Raziskovalno delo
Iz Jernej Kozak
| Vrstica 6: | Vrstica 6: | ||
* Y.Y. Feng, J. Kozak, An approach to the interpolation of nonuniformly spaced data, J. Comput. Appl. Math., 23 (1988), pp. 169-178. | * Y.Y. Feng, J. Kozak, An approach to the interpolation of nonuniformly spaced data, J. Comput. Appl. Math., 23 (1988), pp. 169-178. | ||
* Y.Y. Feng, J. Kozak, The convexity of families of adjoint patches for a Bézier triangular surface. J. Comput. Math., 1991, let. 9, št. 4, pp. 301-304. | * Y.Y. Feng, J. Kozak, The convexity of families of adjoint patches for a Bézier triangular surface. J. Comput. Math., 1991, let. 9, št. 4, pp. 301-304. | ||
| + | --> | ||
* Y.Y. Feng, J. Kozak, Asymptotic expansion formula for Bernstein polynomials defined on a simplex. Constr. approx., 1992, let. 8, pp. 49-58. | * Y.Y. Feng, J. Kozak, Asymptotic expansion formula for Bernstein polynomials defined on a simplex. Constr. approx., 1992, let. 8, pp. 49-58. | ||
| + | <!-- | ||
* Y.Y. Feng, J. Kozak, Cutting corners preserves Lipschitz continuity. Gao-xiao yingyong shuxue xuebao, 1994, let. 9, št. 1, pp. 31-34. | * Y.Y. Feng, J. Kozak, Cutting corners preserves Lipschitz continuity. Gao-xiao yingyong shuxue xuebao, 1994, let. 9, št. 1, pp. 31-34. | ||
* F.L. Chen, J. Kozak, The intersection of a triangular Bézier patch and a plane. J. Comput. Math., 1994, let. 12, št. 2, pp. 138-146. | * F.L. Chen, J. Kozak, The intersection of a triangular Bézier patch and a plane. J. Comput. Math., 1994, let. 12, št. 2, pp. 138-146. | ||
| Vrstica 19: | Vrstica 21: | ||
* F.L. Chen, Y.Y. Feng, J. Kozak, Tracing a planar algebraic curve. Gao-xiao yingyong shuxue xuebao, 12B (1997), pp. 15-24. | * F.L. Chen, Y.Y. Feng, J. Kozak, Tracing a planar algebraic curve. Gao-xiao yingyong shuxue xuebao, 12B (1997), pp. 15-24. | ||
--> | --> | ||
| - | * Z.B. Chen, Y.Y. Feng, J. Kozak, The blossom approach to the dimension of the bivariate spline space | + | * Z.B. Chen, Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/DIMS2N/DIMS2N.pdf The blossom approach to the dimension of the bivariate spline space], J. Comput. Math., 18 (2000), pp. 183-198. |
* J.S. Deng, Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/Diener/DengFengKozak.pdf A note on the dimension of the bivariate spline space over the Morgan-Scott tringulation], SIAM J. Numer. Anal., 37 (2000), pp. 1021-1028. | * J.S. Deng, Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/Diener/DengFengKozak.pdf A note on the dimension of the bivariate spline space over the Morgan-Scott tringulation], SIAM J. Numer. Anal., 37 (2000), pp. 1021-1028. | ||
* F. Forstnerič, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/Franci/Handles7Orig01022003.pdf Strongly pseudoconvex handlebodies], J. Korean Math. Soc., 40 (2003), pp. 727-745. | * F. Forstnerič, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/Franci/Handles7Orig01022003.pdf Strongly pseudoconvex handlebodies], J. Korean Math. Soc., 40 (2003), pp. 727-745. | ||