.com www.springerlink.com] as [http://www.springerlink.com/content/c4364v87x776472k/ http://www.springerlink.com/content/c4364v87x776472k/] <!-- * F.L. Chen, Y.Y. Feng, J. Kozak, Tracing a planar algebraic curve. Gao-xiao yingyong shuxue xuebao, 12B (1997), pp. 15-24. --> * Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/GG3D/fengtex.pdf On spline interpolation of space data]. In: M. Dahlen, T. Lyche, L. L. Schumaker (eds.), Mathematical Methods for Curves and Surfaces II, Vanderbilt University Press, Nashville, 1998, pp. 167-174. * J. Kozak, E. Žagar, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/SaintMalo/SMalo99.pdf On curve interpolation in R_d]. In: A. Cohen, C. Rabut, L. L. Schumaker (eds.), Curve and Surface Fitting, Vanderbilt University Press, Nashville, 2000, pp. 263-272. * Z.B. Chen, Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/DIMS2N/DIMS2N.pdf The blossom approach to the dimension of the bivariate spline space], J. Comput. Math., 18 (2000), pp. 183-198. * J.S. Deng, Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/Diener/DengFengKozak.pdf A note on the dimension of the bivariate spline space over the Morgan-Scott tringulation], SIAM J. Numer. Anal., 37 (2000), pp. 1021-1028. * F. Forstnerič, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/Franci/Handles7Orig01022003.pdf Strongly pseudoconvex handlebodies], J. Korean Math. Soc., 40 (2003), pp. 727-745. * J. Kozak, E. Žagar, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/G2InR3/ginter-revised-last.pdf On geometric interpolation by polynomial curves], SIAM J. Numer. Anal., 42 (2004), pp. 953-967. '''Acknowledgement'''. The original publication is available at [http://epubs.siam.org/sam-bin/dbq/article/42207 http://epubs.siam.org/sam-bin/dbq/article/42207] * J. Kozak, M. Krajnc, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/MarjetaCubicPolynomial/cubicGI_last-rev.pdf Geometric interpolation by planar cubic polynomial curves], Comput. Aided Geom. Des., 24 (2007), pp. 67-78. '''Acknowledgement'''. The original publication is available at [http://dx.doi.org/10.1016/j.cagd.2006.11.002 http://dx.doi.org/10.1016/j.cagd.2006.11.002] * G. Jaklič, J. Kozak,, M. Krajnc, E. Žagar, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/CircleLikeCurves/GCI-last-rev-2.pdf On geometric interpolation of circle-like curves], Comput. Aided Geom. Des., 24 (2007), pp. 241-251. '''Acknowledgement'''. The original publication is available at [http://dx.doi.org/10.1016/j.cagd.2007.03.002 http://dx.doi.org/10.1016/j.cagd.2007.03.002] * G. Jaklič, J. Kozak, M. Krajnc, E. Žagar, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/GeometricCurveInterpolation/GIR2-accepted.pdf On geometric interpolation by planar parametric polynomial curves], Math. Comput., 76 (2007), pp. 1981-1993. '''Acknowledgement'''. The original publication is available at [http://www.ams.org/mcom/2007-76-260/S0025-5718-07-01988-6/home.html http://www.ams.org/mcom/2007-76-260/S0025-5718-07-01988-6/home.html] * J. Kozak, M. Krajnc, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/MarjetaKubicniZlepek/G1Spline_Last.pdf Geometric interpolation by planar cubic G^1 splines], BIT Numerical Mathematics, ?(2007), pp. ?-?+16. '''Acknowledgement'''. The original publication is available at [http://www.springerlink.com www.springerlink.com] as [http://www.springerlink.com/content/x2v8982642360680/ http://www.springerlink.com/content/x2v8982642360680/]
Vrnite se na
Raziskovalno delo
.
Pogled
Stran
Pogovor
Izvorno besedilo
Zgodovina strani
Osebna orodja
Prijava
Navigacija
Glavna stran
Pedagoško delo
Prijava na ustni izpit
Raziskovalno delo
Nekaj objav
Seminar za numerično analizo
Pomoč
Pomoč za wiki
Iskanje
Pripomočki
Kaj se povezuje sem
Sorodne spremembe
Posebne strani