Nekaj objav
Iz Jernej Kozak
| Vrstica 5: | Vrstica 5: | ||
* G. Jaklič, J. Kozak, M. Krajnc, V. Vitrih, E. Žagar, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/PencilNets/NA-Lattice-revision.pdf Three-pencil lattices on triangulations], Numer. Algor., ? (2007), pp. ?-?+11. The original publication at [http://www.springerlink.com www.springerlink.com], follow [http://www.springerlink.com/content/ypw4g173p3207721/fulltext.pdf the link]. | * G. Jaklič, J. Kozak, M. Krajnc, V. Vitrih, E. Žagar, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/PencilNets/NA-Lattice-revision.pdf Three-pencil lattices on triangulations], Numer. Algor., ? (2007), pp. ?-?+11. The original publication at [http://www.springerlink.com www.springerlink.com], follow [http://www.springerlink.com/content/ypw4g173p3207721/fulltext.pdf the link]. | ||
* J. Kozak, M. Krajnc, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/MarjetaKubicniZlepek/G1Spline_Last.pdf Geometric interpolation by planar cubic G<sup>1</sup> splines], BIT Numerical Mathematics, 47 (2007), pp. 547-563. The original publication at [http://www.springerlink.com www.springerlink.com], follow [http://www.springerlink.com/content/x2v8982642360680/ the link]. | * J. Kozak, M. Krajnc, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/MarjetaKubicniZlepek/G1Spline_Last.pdf Geometric interpolation by planar cubic G<sup>1</sup> splines], BIT Numerical Mathematics, 47 (2007), pp. 547-563. The original publication at [http://www.springerlink.com www.springerlink.com], follow [http://www.springerlink.com/content/x2v8982642360680/ the link]. | ||
| - | * G. Jaklič, J. Kozak, M. Krajnc, E. Žagar, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/GeometricCurveInterpolation/GIR2-accepted.pdf On geometric interpolation by planar parametric polynomial curves], Math. Comput., 76 (2007), pp. 1981-1993. The original publication at [http://www.ams.org/mcom/2007-76-260/S0025-5718-07-01988-6/home.html | + | * G. Jaklič, J. Kozak, M. Krajnc, E. Žagar, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/GeometricCurveInterpolation/GIR2-accepted.pdf On geometric interpolation by planar parametric polynomial curves], Math. Comput., 76 (2007), pp. 1981-1993. The original publication at [http://www.ams.org/mcom/2007-76-260/S0025-5718-07-01988-6/home.html the link]. |
| - | * G. Jaklič, J. Kozak,, M. Krajnc, E. Žagar, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/CircleLikeCurves/GCI-last-rev-2.pdf On geometric interpolation of circle-like curves], Comput. Aided Geom. Des., 24 (2007), pp. 241-251. The original publication at [http://dx.doi.org/10.1016/j.cagd.2007.03.002 | + | * G. Jaklič, J. Kozak,, M. Krajnc, E. Žagar, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/CircleLikeCurves/GCI-last-rev-2.pdf On geometric interpolation of circle-like curves], Comput. Aided Geom. Des., 24 (2007), pp. 241-251. The original publication at [http://dx.doi.org/10.1016/j.cagd.2007.03.002 the link]. |
| - | * J. Kozak, M. Krajnc, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/MarjetaCubicPolynomial/cubicGI_last-rev.pdf Geometric interpolation by planar cubic polynomial curves], Comput. Aided Geom. Des., 24 (2007), pp. 67-78. The original publication at [http://dx.doi.org/10.1016/j.cagd.2006.11.002 | + | * J. Kozak, M. Krajnc, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/MarjetaCubicPolynomial/cubicGI_last-rev.pdf Geometric interpolation by planar cubic polynomial curves], Comput. Aided Geom. Des., 24 (2007), pp. 67-78. The original publication at [http://dx.doi.org/10.1016/j.cagd.2006.11.002 the link]. |
* J. Kozak, E. Žagar, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/Brijuni2003/brijuni03.pdf Geometric interpolation of data in R<sup>3</sup>]. In: Z. Drmač, M. Marušić, Z. Tutek (eds.), Proceedings of the Conference on Applied Mathematics and Scientific Computing, Springer, Dordrecht, 2005, pp. 245-252. The original publication at [http://www.springerlink.com www.springerlink.com], follow [http://www.springerlink.com/content/w70300/ the link]. | * J. Kozak, E. Žagar, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/Brijuni2003/brijuni03.pdf Geometric interpolation of data in R<sup>3</sup>]. In: Z. Drmač, M. Marušić, Z. Tutek (eds.), Proceedings of the Conference on Applied Mathematics and Scientific Computing, Springer, Dordrecht, 2005, pp. 245-252. The original publication at [http://www.springerlink.com www.springerlink.com], follow [http://www.springerlink.com/content/w70300/ the link]. | ||
* G. Jaklič, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/Brijuni2003/s31cut-v13.pdf On the dimension of bivariate spline space S<sub>3</sub><sup>1</sup>(Δ)]. In: Z. Drmač, M. Marušić, Z. Tutek (eds.), Proceedings of the Conference on Applied Mathematics and Scientific Computing, Springer, Dordrecht, 2005, pp. 245-252. The original publication at [http://www.springerlink.com www.springerlink.com], follow [http://www.springerlink.com/content/w70300/ the link]. | * G. Jaklič, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/Brijuni2003/s31cut-v13.pdf On the dimension of bivariate spline space S<sub>3</sub><sup>1</sup>(Δ)]. In: Z. Drmač, M. Marušić, Z. Tutek (eds.), Proceedings of the Conference on Applied Mathematics and Scientific Computing, Springer, Dordrecht, 2005, pp. 245-252. The original publication at [http://www.springerlink.com www.springerlink.com], follow [http://www.springerlink.com/content/w70300/ the link]. | ||
| - | * J. Kozak, E. Žagar, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/G2InR3/ginter-revised-last.pdf On geometric interpolation by polynomial curves], SIAM J. Numer. Anal., 42 (2004), pp. 953-967. The original publication at [http://epubs.siam.org/sam-bin/dbq/article/42207 | + | * J. Kozak, E. Žagar, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/G2InR3/ginter-revised-last.pdf On geometric interpolation by polynomial curves], SIAM J. Numer. Anal., 42 (2004), pp. 953-967. The original publication at [http://epubs.siam.org/sam-bin/dbq/article/42207 the link]. |
| - | * F. Forstnerič, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/Franci/Handles7Orig01022003.pdf Strongly pseudoconvex handlebodies], J. Korean Math. Soc., 40 (2003), pp. 727-745. The original publication [http://www.mathnet.or.kr/mathnet/kms_content.php?no=365212 | + | * F. Forstnerič, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/Franci/Handles7Orig01022003.pdf Strongly pseudoconvex handlebodies], J. Korean Math. Soc., 40 (2003), pp. 727-745. The original publication at [http://www.mathnet.or.kr/mathnet/kms_content.php?no=365212 the link]. |
* J.S. Deng, Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/Diener/DengFengKozak.pdf A note on the dimension of the bivariate spline space over the Morgan-Scott tringulation], SIAM J. Numer. Anal., 37 (2000), pp. 1021-1028. The original publication [http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SJNAAM000037000003001021000001&idtype=cvips&gifs=yes at] | * J.S. Deng, Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/Diener/DengFengKozak.pdf A note on the dimension of the bivariate spline space over the Morgan-Scott tringulation], SIAM J. Numer. Anal., 37 (2000), pp. 1021-1028. The original publication [http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SJNAAM000037000003001021000001&idtype=cvips&gifs=yes at] | ||
* Z.B. Chen, Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/DIMS2N/DIMS2N.pdf The blossom approach to the dimension of the bivariate spline space], J. Comput. Math., 18 (2000), pp. 183-198. | * Z.B. Chen, Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/DIMS2N/DIMS2N.pdf The blossom approach to the dimension of the bivariate spline space], J. Comput. Math., 18 (2000), pp. 183-198. | ||
| Vrstica 28: | Vrstica 28: | ||
* Y.Y. Feng, J. Kozak, On convexity and Schoenberg's variation diminishing splines. Zhongguo Kexue Jishu Daxue xueb., 1994, let. 24, št. 2, pp. 129-134. | * Y.Y. Feng, J. Kozak, On convexity and Schoenberg's variation diminishing splines. Zhongguo Kexue Jishu Daxue xueb., 1994, let. 24, št. 2, pp. 129-134. | ||
--> | --> | ||
| - | * F.L. Chen, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/INTER/INTER.pdf The intersection of a triangular Bézier patch and a plane], J. Comput. Math., 12 (1994), pp. 138-146. The original publication at [http://www.jcm.ac.cn/qikan/epaper/zhaiyao.asp?bsid=16258 | + | * F.L. Chen, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/INTER/INTER.pdf The intersection of a triangular Bézier patch and a plane], J. Comput. Math., 12 (1994), pp. 138-146. The original publication at [http://www.jcm.ac.cn/qikan/epaper/zhaiyao.asp?bsid=16258 the link]. |
* Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/GPOLC/GPOLC.pdf Cutting corners preserves Lipschitz continuity], Gao-xiao yingyong shuxue xuebao, 9 (1994), pp. 31-34. | * Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/GPOLC/GPOLC.pdf Cutting corners preserves Lipschitz continuity], Gao-xiao yingyong shuxue xuebao, 9 (1994), pp. 31-34. | ||
* Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/ASEX/ASEX.pdf Asymptotic expansion formula for Bernstein polynomials defined on a simplex], Constr. Approx., 8 (1992), pp. 49-58. The original publication at [http://www.springerlink.com www.springerlink.com], follow [http://www.springerlink.com/content/l364302xmx171691/ the link]. | * Y.Y. Feng, J. Kozak, [http://www.fmf.uni-lj.si/~kozak/RaziskovalnoDelo/NekateriClanki/ASEX/ASEX.pdf Asymptotic expansion formula for Bernstein polynomials defined on a simplex], Constr. Approx., 8 (1992), pp. 49-58. The original publication at [http://www.springerlink.com www.springerlink.com], follow [http://www.springerlink.com/content/l364302xmx171691/ the link]. | ||