Elementary Number Theory and Its
 Applications

Kenneth H. Rosen
AT\&T Information
Systems Laboratories
(formerly part of
Bell Laboratories)

ADDISON-WESLEY
PUBLISHING COMPANY
Reading, Massachusetts
Menlo Park, California
London • Amsterdam
Don Mills, Ontario • Sydney

Cover: The iteration of the transformation
$T(n)= \begin{cases}n / 2 & \text { if } n \text { is even } \\ (3 n+1) / 2 & \text { if } n \text { is odd }\end{cases}$
is depicted. The Collatz conjecture asserts that with any starting point, the iteration of T eventually reaches the integer one. (See Problem 33 of Section 1.2 of the text.)

Library of Congress Cataloging in Publication Data

Rosen, Kenneth H.
Elementary number theory and its applications.
Bibliography: p.
Includes index.

1. Numbers, Theory of. I. Title.

QA241.R67 $1984 \quad 512$ '.72 83-11804
ISBN 0-201-06561-4

Reprinted with corrections, June 1986

Copyright © 1984 by Bell Telephone Laboratories and Kenneth H. Rosen. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher. Printed in the United States of America. Published simultaneously in Canada.

Preface

Number theory has long been a favorite subject for students and teachers of mathematics. It is a classical subject and has a reputation for being the "purest" part of mathematics, yet recent developments in cryptology and computer science are based on elementary number theory. This book is the first text to integrate these important applications of elementary number theory with the traditional topics covered in an introductory number theory course.

This book is suitable as a text in an undergraduate number theory course at any level. There are no formal prerequisites needed for most of the material covered, so that even a bright high-school student could use this book. Also, this book is designed to be a useful supplementary book for computer science courses, and as a number theory primer for computer scientists interested in learning about the new developments in cryptography. Some of the important topics that will interest both mathematics and computer science students are recursion, algorithms and their computationai complexity, computer arithmetic with large integers, binary and hexadecimal representations of integers, primality testing, pseudoprimality, pseudo-random numbers, hashing functions, and cryptology, including the recently-invented area of public-key cryptography. Throughout the book various algorithms and their computational complexities are discussed. A wide variety of primality tests are developed in the text.

Use of the Book

The core material for a course in number theory is presented in Chapters 1, 2, and 5, and in Sections 3.1-3.3 and 6.1. Section 3.4 contains some linear algebra; this section is necessary background for Section 7.2; these two sections can be omitted if desired. Sections 4.1, 4.2, and 4.3 present traditional applications of number theory and Section 4.4 presents an application to computer science; the instructor can decide which of these sections to cover. Sections 6.2 and 6.3 discuss arithmetic functions, Mersenne primes, and perfect numbers; some of this material is used in Chapter 8. Chapter 7 covers the applications of number theory to cryptology. Sections 7.1, 7.3, and 7.4, which contain discussions of classical and public-key
cryptography, should be included in all courses. Chapter 8 deals with primitive roots; Sections 8.1-8.4 should be covered if possible. Most instructors will want to include Section 8.7 which deals with pseudo-random numbers. Sections 9.1 and 9.2 are about quadratic residues and reciprocity, a fundamental topic which should be covered if possible; Sections 9.3 and 9.4 deal with Jacobi symbols and Euler pseudoprimes and should interest most readers. Section 10.1, which covers rational numbers and decimal fractions, and Sections 11.1 and 11.2 which discuss Pythagorean triples and Fermat's last theorem are covered in most number theory courses. Sections 10.2-10.4 and 11.3 involve continued fractions; these sections are optional.

The Contents

The reader can determine which chapters to study based on the following description of their contents.

Chapter 1 introduces two importants tools in establishing results about the integers, the well-ordering property and the principle of mathematical induction. Recursive definitions and the binomial theorem are also developed. The concept of divisibility of integers is introduced. Representations of integers to different bases are described, as are algorithms for arithmetic operations with integers and their computational complexity (using big- O notation). Finally, prime numbers, their distribution, and conjectures about primes are discussed.

Chapter 2 introduces the greatest common divisor of a set of integers. The Euclidean algorithm, used to find greatest common divisors, and its computational complexity, are discussed, as are algorithms to express the greatest common divisor as a linear combination of the integers involved. The Fibonacci numbers are introduced. Prime-factorizations, the fundamental theorem of arithmetic, and factorization techniques are covered. Finally, linear diophantine equations are discussed.

Chapter 3 introduces congruences and develops their fundamental properties. Linear congruences in one unknown are discussed, as are systems of linear congruences in one or more unknown. The Chinese remainder theorem is developed, and its application to computer arithmetic with large integers is described.

Chapter 4 develops applications of congruences. In particular, divisibility tests, the perpetual calendar which provides the day of the week of any date, round-robin tournaments, and computer hashing functions for data storage are discussed.

Chapter 5 develops Fermat's little theorem and Euler's theorem which give some important congruences involving powers of integers. Also, Wilson's theorem which gives a congruence for factorials is discussed. Primality and probabilistic primality tests based on these results are developed. Pseudoprimes, strong pseudoprimes, and Carmichael numbers which masquarade as primes are introduced.

Chapter 6 is concerned with multiplicative functions and their properties. Special emphasis is devoted to the Euler phi-function, the sum of the divisors function, and the number of divisors function and explicit formulae are developed for these functions. Mersenne primes and perfect numbers are discussed.

Chapter 7 gives a thorough discussion of applications of number theory to cryptology, starting with classical cryptology. Character ciphers based on modular arithmetic are described, as is cryptanalysis of these ciphers. Block ciphers based on modular arithmetic are also discussed. Exponentiation ciphers and their applications are described, including an application to electronic poker. The concept of a public-key cipher system is introduced and the RSA cipher is described in detail. Knapsack ciphers are discussed, as are applications of cryptography to computer science.

Chapter 8 includes discussions of the order of an integer and of primitive roots. Indices, which are similar to logarithms, are introduced. Primality testing based on primitive roots is described. The minimal universal exponent is studied. Pseudo-random numbers and means for generating them are discussed. An application to the splicing of telephone cables is also given.

Chapter 9 covers quadratic residues and the famous law of quadratic reciprocity. The Legendre and Jacobi symbols are introduced and algorithms for evaluating them are developed. Euler pseudoprimes and a probabilistic primality test are covered. An algorithm for electronically flipping coins is developed.

Chapter 10 covers rational and irrational numbers, decimal representations of real numbers, and finite simple continued fractions of rational and irrational numbers. Special attention is paid to the continued fractions of the square roots of positive integers.

Chapter 11 treats some nonlinear diophantine equations. Pythagorean triples are described. Fermat's last theorem is discussed. Finally, Pell's equation is covered.

Problem Sets

After each section of the text there is a problem set containing exercises of various levels of difficulty. Each set contains problems of a numerical nature; these should be done to develop computational skills. The more theoretical and challenging problems should be done by students after they have mastered the computational skills. There are many more problems in the text than can be realistically done in a course. Answers are provided at the end of the book for selected exercises, mostly those having numerical answers.

Computer Projects

After each section of the text there is a selection of computer projects that involve concepts or algorithms discussed in that section. Students can write their programs in any computer language they choose, using a home or personal computer, or a minicomputer or mainframe. I encourage students to use a structured programming language such as C, PASCAL, or PL/1, to do these projects. The projects can serve as good ways to motivate a student to learn a new computer language, and can give those students with strong computer science backgrounds interesting projects to tie together computer science and mathematics.

Unsolved Problems

In the text and in the problem sets unsolved questions in number theory are mentioned. Most of these problems have eluded solution for centuries. The reader is welcome to work on these questions, but should be forewarned that attempts to settle such problems are often time-consuming and futile. Often people think they have solved such problems, only to discover some subtle flaw in their reasoning.

Bibliography

At the end of the text there is an extensive bibliography, split into a section for books and one for articles. Further, each section of the bibliography is subdivided by subject area. In the book section there are lists of number theory texts and references, books which attempt to tie together computer science and number theory, books on some of the aspects of computer science dealt with in the text, such as computer arithmetic and computer algorithms, books on cryptography, and general references. In the articles section of the bibliography, there are lists of pertinent expository and research papers in number theory and in cryptography. These articles should be of interest to the reader who would like to read the original sources of the material and who wants more details about some of the topics covered in the book.

Appendix

A set of five tables is included in the appendix to help students with their computations and experimentation. Students may want to compile tables different than those found in the text and in the appendix; compiling such tables would provide additional computer projects.

List of Symbols

A list of the symbols used in the text and where they are defined is included.

Acknowledgments

I would like to thank Bell Laboratories and AT\&T Information Systems Laboratories for their support for this project, and for the opportunity to use the UNIX system for text preparation. I would like to thank George Piranian for helping me develop a lasting interest in mathematics and number theory. Also I would like to thank Harold Stark for his encouragement and help, starting with his role as my thesis advisor. The students in my number theory courses at the University of Maine have helped with this project, especially Jason Goodfriend, John Blanchard, and John Chester. I am grateful to the various mathematicians who have read and reviewed the book, including Ron Evans, Bob Gold, Jeff Lagarias and Tom Shemanske. I thank Andrew Odlyzko for his suggestions, Adrian Kester for his assistance in using the UNIX system for computations, Jim Ackermann for his valuable comments, and Marlene Rosen for her editing help.

I am particularly grateful to the staff of the Bell Laboratories/American Bell/AT\&T Information Services Word Processing Center for their excellent work and patience with this project. Special thanks go to Marge Paradis for her help in coordinating the project, and to Diane Stevens, Margaret Reynolds, Dot Swartz, and Bridgette Smith. Also, I wish to express my thanks to Caroline Kennedy and Robin Parson who typed preliminary versions of this book at the University of Maine.

Finally, I would like to thank the staff of Addison-Wesley for their help. I offer special thanks to my editor, Wayne Yuhasz, for his encouragement, aid, and enthusiasm.

Contents

Introduction 1
Chapter 1. The Integers
1.1 The well-ordering property 4
1.2 Divisibility 18
1.3 Representations of integers 24
1.4 Computer operations with integers 33
1.5 Prime numbers 45
Chapter 2. Greatest Common Divisors and Prime Factorization
2.1 Greatest common divisors 53
2.2 The Euclidean algorithm 58
2.3 The fundamental theorem of arithmetic 69
2.4 Factorization of integers and the Fermat numbers 79
2.5 Linear diophantine equations 87
Chapter 3. Congruences
3.1 Introduction to congruences 91
3.2 Linear congruences 102
3.3 The Chinese remainder theorem 107
3.4 Systems of linear congruences 116
Chapter 4. Applications of Congruences
4.1 Divisibility tests 129
4.2 The perpetual calendar 134
4.3 Round-robin tournaments 139
4.4 Computer file storage and hashing functions 141
Chapter 5. Some Special Congruences
5.1 Wilson's theorem and Fermat's little theorem 147
5.2 Pseudoprimes 152
5.3 Euler's theorem 161
Chapter 6. Multiplicative Functions
6.1 Euler's phi-function 166
6.2 The sum and number of divisors 174
6.3 Perfect numbers and Mersenne primes 180
Chapter 7. Cryptology
7.1 Character ciphers 188
7.2 Block ciphers 198
7.3 Exponentiation ciphers 205
7.4 Public-key cryptography 212
7.5 Knapsack ciphers 219
7.6 Some applications to computer science 227
Chapter 8. Primitive Roots
8.1 The order of an integer and primitive roots 232
8.2 Primitive roots for primes 238
8.3 Existence of primitive roots 243
8.4 Index arithmetic 252
8.5 Primality testing using primitive roots 263
8.6 Universal exponents 268
8.7 Pseudo-random numbers 275
8.8 The splicing of telephone cables 280
Chapter 9. Quadratic Residues and Reciprocity
9.1 Quadratic residues 288
9.2 Quadratic reciprocity 304
9.3 The Jacobi symbol 314
9.4 Euler pseudoprimes 325
Chapter 10. Decimal Fractions and Continued Fractions
10.1 Decimal fractions 336
10.2 Finite continued fractions 350
10.3 Infinite continued fractions 361
10.4 Periodic continued fractions 375
Chapter 11. Some Nonlinear Diophantine Equations
11.1 Pythagorean triples 391
11.2 Fermat's last theorem 397
11.3 Pell's equations 401
Appendix 410
Answers to selected problems 426
Bibliography 438
List of symbols 445
Index 447

Introduction

Number theory, in a general sense, is the study of numbers and their properties. In this book, we primarily deal with the integers, $0, \pm 1, \pm 2, \ldots$. We will not axiomatically define the integers, or rigorously develop integer arithmetic. ${ }^{1}$ Instead, we discuss the interesting properties of and relationships between integers. In addition, we study the applications of number theory, particularly those directed towards computer science.

As far back as 5000 years ago, ancient civilizations had developed ways of expressing and doing arithmetic with integers. Throughout history, different methods have been used to denote integers. For instance, the ancient Babylonians used 60 as the base for their number system and the Mayans used 20. Our method of expressing integers, the decimal system, was first developed in India approximately six centuries ago. With the advent of modern computers, the binary system came into widespread use. Number theory has been used in many ways to devise algorithms for efficient computer arithmetic and for computer operations with large integers.

The ancient Greeks in the school of Pythagoras, 2500 years ago, made the distinction between primes and composites. A prime is a positive integer with no positive factors other than one and the integer itself. In his writings, Euclid, an ancient Greek mathematician, included a proof that there are infinitely many primes. Mathematicians have long sought formulae that generate primes. For instance, Pierre de Fermat, the great French number theorist of the seventeenth century, thought that all integers of the form $2^{2^{n}}+1$ are prime; that this is false was shown, a century after Fermat made this claim, by the renowned Swiss mathematician Leonard Euler, who demonstrated that 641 is a factor of $2^{2^{5}}+1$.

The problem of distinguishing primes from composites has been extensively studied. The ancient Greek scholar Eratosthenes devised a method, now called

[^0]the sieve of Eratosthenes, that finds all primes less than a specified limit. It is inefficient to use this sieve to determine whether a particular integer is prime. The problem of efficiently determining whether an integer is prime has long challenged mathematicians.

Ancient Chinese mathematicians thought that the primes were precisely those positive integers n such that n divides $2^{n}-2$. Fermat showed that if n is prime, then n does divide $2^{n}-2$. However, by the early nineteenth century, it was known that there are composite integers n such that n divides $2^{n}-2$, such as $n=341$. These composite integers are called pseudoprimes . Because most composite integers are not pseudoprimes, it is possible to develop primality tests based on the original Chinese idea, together with extra observations. It is now possible to efficiently find primes; in fact, primes with as many as 200 decimal digits can be found in minutes of computer time.

The fundamental theorem of arithmetic, known to the ancient Greeks, says that every positive integer can be written uniquely as the product of primes. This factorization can be found by trial division of the integer by primes less than its square-root; unfortunately, this method is very timeconsuming. Fermat, Euler, and many other mathematicians have produced imaginative factorization techniques. However, using the most efficient technique yet devised, billions of years of computer time may be required to factor an integer with 200 decimal digits.

The German mathematician Carl Friedrich Gauss, considered to be one of the greatest mathematicians of all time, developed the language of congruences in the early nineteenth century. When doing certain computations, integers may be replaced by their remainders when divided by a specific integer, using the language of congruences. Many questions can be phrased using the notion of a congruence that can only be awkwardly stated without this terminology. Congruences have diverse applications to computer science, including applications to computer file storage, arithmetic with large integers, and the generation of pseudo-random numbers.

One of the most important applications of number theory to computer science is in the area of cryptography. Congruences can be used to develop various types of ciphers. Recently, a new type of cipher system, called a public-key cipher system, has been devised. When a public-key cipher is used, each individual has a public enciphering key and a private deciphering key. Messages are enciphered using the public key of the receiver. Moreover, only the receiver can decipher the message, since an overwhelming amount of computer time is required to decipher when just the enciphering key is known. The most widely used public-key cipher system relies on the disparity in computer time required to find large primes and to factor large integers. In
particular, to produce an enciphering key requires that two large primes be found and then multiplied; this can be done in minutes on a computer. When these large primes are known, the deciphering key can be quickly found. To find the deciphering key from the enciphering key requires that a large integer, namely the product of the large primes, be factored. This may take billions of years.

In the following chapters, we discuss these and other topics of elementary number theory and its applications.

1

The Integers

1.1 The Well-Ordering Property

In this section, we discuss several important tools that are useful for proving theorems. We begin by stating an important axiom, the well-ordering property.

The Well-Ordering Property. Every nonempty set of positive integers has a least element.

The principle of mathematical induction is a valuable tool for proving results about the integers. We now state this principle, and show how to prove it using the well-ordering property. Afterwards, we give an example to demonstrate the use of the principle of mathematical induction. In our study of number theory, we will use both the well-ordering property and the principle of mathematical induction many times.

The Principle of Mathematical Induction. A set of positive integers that contains the integer 1 and the integer $n+1$ whenever it contains n must be the set of all positive integers.

Proof. Let S be a set of positive integers containing the integer 1 and the integer $n+1$ whenever it contains n. Assume that S is not the set of all positive integers. Therefore, there are some positive integers not contained in S. By the well-ordering property, since the set of positive integers not contained in S is nonempty, there is a least positive integer n which is not in S. Note that $n \neq 1$, since 1 is in S. Now since $n>1$, the integer $n-1$ is
a positive integer smaller than n, and hence must be in S. But since S contains $n-1$, it must also contain $(n-1)+1=n$, which is a contradiction, since n is supposedly the smallest positive integer not in S. This shows that S must be the set of all positive integers.

To prove theorems using the principle of mathematical induction, we must show two things. We must show that the statement we are trying to prove is true for 1 , the smallest positive integer. In addition, we must show that it is true for the positive integer $n+1$ if it is true for the positive integer n. By the principle of mathematical induction, one concludes that the set S of all positive integers for which the statement is true must be the set of all positive integers. To illustrate this procedure, we will use the principle of mathematical induction to establish a formula for the sum of the terms of a geometric progression.

Definition. Given real numbers a and r, the real numbers

$$
a, a r, a r^{2}, a r^{3}, \ldots
$$

are said to form a geometric progression. Also, a is called the initial term and r is called the common ratio.

Example. The numbers 5, $-15,45,-135, \ldots$ form a geometric progression with initial term 5 and common ratio -3 .

In our discussion of sums, we will find summation notation useful. The following notation represents the sum of the real numbers $a_{1}, a_{2}, \ldots, a_{n}$.

$$
\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\cdots+a_{n}
$$

We note that the letter k, the index of summation, is a "dummy variable" and can be replaced by any letter, so that

$$
\sum_{k=1}^{n} a_{k}=\sum_{j=1}^{n} a_{j}=\sum_{i=1}^{n} a_{i}, \text { and so forth. }
$$

Example. We see that

$$
\begin{aligned}
& \sum_{j=1}^{5} j=1+2+3+4+5=15 \\
& \sum_{j=1}^{5} 2=2+2+2+2+2=10
\end{aligned}
$$

and

$$
\sum_{j=1}^{5} 2^{j}=2+2^{2}+2^{3}+2^{4}+2^{5}=62
$$

We also note that in summation notation, the index of summation may range between any two integers, as long as the lower limit does not exceed the upper limit. If m and n are integers such that $m \leqslant n$, then

$$
\sum_{k=m}^{n} a_{k}=a_{m}+a_{m+1}+\cdots+a_{n}
$$

For instance, we have

$$
\begin{aligned}
& \sum_{k=3}^{5} k^{2}=3^{3}+4^{2}+5^{2}=50 \\
& \sum_{k=0}^{2} 3^{k}=3^{0}+3^{1}+3^{2}=13
\end{aligned}
$$

and

$$
\sum_{k=-2}^{1} k^{3}=(-2)^{3}+(-1)^{3}+0^{3}+1^{3}=-8
$$

We now turn our attention to sums of terms of geometric progressions. The sum of the terms $a, a r, a r^{2}, \ldots, a r^{n}$ is

$$
\sum_{j=0}^{n} a r^{j}=a+a r+a r^{2}+\cdots+a r^{n}
$$

where the summation begins with $j=0$. We have the following theorem.
Theorem 1.1. If a and r are real numbers and $r \neq 1$, then

$$
\begin{equation*}
\sum_{j=0}^{n} a r^{j}=a+a r+a r^{2}+\cdots+a r^{n}=\frac{a r^{n+1}-a}{r-1} \tag{1.1}
\end{equation*}
$$

Proof. To prove that the formula for the sum of terms of a geometric progression is valid, we must first show that it holds for $n=1$. Then, we must show that if the formula is valid for the positive integer n, it must also be true for the positive integer $n+1$.

To start things off, let $n=1$. Then, the left side of (1.1) is $a+a r$, while on the right side of (1.1) we have

$$
\frac{a r^{2}-a}{r-1}=\frac{a\left(r^{2}-1\right)}{r-1}=\frac{a(r+1)(r-1)}{r-1}=a(r+1)=a+a r .
$$

So the formula is valid when $n=1$.
Now we assume that (1.1) holds for the positive integer n. That is, we assume that

$$
\begin{equation*}
a+a r+a r^{2}+\cdots+a r^{n}=\frac{a r^{n+1}-a}{r-1} \tag{1.2}
\end{equation*}
$$

We must show that the formula also holds for the positive integer $n+1$. What we must show is that

$$
\begin{equation*}
a+a r+a r^{2}+\cdots+a r^{n}+a r^{n+1}=\frac{a r^{(n+1)+1}-a}{r-1}=\frac{a r^{n+2}-a}{r-1} \tag{1.3}
\end{equation*}
$$

To show that (1.3) is valid, we add $a r^{n+1}$ to both sides of (1.2), to obtain

$$
\begin{equation*}
\left(a+a r+a r^{2}+\cdots+a r^{n}\right)+a r^{n+1}=\frac{a r^{n+1}-a}{r-1}+a r^{n+1} \tag{1.4}
\end{equation*}
$$

The left side of (1.4) is identical to that of (1.3). To show that the right sides are equal, we note that

$$
\begin{aligned}
\frac{a r^{n+1}-a}{r-1}+a r^{n+1} & =\frac{a r^{n+1}-a}{r-1}+\frac{a r^{n+1}(r-1)}{r-1} \\
& =\frac{a r^{n+1}-a+a r^{n+2}-a r^{n+1}}{r-1} \\
& =\frac{a r^{n+2}-a}{r-1}
\end{aligned}
$$

Since we have shown that (1.2) implies (1.3), we can conclude that (1.1)
holds for all positive integers n.
Example. Let n be a positive integer. To find the sum

$$
\sum_{k=0}^{n} 2^{k}=1+2+2^{2}+\cdots+2^{n}
$$

we use Theorem 1.1 with $a=1$ and $r=2$, to obtain

$$
1+2+2^{2}+\cdots+2^{n}=\frac{2^{n+1}-1}{2-1}=2^{n+1}-1
$$

Hence, the sum of consecutive nonnegative powers of 2 is one less than the next largest power of 2 .

A slight variant of the principle of mathematical induction is also sometimes useful in proofs.

The Second Principle of Mathematical Induction. A set of positive integers which contains the integer 1 , and which has the property that if it contains all the positive integers $1,2, \ldots, k$, then it also contains the integer $k+1$, must be the set of all positive integers.

Proof. Let T be a set of integers containing 1 and containing $k+1$ if it contains $1,2, \ldots, k$. Let S be the set of all positive integers n such that all the positive integers less than or equal to n are in T. Then 1 is in S, and by the hypotheses, we see that if k is in S, then $k+1$ is in S. Hence, by the principle of mathematical induction, S must be the set of all positive integers, so clearly T is also the set of all positive integers.

The principle of mathematical induction provides a method for defining the values of functions at positive integers.

Definition. We say the function f is defined recursively if the value of f at 1 is specified and if a rule is provided for determining $f(n+1)$ from $f(n)$.

If a function is defined recursively, one can use the principle of mathematical induction to show it is defined uniquely at each positive integer. (See problem 12 at the end of this section.)

We now give an example of a function defined recursively. We define the factorial function $f(n)=n!$. First, we specify that

$$
f(1)=1,
$$

and then we give the rule for finding $f(n+1)$ from $f(n)$, namely

$$
f(n+1)=(n+1) \cdot f(n)
$$

These two statements uniquely define $n!$.
To find the value of $f(6)=6$! from the recursive definition of $f(n)=n!$, use the second property successively, as follows

$$
f(6)=6 \cdot f(5)=6 \cdot 5 \cdot f(4)=6 \cdot 5 \cdot 4 \cdot f(3)=6 \cdot 5 \cdot 4 \cdot 3 \cdot f(2)=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 f(1)
$$

We now use the first statement of the definition to replace $f(1)$ by its stated value 1 , to conclude that

$$
6!=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=720
$$

In general, by successively using the recursive definition, we see that n ! is the product of the first n positive integers, i.e.

$$
n!=1 \cdot 2 \cdot 3 \cdots n
$$

For convenience, and future use, we specify that $0!=1$.
We take this opportunity to define a notation for products, analogous to summation notation. The product of the real numbers $a_{1}, a_{2}, \ldots, a_{n}$ is denoted by

$$
\prod_{j=1}^{n} a_{j}=a_{1} a_{2} \cdots a_{n} .
$$

The letter j above is a "dummy variable", and can be replaced arbitrarily.
Example. To illustrate the notation for products we have

$$
\begin{aligned}
& \prod_{j=1}^{5} j=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5=120 . \\
& \prod_{j=1}^{5} 2=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=2^{5}=32 . \\
& \prod_{j=1}^{5} 2^{j}=2 \cdot 2^{2} \cdot 2^{3} \cdot 2^{4} \cdot 2^{5}=2^{15} .
\end{aligned}
$$

We note that with this notation, $n!=\prod_{j=1}^{n} j$.
Factorials are used to define binomial coefficients.
Definition. Let m and k be nonnegative integers with $k \leqslant m$. The binomial coefficient $\binom{m}{k}$ is defined by

$$
\binom{m}{k}=\frac{m!}{k!(m-k)!}
$$

In computing $\binom{m}{k}$, we see that there is a good deal of cancellation, because

$$
\begin{aligned}
\binom{m}{k}=\frac{m!}{k!(m-k)!} & =\frac{1 \cdot 2 \cdot 3 \cdots(m-k)(m-k+1) \cdots(m-1) m}{k!1 \cdot 2 \cdot 3 \cdots(m-k)} \\
& =\frac{(m-k+1) \cdots(m-1) m}{k!} .
\end{aligned}
$$

Example. To evaluate the binomial coefficient $\binom{7}{3}$, we note that

$$
\binom{7}{3}=\frac{7!}{3!4!}=\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7}{1 \cdot 2 \cdot 3 \cdot 1 \cdot 2 \cdot 3 \cdot 4}=\frac{5 \cdot 6 \cdot 7}{1 \cdot 2 \cdot 3}=35
$$

We now prove some simple properties of binomial coefficients.
Proposition 1.2. Let n and k be nonnegative integers with $k \leqslant n$. Then

$$
\begin{aligned}
& \text { (i) } \quad\binom{n}{0}=\binom{n}{n}=1 \\
& \text { (ii) } \quad\binom{n}{k}=\binom{n}{n-k} .
\end{aligned}
$$

Proof. To see that (i) is true, note that

$$
\binom{n}{0}=\frac{n!}{0!n!}=\frac{n!}{n!}=1
$$

and

$$
\binom{n}{n}=\frac{n!}{n!0!}=\frac{n!}{n!}=1
$$

To verify (ii), we see that

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n!}{(n-k)!(n-(n-k))!}=\binom{n}{n-k}
$$

An important property of binomial coefficients is the following identity.
Theorem 1.2. Let n and k be positive integers with $n \geqslant k$. Then

$$
\binom{n}{k}+\binom{n}{k-1}=\binom{n+1}{k}
$$

Proof. We perform the addition

$$
\binom{n}{k}+\binom{n}{k-1}=\frac{n!}{k!(n-k)!}+\frac{n!}{(k-1)!(n-k+1)!}
$$

by using the common denominator $k!(n-k+1)$!. This gives

$$
\begin{aligned}
\binom{n}{k}+\binom{n}{k-1} & =\frac{n!(n-k+1)}{k!(n-k+1)!}+\frac{n!k}{k!(n-k+1)!} \\
& =\frac{n!((n-k+1)+k)}{k!(n-k+1)!} \\
& =\frac{n!(n+1)}{k!(n-k+1)!} \\
& =\frac{(n+1)!}{k!(n-k+1)!} \\
& =\binom{n+1}{k}
\end{aligned}
$$

Using Theorem 1.2, we can easily construct Pascal's triangle, which displays the binomial coefficients. In this triangle, the binomial coefficient $\binom{n}{k}$ is the $(k+1)$ th number in the $(n+1)$ th row. The first nine rows of Pascal's triangle are displayed in Figure 1.1.

$$
\begin{aligned}
& 1 \\
& 11 \\
& 121 \\
& 1331 \\
& 14641 \\
& 15101051 \\
& 1615201561 \\
& 172135352171 \\
& 18285670562881
\end{aligned}
$$

Figure 1.1. Pascal's triangle.

We see that the exterior numbers in the triangle are all 1. To find an interior number, we simply add the two numbers in the positions above, and to either side, of the position being filled. From Theorem 1.2, this yields the correct integer.

Binomial coefficients occur in the expansions of powers of sums. Exactly how they occur is described by the binomial theorem.

The Binomial Theorem. Let x and y be variables and n a positive integer. Then

$$
\begin{aligned}
(x+y)^{n}= & \binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\cdots \\
& +\binom{n}{n-2} x^{2} y^{n-2}+\binom{n}{n-1} x y^{n-1}+\binom{n}{n} y^{n}
\end{aligned}
$$

or using summation notation,

$$
(x+y)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j}
$$

We prove the binomial theorem by mathematical induction. In the proof we make use of summation notation.

Proof. We use mathematical induction. When $n=1$, according to the binomial theorem, the formula becomes

$$
(x+y)^{1}=\binom{1}{0} x^{1} y^{0}+\binom{1}{1} x^{0} y^{1}
$$

But because $\binom{1}{0}=\binom{1}{1}=1$, this states that $(x+y)^{1}=x+y$, which is obviously true.

We now assume the theorem is valid for the positive integer n, that is, we assume that

$$
(x+y)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j}
$$

We must now verify that the corresponding formula holds with n replaced by $n+1$, assuming the result holds for n. Hence, we have

$$
\begin{aligned}
(x+y)^{n+1} & =(x+y)^{n}(x+y) \\
& =\left[\begin{array}{l}
\left.\sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j}\right](x+y) \\
\\
\end{array}=\sum_{j=0}^{n}\binom{n}{j} x^{n-j+1} y^{j}+\sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j+1} .\right.
\end{aligned}
$$

We see that by removing terms from the sums and consequently shifting indices, that

$$
\sum_{j=0}^{n}\binom{n}{j} x^{n-j+1} y^{j}=x^{n+1}+\sum_{j=1}^{n}\binom{n}{j} x^{n-j+1} y^{j}
$$

and

$$
\begin{aligned}
\sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j+1} & =\sum_{j=0}^{n-1}\binom{n}{j} x^{n-j} y^{j+1}+y^{n+1} \\
& =\sum_{j=1}^{n}\binom{n}{j-1} x^{n-j+1} y^{j}+y^{n+1}
\end{aligned}
$$

Hence, we find that

$$
(x+y)^{n+1}=x^{n+1}+\sum_{j=1}^{n}\left[\binom{n}{j}+\binom{n}{j-1}\right] x^{n-j+1} y^{j}+y^{n+1}
$$

By Theorem 1.2, we have

$$
\binom{n}{j}+\binom{n}{j-1}=\binom{n+1}{j},
$$

so we conclude that

$$
\begin{aligned}
(x+y)^{n+1} & =x^{n+1}+\sum_{j=1}^{n}\binom{n+1}{j} x^{n-j+1} y^{j}+y^{n+1} \\
& =\sum_{j=0}^{n+1}\binom{n+1}{j} x^{n+1-j} y^{j}
\end{aligned}
$$

This establishes the theorem.
We now illustrate one use of the binomial theorem. If we let $x=y=1$, we see from the binomial theorem that

$$
2^{n}=(1+1)^{n}=\sum_{j=0}^{n}\binom{n}{j} 1^{n-j} 1^{j}=\sum_{j=0}^{n}\binom{n}{j} .
$$

This formula shows that if we add all elements of the $(n+1)$ th row of Pascal's triangle, we get 2^{n}. For instance, for the fifth row, we find that

$$
\binom{4}{0}+\binom{4}{1}+\binom{4}{2}+\binom{4}{3}+\binom{4}{4}=1+4+6+4+1=16=2^{4}
$$

1.1 Problems

1. Find the values of the following sums
a) $\sum_{j=1}^{10} 2$
b) $\sum_{j=1}^{10} j$
c) $\sum_{j=1}^{10} j^{2}$
d) $\sum_{j=1}^{10} 2^{j}$.
2. Find the values of the following products
a) $\prod_{j=1}^{5} 2$
b) $\prod_{j=1}^{5} j$
c) $\prod_{j=1}^{5} j^{2}$
d) $\prod_{j=1}^{5} 2^{j}$.
3. Find n ! for n equal to each of the first ten positive integers.
4. Find $\binom{10}{0},\binom{10}{3},\binom{10}{5},\binom{10}{7}$, and $\binom{10}{10}$.
5. Find the binomial coefficients $\binom{9}{3},\binom{9}{4}$, and $\binom{10}{4}$, and verify that $\binom{9}{3}+\binom{9}{4}=\binom{10}{4}$.
6. Show that a nonempty set of negative integers has a largest element.
7. Use mathematical induction to prove the following formulae.
a) $\sum_{j=1}^{n} j=1+2+3+\cdots+n=\frac{n(n+1)}{2}$.
b) $\sum_{j=1}^{n} j^{2}=1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$

$$
\text { c) } \sum_{j=1}^{n} j^{3}=1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}
$$

8. Find a formula for $\prod_{j=1}^{n} 2^{j}$.
9. Use the principle of mathematical induction to show that the value at each positive integer of a function defined recursively is uniquely determined.
10. What function $f(n)$ is defined recursively by $f(1)=2$ and $f(n+1)=2 f(n)$ for $n \geqslant 1$?
11. If g is defined recursively by $g(1)=2$ and $g(n)=2^{g(n-1)}$ for $n \geqslant 2$, what is $g(4)$?
12. The second principle of mathematical induction can be used to define functions recursively. We specify the value of the function at 1 and give a rule for finding $f(n+1)$ from the values of f at the first n positive integers. Show that the values of a function so defined are uniquely determined.
13. We define a function recursively for all positive integers n by $f(1)=1$, $f(2)=5$, and for $n>2, f(n+1)=f(n)+2 f(n-1)$. Show that $f(n)=$ $2^{n}+(-1)^{n}$, using the second principle of mathematical induction.
14. a) Let n be a positive integer. By expanding $(1+(-1))^{n}$ with the binomial theorem, show that

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0
$$

b) Use part (a), and the fact that $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$, to find

$$
\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\cdots
$$

and

$$
\binom{n}{1}+\binom{n}{3}+\binom{n}{5}+\cdots
$$

c) Find the sum $1-2+2^{2}-2^{3}+\cdots+2^{100}$.
15. Show by mathematical induction that if n is a positive integer, then $(2 n)!<2^{2 n}(n!)^{2}$.
16. The binomial coefficients $\binom{x}{n}$, where x is a variable, and n is a positive integer, can be defined recursively by the equations $\binom{x}{1}=x$ and

$$
\binom{x}{n+1}=\frac{x-n}{n+1}\left(\frac{x}{n}\right)
$$

a) Show that if x is a positive integer, then $\binom{x}{k}=\frac{x!}{k!(x-k)!}$, where k is an integer with $1 \leqslant k \leqslant x$.
b) Show that $\binom{x}{n}+\binom{x}{n+1}=\binom{x+1}{n+1}$, whenever n is a positive integer.
17. In this problem, we develop the principle of inclusion - exclusion. Suppose that S is a set with n elements and let $P_{1}, P_{2}, \ldots, P_{t}$ be t different properties that an element of S may have. Show that the number of elements of S possessing none of the t properties is

$$
\begin{aligned}
n & -\left[n\left(P_{1}\right)+n\left(P_{2}\right)+\cdots+n\left(P_{t}\right)\right] \\
& +\left[n\left(P_{1}, P_{2}\right)+n\left(P_{1}, P_{3}\right)+\cdots+n\left(P_{t-1}, P_{t}\right)\right] \\
& -\left[n\left(P_{1}, P_{2}, P_{3}\right)+n\left(P_{1}, P_{2}, P_{4}\right)+\cdots+n\left(P_{t-2}, P_{t-1}, P_{t}\right)\right] \\
& +\cdots+(-1)^{t} n\left(P_{1}, P_{2}, \ldots, P_{t}\right),
\end{aligned}
$$

where $n\left(P_{i_{1}}, P_{i_{2}}, \ldots, P_{i}\right)$ is the number of elements of S possessing all of the properties $P_{i}, P_{i}, \ldots, P_{i}$. The first expression in brackets contains a term for each property, the second expression in brackets contains terms for all combinations of two properties, the third expression contains terms for all combinations of three properties, and so forth. (Hint: For each element of S determine the number of times it is counted in the above expression. If an element has k of the properties, show it is counted $1-\binom{k}{1}+\binom{k}{2}-\cdots+(-1)^{k}\binom{k}{k}$ times. This equals zero by problem 14(a).)
18. The tower of Hanoi was a popular puzzle of the late nineteenth century. The puzzle includes three pegs and eight rings of different sizes placed in order of size, with the largest on the bottom, on one of the pegs. The goal of the puzzle is to move all the rings, one at a time without ever placing a larger ring on top of a smaller ring, from the first peg to the second, using the third peg as an auxiliary peg.
a) Use mathematical induction to show that the minimum number of moves to transfer n rings, with the rules we have described, from one peg to another is $2^{n}-1$.
b) An ancient legend tells of the monks in a tower with 64 gold rings and 3 diamond pegs. They started moving the rings, one move per second, when the world was created. When they finish transferring the rings to the second peg, the world ends. How long will the world last?
19. Without multiplying all the terms, show that
a) $6!7!=10!$
b) $10!=7!5!3!$
c) $16!=14!5!2!$
d) $9!=7!3!3!2!$.
20. Let $a_{n}=\left(a_{1}!a_{2}!\cdots a_{n-1}!\right)-1$, and $a_{n+1}=a_{1}!a_{2}!\cdots a_{n-1}!$, where $a_{1}, a_{2}, \ldots, a_{n-1}$ are positive integers. Show that $a_{n+1}!=a_{1}!a_{2}!\cdots a_{n}!$.
21. Find all positive integers x, y, and z such that $x!+y!=z!$.

1.1 Computer Projects

Write programs to do the following:

1. Find the sum of the terms of a geometric series.
2. Evaluate n !
3. Evaluate binomial coefficients.
4. Print out Pascal's triangle.
5. List the moves in the Tower of Hanoi puzzle (see problem 18).
6. Expand $(x+y)^{n}$, where n is a positive integer, using the binomial theorem.

1.2 Divisibility

When an integer is divided by a second nonzero integer, the quotient may or may not be an integer. For instance, $24 / 8=3$ is an integer, while $17 / 5=3.4$ is not. This observation leads to the following definition.

Definition. If a and b are integers, we say that a divides b if there is an integer c such that $b=a c$. If a divides b, we also say that a is a divisor or factor of b.

If a divides b we write $a \mid b$, while if a does not divide b, we write $a \ b$.
Example. The following examples illustrate the concept of divisibility of integers: $13|182,-5| 30,17|289,6 \backslash 44,7 \backslash 50,-3| 33$, and $17 \mid 0$.

Example. The divisors of 6 are $\pm 1, \pm 2, \pm 3$, and ± 6. The divisors of 17 are ± 1 and ± 17. The divisors of 100 are $\pm 1, \pm 2, \pm 4, \pm 5, \pm 10$, $\pm 20, \pm 25, \pm 50$, and ± 100.

In subsequent sections, we will need some simple properties of divisibility. We now state and prove these properties.

Proposition 1.3. If a, b, and c are integers with $a \mid b$ and $b \mid c$, then $a \mid c$.
Proof. Since $a \mid b$ and $b \mid c$, there are integers e and f with $a e=b$ and $b f=c$. Hence, $b f=(a e) f=a(e f)=c$, and we conclude that $a \mid c$.

Example. Since $11 \mid 66$ and $66 \mid 198$, Proposition 1.3 tells us that $11 \mid 198$.
Proposition 1.4. If a, b, m, and n are integers, and if $c \mid a$ and $c \mid b$, then $c \mid(m a+n b)$.

Proof. Since $c \mid a$ and $c \mid b$, there are integers e and f such that $a=c e$ and $b=c f$. Hence, $m a+n b=m c e+n c f=c(m e+n f)$. Consequently, we see that $c \mid(m a+n b)$.

Example. Since $3 \mid 21$ and $3 \mid 33$, Proposition 1.4 tells us that

$$
3 \mid(5 \cdot 21-3 \cdot 33)=105-99=6
$$

The following theorem states an important fact about division.
 are unique integers q and r such that $a=b q+r$ with $0 \leqslant r<b$.

In the equation given in the division algorithm, we call q the quotient and r the remainder.

We note that a is divisible by b if and only if the remainder in the division algorithm is zero. Before we prove the division algorithm, consider the following examples.

Example. If $a=133$ and $b=21$, then $q=6$ and $r=7$, since $133=21 \cdot 6+7$. Likewise, if $a=-50$ and $b=8$, then $q=-7$ and $r=6$, since $-50=8(-7)+6$.

For the proof of the division algorithm and for subsequent numerical computations, we need to define a new function.

Definition. Let x be a real number. The greatest integer in x, denoted by $[x]$, is the largest integer less than or equal to x.

Example. We have the following values for the greatest integer in $x:[2.2]=2,[3]=3$, and $[-1.5]=-2$.

The proposition below follows directly from the definition of the greatest integer function.

Proposition 1.5. If x is a real number, then $x-1<[x] \leqslant x$.
We can now prove the division algorithm. Note that in the proof we give explicit formulae for the quotient and remainder in terms of the greatest integer function.

Proof. Let $q=[a / b]$ and $r=a-b[a / b]$. Clearly $a=b q+r$. To show that the remainder r satisfies the appropriate inequality, note that from Proposition 1.5, it follows that

$$
(a / b)-1<[a / b] \leqslant a / b
$$

We multiply this inequality by b, to obtain

$$
a-b<b[a / b] \leqslant a
$$

Multiplying by -1 , and reversing the inequality, we find that

$$
-a \leqslant-b[a / b]<b-a
$$

By adding a, we see that

$$
0 \leqslant r=a-b[a / b]<b
$$

To show that the quotient q and the remainder r are unique, assume that we have two equations $a=b q_{1}+r_{1}$ and $a=b q_{2}+r_{2}$, with $0 \leqslant r_{1}<b$ and $0 \leqslant r_{2}<b$. By subtracting the second of these from the first, we find that

$$
0=b\left(q_{1}-q_{2}\right)+\left(r_{1}-r_{2}\right) .
$$

Hence, we see that

$$
r_{2}-r_{1}=b\left(q_{1}-q_{2}\right) .
$$

This tells us that b divides $r_{2}-r_{1}$. Since $0 \leqslant r_{1}<b$ and $0 \leqslant r_{2}<b$, we have $-b<r_{2}-r_{1}<b$. This shows that b can divide $r_{2}-r_{1}$ only if $r_{2}-r_{1}=0$, or, in other words, if $r_{1}=r_{2}$. Since $b q_{1}+r_{1}=b q_{2}+r_{2}$ and $r_{1}=r_{2}$ we also see that $q_{1}=q_{2}$. This shows that the quotient q and the remainder r are unique.

Example. Let $a=1028$ and $b=34$. Then $a=b q+r$ with $0 \leqslant r<b$, where $q=[1028 / 34]=30$ and $r=1028-[1028 / 34] \cdot 34=1028-30 \cdot 34=8$.

With $a=-380$ and $b=75$, we have $a=b q+r$ with $0 \leqslant r<b$, where $q=[-380 / 75]=-6$ and $r=-380-[-380 / 75]=-380-(-6) 75=70$.

Given a positive integer d, we can classify integers according to their remainders when divided by d. For example, with $d=2$, we see from the division algorithm that every integer when divided by 2 leaves a remainder of either 0 or 1 . If the remainder when n is divided by 2 is 0 , then $n=2 k$ for some positive integer k, and we say n is even, while if the remainder when n is divided by 2 is 1 , then $n=2 k+1$ for some integer k, and we say n is odd .

Similarly, when $d=4$, we see from the division algorithm that when an integer n is divided by 4 , the remainder is either $0,1,2$, or 3 . Hence, every integer is of the form $4 k, 4 k+1,4 k+2$, or $4 k+3$, where k is a positive integer.

We will pursue these matters further in Chapter 3.

1.2 Problems

1. Show that $3|99,5| 145,7 \mid 343$, and $888 \mid 0$.
2. Decide which of the following integers are divisible by 22
a) 0
b) 444
c) 1716
d) 192544
e) -32516
f) -195518 .
3. Find the quotient and remainder in the division algorithm with divisor 17 and dividend
a) 100
b) 289
c) -44
d) -100 .
4. What can you conclude if a and b are nonzero integers such that $a \mid b$ and $b \mid a$?
5. Show that if a, b, c, and d are integers with a and c nonzero such that $a \mid b$ and $c \mid d$, then $a c \mid b d$.
6. Are there integers a, b, and c such that $a \mid b c$, but $a \backslash b$ and $a \backslash c$?
7. Show that if a, b, and $c \neq 0$ are integers, then $a \mid b$ if and only if $a c \mid b c$.
8. Show that if a and b are positive integers and $a \mid b$, then $a \leqslant b$.
9. Give another proof of the division algorithm by using the well-ordering property. (Hint: When dividing a by b, take as the remainder the least positive integer in the set of integers $a-q b$.)
10. Show that if a and b are odd positive integers, then there are integers s and t such that $a=b s+t$, where t is odd and $|t|<b$.
11. When the integer a is divided by the interger b where $b>0$, the division algorithm gives a quotient of q and a remainder of r. Show that if $b \backslash a$, when $-a$ is divided by b, the division algorithm gives a quotient of $-(q+1)$ and a remainder of $b-r$, while if $b \mid a$, the quotient is $-q$ and the remainder is zero.
12. Show that if a, b, and c are integers with $b>0$ and $c>0$, such that when a is divided by b the quotient is q and the remainder is r, and when q is divided by c the quotient is t and the remainder is s, then when a is divided by $b c$, the quotient is t and the remainder is $b s+r$.
13. a) Extend the division algorithm by allowing negative divisors. In particular, show that whenever a and $b \neq 0$ are integers, there are integers q and r such that $a=b q+r$, where $0 \leqslant r<|b|$.
b) Find the remainder when 17 is divided by -7 .
14. Show that if a and b are positive integers, then there are integers q, r and $e= \pm 1$ such that $a=b q+e r$ where $-b / 2 \leqslant e r \leqslant b / 2$.
15. Show that if a and b are real numbers, then $[a+b] \geqslant[a]+[b]$.
16. Show that if a and b are positive real numbers, then $[a b] \geqslant[a][b]$. What is the corresponding inequality when both a and b are negative? When one is negative and the other positive?
17. What is the value of $[a]+[-a]$ when a is a real number?
18. Show that if a is a real number then
a) $-[-a]$ is the least integer greater than or equal to a.
b) $[a+1 / 2]$ is the integer nearest to a (when there are two integers equidistant from a, it is the larger of the two).
19. Show that if n is an integer and x is a real number, then $[x+n]=[x]+n$.
20. Show that if m and $n>0$ are integers, then

$$
\left[\frac{m+1}{n}\right]= \begin{cases}{\left[\frac{m}{n}\right]} & \text { if } m=k n-1 \text { for some integer } k \\ {\left[\frac{m}{n}\right]+1} & \text { if } m=k n-1 \text { for some integer } k\end{cases}
$$

21. Show that the integer n is even if and only if $n-2[n / 2]=0$.
22. Show that if a is a real number, then $[a]+[a+1 / 2]=[2 a]$.
23. a) Show that the number of positive integers less than or equal to x that are divisible by the positive integer d is given by $[x / d]$.
b) Find the number of positive integers not exceeding 1000 that are divisible by 5 , by 25 , by 125 , and by 625 .
c) How many integers between 100 and 1000 are divisible by 7 ? by 49 ?
24. To mail a letter in the U.S.A. it costs 20 cents for the first ounce and 18 cents for each additional ounce or fraction thereof. Find a formula involving the greatest integer function for the cost of mailing a letter. Could it possibly cost $\$ 1.08$ or $\$ 1.28$ to mail a letter?
25. Show that if a is an integer, then 3 divides $a^{3}-a$.
26. Show that the sum of two even or of two odd integers is even, while the sum of an odd and an even integer is odd.
27. Show that the product of two odd integers is odd, while the product of two integers is even if either of the integers is even.
28. Show that the product of two integers of the form $4 k+1$ is again of this form, while the product of two integers of the form $4 k+3$ is of the form $4 k+1$.
29. Show that the square of every odd integer is of the form $8 k+1$.
30. Show that the fourth power of every odd integer is of the form $16 k+1$.
31. Show that the product of two integers of the form $6 k+5$ is of the form $6 k+1$.
32. Show that the product of any three consecutive integers is divisible by 6 .
33. Let n be a positive integer. We define

$$
T(n)= \begin{cases}n / 2 & \text { if } n \text { is even } \\ (3 n+1) / 2 & \text { if } n \text { is odd }\end{cases}
$$

We then form the sequence obtained by iterating T; $n, T(n), T(T(n)), T(T(T(n))), \ldots$. For instance, starting with $n=7$ we have $7,11,17,26,13,20,10,5,8,4,2,1,2,1,2,1 \ldots$. A well-known conjecture, sometimes called the Collatz conjecture, asserts that the sequence obtained by iterating T always reaches the integer 1 no matter which positive integer n begins the sequence.
a) Find the sequence obtained by iterating T starting with $n=29$.
b) Show that the sequence obtained by iterating T starting with $n=\left(2^{k}-1\right) / 3$, where k is an even positive integer, $k>1$, always reaches the integer 1 .

1.2 Computer Projects

Write programs to do the following:

1. Decide whether an integer is divisible by a given integer.
2. Find the quotient and remainder in the division algorithm.
3. Find the quotient, remainder, and sign in the modified division algorithm given in problem 14.
4. Investigate the sequence $n, T(n), T(T(n)), T(T(T(n))), \ldots$ defined in problem 33.

1.3 Representations of Integers

The conventional manner of expressing numbers is by decimal notation. We write out numbers using digits to represent multiples of powers of ten. For instance, when we write the integer 34765 , we meail

$$
3 \cdot 10^{4}+4 \cdot 10^{3}+7 \cdot 10^{2}+6 \cdot 10^{1}+5 \cdot 10^{0}
$$

There is no particular reason for the use of ten as the base of notation, other than the fact that we have ten fingers. Other civilizations have used different
bases, including the Babylonians, who used base sixty, and the Mayans, who used base twenty . Electronic computers use two as a base for internal representation of integers, and either eight or sixteen for display purposes.

We now show that every positive integer greater than one may be used as a base.

Theorem 1.3. Let b be a positive integer with $b>1$. Then every positive integer n can be written uniquely in the form

$$
n=a_{k} b^{k}+a_{k-1} b^{k-1}+\cdots+a_{1} b+a_{0}
$$

where a_{j} is an integer with $0 \leqslant a_{j} \leqslant b-1$ for $j=0,1, \ldots, k$ and the initial coefficient $a_{k} \neq 0$.

Proof. We obtain an expression of the desired type by successively applying the division algorithm in the following way. We first divide n by b to obtain

$$
n=b q_{0}+a_{0}, \quad 0 \leqslant a_{0} \leqslant b-1
$$

Then we divide q_{0} by b to find that

$$
q_{0}=b q_{1}+a_{1}, \quad 0 \leqslant a_{1} \leqslant b-1 .
$$

We continue this process to obtain

$$
\begin{aligned}
q_{1} & =b q_{2}+a_{2}, \quad 0 \leqslant a_{2} \leqslant b-1, \\
q_{2} & =b q_{3}+a_{3}, \quad 0 \leqslant a_{3} \leqslant b-1, \\
& \cdot \\
& \cdot \\
& \cdot \\
q_{k-2} & =b q_{k-1}+a_{k-1}, \quad 0 \leqslant a_{k-1} \leqslant b-1, \\
q_{k-1} & =b \cdot 0+a_{k}, \quad 0 \leqslant a_{k} \leqslant b-1 .
\end{aligned}
$$

The last step of the process occurs when a quotient of 0 is obtained. This is guaranteed to occur, because the sequence of quotients satisfies

$$
n>q_{0}>q_{1}>q_{2}>\cdots \geqslant 0
$$

and any decreasing sequence of nonnegative integers must eventually terminate with a term equaling 0 .

From the first equation above we find that

$$
n=b q_{0}+a_{0}
$$

We next replace q_{0} using the second equation, to obtain

$$
n=b\left(b q_{1}+a_{1}\right)+a_{0}=b^{2} q_{1}+a_{1} b+a_{0}
$$

Successively substituting for $q_{1}, q_{2}, \ldots, q_{k-1}$, we have

$$
n=b^{3} q_{2}+a_{2} b^{2}+a_{1} b+a_{0}
$$

$$
\begin{aligned}
n & =b^{k-1} q_{k-2}+a_{k-2} b^{k-2}+\cdots+a_{1} b+a_{0} \\
n & =b^{k} q_{k-1}+a_{k-1} b^{k-1}+\cdots+a_{1} b+a_{0} \\
& =a_{k} b^{k}+a_{k-1} b^{k-1}+\cdots+a_{1} b+a_{0}
\end{aligned}
$$

where $0 \leqslant a_{j} \leqslant b-1$ for $j=0,1, \ldots, k$ and $a_{k} \neq 0$, since $a_{k}=q_{k-1}$ is the last nonzero quotient. Consequently, we have found an expansion of the desired type.

To see that the expansion is unique, assume that we have two such expansions equal to n, i.e.

$$
\begin{aligned}
n & =a_{k} b^{k}+a_{k-1} b^{k-1}+\cdots+a_{1} b+a_{0} \\
& =c_{k} b^{k}+c_{k-1} b^{k-1}+\cdots+c_{1} b+c_{0}
\end{aligned}
$$

where $0 \leqslant a_{k}<b$ and $0 \leqslant c_{k}<b$ (and if necessary we add initial terms with zero coefficients to have the number of terms agree). Subtracting one expansion from the other, we have

$$
\left(a_{k}-c_{k}\right) b^{k}+\left(a_{k-1}-c_{k-1}\right) b^{k-1}+\cdots+\left(a_{1}-c_{1}\right) b+\left(a_{0}-c_{0}\right)=0
$$

If the two expansions are different, there is a smallest integer $j, 0 \leqslant j \leqslant k$, such that $a_{j} \neq c_{j}$. Hence,

$$
b^{j}\left[\left(a_{k}-c_{k}\right) b^{k-j}+\cdots+\left(a_{j+1}-c_{j+1}\right) b+\left(a_{j}-c_{j}\right)\right]=0
$$

so that

$$
\left(a_{k}-c_{k}\right) b^{k-j}+\cdots+\left(a_{j+1}-c_{j+1}\right) b+\left(a_{j}-c_{j}\right)=0
$$

Solving for $a_{j}-c_{j}$ we obtain

$$
\begin{aligned}
a_{j}-c_{j} & =\left(c_{k}-a_{k}\right) b^{k-j}+\cdots+\left(c_{j+1}-a_{j+1}\right) b \\
& =b\left(\left(c_{k}-a_{k}\right) b^{k-j-1}+\cdots+\left(c_{j+1}-a_{j+1}\right)\right)
\end{aligned}
$$

Hence, we see that

$$
b \mid\left(a_{j}-c_{j}\right)
$$

But since $0 \leqslant a_{j}<b$ and $0 \leqslant c_{j}<b$, we know that $-b<a_{j}-c_{j}<b$. Consequently, $b \mid\left(a_{j}-c_{j}\right)$ implies that $a_{j}=c_{j}$. This contradicts the assumption that the two expansions are different. We conclude that our base b expansion of n is unique.

For $b=2$, we see from Theorem 1.3 that the following corollary holds.
Corollary 1.1. Every positive integer may be represented as the sum of distinct powers of two.

Proof. Let n be a positive integer. From Theorem 1.3 with $b=2$, we know that $n=a_{k} 2^{k}+a_{k-1} 2^{k-1}+\cdots+a_{1} 2+a_{0}$ where each a_{j} is either 0 or 1 . Hence, every positive integer is the sum of distinct powers of 2 .

In the expansions described in Theorem 1.3, b is called the base or radix of the expansion. We call base 10 notation, our conventional way of writing integers, decimal notation. Base 2 expansions are called binary expansions, base 8 expansions are called octal expansions, and base 16 expansions are called hexadecimal, or hex for short, expansions. The coefficients a_{j} are called the digits of the expansion. Binary digits are called bits (binary digits) in computer terminology.

To distinguish representations of integers with different bases, we use a special notation. We write $\left(a_{k} a_{k-1} \ldots a_{1} a_{0}\right)_{b}$ to represent the expansion $a_{k} b^{k}+a_{k-1} b^{k-1}+\cdots+a_{1} b+a_{0}$.

Example. To illustrate base b notation, note that $(236)_{7}=2 \cdot 7^{2}+3 \cdot 7+6$ and $(10010011)_{2}=1 \cdot 2^{7}+1 \cdot 2^{4}+1 \cdot 2^{1}+1$.

Note that the proof of Theorem 1.3 gives us a method of finding the base b expansion of a given positive integer. We simply perform the division algorithm successively, replacing the dividend each time with the quotient, and
stop when we come to a quotient which is zero. We then read up the list of remainders to find the base b expansion.

Example. To find the base 2 expansion of 1864 , we use the division algorithm successively:

$$
\begin{aligned}
1864 & =2 \cdot 932+0 \\
932 & =2 \cdot 466+0 \\
466 & =2 \cdot 233+0 \\
233 & =2 \cdot 116+1 \\
116 & =2 \cdot 58+0 \\
58 & =2 \cdot 29+0 \\
29 & =2 \cdot 14+1 \\
14 & =2 \cdot 7+0 \\
7 & =2 \cdot 3+1 \\
3 & =2 \cdot 1+1 \\
1 & =2 \cdot 0+1
\end{aligned}
$$

To obtain the base 2 expansion of 1984 , we simply take the remainders of these divisions. This shows that $(1864)_{10}=(11101001000)_{2}$.

Computers represent numbers internally by using a series of "switches" which may be either "on" or "off". (This may be done mechanically using magnetic tape, electrical switches, or by other means.) Hence, we have two possible states for each switch. We can use "on" to represent the digit 1 and "off" to represent the digit 0 . This is why computers use binary expansions to represent integers internally.

Computers use base 8 or base 16 for display purposes. In base 16 , or hexadecimal, notation there are 16 digits, usually denoted by $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E$ and F. The letters A, B, C, D, E, and F are used to represent the digits that correspond to $10,11,12,13,14$ and 15 (written in decimal notation). We give the following example to show how to convert from hexadecimal notation to decimal notation.

Example. To convert $(A 35 B 0 F)_{16}$ we write

$$
\begin{aligned}
(A 35 B 0 F)_{16} & =10 \cdot 16^{5}+3 \cdot 16^{4}+5 \cdot 16^{3}+11 \cdot 16^{2}+0 \cdot 16+15 \\
& =(10705679)_{10} .
\end{aligned}
$$

A simple conversion is possible between binary and hexadecimal notation. We can write each hex digit as a block of four binary digits according to the correspondence given in Table 1.1.

Hex Digit	Binary Digits	Hex Digit	Binary Digits
0	0000	8	1000
1	0001	9	1001
2	0010	A	1010
3	0011	B	1011
4	0100	C	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

Table 1.1. Conversion from hex digits to blocks of binary digits.
Example. An example of conversion from hex to binary is $(2 F B 3)_{16}=$ (10111110110011$)_{2}$. Each hex digit is converted to a block of four binary digits (the initial zeros in the initial block $(0010)_{2}$ corresponding to the digit (2) ${ }_{16}$ are omitted).

To convert from binary to hex, consider (11110111101001$)_{2}$. We break this into blocks of four starting from the right. The blocks are, from right to left, $1001,1110,1101$, and 0011 (we add the initial zeros). Translating each block to hex, we obtain (3DE9) ${ }_{16}$.

We note that a conversion between two different bases is as easy as binary hex conversion, whenever one of the bases is a power of the other.

1.3 Problems

1. Convert (1999) ${ }_{10}$ from decimal to base 7 notation. Convert $(6105)_{7}$ from base 7 to decimal notation.
2. Convert (101001000$)_{2}$ from binary to decimal notation and (1984) ${ }_{10}$ from decimal to binary notation.
3. Convert $(100011110101)_{2}$ and (11101001110) ${ }_{2}$ from binary to hexadecimal.
4. Convert $(A B C D E F)_{16},(D E F A C E D)_{16}$, and $(9 A 0 B)_{16}$ from hexadecimal to binary.
5. Explain why we really are using base 1000 notation when we break large decimal integers into blocks of three digits, separated by commas.
6. a) Show that if b is a negative integer less than -1 , then every integer n can be uniquely written in the form

$$
n=a_{k} b^{k}+a_{k-1} b^{k-1}+\cdots+a_{1} b+a_{0}
$$

where $\quad a_{k} \neq 0 \quad$ and $0 \leqslant a_{j}<|b|$ for $j=0,1,2, \ldots, k$. We write $n=\left(a_{k} a_{k-1} \ldots a_{1} a_{0}\right)_{b}$, just as we do for positive bases.
b) Find the decimal representation of $(101001)_{-2}$ and (12012) $)_{-3}$.
c) Find the base -2 representations of the decimal numbers $-7,-17$, and 61 .
7. Show that any weight not exceeding $2^{k}-1$ may be measured using weights of $1,2,2^{2}, \ldots, 2^{k-1}$, when all the weights are placed in one pan.
8. Show that every integer can be uniquely represented in the form

$$
e_{k} 3^{k}+e_{k-1} 3^{k-1}+\cdots+e_{1} 3+e_{0}
$$

where $e_{j}=-1,0$, or 1 for $j=0,1,2, \ldots, k$. This expansion is called a balanced ternary expansion.
9. Use problem 8 to show that any weight not exceeding $\left(3^{k}-1\right) / 2$ may be measured using weights of $1,3,3^{2}, \ldots, 3^{k-1}$, when the weights may be placed in either pan.
10. Explain how to convert from base 3 to base 9 notation, and from base 9 to base 3 notation.
11. Explain how to convert from base r to base r^{n} notation, and from base r^{n} notation to base r notation, when $r>1$ and n are positive integers.
12. Show that if $r=\left(a_{k} a_{k-1} \ldots a_{1} a_{0}\right)_{b}$, then the quotient and remainder when n is divided by b^{j} are $q=\left(a_{k} a_{k-1} \ldots a_{j}\right)_{b}$ and $r=\left(a_{j-1} \ldots a_{1} a_{0}\right)_{b}$, respectively.
13. If the base b expansion of n is $n=\left(a_{k} a_{k-1} \ldots a_{1} a_{0}\right)_{b}$, what is the base b expansion of $b^{m} n$?
14. A Cantor expansion of a positive integer n is a sum

$$
n=a_{m} m!+a_{m-1}(m-1)!+\cdots+a_{2} 2!+a_{1} 1!
$$

where each a_{j} is an integer with $0 \leqslant a_{j} \leqslant j$.
a) Find Cantor expansions of 14,56 , and 384.
b) Show that every positive integer has a unique Cantor expansion.
15. The Chinese game of nim is played as follows. There are a number of piles of matches, each containing an arbitrary number of matches at the start of the game. A move consists of a player removing one or more matches from one of the piles. The players take turns, with the player removing the last match winning the game.

A winning position is an arrangement of matches in piles so that if a player can move to this position, then, no matter what the second player does, the first player can continue to play in a way that will win the game. An example is the position where there are two piles each containing one match; this is a winning position, because the second player must remove a match leaving the first player the opportunity to win by removing the last match.
a) Show that the position where there are two piles, each with two matches, is a winning position.
b) For each arrangement of matches into piles, write the number of matches in each pile in binary notation, and then line up the digits of these numbers into columns (adding initial zeroes if necessary to some of the numbers). Show that a position is a winning one if and only if the number of ones in each column is even (Example: Three piles of 3, 4, and 7 give

$$
\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 0
\end{array}
$$

where each column has exactly two ones).
16. Let a be an integer with a four-digit decimal expansion, with not all digits the same. Let a^{\prime} be the integer with a decimal expansion obtained by writing the digits of a in descending order, and let $a^{\prime \prime}$ be the integer with a decimal expansion obtained by writing the digits of a in ascending order. Define $T(a)=a^{\prime}-a^{\prime \prime}$. For instance, $T(7318)=8731-1378=7358$.
a) Show that the only integer with a four-digit decimal expansion with not all digits the same such that $T(a)=a$ is $a=6174$.
b) Show that if a is a positive integer with a four-digit decimal expansion with not all digits the same, then the sequence $a, T(a), T(T(a))$, $T(T(T(a))), \ldots$, obtained by iterating T, eventually reaches the integer 6174. Because of this property, 6174 is called Kaprekar's constant.
17. Let b be a positive integer and let a be an integer with a four-digit base b expansion, with not all digits the same. Define $T_{b}(a)=a^{\prime}-a^{\prime \prime}$, where a^{\prime} is the integer with base b expansion obtained by writing the base b digits of a in descending order, and let $a^{\prime \prime}$ is the integer with base b expansion obtained by writing the base b digits of a in ascending order.
a) Let $b=5$. Find the unique integer a_{0} with a four-digit base 5 expansion such that $T_{5}\left(a_{0}\right)=a_{0}$. Show that this integer a_{0} is a Kaprekar constant for the base 5 , i.e., $a, T(a), T(T(a)), T(T(T(a))), \ldots$ eventually reaches a_{0}, whenever a is an integer which a four-digit base 5 expansion with not all digits the same.
b) Show that no Kaprekar constant exists for the base 6 .

1.3 Computer Projects

Write programs to do the following:

1. Find the binary expansion of an integer from the decimal expansion of this integer and vice versa.
2. Convert from base b_{1} notation to base b_{2} notation, where b_{1} and b_{2} are arbitrary positive integers greater than one.
3. Convert from binary notation to hexadecimal notation and vice versa.
4. Find the base (-2) notation of an integer from its decimal notation (see problem $6)$.
5. Find the balanced ternary expansion of an integer from its decimal expansion (see problem 8).
6. Find the Cantor expansion of an integer from its decimal expansion (see problem 14).
7. Play a winning strategy in the game of nim (see problem 15).
8. Find the sequence $a, T(a), T(T(a)), T(T(T(a))), \ldots$ defined in problem 16 , where a is a positive integer, to discover how many iterations are needed to reach 6174.
9. Let b be a positive integer. Find the Kaprekar constant to the base b, when it exists (see problem 17).

1.4 Computer Operations with Integers

We have mentioned that computers internally represent numbers using bits, or binary digits. Computers have a built-in limit on the size of integers that can be used in machine arithmetic. This upper limit is called the word size, which we denote by w. The word size is usually a power of 2 , such as 2^{35}, although sometimes the word size is a power of 10 .

To do arithmetic with integers larger than the word size, it is necessary to devote more than one word to each integer. To store an integer $n>w$, we express n in base w notation, and for each digit of this expansion we use one computer word. For instance, if the word size is 2^{35}, using ten computer words we can store integers as large as $2^{350}-1$, since integers less than 2^{350} have no more than ten digits in their base 2^{35} expansions. Also note that to find the base 2^{35} expansion of an integer, we need only group together blocks of 35 bits.

The first step in discussing computer arithmetic with large integers is to describe how the basic arithmetic operations are methodically performed.

We will describe the classical methods for performing the basic arithmetic operations with integers in base r notation where $r>1$ is an integer. These methods are examples of algorithms.

Definition. An algorithm is a specified set of rules for obtaining a desired result from a set of input.

We will describe algorithms for performing addition, subtraction, and multiplication of two n-digit integers $a=\left(a_{n-1} a_{n-2} \ldots a_{1} a_{0}\right)_{r}$ and $b=\left(b_{n-1} b_{n-2} \ldots b_{1} b_{0}\right)_{r}$, where initial digits of zero are added if necessary to make both expansions the same length. The algorithms described are used both for binary arithmetic with integers less than the word size of a computer, and for multiple precision arithmetic with integers larger than the word size w, using w as the base.

We first discuss the algorithm for addition. When we add a and b, we obtain the sum

$$
a+b=\sum_{j=0}^{n-1} a_{j} r^{j}+\sum_{j=0}^{n-1} b_{j} r^{j}=\sum_{j=0}^{n-1}\left(a_{j}+b_{j}\right) r^{j}
$$

To find the base r expansion of the $a+b$, first note that by the division algorithm, there are integers C_{0} and s_{0} such that

$$
a_{0}+b_{0}=C_{0} r+s_{0}, 0 \leqslant s_{0}<r .
$$

Because a_{0} and b_{0} are positive integers not exceeding r, we know that $0 \leqslant a_{0}+b_{0} \leqslant 2 r-2$, so that $C_{0}=0$ or 1 ; here C_{0} is the carry to the next place. Next, we find that there are integers C_{1} and s_{1} such that

$$
a_{1}+b_{1}+C_{0}=C_{1} r+s_{1}, 0 \leqslant s_{1}<r
$$

Since $0 \leqslant a_{1}+b_{1}+C_{0} \leqslant 2 r-1$, we know that $C_{1}=0$ or 1 . Proceeding inductively, we find integers C_{i} and s_{i} for $1 \leqslant i \leqslant n-1$ by

$$
a_{i}+b_{i}+C_{i-1}=C_{i} r+s_{i}, 0 \leqslant s_{i}<r
$$

with $C_{i}=0$ or 1 . Finally, we let $s_{n}=C_{n-1}$, since the sum of two integers with n digits has $n+1$ digits when there is a carry in the nth place. We conclude that the base r expansion for the sum is $a+b=\left(s_{n} s_{n-1} \ldots s_{1} s_{0}\right)_{r}$.

When performing base r addition by hand, we can use the same familiar technique as is used in decimal addition.

Example. To add $(1101)_{2}$ and $(1011)_{2}$ we write

$$
\begin{array}{r}
111 \\
1101 \\
+1001 \\
\hline 10110
\end{array}
$$

where we have indicated carries by 1's in italics written above the appropriate column. We found the binary digits of the sum by noting that $1+1=$ $1 \cdot 2+0,0+0+1=0 \cdot 2+1,1+0+0=0 \cdot 2+1$, and $1+1=1 \cdot 2+0$.

We now turn our attention to subtraction. We consider

$$
a-b=\sum_{j=0}^{n-1} a_{j} r^{j}-\sum_{j=0}^{n-1} b_{j} r^{j}=\sum_{j=0}^{n-1}\left(a_{j}-b_{j}\right) r^{j}
$$

where we assume that $a>b$. Note that by the division algorithm, there are integers B_{0} and d_{0} such that

$$
a_{0}-b_{0}=B_{0} r+d_{0}, \quad 0 \leqslant d_{0}<r
$$

and since a_{0} and b_{0} are positive integers less than r, we have

$$
-(r-1) \leqslant a_{0}-b_{0} \leqslant r-1 .
$$

When $a_{0}-b_{0} \geqslant 0$, we have $B_{0}=0$. Otherwise, when $a_{0}-b_{0}<0$, we have $B_{0}=-1 ; B_{0}$ is the borrow from the next place of the base r expansion of a. We use the division algorithm again to find integers B_{1} and d_{1} such that

$$
a_{1}-b_{1}+B_{0}=B_{1} r+d_{1}, \quad 0 \leqslant d_{1}<r .
$$

From this equation, we see that the borrow $B_{1}=0$ as long as $a_{1}-b_{1}+B_{0}$ $\geqslant 0$, and $B_{1}=-1$ otherwise, since $-r \leqslant a_{1}-b_{1}+B_{0} \leqslant r-1$. We proceed inductively to find integers B_{i} and d_{i}, such that

$$
a_{i}-b_{i}+B_{i-1}=B_{i} r+d_{i}, 0 \leqslant d_{i}<r
$$

with $B_{i}=0$ or -1 , for $1 \leqslant i \leqslant n-2$. We see that $B_{n-1}=0$, since $a>b$. We can conclude that

$$
a-b=\left(d_{n-1} d_{n-2} \ldots d_{1} d_{0}\right)_{r}
$$

When performing base r subtraction by hand, we use the same familiar technique as is used in decimal subtraction.

Example. To subtract $(10110)_{2}$ from $(11011)_{2}$, we have

$$
\begin{aligned}
& -1 \\
& 11011 \\
& \text { - } 10110
\end{aligned}
$$

where the -1 in italics above a column indicates a borrow. We found the binary digits of the difference by noting that $1-0=0 \cdot 2+1$, $1-1=0 \cdot 2+0, \quad 0-1=-1 \cdot 2+1, \quad 1-0-1=0 \cdot 2+0$, and $1-1=$ $0 \cdot 2+0$.

Before discussing multiplication, we describe shifting. To multiply $\left(a_{n-1} \ldots a_{1} a_{0}\right)_{r}$ by r^{m}, we need only shift the expansion left m places, appending the expansion with m zero digits.

Example. To multiply $(101101)_{2}$ by 2^{5}, we shift the digits to the left five places and append the expansion with five zeros, obtaining (10110100000) ${ }_{2}$.

To deal with multiplication, we first discuss the multiplication of an n-place integer by a one-digit integer. To multiply $\left(a_{n-1} \ldots a_{1} a_{0}\right)_{r}$ by $(b)_{r}$, we first note that

$$
a_{0} b=q_{0} r+p_{0}, \quad 0 \leqslant p_{0}<r
$$

and $0 \leqslant q_{0} \leqslant r-1$, since $0 \leqslant a_{0} b \leqslant(r-1)^{2}$. Next, we have

$$
a_{1} b+q_{0}=q_{1} r+p_{1,}, 0 \leqslant p_{1}<r,
$$

and $0 \leqslant q_{1} \leqslant r-1$. In general, we have

$$
a_{i} b+q_{i-1}=q_{i} r+p_{i}, \quad 0 \leqslant p_{i} \leqslant r
$$

and $0 \leqslant q_{i} \leqslant r-1$. Furthermore, we have $p_{n}=q_{n-1}$. This yields $\left(a_{n-1} \ldots a_{1} a_{0}\right)_{r}(b)_{r}=\left(p_{n} p_{n-1} \ldots p_{1} p_{0}\right)_{r}$.

To perform a multiplication of two n-place integers we write

$$
a b=a\left(\sum_{j=1}^{n-1} b_{j} r^{j}\right)=\sum_{j=0}^{n-1}\left(a b_{j}\right) r^{j}
$$

For each j, we first multiply a by the digit b_{j}, then shift to the left j places, and finally add all of the n integers we have obtained to find the product.

When multiplying two integers with base r expansions, we use the familiar method of multiplying decimal integers by hand.

Example. To multiply $(1101)_{2}$ and $(1110)_{2}$ we write

			1	1	0	1
			\times	1	1	1

Note that we first multiplied (1101) 2 by each digit of $(1110)_{2}$, shifting each time by the appropriate number of places, and then we added the appropriate integers to find our product.

We now discuss integer division. We wish to find the quotient q in the division algorithm

$$
a=b q+R, \quad 0 \leqslant R<b
$$

If the base r expansion of q is $q=\left(q_{n-1} q_{n-2} \ldots q_{1} q_{0}\right)_{r}$, then we have

$$
a=b\left(\sum_{j=0}^{n-1} q_{j} r^{j}\right)+R, 0 \leqslant R<b
$$

To determine the first digit q_{n-1} of q, notice that

$$
a-b q_{n-1} r^{n-1}=b\left(\sum_{j=0}^{n-2} q_{j} r^{j}\right)+R
$$

The right-hand side of this equation is not only positive, but also it is less than $b r^{n-1}$, since $\sum_{j=0}^{n-2} q_{j} r^{j} \leqslant r^{n-1}-1$. Therefore, we know that

$$
0 \leqslant a-b q_{n-1} r^{n-1}<b r^{n-1}
$$

This tells us that

$$
q_{n-i} \leq \frac{a}{b_{i}{ }^{n-i}}
$$

$$
\begin{gathered}
o \leq \frac{a}{b n_{n}^{n-1}}-q_{n-1}<1 \\
q_{n-1}=\left[a / b r^{n-1}\right]
\end{gathered}
$$

We can obtain q_{n-1} by successively subtracting $b r^{n-1}$ from a until a negative result is obtained, and then q_{n-1} is one less than the number of subtractions.

To find the other digits of q, we define the sequence of partial remainders R_{i} by

$$
R_{0}=a
$$

and

$$
R_{i}=R_{i-1}-b q_{n-i} r^{n-i}
$$

for $i=1,2, \ldots, n$. By mathematical induction, we show that

$$
\begin{equation*}
R_{i}=\left(\sum_{j=0}^{n-i-1} q_{j} r^{j}\right) b+R \tag{1.5}
\end{equation*}
$$

For $i=0$, this is clearly correct, since $R_{0}=a=q b+R$. Now assume that

$$
R_{k}=\left(\sum_{j=0}^{n-k-1} q_{j} r^{j}\right) b+R
$$

Then

$$
\begin{aligned}
R_{k+1} & =R_{k}-b q_{n-k-1} r^{n-k-1} \\
& =\left(\sum_{j=0}^{n-k-1} q_{j} r^{j}\right) b+R-b q_{n-k-1} r^{n-k-1} \\
& =\left(\sum_{j=0}^{n-(k+1)-1} q_{j} r^{j}\right) b+R
\end{aligned}
$$

establishing (1.5).
From (1.5), we see that $0 \leqslant R_{i}<r^{n-i} b$, for $i=1,2, \ldots, n$, since $\sum_{j=0}^{n-i-1} q_{j} b^{j} \leqslant b^{n-i}-1$. Consequently, since $R_{i}=R_{i-1}-b q_{n-i} r^{n-i}$ and $0 \leqslant R_{i}<r^{n-1} b$, we see that the digit q_{n-i} is given by [$R_{i-1} / b r^{n-i}$] and can be obtained by successively subtracting $b r^{n-i}$ from R_{i-1} until a negative result is obtained, and then q_{n-i} is one less than the number of subtractions. This is how we find the digits of q.

Example. To divide $(11101)_{2}$ by $(111)_{2}$, we let $q=\left(q_{2} q_{1} q_{0}\right)_{2}$. We subtract $2^{2}(111)_{2}=(11100)_{2}$ once from $(11101)_{2}$ to obtain (1) $)_{2}$, and once more to obtain a negative result, so that $q_{2}=1$. Now $R_{1}=(11101)_{2}-(11100)_{2}=$ (1) $)_{2}$. We find that $q_{1}=0$, since $R_{1}-2(111)_{2}$ is less than zero, and likewise $q_{2}=0$. Hence the quotient of the division is $(100)_{2}$ and the remainder is $(1)_{2}$

We will be interested in discussing how long it takes a computer to perform calculations. We will measure the amount of time needed in terms of bit operations. By a bit operation we mean the addition, subtraction, or multiplication of two binary digits, the division of a two-bit integer by one-bit, or the shifting of a binary integer one place. When we describe the number of bit operations needed to perform an algorithm, we are describing the computational complexity of this algorithm.

In describing the number of bit operations needed to perform calculations we will use big-O notation.

Definition. If f and g are functions taking positive values, defined for all x in a set S, then we say f is $O(g)$ if there is a positive constant K such that $f(x)<\operatorname{Kg}(x)$ for all x in the set S.

Proposition 1.6. If f is $O(g)$ and c is a positive constant, then $c f$ is $O(g)$.
Proof. If f is $O(g)$, then there is a constant K such that $f(x)<K g(x)$ for all x under consideration. Hence $c f(x)<(c K) g(x)$. Therefore, $c f$ is $O(g)$.

Proposition 1.7. If f_{1} is $O\left(g_{1}\right)$ and f_{2} is $O\left(g_{2}\right)$, then $f_{1}+f_{2}$ is $O\left(g_{1}+g_{2}\right)$ and $f_{1} f_{2}$ is $O\left(g_{1} g_{2}\right)$.

Proof. If f is $O\left(g_{1}\right)$ and f_{2} is $O\left(g_{2}\right)$, then there are constants K_{1} and K_{2} such that $f_{1}(x)<K_{1} g_{1}(x)$ and $f_{2}(x)<K_{2} g_{2}(x)$ for all x under consideration. Hence

$$
\begin{aligned}
f_{1}(x)+f_{2}(x) & \leqslant K_{1} g_{1}(x)+K_{2} g_{2}(x) \\
& \leqslant K\left(g_{1}(x)+g_{2}(x)\right)
\end{aligned}
$$

where K is the maximum of K_{1} and K_{2}. Hence $f_{1}+f_{2}$ is $O\left(g_{1}+g_{2}\right)$.
Also

$$
\begin{aligned}
f_{1}(x) f_{2}(x) & \leqslant K_{1} g_{1}(x) K_{2} g_{2}(x) \\
& =\left(K_{1} K_{2}\right)\left(g_{1}(x) g_{2}(x)\right),
\end{aligned}
$$

so that $f_{1} f_{2}$ is $O\left(g_{1} g_{2}\right)$.
Corollary 1.2. If f_{1} and f_{2} are $O(g)$, then $f_{1}+f_{2}$ is $O(g)$.
Proof. Proposition 1.7 tells us that $f_{1}+f_{2}$ is $O(2 g)$. But if $f_{1}+f_{2} \leqslant K(2 g)$, then $f_{1}+f_{2} \leqslant(2 K) g$, so that $f_{1}+f_{2}$ is $O(g)$.

Using the big- O notation we can see that to add or subtract two n-bit integers takes $O(n)$ bit operations, while to multiply two n-bit integers in the conventional way takes $O\left(n^{2}\right)$ bit operations (see problems 16 and 17 at the end of this section). Surprisingly, there are faster algorithms for multiplying large integers. To develop one such algorithm, we first consider the multiplication of two $2 n$-bit integers, say $a=\left(a_{2 n-1} a_{2 n-2} \ldots a_{1} a_{0}\right)_{2}$ and $b=\left(b_{2 n-1} b_{2 n-2} \ldots b_{1} b_{0}\right)_{2}$. We write $a=2^{n} A_{1}+A_{0}$ and $b=2^{n} B_{1}+B_{0}$, where
$A_{1}=\left(a_{2 n-1} a_{2 n-2 \ldots} a_{n+1} a_{n}\right)_{2}, \quad A_{0}=\left(a_{n-1} a_{n-2} \ldots a_{1} a_{0}\right)_{2, \quad B}=\left(b_{2 n-1} b_{2 n-2} \ldots b_{n+1}\right.$ $\left.b_{n}\right)_{2}$, and $B_{0}=\left(b_{n-1} b_{n-2} \ldots b_{1} b_{0}\right)_{2}$. We will use the identity

$$
\begin{equation*}
a b=\left(2^{2 n}+2^{n}\right) A_{1} B_{1}+2^{n}\left(A_{1}-A_{0}\right)\left(B_{0}-B_{1}\right)+\left(2^{n}+1\right) A_{0} B_{0} \tag{1.6}
\end{equation*}
$$

To find the product of a and b using (1.6), requires that we perform three multiplications of n-bit integers (namely $A_{1} B_{1},\left(A_{1}-A_{0}\right)\left(B_{0}-B_{1}\right)$, and $A_{0} B_{0}$, as well as a number of additions and shifts. If we let $M(n)$ denote the number of bit operations needed to multiply two n-bit integers, we find from (1.6) that

$$
\begin{equation*}
M(2 n) \leqslant 3 M(n)+C n \tag{1.7}
\end{equation*}
$$

where C is a constant, since each of the three multiplications of n-bit integers takes $M(n)$ bit operations, while the number of additions and shifts needed to compute $a \cdot b$ via (1.6) does not depend on n, and each of these operations takes $O(n)$ bit operations.

From (1.7), using mathematical induction, we can show that

$$
\begin{equation*}
M\left(2^{k}\right) \leqslant c\left(3^{k}-2^{k}\right) \tag{1.8}
\end{equation*}
$$

where c is the maximum of the quantities $M(2)$ and C (the constant in (1.7)). To carry out the induction argument, we first note that with $k=1$, we have $M(2) \leqslant c\left(3^{1}-2^{1}\right)=c$, since c is the maximum of $M(2)$ and C.

As the induction hypothesis, we assume that

$$
M\left(2^{k}\right) \leqslant c\left(3^{k}-2^{k}\right)
$$

Then, using (1.7), we have

$$
\begin{aligned}
M\left(2^{k+1}\right) & \leqslant 3 M\left(2^{k}\right)+C 2^{k} \\
& \leqslant 3 c\left(3^{k}-2^{k}\right)+C 2^{k} \\
& \leqslant c 3^{k+1}-c \cdot 3 \cdot 2^{k}+c 2^{k} \\
& \leqslant c\left(3^{k+1}-2^{k+1}\right)
\end{aligned}
$$

This establishes that (1.8) is valid for all positive integers k.
Using inequality (1.8), we can prove the following theorem.
Theorem 1.4. Multiplication of two n-bit integers can be performed using $O\left(n^{\log _{2} 3}\right)$ bit operations. (Note: $\log _{2} 3$ is approximately 1.585 , which is
considerably less than the exponent 2 that occurs in the estimate of the number of bit operations needed for the conventional multiplication algorithm.)

Proof. From (1.8) we have

$$
\begin{aligned}
M(n)= & M\left(2^{\log _{2} n}\right) \leqslant M\left(2^{\left[\log _{2} n\right]+1}\right) \\
& \leqslant c\left(3^{\left[\log _{2} n\right]+1}-2^{\left[\log _{2} n\right]+1}\right) \\
& \leqslant 3 c \cdot 3^{\left[\log _{2} n\right]} \leqslant 3 c \cdot 3^{\log _{2} n}=3 c n^{\log _{2} 3} \\
& \left(\text { since } 3^{\log _{2} n}=n^{\log _{2} 3}\right) .
\end{aligned}
$$

Hence, $M(n)=O\left(n^{\log _{2} 3}\right)$.
We now state, without proof, two pertinent theorems. Proofs may be found in Knuth [56] or Kronsjö [58].

Theorem 1.5. Given a positive number $\epsilon>0$, there is an algorithm for multiplication of two n-bit integers using $O\left(n^{1+\epsilon}\right)$ bit operations.

Note that Theorem 1.4 is a special case of Theorem 1.5 with $\epsilon=\log _{2} 3-1$, which is approximately 0.585 .

Theorem 1.6. There is an algorithm to multiply two n-bit integers using $O\left(n \log _{2} n \log _{2} \log _{2} n\right)$ bit operations.

Since $\log _{2} n$ and $\log _{2} \log _{2} n$ are much smaller than n^{ϵ} for large numbers n, Theorem 1.6 is an improvement over Theorem 1.5. Although we know that $M(n)=O\left(n \log _{2} n \log _{2} \log _{2} n\right)$, for simplicity we will use the obvious fact that $M(n)=O\left(n^{2}\right)$ in our subsequent discussions.

The conventional algorithm described above performs a division of a $2 n$-bit integer by an n-bit integer with $O\left(n^{2}\right)$ bit operations. However, the number of bit operations needed for integer division can be related to the number of bit operations needed for integer multiplication. We state the following theorem, which is based on an algorithm which is discussed in Knuth [56].

Theorem 1.7. There is an algorithm to find the quotient $q=[a / b]$, when the $2 n$-bit integer a is divided by the integer b having no more than n bits, using $O(M(n))$ bit operations, where $M(n)$ is the number of bit operations needed to multiply two n-bit integers.

1.4 Problems

1. Add $(101111011)_{2}$ and $(1100111011)_{2}$.
2. Subtract $(101110101)_{2}$ from $(1101101100)_{2}$.
3. Multiply $(11101)_{2}$ and $(110001)_{2}$.
4. Find the quotient and remainder when $(110100111)_{2}$ is divided by $(11101)_{2}$.
5. Add $(A B A B)_{16}$ and $(B A B A)_{16}$.
6. Subtract $(C A F E)_{16}$ from (FEED) $)_{16}$.
7. Multiply $(F A C E)_{16}$ and $(B A D)_{16}$.
8. Find the quotient and remainder when $(B E A D E D)_{16}$ is divided by $(A B B A)_{16}$.
9. Explain how to add, subtract, and multiply the integers 18235187 and 22135674 on a computer with word size 1000 .
10. Write algorithms for the basic operations with integers in base (-2) notation (see problem 6 of Section 1.3).
11. Give an algorithm for adding and an algorithm for subtracting Cantor expansions (see problem 14 of Section 1.3).
12. Show that if f_{1} and f_{2} are $O\left(g_{1}\right)$ and $O\left(g_{2}\right)$, respectively, and c_{1} and c_{2} are constants, then $c_{1} f_{1}+c_{2} f_{2}$ is $O\left(g_{1}+g_{2}\right)$.
13. Show that if f is $O(g)$, then f^{k} is $O\left(g^{k}\right)$ for all positive integers k.
14. Show that a function f is $O\left(\log _{2} n\right)$ if and only if f is $O\left(\log _{r} n\right)$ whenever $r>1$. (Hint: Recall that $\log _{a} n / \log _{b} n=\log _{a} b$.)
15. Show that the base b expansion of a positive integer n has $\left[\log _{b} n\right]+1$ digits.
16. Analyzing the algorithms for subtraction and addition, show that with n-bit integers these operations require $O(n)$ bit operations.
17. Show that to multiply an n-bit and an m-bit integer in the conventional manner requires $O(n m)$ bit operations.
18. Estimate the number of bit operations needed to find $1+2+\cdots+n$
a) by performing all the additions.
b) by using the identity $1+2+\cdots+n=n(n+1) / 2$, and multiplying and shifting.
19. Give an estimate for the number of bit operations needed to find
a) n !
b) $\binom{n}{k}$.
20. Give an estimate of the number of bit operations needed to find the binary expansion of an integer from its decimal expansion.
21. a) Show there is an identity analogous to (1.6) for decimal expansions.
b) Using part (a), multiply 73 and 87 performing only three multiplications of one-digit integers, plus shifts and additions.
c) Using part (a), reduce the multiplication of 4216 and 2733 to three multiplications of two-digit integers, plus shifts and additions, and then using part (a) again, reduce each of the multiplications of two-digit integers into three multiplications of one-digit integers, plus shifts and additions. Complete the multiplication using only nine multiplications of one-digit integers, and shifts and additions.
22. a) If A and B are $n \times n$ matrices, with entries $a_{i j}$ and $b_{i j}$ for $1 \leqslant i \leqslant n$, $1 \leqslant j \leqslant n$, then $A B$ is the $n \times n$ matrix with entries $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$. Show that n^{3} multiplications of integers are used to find $A B$ directly from its definition.
b) Show it is possible to multiply two 2×2 matrices using only seven multiplications of integers by using the identity

$$
\begin{aligned}
& \left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)= \\
& \left(\begin{array}{cc}
a_{11} b_{11}+a_{12} b_{21} & x+\left(a_{21}+a_{22}\right)\left(b_{12}-b_{11}\right)+ \\
& \left(a_{11}+a_{12}-a_{21}-a_{22}\right) b_{22} \\
x+\left(a_{11}-a_{21}\right)\left(b_{22}-b_{12}\right)- & x+\left(a_{11}-a_{21}\right)\left(b_{22}-b_{12}\right)+ \\
a_{22}\left(b_{11}-b_{21}-b_{12}+b_{22}\right) & \left(a_{21}+a_{22}\right)\left(b_{12}-b_{11}\right)
\end{array}\right)
\end{aligned}
$$

where $x=a_{11} b_{11}-\left(a_{11}-a_{21}-a_{22}\right)\left(b_{11}-b_{12}+b_{22}\right)$.
c) Using an inductive argument, and splitting $2 n \times 2 n$ matrices into four $n \times n$ matrices, show that it is possible to multiply two $2^{k} \times 2^{k}$ matrices using only 7^{k} multiplications, and less than 7^{k+1} additions.
d) Conclude from part (c) that two $n \times n$ matrices can be multiplied using $O\left(n^{\log _{2} 7}\right)$ bit operations when all entries of the matrices have less than c bits, where c is a constant.
23. A dozen equals 12 and a gross equals 12^{2}. Using base 12 , or duodecimal, arithmetic answer the following questions.
a) If 3 gross, 7 dozen, and 4 eggs are removed from a total of 11 gross and 3 dozen eggs, how many eggs are left?
b) If 5 truckloads of 2 gross, 3 dozen, and 7 eggs each are delivered to the supermarket, how many eggs were delivered?
c) If 11 gross, 10 dozen and 6 eggs are divided in 3 groups of equal size, how many eggs are in each group?
24. A well-known rule used to find the square of an integer with decimal expansion ($a_{n-1} \ldots a_{1} a_{0}$) 10 with final digit $a_{0}=5$ is to find the decimal expansion of the product $\left(a_{n} a_{n-1} \ldots a_{1}\right)_{10}\left[\left(a_{n} a_{n-1} \ldots a_{1}\right)_{10}+1\right]$ and append this with the digits $(25)_{10}$. For instance, we see that the decimal expansion of $(165)^{2}$ begins with $16 \cdot 17=272$, so that $(165)^{2}=27225$. Show that the rule just described is valid.
25. In this problem, we generalize the rule given in problem 24 to find the squares of integers with final base $2 B$ digit B, where B is a positive integer. Show that the base $2 B$ expansion of the integer $\left(a_{n} a_{n-1} \ldots a_{1} a_{0}\right)_{2 B}$ starts with the digits of the base $2 B$ expansion of the integer $\left(a_{n} a_{n-1} \ldots a_{1} a_{0}\right)_{2 B}\left[\left(a_{n} a_{n-1} \ldots a_{1} a_{0}\right)_{2 B}+1\right]$ and ends with the digits $B / 2$ and 0 when B is even, and the digits $(B-1) / 2$ and B when B is odd.

1.4 Computer Projects

Write programs to do the following:

1. Perform addition with arbitrarily large integers.
2. Perform subtraction with arbitrarily large integers.
3. Multiply two arbitrarily large integers using the conventional algorithm.
4. Multiply two arbitrarily large integers using the identity (1.6).
5. Divide arbitrarily large integers, finding the quotient and remainder.
6. Multiply two $n \times n$ matrices using the algorithm discussed in problem 22 .

1.5 Prime Numbers

The positive integer 1 has just one positive divisor. Every other positive integer has at least two positive divisors, because it is divisible by 1 and by itself. Integers with exactly two positive divisors are of great importance in number theory; they are called primes.

Definition. A prime is a positive integer greater than 1 that is divisible by no positive integers other than 1 and itself.

Example. The integers $2,3,5,13,101$ and 163 are primes.
Definition. A positive integer which is not prime, and which is not equal to 1 , is called composite.

Example. The integers $4=2 \cdot 2,8=4 \cdot 2, \quad 33=3 \cdot 11,111=3 \cdot 37$, and $1001=7 \cdot 11 \cdot 13$ are composite.

The primes are the building blocks of the integers. Later, we will show that every positive integer can be written uniquely as the product of primes.

Here, we briefly discuss the distribution of primes and mention some conjectures about primes. We start by showing that there are infinitely many primes. The following lemma is needed.

Lemma 1.1. Every positive integer greater than one has a prime divisor.
Proof. We prove the lemma by contradiction; we assume that there is a positive integer having no prime divisors. Then, since the set of positive integers with no prime divisors is non-empty, the well-ordering property tells us that there is a least positive integer n with no prime divisors. Since n has no prime divisors and n divides n, we see that n is not prime. Hence, we can write $n=a b$ with $1<a<n$ and $1<b<n$. Because $a<n, a$ must have a prime divisor. By Proposition 1.3, any divisor of a is also a divisor of n, so that n must have a prime divisor, contradicting the fact that n has no prime divisors. We can conclude that every positive integer has at least one prime divisor.

We now show that the number of primes is infinite.
Theorem 1.8. There are infinitely many primes.

Proof. Consider the integer

$$
Q_{n}=n!+1, \quad n \geqslant 1 .
$$

Lemma 1.1. tells us that Q_{n} has at least one prime divisor, which we denote by q_{n}. Thus, q_{n} must be larger than n; for if $q_{n} \leqslant n$, it would follow that $q_{n} \mid n!$, and then, by Proposition $1.4, q_{n} \mid\left(Q_{n}-n!\right)=1$, which is impossible.

$$
p=19
$$

Since we have found a prime larger than n, for every positive integer n, there must be infinitely many primes.

Later on we will be interested in finding, and using, extremely large primes. We will be concerned throughout this book with the problem of determining whether a given integer is prime. We first deal with this question by showing that by trial divisions of n by primes not exceeding the square root of n, we can find out whether n is prime.

Theorem 1.9. If n is a composite integer, then n has a prime factor not exceeding \sqrt{n}.

Proof. Since n is composite, we can write $n=a b$, where a and b are integers with $1<a \leqslant b<n$. We must have $a \leqslant \sqrt{n}$, since otherwise $b \geqslant a>\sqrt{n}$ and $a b>\sqrt{n} \cdot \sqrt{n}=n$. Now, by Lemma 1.1, a must have a prime divisor, which by Proposition 1.3 is also a divisor of a and which is clearly less than or equal to \sqrt{n}.

We can use Theorem 1.9 to find all the primes less than or equal to a given positive integer n. This procedure is called the sieve of Eratosthenes. We illustrate its use in Figure 1.2 by finding all primes less than 100. We first note that every composite integer less than 100 must have a prime factor less than $\sqrt{100}=10$. Since the only primes less than 10 are $2,3,4$, and 7 , we only need to check each integer less than 100 for divisibility by these primes. We first cross out, below by a horizontal slash - , all multiples of 2. Next we cross out with a slash / those integers remaining that are multiples of 3. Then all multiples of 5 that remain are crossed out, below by a backslash \backslash. Finally, all multiples of 7 that are left are crossed out, below with a vertical slash \mid. All remaining integers (other than 1) must be prime.

Figure 1.2. Finding the Primes Less Than 100 Using the Sieve of Eratosthenes.
Although the sieve of Eratosthenes produces all primes less than or equal to a fixed integer, to determine whether a particular integer n is prime in this manner, it is necessary to check n for divisibility by all primes not exceeding \sqrt{n}. This is quite inefficient; later on we will have better methods for deciding whether or not an integer is prime.

We know that there are infinitely many primes, but can we estimate how many primes there are less than a positive real number x ? One of the most famous theorems of number theory, and of all mathematics, is the prime number theorem which answers this question. To state this theorem, we introduce some notation.

Definition. The function $\pi(x)$, where x is a positive real number, denotes the number of primes not exceeding x.

Example. From our example illustrating the sieve of Eratosthenes, we see that $\pi(10)=4$ and $\pi(100)=25$.

We now state the prime number theorem.
The Prime Number Theorem. The ratio of $\pi(x)$ to $x / \log x$ approaches one as x grows without bound. (Here $\log x$ denotes the natural logarithm of x. In the language of limits, we have $\lim _{x \rightarrow \infty} \pi(x) / \frac{x}{\log x}=1$).

The prime number theorem was conjectured by Gauss in 1793, but it was not proved until 1896, when a French mathematician J. Hadamard and a Belgian mathematician C. J. de la Vallée-Poussin produced independent proofs. We will not prove the prime number theorem here; the various proofs known are either quite complicated or rely on advanced mathematics. In Table 1.1 we give some numerical evidence to indicate the validity of the theorem.

x	$\pi(x)$	$x / \log x$	$\pi(x) / \frac{x}{\log x}$	$l i(x)$	$\pi(x) / l i(x)$
10^{3}	168	144.8	1.160	178	0.9438202
10^{4}	1229	1085.7	1.132	-7	1246
10^{5}	9592	8685.9	1.104	9630	0.9863563
10^{6}	78498	72382.4	1.085	78628	0.99834466
10^{7}	664579	620420.7	1.071	664918	0.9998944
10^{8}	5761455	5428681.0	1.061	5762209	0.9998691
10^{9}	50847534	48254942.4	1.054	50849235	0.9999665
10^{10}	455052512	434294481.9	1.048	455055614	0.9999932
10^{11}	4118054813	3948131663.7	1.043	4118165401	0.9999731
10^{12}	37607912018	36191206825.3	1.039	37607950281	0.9999990
10^{13}	346065535898	334072678387.1	1.036	346065645810	0.9999997

Table 1.1. Approximations to $\pi(x)$.
$x / \ln x$
The prime number theorem tells us that $x / \log x$ is a good approximation to $\pi(x)$ when x is large. It has been shown that an even better approximation is given by
$P N T: \lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \operatorname{lax} x}=1 \quad l i(x)=\int_{2}^{x} \frac{d t}{\log t}$
(where $\int_{2}^{x} \frac{d t}{\log t}$ represents the area under the curve $y=1 / \log t$, and above the t-axis from $t=2$ to $t=x)$. In Table 1.1, one sees evidence that $l i(x)$ is an excellent approximation of $\pi(x)$.
Demons: $\lim _{x \rightarrow \infty} \frac{\pi(x)}{x}=\lim _{x \rightarrow \infty} \frac{1}{\log x}=0$

We can now estimate the number of bit operations needed to show that an integer n is prime by trial divisions of n by all primes not exceeding \sqrt{n}. The prime number theorem tells us that there are approximately $\sqrt{n} / \log \sqrt{n}=2 \sqrt{n} / \log n$ primes not exceeding \sqrt{n}. To divide n by an integer m takes $O\left(\log _{2} n \cdot \log _{2} m\right)$ bit operations. Therefore, the number of bit operations needed to show that n is prime by this method is at least $(2 \sqrt{n} / \log n)\left(c \log _{2} n\right)=c \sqrt{n}$ (where we have ignored the $\log _{2} m$ term since it is at least 1 , even though it sometimes is as large as $\left.\left(\log _{2} n\right) / 2\right)$. This method of showing that an integer n is prime is very inefficient, for not only is it necessary to know all the primes not larger than \sqrt{n}, but it is also necessary to do at least a constant multiple of \sqrt{n} bit operations. Later on we will have more efficient methods of showing that an integer is prime.

We remark here that it is not necessary to find all primes not exceeding x in order to compute $\pi(x)$. One way that $\pi(x)$ can be evaluated without finding all the primes less then x is to use a counting argument based on the sieve of Eratosthenes (see problem 13). (Recently, very efficient ways of finding $\pi(x)$ using $O\left(x^{3 / 5+\epsilon}\right)$ bit operations have been devised by Lagarias and Odlyzko [69].)

We have shown that there are infinitely many primes and we have discussed the abundance of primes below a given bound x, but we have yet to discuss how regularly primes are distributed throughout the positive integers. We first give a result that shows that there are arbitrarily long runs of integers containing no primes.

Proposition 1.8. For any positive integer n, there are at least n consecutive composite positive integers.

Proof. Consider the n consecutive positive integers

$$
(n+1)!+2,(n+1)!+3, \ldots,(n+1)!+n+1
$$

When $2 \leqslant j \leqslant n+1$, we know that $j \mid(n+1)$!. By Proposition 1.4, it follows that $j \mid(n+1)!+j$. Hence, these n consecutive integers are all composite.

Example. The seven consecutive integers beginning with $8!+2=40322$ are all composite. (However, these are much larger than the smallest seven consecutive composites, $90,91,92,93,94,95$, and 96.)

Proposition 1.8 shows that the gap between consecutive primes is arbitrarily long. On the other hand, primes may often be close together. The only consecutive primes are 2 and 3, because 2 is the only even prime. However, many pairs of primes differ by two; these pairs of primes are called twin primes. Examples are the primes 5 and 7,11 and 13, 101 and 103, and 4967 and 4969. A famous unsettled conjecture asserts that there are infinitely many twin primes.

There are a multitude of conjectures concerning the number of primes of various forms. For instance, it is unknown whether there are infinitely many primes of the form $n^{2}+1$ where n is a positive integer. Questions such as this may be easy to state, but are sometimes extremely difficult to resolve.

We conclude this section by discussing perhaps the most notorious conjecture about primes.

Goldbach's Conjecture. Every even positive integer greater than two can be written as the sum of two primes.

This conjecture was stated by Christian Goldbach in a letter to Euler in 1742. It has been verified for all even integers less than a million. One sees by experimentation, as the following example illustrates, that usually there are many sums of two primes equal to a particular integer, but a proof that there always is at least one such sum has not yet been found.

Example. The integers 10,24 , and 100 can be written as the sum of two primes in the following ways:

$$
\begin{aligned}
10 & =3+7=5+5 \\
24 & =5+19=7+17=11+13 \\
100 & =3+97=11+89=17+83 \\
& =29+71=41+59=47+53
\end{aligned}
$$

1.5 Problems

1. Determine which of the following integers are primes
a) 101
b) 103
c) 107
d) 111
e) 113
f) $\quad 121$.
2. Use the sieve of Eratosthenes to find all primes less than 200.
3. Find all primes that are the difference of the fourth powers of two integers.
4. Show that no integer of the form $n^{3}+1$ is a prime, other than $2=1^{3}+1$.
5. Show that if a and n are positive integers such that $a^{n}-1$ is prime, then $a=2$ and n is prime. (Hint: Use the identity $a^{k \ell}-1=\left(a^{k}-1\right)\left(a^{k(\varphi-1)}+\right.$ $\left.a^{k(Q-2)}+\cdots+a^{k}+1\right)$.
6. In this problem, another proof of the infinitude of primes is given. Assume there are only finitely many primes $p_{1}, p_{2}, \ldots, p_{n}$. Form the integer $Q=p_{1} p_{2} \cdots p_{n}+1$. Show that Q has a prime factor not in the above list. Conclude that there are infinitely many primes.
7. Let $Q_{n}=p_{1} p_{2} \cdots p_{n}+1$ where $p_{1}, p_{2}, \ldots, p_{n}$ are the n smallest primes. Determine the smallest prime factor of Q_{n} for $n=1,2,3,4,5$, and 6. Do you think Q_{n} is prime infinitely often? (This is an unresolved question.)
8. Let $p_{1}, p_{2}, \ldots, p_{n}$ be the first n primes and let m be an integer with $1<m<n$. Let Q be the product of a set of m primes in the list and let R be the product of the remaining primes. Show that $Q+R$ is not divisible by any primes in the list, and hence must have a prime factor not in the list. Conclude that there are infinitely many primes.
9. Show that if the smallest prime factor p of the positive integer n exceeds $\sqrt[3]{n}$ then n / p must be prime or 1 .
10. a) Find the smallest five consecutive composite integers.
b) Find one million consecutive composite integers.
11. Show that there are no "prime triplets", i.e. primes $p, p+2$, and $p+4$, other than 3,5 , and 7.
12. Show that every integer greater than 11 is the sum of two composite integers.
13. Use the principle of inclusion-exclusion (problem 17 of Section 1.1) to show that

$$
\begin{aligned}
\pi(n)= & (\pi(\sqrt{n})-1)-n-\left[\left[\frac{n}{p_{1}}\right]+\left[\frac{n}{p_{2}}\right]+\cdots+\left[\frac{n}{p_{r}}\right]\right) \\
& +\left(\left[\frac{n}{p_{1} p_{2}}\right]+\left[\frac{n}{p_{1} p_{3}}\right]+\cdots+\left[\frac{n}{p_{r-1} p_{r}}\right]\right) \\
& -\left(\left[\frac{n}{p_{1} p_{2} p_{3}}\right]+\left[\frac{n}{p_{1} p_{2} p_{4}}\right]+\cdots+\left[\frac{n}{p_{r-2} p_{r-1} p_{r}}\right]\right)+\cdots,
\end{aligned}
$$

where $p_{1}, p_{2}, \ldots, p_{r}$ are the primes less than or equal to \sqrt{n} (with $r=\pi(\sqrt{n})$). (Hint: Let property P_{i}, \ldots, i_{j}, be the property that an integer is divisible by all of
p_{i}, \ldots, p_{i}, and use problem 23 of Section 1.2.)
14. Use problem 13 to find $\pi(250)$.
15. a) Show that the polynomial $x^{2}-x+41$ is prime for all integers x with $0 \leqslant x \leqslant 40$. Show, however, that it is composite for $x=41$.
b) Show that if $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ where the coefficients are integers, then there is an integer y such that $f(y)$ is composite. (Hint: Assume that $f(x)=p$ is prime, and show p divides $f(x+k p)$ for all integers k. Conclude from the fact that a polynomial of degree n takes on each value at most n times, that there is an integer y such that $f(y)$ is composite.)
16. The lucky numbers are generated by the following sieving process. Start with the positive integers. Begin the process by crossing out every second integer in the list, starting your count with the integer 1 . Other than 1 the smallest integer left is 3 , so we continue by crossing out every third integer left, starting the count with the integer 1. The next integer left is 7 , so we cross out every seventh integer left. Continue this process, where at each stage we cross out every k th integer left where k is the smallest integer left other than one. The integers that remain are the lucky numbers.
a) Find all lucky numbers less than 100 .
b) Show that there are infinitely many lucky numbers.
17. Show that if p is prime and $1 \leqslant k<p$, then the binomial coefficient $\binom{p}{k}$ is
divisible by p divisible by p.

1.5 Computer Projects

Write programs to do the following:

1. Decide whether an integer is prime using trial division of the integer by all primes not exceeding its square root.
2. Use the sieve of Eratosthenes to find all primes less than 10000.
3. Find $\pi(n)$, the number of primes less than or equal to n, using problem 13.
4. Verify Goldbach's conjecture for all even integers less than 10000.
5. Find all twin primes less than 10000 .
6. Find the first 100 primes of the form $n^{2}+1$.
7. Find the lucky numbers less than 10000 (see problem 16).

2

Greatest Common Divisors

and Prime Factorization

2.1 Greatest Common Divisors

If a and b are integers, that are not both zero, then the set of common divisors of a and b is a finite set of integers, always containing the integers +1 and -1 . We are interested in the largest integer among the common divisors of the two integers.

Definition. The greatest common divisor of two integers a and b, that are not both zero, is the largest integer which divides both a and b.

The greatest common divisor of a and b is written as (a, b).
Example. The common divisors of 24 and 84 are $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6$, and ± 12. Hence $(24,84)=12$. Similarly, looking at sets of common divisors, we find that $(15,81)=3,(100,5)=5,(17,25)=1,(0,44)=44,(-6,-15)=3$, and $(-17,289)=17$.

We are particularly interested in pairs of integers sharing no common divisors greater than 1. Such pairs of integers are called relatively prime.

Definition. The integers a and b are called relatively prime if a and b have greatest common divisor $(a, b)=1$.

Example. Since $(25,42)=1,25$ and 42 are relatively prime.

Note that since the divisors of $-a$ are the same as the divisors of a, it follows that $(a, b)=(|a|,|b|)$ (where $|a|$ denotes the absolute value of a which equals a if $a \geqslant 0$ and equals $-a$ if $a<0$). Hence, we can restrict our attention to greatest common divisors of pairs of positive integers.

We now prove some properties of greatest common divisors.
Proposition 2.1. Let a, b, and c be integers with $(a, b)=d$. Then

$$
\begin{array}{ll}
\text { (i) } & (a / d, b / d)=1 \\
\text { (ii) } & (a+c b, b)=(a, b) .
\end{array}
$$

Proof. (i) Let a and b be integers with $(a, b)=d$. We will show that a / d and b / d have no common positive divisors other than 1 . Assume that e is a positive integer such that $e \mid(a / d)$ and $e \mid(b / d)$. Then, there are integers k and ℓ with $a / d=k e$ and $b / d=\ell e$, such that $a=d e k$ and $b=d e \ell$. Hence, $d e$ is a common divisor of a and b. Since d is the greatest common divisor of a and b, e must be 1 . Consequently, $(a / d, b / d)=1$.
(ii) Let a, b, and c be integers. We will show that the common divisors of a and b are exactly the same as the common divisors of $a+c b$ and b. This will show that $(a+c b, b)=(a, b)$. Let e be a common divisor of a and b. By Proposition 1.4, we see that $e \mid(a+c b)$, so that e is a common divisor of $a+c b$ and b. If f is a common divisor of $a+c b$ and b, then by Proposition 1.4, we see that f divides $(a+c b)-c b=a$, so that f is a common divisor of a and b. Hence $(a+c b, b)=(a, b)$.

We will show that the greatest common divisor of the integers a and b, that are not both zero, can be written as a sum of multiples of a and b. To phrase this more succinctly, we use the following definition.

Definition. If a and b are integers, then a linear combination of a and b is a sum of the form $m a+n b$, where both m and n are integers.

We can now state and prove the following theorem about greatest common divisors.

Theorem 2.1. The greatest common divisor of the integers a and b, that are not both zero, is the least positive integer that is a linear combination of a and b.

Proof. Let d be the least positive integer which is a linear combination of a and b. (There is a least such positive integer, using the well-ordering property, since at least one of two linear combinations $1 \cdot a+0 \cdot b$ and
$(-1) a+0 \cdot b$, where $a \neq 0$, is positive.) We write

$$
\begin{equation*}
d=m a+n b \tag{2.1}
\end{equation*}
$$

where m and n are pose integers. We will show that $d \mid a$ and $d \mid b$.
By the division algorithm, we have

$$
a=d q+r, \quad 0 \leqslant r<d
$$

From this equation and (2.1), we see that

$$
r=a-d q=a-q(m a+n b)=(1-q m) a-q n b .
$$

This shows that the integer r is a linear combination of a and b. Since $0 \leqslant r<d$, and d is the least positive linear combination of a and b, we conclude that $r=0$, and hence $d \mid a$. In a similar manner, we can show that $d \mid b$.

We now demonstrate that d is the greatest common divisor of a and b. To show this, all we need to show is that any common divisor c of a and b must divide d. Since $d=m a+n b$, if $c \mid a$ and $c \mid b$, Proposition 1.4 tells us that $c \mid d$.

We have shown that the greatest common divisor of the integers a and b, that are not both zero, is a linear combination of a and b. How to find a particular linear combination of a and b equal to (a, b) will be discussed in the next section.

We can also define the greatest common divisor of more than two integers.
Definition. Let $a_{1}, a_{2}, \ldots, a_{n}$ be integers, that are not all zero. The greatest common divisor of these integers is the largest integer which is a divisor of all of the integers in the set. The greatest common divisor of $a_{1}, a_{2}, \ldots, a_{n}$ is denoted by ($a_{1}, a_{2}, \ldots, a_{n}$).

Example. We easily see that $(12,18,30)=6$ and $(10,15,25)=5$.
To find the greatest common divisor of a set of more than two integers, we can use the following lemma.

Lemma 2.1. If $a_{1}, a_{2}, \ldots, a_{n}$ are integers, that are not all zero, then $\left(a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}\right)=\left(a_{1}, a_{2}, \ldots,\left(a_{n-1}, a_{n}\right)\right)$.

Proof. Any common divisor of the n integers $a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$ is, in particular, a divisor of a_{n-1} and a_{n}, and therefore, a divisor of $\left(a_{n-1}, a_{n}\right)$.

Also, any common divisor of the $n-2$ integers $a_{1}, a_{2}, \ldots, a_{n-2}$, and (a_{n-1}, a_{n}), must be a common divisor of all n integers, for if it divides (a_{n-1}, a_{n}), it must divide both a_{n-1} and a_{n}. Since the set of n integers and the set of the first $n-2$ integers together with the greatest common divisor of the last two integers have exactly the same divisors, their greatest common divisors are equal.

Example. To find the greatest common divisor of the three integers 105,140 , and 350 , we use Lemma 2.1 to see that $(105,140,350)=$ $(105,(140,350))=(105,70)=35$.

Definition. We say that the integers $a_{1}, a_{2}, \ldots, a_{n}$ are mutually relatively prime if $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1$. These integers are called pairwise relatively prime if for each pair of integers a_{i} and a_{j} from the set, $\left(a_{i}, a_{j}\right)=1$, that is, if each pair of integers from the set is relatively prime.

It is easy to see that if integers are pairwise relatively prime, they must be mutually relatively prime. However, the converse is false as the following example shows.

Example. Consider the integers 15, 21, and 35. Since

$$
(15,21,35)=(15,(21,35))=(15,7)=1
$$

we see that the three integers are mutually relatively prime. However, they are not pairwise relatively prime, because $(15,21)=3,(15,35)=5$, and $(21,35)=7$.

2.1 Problems

1. Find the greatest common divisor of each of the following pairs of integers
a) 15,35
b) 0,111
c) $-12,18$
d) 99,100
e) 11,121
f) 100,102 .
2. Show that if a and b are integers with $(a, b)=1$, then $(a+b, a-b)=1$ or 2 .
3. Show that if a and b are integers, that are not both zero, and c is a nonzero integer, then $(c a, c b)=|c|(a, b)$.
4. What is $\left(a^{2}+b^{2}, a+b\right)$, where a and b are relatively prime integers, that are not both zero?
5. Periodical cicadas are insects with very long larval periods and brief adult lives. For each species of periodical cicada with larval period of 17 years, there is a similar species with a larval period of 13 years. If both the 17 -year and 13 -year species emerged in a particular location in 1900, when will they next both emerge in that location?
6. a) Show that if a and b are both even integers, that are not both zero, then $(a, b)=2(a / 2, b / 2)$.
b) Show that if a is an even integer and b is an odd integer, then $(a, b)=(a / 2, b)$.
7. Show that if a, b, and c are integers such that $(a, b)=1$ and $c \mid(a+b)$, then $(c, a)=(c, b)=1$.
8. a) Show that if a, b, and c are integers with $(a, b)=(a, c)=1$, then $(a, b c)=1$.
b) Use mathematical induction to show that if $a_{1}, a_{2}, \ldots, a_{n}$ are integers, and b is another integer such that $\left(a_{1}, b\right)=\left(a_{2}, b\right)=\cdots=\left(a_{n}, b\right)=1$, then $\left(a_{1} a_{2} \cdots a_{n}, b\right)=1$.
9. Sho's that if a, b, and c are integers with $c \mid a b$, then $c \mid(a, c)(b, c)$.
10. a) Show that if a and b are positive integers with $(a, b)=1$, then $\left(a^{n}, b^{n}\right)=1$ for all positive integers n.
b) Use part (a) to prove that if a and b are integers such that $a^{n} \mid b^{n}$ where n is a positive integer, then $a \mid b$.
11. Show that if a, b and c are mutually relatively prime nonzero integers, then $(a, b c)=(a, b)(a, c)$.
12. Find a set of three integers that are mutually relatively prime, but not relatively prime pairwise. Do not use examples from the text.
13. Find four integers that are mutually relatively prime, such that any two of these integers are not relatively prime.
14. Find the greatest common divisor of each of the following sets of integers
a) $8,10,12$
b) $5,25,75$
c) $99,9999,0$
d) $6,15,21$
e) $-7,28,-35$
f) $0,0,1001$.
15. Find three mutually relatively prime integers from among the integers $66,105,42,70$, and 165.
16. Show that $a_{1}, a_{2}, \ldots, a_{n}$ are integers that are not all zero and c is a positive integer, then $\left(c a_{1}, c a_{2}, \ldots, c a_{n}\right)=c\left(a_{1}, a_{2} \ldots, a_{n}\right)$.
17. Show that the greatest common divisor of the integers $a_{1}, a_{2}, \ldots, a_{n}$, that are not all zero, is the least positive integer that is a linear combination of $a_{1}, a_{2}, \ldots, a_{n}$.
18. Show that if k is an integer, then the six integers $6 k-1,6 k+1$, $6 k+2,6 k+3,6 k+5$, are pairwise relatively prime.
19. Show that if k is a positive integer, then $3 k+2$ and $5 k+3$ are relatively prime.
20. Show that every positive integer greater than six is the sum of two relatively prime integers greater than 1 .
21. a) Show that if a and b are relatively prime positive integers, then $\left(\left(a^{n}-b^{n}\right) /(a-b), a-b\right)=1$ or n.
b) Show that if a and b are positive integers, then $\left(\left(a^{n}-b^{n}\right) /(a-b), a-b\right)=$ ($n(a, b)^{n-1}, a-b$).

2.1 Computer Projects

1. Write a program to find the greatest common divisor of two integers.

2.2 The Euclidean Algorithm

We are going to develop a systematic method, or algorithm, to find the greatest common divisor of two positive integers. This method is called the Euclidean algorithm. Before we discuss the algorithm in general, we demonstrate its use with an example. We find the greatest common divisor of 30 and 72. First, we use the division algorithm to write $72=30 \cdot 2+12$, and we use Proposition 2.1 to note that $(30,72)=(30,72-2 \cdot 30)=(30,12)$. Another way to see that $(30,72)=(30,12)$ is to notice that any common divisor of 30 and 72 must also divide 12 because $12=72-30 \cdot 2$, and conversely, any common divisor of 12 and 30 must also divide 72 , since $72=30 \cdot 2+12$. Note we have replaced 72 by the smaller number 12 in our computations since $(72,30)=(30,12)$. Next, we use the division algorithm again to write $30=2 \cdot 12+6$. Using the same reasoning as before, we see that $(30,12)=(12,6)$. Because $12=6 \cdot 2+0$, we now see that $(12,6)=(6,0)=6$. Consequently, we can conclude that $(72,30)=6$, without finding all the common divisors of 30 and 72.

We now set up the general format of the Euclidean algorithm for computing the greatest common divisor of two positive integer.

The Euclidean Algorithm. Let $r_{0}=a$ and $r_{1}=b$ be nonnegative integers with $b \neq 0$. If the division algorithm is successively applied to obtain $r_{j}=r_{j+1} q_{j+1}+r_{j+2}$ with $0<r_{j+2}<r_{j+1}$ for $j=0,1,2, \ldots, n-2$ and $r_{n}=0$, $d=b q_{1}+r_{2} \quad Q<r_{2}<b$
then $(a, b)=r_{n-1}$, the last nonzero remainder.
From this theorem, we see that the greatest common divisor of a and b is the last nonzero remainder in the sequence of equations generated by successively using the division algorithm, where at each step, the dividend and divisor are replaced by smaller numbers, namely the divisor and remainder.

To prove that the Euclidean algorithm produces greatest common divisors, the following lemma will be helpful.

Lemma 2.2. If c and d are integers and $c=d q+r$ where c and d are integers, then $(c, d)=(d, r)$.

Proof. If an integer e divides both c and d, then since $r=c-d q$, Proposition 1.4 shows that $e \mid r$. If $e \mid d$ and $e \mid r$, then since $c=d q+r$, from Proposition 1.4, we see that $e \mid c$. Since the common divisors of c and d are the same as the common divisors of d and r, we see that $(c, d)=(d, r)$.

We now prove that the Euclidean algorithm works.
Proof. Let $r_{0}=a$ and $r_{1}=b$ be positive integers with $a \geqslant b$. By successively applying the division algorithm, we find that

$$
\begin{aligned}
r_{0} & =r_{1} q_{1}+r_{2} & & 0 \leqslant r_{2}<r_{1}, \\
r_{1} & =r_{2} q_{2}+r_{3} & & 0 \leqslant r_{3}<r_{2}, \\
& \cdot & & \\
& \cdot & & \\
& \cdot & & \\
r_{n-3} & =r_{n-2} q_{n-2}+r_{n-1} & & 0 \leqslant r_{n-1}<r_{n-2}, \\
r_{n-2} & =r_{n-1} q_{n-1}+r_{n} & & 0 \leqslant r_{n}<r_{n-1}, \\
r_{n-1} & =r_{n} q_{n} . & &
\end{aligned}
$$

We can assume that we eventually obtain a remainder of zero since the sequence of remainders $a=r_{0}>r_{1}>r_{2}>\cdots \geqslant 0$ cannot contain more than a terms. By Lemma 2.2, we see that $(a, b)=\left(r_{0}, r_{1}\right)=\left(r_{1}, r_{2}\right)=$ $\left(r_{2}, r_{3}\right)=\cdots=\left(r_{n-2}, r_{n-1}\right)=\left(r_{n-1}, r_{n}\right)=\left(r_{n}, 0\right)=r_{n}$. Hence (a, b) $=r_{n}$, the last nonzero remainder.

We illustrate the use of the Euclidean algorithm with the following example.
Example. To find (252, 198), we use the division algorithm successively to obtain

$$
\begin{aligned}
252 & =1 \cdot 198+54 \\
198 & =3 \cdot 54+36 \\
54 & =1 \cdot 36+18 \\
36 & =2 \cdot 18 .
\end{aligned}
$$

Hence $(252,198)=18$.
Later in this section, we give estimates for the maximum number of divisions used by the Euclidean algorithm to find the greatest common divisor of two positive integers. However, we first show that given any positive integer n, there are integers a and b such that exactly n divisions are required to find (a, b) using the Euclidean algorithm. First, we define a special sequence of integers.

Definition. The Fibonacci numbers $u_{1}, u_{2}, u_{3}, \ldots$ are defined recursively by the equations $u_{1}=u_{2}=1$ and $u_{n}=u_{n-1}+u_{n-2}$ for $n \geqslant 3$.

Using the definition, we see that $u_{3}=u_{2}+u_{1}=1+1=2, u_{3}+u_{2}$ $=2+1=3$, and so forth. The Fibonacci sequence begins with the integers $1,1,2,3,5,813,21,34,55,89,144, \ldots$. Each succeeding term is obtained by adding the two previous terms. This sequence is named after the thirteenth century Italian mathematician Leonardo di Pisa, also known as Fibonacci, who used this sequence to model the population growth of rabbits (see problem 16 at the end of this section).

In our subsequent analysis of the Euclidean algorithm, we will need the following lower bound for the nth Fibonacci number.

Theorem 2.2. Let n be a positive integer and let $\alpha=(1+\sqrt{5}) / 2$. Then $u_{n}>\alpha^{n-2}$ for $n \geqslant 3$.

Proof. We use the second principle of mathematical induction to prove the desired inequality. We have $\alpha<2=u_{3}$, so that the theorem is true for $n=3$.

Now assume that for all integers k with $k \leqslant n$, the inequality

$$
\alpha^{k-2}<u_{k}
$$

holds.
Since $\alpha=(1+\sqrt{5}) / 2$ is a solution of $x^{2}-x-1=0$, we have $\alpha^{2}=\alpha+1$. Hence,

$$
\alpha^{n-1}=\alpha^{2} \cdot \alpha^{n-3}=(\alpha+1) \cdot \alpha^{n-3}=\alpha^{n-2}+\alpha^{n-3} .
$$

By the induction hypothesis, we have the inequalities

$$
\alpha^{n-2}<u_{n}, \alpha^{n-3}<u_{n-1}
$$

Therefore, we conclude that

$$
\alpha^{n-1}<u_{n}+u_{n-1}=u_{n+1}
$$

This finishes the proof of the theorem.
We now apply the Euclidean algorithm to the successive Fibonacci numbers 34 and 55 to find $(34,55)$. We have

$$
\begin{aligned}
55 & =34 \cdot 1+21 \\
34 & =21 \cdot 1+13 \\
21 & =13 \cdot 1+8 \\
13 & =8 \cdot 1+5 \\
8 & =5 \cdot 1+3 \\
5 & =3 \cdot 1+2 \\
3 & =2 \cdot 1+1 \\
2 & =1 \cdot 2 .
\end{aligned}
$$

We observe that when the Euclidean algorithm is used to find the greatest common divisor of the ninth and tenth Fibonacci numbers, 34 and 55, a total of eight divisions are required. Furthermore, $(34,55)=1$. The following theorem tells us how many divisions are needed to find the greatest common divisor of successive Fibonacci numbers.

Theorem 2.3. Let u_{n+1} and u_{n+2} be successive terms of the Fibonacci sequence. Then the Euclidean algorithm takes exactly n divisions to show that $\left(u_{n+1}, u_{n+2}\right)=1$.

Proof. Applying the Euclidean algorithm, and using the defining relation for the Fibonacci numbers $u_{j}=u_{j-1}+u_{j-2}$ in each step, we see that

$$
\begin{aligned}
u_{n+2} & =u_{n+1} \cdot 1+u_{n}, \\
u_{n+1} & =u_{n} \cdot 1+u_{n-1}, \\
& \cdot \\
& \cdot \\
& \cdot \\
u_{4} & =u_{3} \cdot 1+u_{2} \\
u_{3} & =u_{2} \cdot 2 .
\end{aligned}
$$

Hence, the Euclidean algorithm takes exactly n divisions, to show that $\left(u_{n+2}, u_{n+1}\right)=u_{2}=1$.

We can now prove a theorem first proved by Gabriel Lame', a French mathematician of the nineteenth century, which gives an estimate for the number of divisions needed to find the greatest common divisor using the Euclidean algorithm.

Lamés Theorem. The number of divisions needed to find the greatest common divisor of two positive integers using the Euclidean algorithm does not exceed five times the number of digits in the smaller of the two integers.

Proof. When we apply the Euclidean algorithm to find the greatest common divisor of $a=r_{0}$ and $b=r_{1}$ with $a>b$, we obtain the following sequence of equations:

$$
\begin{array}{rlrl}
r_{0} & =r_{1} q_{1}+r_{2}, & & 0 \leqslant r_{2}<r_{1}, \\
r_{1} & =r_{2} q_{2}+r_{3}, & 0 \leqslant r_{3}<r_{2}, \\
& \cdot \\
& \cdot \\
& \cdot \\
r_{n-2} & =r_{n-1} q_{n-1}+r_{n}, 0 \leqslant r_{n}<r_{n-1}, \\
r_{n-1} & =r_{n} q_{n} .
\end{array}
$$

We have used n divisions. We note that each of the quotients $q_{1}, q_{2}, \ldots, q_{n-1}$ is greater than or equal to 1 , and $q_{n} \geqslant 2$, since $r_{n}<r_{n-1}$. Therefore,

$$
\begin{aligned}
& r_{n} \geqslant 1=u_{2}, \\
& r_{n-1} \geqslant 2 r_{n} \geqslant 2 u_{2}=u_{3}, \\
& r_{n-2} \geqslant r_{n-1}+r_{n} \geqslant u_{3}+u_{2}=u_{4} \\
& r_{n-3} \geqslant r_{n-2}+r_{n-1} \geqslant u_{4}+u_{3}=u_{5} \\
& \quad \cdot \\
& \cdot \\
& \cdot \\
& r_{2} \geqslant r_{3}+r_{4} \geqslant u_{n-1}+u_{n-2}=u_{n} \\
& b=r_{1} \geqslant r_{2}+r_{3} \geqslant u_{n}+u_{n-1}=u_{n+1} .
\end{aligned}
$$

Thus, for there to be n divisions used in the Euclidean algorithm, we must have $b \geqslant u_{n+1}$. By Theorem 2.2, we know that $u_{n+1}>\alpha^{n-1}$ for $n>2$ where $\alpha=(1+\sqrt{5}) / 2$. Hence, $b>\alpha^{n-1}$. Now, since $\log _{10} \alpha>1 / 5$, we see that

$$
\log _{10} b>(n-1) \log _{10} \alpha>(n-1) / 5
$$

Consequently,

$$
n-1<5 \cdot \log _{10} b
$$

Let b have k decimal digits, so that $b<10^{k}$ and $\log _{10} b<k$. Hence, we see that $n-1<5 k$ and since k is an integer, we can conclude that $n \leqslant 5 k$. This establishes Lamé's theorem.

The following result is a consequence of Lamés theorem.
Corollary 2.1. The number of bit operations needed to find the greatest common divisor of two positive integers a and b with $b>a$ is $O\left(\left(\log _{2} a\right)^{3}\right)$.

$$
R_{0} D\left(\log _{2}\right)=O\left(\log _{10}\right] ?
$$

Proof. We know from Lamé's theorem that $O\left(\log _{2} a\right)$ divisions, each taking $O\left(\left(\log _{2} a\right)^{2}\right)$ bit operations, are needed to find (a, b). Hence, by Proposition 1.7, (a, b) may be found using a total of $O\left(\left(\log _{2} a\right)^{3}\right)$ bit operations.

The Euclidean algorithm can be used to express the greatest common divisor of two integers as a linear combination of these integers. We illustrate this by expressing $(252,198)=18$ as a linear combination of 252 and 198. Referring to the steps of the Euclidean algorithm used to find (252, 198), from the next to the last step, we see that

$$
18=54-1 \cdot 36
$$

From the second to the last step, it follows that

$$
36=198-3 \cdot 54
$$

which implies that

$$
18=54-1 \cdot(198-3 \cdot 54)=4 \cdot 54-1 \cdot 198
$$

Likewise, from the first step we have

$$
54=252-1 \cdot 198
$$

so that

$$
18=4(252-1 \cdot 198)-1 \cdot 198=4 \cdot 252-5 \cdot 198
$$

This last equation exhibits $18=(252,198)$ as a linear combination of 252 and 198.

In general, to see how $d=(a, b)$ may be expressed as a linear combination of a and b, refer to the series of equations that is generated by use of the Euclidean algorithm. From the penultimate equation, we have

$$
r_{n}=(a, b)=r_{n-2}-r_{n-1} q_{n-1}
$$

This expresses (a, b) as a linear combination of r_{n-2} and r_{n-1}. The second to
the last equation can be used to express r_{n-1} as $r_{n-3}-r_{n-2} q_{n-2}$. Using this last equation to eliminate r_{n-1} in the previous expression for (a, b), we find that

$$
r_{n}=r_{n-3}-r_{n-2} q_{n-2}
$$

so that

$$
\begin{aligned}
(a, b) & =r_{n-2}-\left(r_{n-3}-r_{n-2} q_{n-2}\right) q_{n-1} \\
& =\left(1+q_{n-1} q_{n-2}\right) r_{n-2}-q_{n-1} r_{n-3}
\end{aligned}
$$

which expresses (a, b) as a linear combination of r_{n-2} and r_{n-3}. We continue working backwards through the steps of the Euclidean algorithm to express (a, b) as a linear combination of each preceding pair of remainders until we have found (a, b) as a linear combination of $r_{0}=a$ and $r_{1}=b$. Specifically, if we have found at a particular stage that

$$
(a, b)=s r_{j}+t r_{j-1}
$$

then, since

$$
r_{j}=r_{j-2}-r_{j-1} q_{j-1}
$$

we have

$$
\begin{aligned}
(a, b) & =s\left(r_{j-2}-r_{j-1} q_{j-1}\right)+t r_{j-1} \\
& =\left(t-s q_{j-1}\right) r_{j-1}+s r_{j-2} .
\end{aligned}
$$

This shows how to move up through the equations that are generated by the Euclidean algorithm so that, at each step, the greatest common divisor of a and b may be expressed as a linear combination of a and b.

This method for expressing (a, b) as a linear combination of a and b is somewhat inconvenient for calculation, because it is necessary to work out the steps of the Euclidean algorithm, save all these steps, and then proceed backwards through the steps to write (a, b) as a linear combination of each successive pair of remainders. There is another method for finding (a, b) which requires working through the steps of the Euclidean algorithm only once. The following theorem gives this method.

Theorem 2.4. Let a and b be positive integers. Then

$$
(a, b)=s_{n} a+t_{n} b
$$

for $n=0,1,2, \ldots$, where s_{n} and t_{n} are the nth terms of the sequences defined recursively by

$$
\begin{aligned}
& s_{0}=1, t_{0}=0 \\
& s_{1}=0, t_{1}=1
\end{aligned}
$$

and

$$
s_{j}=s_{j-2}-q_{j-1} s_{j-1}, t_{j}=t_{j-2}-q_{j-2} t_{j-1}
$$

for $j=2,3, \ldots, n$, where the q_{j} 's are the quotients in the divisions of the Euclidean algorithm when it is used to find (a, b).

Proof. We will prove that

$$
\begin{equation*}
r_{j}=s_{j} a+t_{j} b \tag{2.2}
\end{equation*}
$$

for $j=0,1, \ldots, n$. Since $(a, b)=r_{n}$, once we have established (2.2), we will know that

$$
(a, b)=s_{n} a+t_{n} b
$$

We prove (2.2) using the second principle of mathematical induction. For $j=0$, we have $a=r_{0}=1 \cdot a+0 \cdot b=s_{0} a+t_{0} b$. Hence, (2.2) is valid for $j=0$. Likewise, $b=r_{1}=0 \cdot a+1 \cdot b=s_{1} a+t_{1} b$, so that (2.2) is valid for $j=1$.

Now, assume that

$$
r_{j}=s_{j} a+t_{j} b
$$

for $j=1,2, \ldots, k-1$. Then, from the k th step of the Euclidean algorithm, we have

$$
r_{k}=r_{k-2}-r_{k-1} q_{k-1}
$$

Using the induction hypothesis, we find that

$$
\begin{aligned}
r_{k} & =\left(s_{k-2} a+t_{k-2} b\right)-\left(s_{k-1} a+t_{k-1} b\right) q_{k-1} \\
& =\left(s_{k-2}-s_{k-1} q_{k-1}\right) a+\left(t_{k-2}-t_{k-1} q_{k-1}\right) b \\
& =s_{k} a+t_{k} b .
\end{aligned}
$$

This finishes the proof.
The following example illustrates the use of this algorithm for expressing (a, b) as a linear combination of a and b.

Example. Let $a=252$ and $b=198$. Then

$$
\begin{array}{ll}
s_{0}=1, & t_{0}=0, \\
s_{1}=0, & t_{1}=1, \\
s_{2}=s_{0}-s_{1} q_{1}=1-0 \cdot 1=1, & t_{2}=t_{0}-t_{1} q_{1}=0-1 \cdot 1=-1, \\
s_{3}=s_{1}-s_{2} q_{2}=0-1 \cdot 3=-3, & t_{3}=t_{1}-t_{2} q_{2}=1-(-1) 3=4, \\
s_{4}=s_{2}-s_{3} q_{3}=1-(-3) \cdot 1=4, & t_{4}=t_{2}-t_{3} q_{3}=-1-4 \cdot 1=-5
\end{array}
$$

Since $r_{4}=18=(252,198)$ and $r_{4}=s_{4} a+t_{4} b$, we have

$$
18=(252,198)=4 \cdot 252-5 \cdot 198
$$

It should be noted that the greatest common divisor of two integers may be expressed in an infinite number of different ways as a linear combination of these integers. To see this, let $d=(a, b)$ and let $d=s a+t b$ be one way to write d as a linear combination of a and b, guaranteed to exist by the previous discussion. Then

$$
d=(s-k(b / d)) a+(t-k(a / d)) b
$$

for all integers k.
Example. With $a=252$ and $b=198,18=(252,198)=(4-11 k) 252+$ $(-5-14 k) 198$ whenever k is an integer.

2.2 Problems

1. Use the Euclidean algorithm to find the following greatest common divisors
a) $(45,75)$
b) $(102,222)$
c) $(666,1414)$
d) $(20785,44350)$.
2. For each pair of integers in problem 1, express the greatest common divisor of the integers as a linear combination of these integers.
3. For each of the following sets of integers, express their greatest common divisor as a linear combination of these integers
a) $6,10,15$
b) $70,98,105$
c) $280,330,405,490$.
4. The greatest common divisor of two integers can be found using only subtractions, parity checks, and shifts of binary expansions, without using any divisions. The algorithm proceeds recursively using the following reduction

$$
(a, b)= \begin{cases}a & \text { if } a=b \\ 2(a / 2, b / 2) & \text { if } a \text { and } b \text { are even } \\ (a / 2, b) & \text { if } a \text { is even and } b \text { is odd } \\ (a-b, b) & \text { if } a \text { and } b \text { are odd }\end{cases}
$$

a) Find $(2106,8318)$ using this algorithm.
b) Show that this algorithm always produces the greatest common divisor of a pair of positive integers.
5. In problem 14 of Section 1.2, a modified division algorithm is given which says that if a and $b>0$ are integers, then there exist unique integers q, r, and e such that $a=b q+e r$, where $e= \pm 1, r \geqslant 0$, and $-b / 2<e r \leqslant b / 2$. We can set up an algorithm, analogous to the Euclidean algorithm, based on this modified division algorithm, called the least-remainder algorithm. It works as follows. Let $r_{0}=a$ and $r_{1}=b$, where $a>b>0$. Using the modified division algorithm repeatedly, obtain the greatest common divisor of a and b as the last nonzero remainder r_{n} in the sequence of divisions

$$
\begin{array}{rlrl}
r_{0} & =r_{1} q_{1}+e_{2} r_{2}, & -r_{1} / 2<e_{2} r_{2} \leqslant r_{1} / 2 \\
& \cdot & \\
& \cdot & \\
r_{n-2} & =r_{n-1} q_{n-1}+e_{n} r_{n}, & & -r_{n-1} / 2<e_{n} r_{n} \leqslant r_{n-1} / 2 \\
r_{n-1} & =r_{n} q_{n} . &
\end{array}
$$

a) Use the least-remainder algorithm to find $(384,226)$.
b) Show that the least-remainder algorithm always produces the greatest common divisor of two integers.
c) Show that the least-remainder algorithm is always faster, or as fast, as the Euclidean algorithm.
d) Find a sequence of integers $v_{0}, v_{1}, v_{2}, \ldots$ such that the least-remainder algorithm takes exactly n divisions to find (v_{n+1}, v_{n+2}).
e) Show that the number of divisions needed to find the greatest common divisor of two positive integers using the least-remainder algorithm is less than $8 / 3$ times the number of digits in the smaller of the two numbers, plus 4/3.
6. Let m and n be positive integers and let a be an integer greater than one. Show that $\left(a^{m}-1, a^{n}-1\right)=a^{(m, n)}-1$.
7. In this problem, we discuss the game of Euclid. Two players begin with a pair of positive integers and take turns making moves of the following type. A player can move from the pair of positive integers $\{x, y\}$ with $x \geqslant y$, to any of the pairs $\{x-t y, y\}$, where t is a positive integer and $x-t y \geqslant 0$. A winning move
consists of moving to a pair with one element equal to 0 .
a) Show that every sequence of moves starting with the pair $\{a, b\}$ must eventually end with the pair $\{0,(a, b)\}$.
b) Show that in a game beginning with the pair $\{a, b\}$, the first player may play a winning strategy if $a=b$ or if $a>b(1+\sqrt{5}) / 2$; otherwise the second player may play a winning strategy. (Hint: First show that if $y<x \leqslant y(1+\sqrt{5}) / 2$ then there is a unique move from $\{x, y\}$ that goes to a pair $\{z, y\}$ with $y>z(1+\sqrt{5}) / 2$.)

In problems 8 to $16, u_{n}$ refers to the nth Fibonacci number.
8. Show that if n is a positive integer, then $u_{1}+u_{2}+\cdots+u_{n}=u_{n+2}-1$.
9. Show that if n is a positive integer, then $u_{n+1} u_{n-1}-u_{n}^{2}=(-1)^{n}$.
10. Show that if n is a positive integer, then $u_{n}=\left(\alpha^{n}-\beta^{n}\right) / \sqrt{5}$, where $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$.
11. Show that if m and n are positive integers such that $m \mid n$, then $u_{m} \mid u_{n}$.
12. Show that if m and n are positive integers, then $\left(u_{m}, u_{n}\right)=u_{(m, n)}$.
13. Show that u_{n} is even if and only if $3 \mid n$.
14. Let $U=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
a) Show that $U^{n}=\left(\begin{array}{ll}u_{n+1} & u_{n} \\ u_{n} & u_{n-1}\end{array}\right)$.
b) Prove the result of problem 9 by considering the determinant of U^{n}.
15. We define the generalized Fibonacci numbers recursively by the equations $g_{1}=a, g_{2}=b$, and $g_{n}=g_{n-1}+g_{n-2}$ for $n \geqslant 3$. Show that $g_{n}=a u_{n-2}+b u_{n-1}$ for $n \geqslant 3$.
16. The Fibonacci numbers originated in the solution of the following problem. Suppose that on January 1 a pair of baby rabbits was left on an island. These rabbits take two months to mature, and on March 1 they produce another pair of rabbits. They continually produce a new pair of rabbits the first of every succeeding month. Each newborn pair takes two months to mature, and produces a new pair on the first day of the third month of its life, and on the first day of every succeeding month. Show that the number of pairs of rabbits alive after n months is precisely the Fibonacci number u_{n}, assuming that no rabbits ever die.
17. Show that every positive integer can be written as the sum of distinct Fibonacci numbers.

2.2 Computer Projects

Write programs to do the following:

1. Find the greatest common divisor of two integers using the Euclidean algorithm.
2. Find the greatest common divisor of two integers using the modified Euclidean algorithm given in problem 5 .
3. Find the greatest common divisor of two integers using no divisions (see problem 4).
4. Find the greatest common divisor of a set of more than two integers.
5. Express the greatest common divisor of two integers as a linear combination of these integers.
6. Express the greatest common divisor of a set of more than two integers as a linear combination of these integers.
7. List the beginning terms of the Fibonacci sequence.
8. Play the game of Euclid described in problem 7.

2.3 The Fundamental Theorem of Arithmetic

The fundamental theorem of arithmetic is an important result that shows that the primes are the building blocks of the integers. Here is what the theorem says.

The Fundamental Theorem of Arithmetic. Every positive integer can be written uniquely as a product of primes, with the prime factors in the product written in order of nondecreasing size.

Example. The factorizations of some positive integers are given by

$$
240=2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5=2^{4} \cdot 3 \cdot 5,289=17 \cdot 17=17^{2}, 1001=7 \cdot 11 \cdot 13 .
$$

Note that it is convenient to combine all the factors of a particular prime into a power of this prime, such as in the previous example. There, for the factorization of 240 , all the factors of 2 were combined to form 2^{4}. Factorizations of integers in which the factors of primes are combined to form powers are called prime-power factorizations.

To prove the fundamental theorem of arithmetic, we need the following lemma concerning divisibility.

Lemma 2.3. If a, b, and c are positive integers such that $(a, b)=1$ and
$a \mid b c$, then $a \mid c$.
Proof. Since $(a, b)=1$, there are integers x and y such that $a x+b y=1$. Multiplying both sides of this equation by c, we have $a c x+b c y=c$. By Proposition 1.4, a divides $a c x+b c y$, since this is a linear combination of a and $b c$, both of which are divisible by a. Hence $a \mid c$.

The following corollary of this lemma is useful.
Corollary 2.2. If p divides $a_{1} a_{2} \cdots a_{n}$ where p is a prime and $a_{1}, a_{2}, \ldots, a_{n}$ are positive integers, then there is an integer i with $1 \leqslant i \leqslant n$ such that p divides a_{i}.

Proof. We prove this result by induction. The case where $n=1$ is trivial. Assume that the result is true for n. Consider a product of $n+1$, integers, $a_{1} a_{2} \cdots a_{n+1}$ that is divisible by the prime p. Since $p \mid a_{1} a_{2} \cdots a_{n+1}=$ $\left(a_{1} a_{2} \cdots a_{n}\right) a_{n+1}$, we know from Lemma 2.3 that $p \mid a_{1} a_{2} \cdots a_{n}$ or $p \mid a_{n+1}$. Now, if $p \mid a_{1} a_{2} \cdots a_{n}$, from the induction hypothesis there is an integer i with $1 \leqslant i \leqslant n$ such that $p \mid a_{i}$. Consequently $p \mid a_{i}$ for some i with $1 \leqslant i \leqslant n+1$. This establishes the result.

We begin the proof of the fundamental theorem of arithmetic. First, we show that every positive integer can be written as the product of primes in at least one way. We use proof by contradiction. Let us assume that some positive integer cannot be written as the product of primes. Let n be the smallest such integer (such an integer must exist from the well-ordering property). If n is prime, it is obviously the product of a set of primes, namely the one prime n. So n must be composite. Let $n=a b$, with $1<a<n$ and $1<b<n$. But since a and b are smaller than n they must be the product of primes. Then, since $n=a b$, we conclude that n is also a product of primes. This contradiction shows that every positive integer can be written as the product of primes.

We now finish the proof of the fundmental theorem of arithmetic by showing that the factorization is unique.

Suppose that there is a positive interger that has more than one prime factorization. Then, from the well-ordering property, we know there is a least integer n that has at least two different factorizations into primes:

$$
n=p_{1} p_{2} \cdots p_{s}=q_{1} q_{2} \cdots q_{t}
$$

where $p_{1}, p_{2}, \ldots, p_{s}, q_{1}, \ldots, q_{t}$ are all primes, with $p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{s}$ and $q_{1} \leqslant q_{2} \leqslant \cdots \leqslant q_{t}$.

We will show that $p_{1}=q_{1}, p_{2}=q_{2}, \ldots$, and continue to show that each of the successive p 's and q 's are equal, and that the number of prime factors in the two factorizations must agree, that is $s=t$. To show that $p_{1}=q_{1}$, assume that $p_{1} \neq q_{1}$. Then, either $p_{1}>q_{1}$ or $p_{1}<q_{1}$. By interchanging the variables, if necessary, we can assume that $p_{1}<q_{1}$. Hence, $p_{1}<q_{i}$ for $i=1,2, \ldots, t$ since q_{1} is the smallest of the q 's. Hence, $p_{1} \backslash q_{i}$ for all i. But, from Corollary 2.2, we see that $p_{1} \nmid q_{1} q_{2} \cdots q_{t}=n$. This is a contradiction. Hence, we can conclude that $p_{1}=q_{1}$ and $n / p_{1}=p_{2} p_{3} \cdots p_{s}=q_{2} q_{3} \cdots q_{t}$. Since n / p_{1} is an integer smaller than n, and since n is the smallest positive integer with more than one prime factorization, n / p_{1} can be written as a product of primes in exactly one way. Hence, each p_{i} is equal to the corresponding q_{i}, and $s=t$. This proves the uniqueness of the prime factorization of positive integers.

The prime factorization of an integer is often useful. As an example, let us find all the divisors of an integer from its prime factorization.

Example. The positive divisors of $120=2^{3} \cdot 3 \cdot 5$ are those positive integers with prime power factorizations containing only the primes 2,3 , and 5 , to powers less than or equal to 3,1 , and 1 , respectively. These divisors are

1	3	5	$3 \cdot 5=15$
2	$2 \cdot 3=6$	$2 \cdot 5=10$	$2 \cdot 3 \cdot 5=30$
$2^{2}=4$	$2^{2} \cdot 3=12$	$2^{2} \cdot 5=20$	$2^{2} \cdot 3 \cdot 5=60$
$2^{3}=8$	$2^{3} \cdot 3=24$	$2^{3} \cdot 5=40$	$2^{3} \cdot 3 \cdot 5=120$.

Another way in which we can use prime factorizations is to find greatest common divisors. For instance, suppose we wish to find the greatest common divisor of $720=2^{4} \cdot 3^{2} \cdot 5$ and $2100=2^{2 \cdot 3 \cdot 5^{2} \cdot 7 \text {. To be a common divisor of both }}$ 720 and 2100 , a positive integer can contain only the primes 2,3 , and 5 in its prime-power factorization, and the power to which one of these primes appears cannot be larger than either of the powers of that prime in the factorizations of 720 and 2100 . Consequently, to be a common divisor of 720 and 2100 , a positive integer can contain only the primes 2,3 , and 5 to powers no larger than 2,1 , and 1 , respectively. Therefore, the greatest common divisor of 720 and 2100 is $2^{2 \cdot 3 \cdot 5}=60$.

To describe, in general, how prime factorizations can be used to find greatest common divsors, let $\min (a, b)$ denote the smaller or minimum, of the two numbers a and b. Now let the prime factorizations of a and b be

$$
a=p_{1}^{a_{1} p_{2}^{a}} \cdots p_{n}^{a_{n}^{4}}, \quad b=p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{n}^{b_{n}}
$$

where each exponent is a nonnegative integer and where all primes occurring
in the prime factorizations of a and of b are included in both products, perhaps with zero exponents. We note that

$$
(a, b)=p_{1}^{\min \left(a_{1}, b_{1}\right)} p_{2}^{\min \left(a_{2}, b_{2}\right)} \cdots p_{n}^{\min \left(a_{n}, b_{k}\right)},
$$

since for each prime p_{i}, a and b share exactly $\min \left(a_{i}, b_{i}\right)$ factors of p_{i}.
Prime factorizations can also be used to find the smallest integer that is a multiple of two positive integers. The problem of finding this integer arises when fractions are added.

Definition. The least common multiple of two positive integers a and b is the smallest positive integer that is divisible by a and b.

The least common multiple of a and b is denoted by $[a, b]$.
Example. We have the following least common multiples: $[15,21]=105$, $[24,36]=72,[2,20]=20$, and $[7,11]=77$.

Once the prime factorizations of a and b are known, it is easy to find [a, b]. If $a=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{n}^{a^{*}}$ and $b=p_{1}^{a_{1} p_{2}^{b_{2}}} \cdots p_{n}^{b_{n}}$, where $p_{1}, p_{2}, \ldots, p_{n}$ are the primes occurring in the prime-power factorizations of a and b, then for an integer to be divisible by both a and b, it is necessary that in the factorization of the integer, each p_{j} occurs with a power at least as large as a_{j} and b_{j}. Hence, $[a, b]$, the smallest positive integer divisible by both a and b is

$$
[a, b]=p_{1}^{\max \left(a_{1}, b_{1}\right)} p_{2}^{\max \left(a_{2}, b_{2}\right)} \cdots p_{n}^{\max \left(a_{n}, b_{k}\right)}
$$

where $\max (\mathrm{x}, y)$ denotes the larger, or maximum, of x and y.
Finding the prime factorization of large integers is time-consuming. Therefore, we would prefer a method for finding the least common multiple of two integers without using the prime factorizations of these integers. We will show that we can find the least common multiple of two positive integers once we know the greatest common divisor of these integers. The latter can be found via the Euclidean algorithm. First, we prove the following lemma.

Lemma 2.4. If x and y are real numbers, then $\max (x, y)+\min (x, y)$ $=x+y$.

Proof. If $x \geqslant y$, then $\min (x, y)=y$ and $\max (x, y)=x$, so that $\max (x, y)+\min (x, y)=x+y$. If $x<y$, then $\min (x, y)=x$ and $\max (x, y)=y$, and again we find that $\max (x, y)+\min (x, y)=x+y$.

To find $[a, b]$, once (a, b) is known, we use the following theorem.
Theorem 2.5. If a and b are positive integers, then $[a, b]=a b /(a, b)$, where $[a, b]$ and (a, b) are the least common multiple and greatest common divisor of a and b, respectively.

Proof. Let a and b have prime-power factorizations $a=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{n}^{a^{*}}$ and $b=p_{1}^{b_{1}} p_{s}^{b_{2}} \cdots p_{n}^{b_{n}}$, where the exponents are nonnegative integers and all primes occurring in either factorization occur in both, perhaps with zero exponents. Now let $M_{j}=\max \left(a_{j}, b_{j}\right)$ and $m_{j}=\min \left(a_{j}, b_{j}\right)$. Then, we have

$$
\begin{aligned}
{a, b } & =p_{1}^{M_{1}} p_{2}^{M_{2}} \cdots p_{n}^{M_{*} * p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{n}^{m_{*}}} \\
& =p_{1}^{M_{1}+m_{1}} p_{2}^{M_{2}+m_{2}} \cdots \dot{p}_{n}^{M_{*}+m_{*}} \\
& =p_{1}^{a_{1}+b_{1} p_{2}^{a_{2}+b_{2}} \cdots p_{2}^{a_{n}^{*}+b_{*}}} \\
& =p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{n}^{a_{*}} p_{1}^{b_{1}} \cdots p_{n}^{b_{*}} \\
& =a b,
\end{aligned}
$$

since $M_{j}+m_{j}=\max \left(a_{j}, b_{j}\right)+\min \left(a_{j}, b_{j}\right)=a_{j}+b_{j}$ by Lemma 2.4.
The following consequence of the fundamental theorem of arithmetic will be needed later.

Lemma 2.5. Let m and n be relatively prime positive integers. Then, if d is a positive divisor of $m n$, there is a unique pair of positive divisors d_{1} of m and d_{2} of n such that $d=d_{1} d_{2}$. Conversely, if d_{1} and d_{2} are positive divisor of m and n, respectively, then $d=d_{1} d_{2}$ is a positive divisors of $m n$.

Proof. Let the prime-power factorizations of m and n be $m=p_{1}^{m_{1}} p_{2}^{m_{2}}$ $\cdots p_{s}^{m_{s}}$ and $n=q_{1}^{n_{1}} q_{2}^{n_{2}} \cdots q_{t}^{n_{t}}$. Since $(m, n)=1$, the set of primes $p_{1} p_{2}, \ldots, p_{s}$ and the set of primes $q_{1}, q_{2}, \ldots, q_{t}$ have no common elements. Therefore, the prime-power factorization of $m n$ is

$$
m n=p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{s}^{m_{s}} q_{1}^{n_{1}} q_{2}^{n_{2}} \cdots q_{t}^{n_{1}}
$$

Hence, if d is a positive divisor of $m n$, then

$$
d=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{s}^{e_{s}} q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{t}^{f_{t}}
$$

where $0 \leqslant e_{i} \leqslant m_{i}$ for $i=1,2, \ldots, s$ and $0 \leqslant f_{j} \leqslant n_{j}$ for $j=1,2, \ldots, t$. Now let

$$
d_{1}=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{s}^{e_{x}}
$$

and

$$
d_{2}=q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{t}^{f_{1}}
$$

Clearly $d=d_{1} d_{2}$ and $\left(d_{1}, d_{2}\right)=1$. This is the decomposition of d we desire.
Conversely, let d_{1} and d_{2} be positive divisors of m and n, respectively. Then

$$
d_{1}=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{s}^{e_{1}}
$$

where $0 \leqslant e_{i} \leqslant m_{i}$ for $i=1,2, \ldots, s$, and

$$
d_{2}=q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{t}^{f_{1}}
$$

where $0 \leqslant f_{j} \leqslant n_{j}$ for $j=1,2, \ldots, t$. The integer

$$
d=d_{1} d_{2}=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{s}^{e_{s}} q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{t}^{f_{t}}
$$

is clearly a divisor of

$$
m n=p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{s}^{m_{s}} q_{1}^{n_{1}} q_{2}^{n_{2}} \cdots q_{t}^{n_{1}}
$$

since the power of such prime occurring in the prime-power factorization of d is less than or equal to the power of that prime in the prime-power factorization of $m n$.

A famous result of number theory deals with primes in arithmetic progressions.

Dirichlet's Theorem on Primes in Arithmetic Progressions. Let a and b be relatively prime positive integers. Then the arithmetic progression $a n+b, n=1,2,3, \ldots$, contains infinitely many primes.
G. Lejeune Dirichlet, a German mathematician, proved this theorem in 1837. Since proofs of Dirichlet's Theorem are complicated and rely on advanced techniques, we do not present a proof here. However, it is not difficult to prove special cases of Dirichlet's theorem, as the following proposition illustrates.

Proposition 2.2. There are infinitely many primes of the form $4 n+3$, where n is a positive integer.

Before we prove this result, we first prove a useful lemma.
Lemma 2.6. If a and b are integers both of the form $4 n+1$, then the product $a b$ is also of this form.

Proof. Since a and b are both of the form $4 n+1$, there exist integers r and s such that $a=4 r+1$ and $b=4 s+1$. Hence,

$$
a b=(4 r+1)(4 s+1)=16 r s+4 r+4 s+1=4(4 r s+r+s)+1,
$$

which is again of the form $4 n+1$.
We now prove the desired result.
Proof. Let us assume that there are only a finite number of primes of the form $4 n+3$, say $p_{0}=3, p_{1}, p_{2}, \ldots, p_{r}$. Let

$$
Q=4 p_{1} p_{2} \cdots p_{r}+3
$$

Then, there is at least one prime in the factorization of Q of the form $4 n+3$. Otherwise, all of these primes would be of the form $4 n+1$, and by Lemma 2.6, this would imply that Q would also be of this form, which is a contradiction. However, none of the primes $p_{0}, p_{1}, \ldots, p_{n}$ divides Q. The prime 3 does not divide Q, for if $3 \mid Q$, then $3 \mid(Q-3)=4 p_{1} p_{2} \cdots p_{r}$, which is a contradiction. Likewise, none of the primes p_{j} can divide Q, because $p_{j} \mid Q$ implies $p_{j} \mid\left(Q-4 p_{1} p_{2} \cdots p_{r}\right)=3$ which is absurd. Hence, there are infinitely many primes of the form $4 n+3$.

2.3 Problems

1. Find the prime factorizations of
a) 36
b) 39
c) 100
d) 289
e) 222
f) 256
g) 515
h) 989
i) 5040
j) 8000
k) 9555
l) 9999 .
2. Show that all the powers in the prime-power factorization of an integer n are even if and only if n is a perfect square.
3. Which positive integers have exactly three positive divisors? Which have exactly four positive divisors?
4. Show that every positive integer can be written as the product of a square and a square-free integer. A square-free integer is an integer that is not divisible by
any perfect squares.
5. An integer n is called powerful if whenever a prime p divides n, p^{2} divides n. Show that every powerful number can be written as the product of a perfect square and a perfect cube.
6. Show that if a and b are positive integers and $a^{3} \mid b^{2}$, then $a \mid b$.
7. Let p be a prime and n a positive integer. If $p^{a} \mid n$, but $p^{a+1} \| n$, we say that p^{a} exactly divides n, and we write $p^{a} \| n$.
a) Show that if $p^{a} \| m$ and $p^{b} \| n$, then $p^{a+b} \| m n$.
b) Show that if $p^{a} \| m$, then $p^{k a} \| m^{k}$.
c) Show that if $p^{a} \| m$ and $p^{b} \| n$, then $p^{\min (a, b)} \| m+n$.
8. a) Let n be a positive integer. Show that the power of the prime p occurring in the prime power factorization of $n!$ is

$$
[n / p]+\left[n / p^{2}\right]+\left[n / p^{3}\right]+\cdots .
$$

b) Use part (a) to find the prime-power factorization of 20 !.
9. How many zeros are there at the end of 1000 ! in decimal notation? How many in base eight notation?
10. Find all positive integers n such that n ! ends with exactly 74 zeros in decimal notation.
11. Show that if n is a positive integer it is impossible for n ! to end with exactly 153 , 154 , or 155 zeros when it is written in decimal notation.
12. This problem presents an example of a system where unique factorization into primes fails. Let H be the set of all positive integers of the form $4 k+1$, where k is a positive integer.
a) Show that the product of two elements of H is also in H.
b) An element $h \neq 1$ in H is called a "Hilbert prime" if the only way it can be written as the product of two integers in H is $h=h \cdot 1=1 \cdot h$, Find the 20 smallest Hilbert primes.
c) Show every element of H can be factored into Hilbert primes.
d) Show that factorization of elements of H into Hilbert primes is not necessarily unique by finding two different factorizations of 693 into Hilbert primes.
13. Which positive integers n are divisible by all integers not exceeding \sqrt{n} ?
14. Find the least common multiple of each of the following pairs of integers
a) 8,12
d) 111, 303
b) 14,15
e) 256,5040
c) 28,35
f) 343,999 .
15. Find the greatest common divisor and least common multiple of the following pairs of integers
a) $2^{2} 3^{3} 5^{5} 7^{7}, 2^{7} 3^{5} 5^{3} 7^{2}$
b) $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13,17 \cdot 19 \cdot 23 \cdot 29$
c) $2^{3} 5^{7} 11^{13}, 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13$
d) $47^{11} 79^{111} 101^{1001}, 41^{11} 83^{111} 101^{1000}$.
16. Show that every common multiple of the positive integers a and b is divisible by the least common multiple of a and b.
17. Which pairs of integers a and b have greatest common divisor 18 and least common multiple 540?
18. Show that if a and b are positive integers, then $(a, b) \mid[a, b]$. When does $(a, b)=[a, b]$?
19. Show that if a and b are positive integers, then there are divisors c of a and d of b with $(c, d)=1$ and $c d=[a, b]$.
20. Show that if a, b, and c are integers, then $[a, b] \mid c$ if and only if $a \mid c$ and $b \mid c$.
21. a) Show that if a and b are positive integers then $(a, b)=(a+b,[a, b])$.
b) Find the two positive integers with sum 798 and least common multiple 10780.
22. Show that if a, b, and c are positive integers, then $([a, b], c)=[(a, c),(b, c)]$ and $[(a, b), c]=([a, c],[b, c])$.
23. a) Show that if a, b, and c are positive integers, then

$$
\begin{aligned}
\max (a, b, c)= & a+b+c-\min (a, b)-\min (a, c)-\min (b, c) \\
& +\min (a, b, c) .
\end{aligned}
$$

b) Use part (a) to show that

$$
[a, b, c][a, b, c]=\frac{a b c(a, b, c)}{(a, b)(a, c)(b, c)}
$$

24. Generalize problem 23 to find a formula for $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \cdot\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ where $a_{1}, a_{2}, \ldots, a_{n}$ are positive integers.
25. The least common multiple of the integers $a_{1}, a_{2}, \ldots, a_{n}$, that are not all zero, is the smallest positive integer that is divisible by all the integers $a_{1}, a_{2}, \ldots, a_{n}$; it is
denoted by $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$.
a) Find $[6,10,15]$ and $[7,11,13]$.
b) Show that $\left[a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}\right]=\left[\left[a_{1}, a_{2}, \ldots, a_{n-1}\right], a_{n}\right]$.
26. Let n be a positive integer. How many pairs of positive integers satisfy $[a, b]=n$?
27. Prove that there are infinitely many primes of the form $6 k+5$, where k is a positive integer.
28. Show that if a and b are integers, then the arithmetic progression $a, a+b, a+2 b, \ldots$ contains an arbitrary number of consecutive composite terms.
29. Find the prime factorizations of
a) $10^{6}-1$
b) $10^{8}-1$
c) $2^{15}-1$
d) $2^{24}-1$
e) $2^{30}-1$
f) $2^{36}-1$.
30. A discount store sells a camera at a price less than its usual retail price of $\$ 99$. If they sell $\$ 8137$ worth of this camera and the discounted dollar price is an integer, how many cameras did they sell?
31. a) Show that if p is a prime and a is a positive integer with $p \mid a^{2}$, then $p \mid a$.
b) Show that if p is a prime, a is an integer, and n is a positive integer such that $p \mid a^{n}$, then $p \mid a$.
32. Show that if a and b are positive integers, then $a^{2} \mid b^{2}$ implies that $a \mid b$.
33. Show that if a, b, and c are positive integers with $(a, b)=1$ and $a b=c^{n}$, then there are positive integers d and e such that $a=d^{n}$ and $b=e^{n}$.
34. Show that if $a_{1}, a_{2}, \ldots, a_{n}$ are pairwise relatively prime integers, then $\left[a_{1}, a_{2}, \ldots, a_{n}\right]=a_{1} a_{2} \cdots a_{n}$.

2.3 Computer Projects

Write programs to do the following:

1. Find all positive divisors of a positive integer from its prime factorization.
2. Find the greatest common divisor of two positive integers from their prime factorizations.
3. Find the least common multiple of two positive integers from their prime factorizations.
4. Find the number of zeros at the end of the decimal expansion of n ! where n is a positive integer.
5. Find the prime factorization of n ! where n is a positive integer.

2.4 Factorization of Integers and the Fermat Numbers

From the fundamental theorem of arithmetic, we know that every positive integer can be written uniquely as the product of primes. In this section, we discuss the problem of determining this factorization. The most direct way to find the factorization of the positive integer n is as follows. Recall from Theorem 1.9 that n either is prime, or else has a prime factor not exceeding \sqrt{n}. Consequently, when we divide n by the primes $2,3,5, \ldots$ not exceeding \sqrt{n}, we either find a prime factor p_{1} of n or else we conclude that n is prime. If we have located a prime factor p_{1} of n, we next look for a prime factor of $n_{1}=n / p_{1}$, beginning our search with the prime p_{1}, since n_{1} has no prime factor less than p_{1}, and any factor of n_{1} is also a factor of n. We continue, if necessary, determining whether any of the primes not exceeding $\sqrt{n_{1}}$ divide n_{1}. We continue in this manner, proceeding recursively, to find the prime factorization of n.

Example. Let $n=42833$. We note that n is not divisible by 2,3 and 5 , but that $7 \mid n$. We have

$$
42833=7 \cdot 6119
$$

Trial divisions show that 6119 is not divisible by any of the primes $7,11,13,17,19$, and 23. However, we see that

$$
6119=29 \cdot 211
$$

Since $29>\sqrt{211}$, we know that 211 is prime. We conclude that the prime factorization of 42833 is $42833=7 \cdot 29 \cdot 211$.

Unfortunately, this method for finding the prime factorization of an integer is quite inefficient. To factor an integer N, it may be necessary to perform as many as $\pi(\sqrt{N})$ divisions, altogether requiring on the order of \sqrt{N} bit operations, since from the prime number theorem $\pi(\sqrt{N})$ is approximately $\sqrt{N} / \log \sqrt{N}=2 \sqrt{N} / \log N$, and from Theorem 1.7, these divisions take at least $\log N$ bit operations each. More efficient algorithms for factorization have been developed, requiring fewer bit operations than the direct method of factorization previously described. In general, these algorithms are complicated and rely on ideas that we have not yet discussed. For information about these algorithms we refer the reader to Guy [66] and Knuth [56]. We note that the quickest method yet devised can factor an integer N in
approximately

$$
\exp (\sqrt{\log N \cdot \log \log N})
$$

bit operations, where exp stands for the exponential function.
In Table 2.1, we give the time required to factor integers of various sizes using the most efficient algorithm known, where the time for each bit operation has been estimated as one microsecond (one microsecond is 10^{-6} seconds).

Number of decimal digits	Number of bit operations	Time
50	1.4×10^{10}	3.9 hours
75	9.0×10^{12}	104 days
100	2.3×10^{15}	74 years
200	1.2×10^{23}	3.8×10^{9} years
300	1.5×10^{29}	4.9×10^{15} years
500	1.3×10^{39}	4.2×10^{25} years

Table 2.1. Time Required For Factorization of Large Integers.
Later on we will show that it is far easier to decide whether an integer is prime, than it is to factor the integer. This difference is the basis of a cyptographic system discussed in Chapter 7.

We now describe a factorization technique which is interesting, although it is not always efficient. This technique is known as Fermat factorization and is based on the following lemma.

Lemma 2.7. If n is an odd positive integer, then there is a one-to-one correspondence between factorizations of n into two positive integers and differences of two squares that equal n.

Proof. Let n be an odd positive integer and let $n=a b$ be a factorization of n into two positive integers. Then n can be written as the difference of two squares, since

$$
n=a b=\left(\frac{a+b}{2}\right)^{2}-\left(\frac{a-b}{2}\right)^{2}
$$

where $(a+b) / 2$ and $(a-b) / 2$ are both integers since a and b are both odd.
Conversely, if n is the difference of two squares, say $n=s^{2}-t^{2}$, then we can factor n by noting that $n=(s-t)(s+t)$.

To carry out the method of Fermat factorization, we look for solutions of the equation $n=x^{2}-y^{2}$ by searching for perfect squares of the form $x^{2}-n$. Hence, to find factorizations of n, we search for a square among the sequence of integers

$$
t^{2}-n,(t+1)^{2}-n,(t+2)^{2}-n, \ldots
$$

where t is the smallest integer greater than \sqrt{n}. This procedure is guaranteed to terminate, since the trivial factorization $n=n \cdot 1$ leads to the equation

$$
n=\left(\frac{n+1}{2}\right)^{2}-\left(\frac{n-1}{2}\right)^{2}
$$

Example. We factor 6077 using the method of Fermat factorization. Since $77<\sqrt{6077}<78$, we look for a perfect square in the sequence

$$
\begin{aligned}
& 78^{2}-6077=7 \\
& 79^{2}-6077=164 \\
& 80^{2}-6077=323 \\
& 81^{2}-6077=484=22^{2}
\end{aligned}
$$

Since $6077=81^{2}-22^{2}$, we conclude that $6077=(81-22)(81+22)=$ 59•103.

Unfortunately, Fermat factorization can be very inefficient. To factor n using this technique, it may be necessary to check as many as $(n+1) / 2-\sqrt{n}$ integers to determine whether they are perfect squares. Fermat factorization works best when it is used to factor integers having two factors of similar size.

The integers $F_{n}=2^{2^{n}}+1$ are called the Fermat numbers. Fermat conjectured that these integers are all primes. Indeed, the first few are primes, namely $F_{0}=3, F_{1}=5, \quad F_{2}=17, F_{3}=257$, and $F_{4}=65537$. Unfortunately, $F_{5}=2^{2^{5}}+1$ is composite as we will now demonstrate.

Proposition 2.3. The Fermat number $F_{5}=2^{2^{5}}+1$ is divisible by 641 .
Proof. We will prove that $641 \mid F_{5}$ without actually performing the division. Note that

$$
641=5 \cdot 2^{7}+1=2^{4}+5^{4}
$$

Hence,

$$
\begin{aligned}
2^{2^{5}}+1 & =2^{32}+1=2^{4} \cdot 2^{28}+1=\left(641-5^{4}\right) 2^{28}+1 \\
& =641 \cdot 2^{28}-\left(5 \cdot 2^{7}\right)^{4}+1=641 \cdot 2^{28}-(641-1)^{4}+1 \\
& =641\left(2^{28}-641^{3}+4 \cdot 641^{2}-6 \cdot 641+4\right)
\end{aligned}
$$

Therefore, we see that $641 \mid F_{5}$.
The following result is a valuable aid in the factorization of Fermat numbers.

Proposition 2.4. Every prime divisor of the Fermat number $F_{n}=2^{2^{n}}+1$ is of the form $2^{n+2} k+1$.

The proof of Proposition 2.4 is left until later. It is presented as a problem in Chapter 9. Here, we indicate how Proposition 2.4 is useful in determining the factorization of Fermat numbers.

Example. From Proposition 2.4, we know that every prime divisor of $F_{3}=2^{2^{3}}+1=257$ must be of the form $2^{5} k+1=32 \cdot k+1$. Since there are no primes of this form less than or equal to $\sqrt{257}$, we can conclude that $F_{3}=257$ is prime.

Example. In attempting to factor $F_{6}=2^{2^{6}}+1$, we use Proposition 2.4 to see that all its prime factors are of the form $2^{8} k+1=256 \cdot k+1$. Hence, we need only perform trial divisions of F_{6} by those primes of the form $256 \cdot k+1$ that do not exceed $\sqrt{F_{6}}$. After considerable computation, one finds that a prime divisor is obtained with $k=1071$, i.e. $274177=(256 \cdot 1071+1) \mid F_{6}$.

A great deal of effort has been devoted to the factorization of Fermat numbers. As yet, no new Fermat primes have been found, and many people believe that no additional Fermat primes exist. An interesting, but impractical, primality test for Fermat numbers is given in Chapter 9.

It is possible to prove that there are infinitely many primes using Fermat numbers. We begin by showing that any two distinct Fermat numbers are relatively prime. The following lemma will be used.

Lemma 2.8. Let $F_{k}=2^{2^{k}}+1$ denote the k th Fermat number, where k is a nonnegative integer. Then for all positive integers n, we have

$$
F_{0} F_{1} F_{2} \cdots F_{n-1}=F_{n}-2
$$

Proof. We will prove the lemma using mathematical induction. For $n=1$, the identity reads

$$
F_{0}=F_{1}-2
$$

This is obviously true since $F_{0}=3$ and $F_{1}=5$. Now let us assume that the identity holds for the positive integer n, so that

$$
F_{0} F_{1} F_{2} \cdots F_{n-1}=F_{n}-2
$$

With this assumption we can easily show that the identity holds for the integer $n+1$, since

$$
\begin{aligned}
& F_{0} F_{1} F_{2} \cdots F_{n-1} F_{n}=\left(F_{0} F_{1} F_{2} \cdots F_{n-1}\right) F_{n} \\
&=\left(F_{n}-2\right) F_{n}=\left(2^{2^{4}}-1\right)\left(2^{2}+1\right) \\
&=\left(2^{2^{*}}\right)^{2}-1=2^{2^{++1}}-2=F_{n+1}-2 .
\end{aligned}
$$

This leads to the following theorem.
Theorem 2.6. Let m and n be distinct nonnegative integers. Then the Fermat numbers F_{m} and F_{n} are relatively prime.

Proof. Let us assume that $m<n$. From Lemma 2.8, we know that

$$
F_{0} F_{1} F_{2} \cdots F_{m} \cdots F_{n-1}=F_{n}-2
$$

Assume that d is a common divisor of F_{m} and F_{n}. Then, Proposition 1.4 tells us that

$$
d \mid\left(F_{n}-F_{0} F_{1} F_{2} \cdots F_{m} \cdots F_{n-1}\right)=2
$$

Hence, either $d=1$ or $d=2$. However, since F_{m} and F_{n} are odd, d cannot be 2. Consequently, $d=1$ and $\left(F_{m}, F_{n}\right)=1$.

Using Fermat numbers we can give another proof that there are infinitely many primes. First, we note that from Lemma 1.1, every Fermat number F_{n} has a prime divisor p_{n}. Since $\left(F_{m}, F_{n}\right)=1$, we know that $p_{m} \neq p_{n}$ whenever $m \neq n$. Hence, we can conclude that there are infinitely many primes.

The Fermat primes are also important in geometry. The proof of the following famous theorem may be found in Ore [28].

Theorem 2.7. A regular polygon of n sides can be constructed using a ruler and compass if and only if n is of the form $n=2^{a} p_{1} \cdots p_{t}$ where p_{i}, $i=1,2, \ldots, t$ are distinct Fermat primes and a is a nonnegative integer.

2.4 Problems

1. Find the prime factorization of the following positive integers
a) 692921
b) 1468789
c) 55608079 .
2. Using Fermat's factorization method, factor the following positive integers
a) 7709
b) 73
c) 10897
d) 11021
e) 3200399
f) 24681023 .
3. a) Show that the last two decimal digits of a perfect square must be one of the following pairs: $00, e 1, e 4,25, o 6, e 9$, where e stands for any even digit and o stands for any odd digit. (Hint: Show that $n^{2},(50+n)^{2}$, and $(50-n)^{2}$ all have the same final decimal digits, and then consider those integers n with $0 \leqslant n \leqslant 25$.)
b) Explain how the result of part (a) can be used to speed up Fermat's factorization method.
4. Show that if the smallest prime factor of n is p, then $x^{2}-n$ will not be a perfect square for $x>\left(n+p^{2}\right) / 2 p$.
5. In this problem, we develop the method of Draim factorization. To search for a factor of the positive integer $n=n_{1}$, we start by using the division algorithm, to obtain

$$
n_{1}=3 q_{1}+r_{1}, \quad 0 \leqslant r_{1}<3
$$

Setting $m_{1}=n_{1}$, we let

$$
m_{2}=m_{1}-2 q_{1}, \quad n_{2}=m_{2}+r_{1}
$$

We use the division algorithm again, to obtain

$$
n_{2}=5 q_{2}+r_{2}, \quad 0 \leqslant r_{2}<5,
$$

and we let

$$
m_{3}=m_{2}-2 q_{2}, \quad n_{3}=m_{3}+r_{2}
$$

We proceed recursively, using the division algorithm, to write

$$
n_{k}=(2 k+1) q_{k}+r_{k}, \quad 0 \leqslant r_{k}<2 k+1,
$$

and we define

$$
m_{k}=m_{k-1}-2 q_{k-1}, \quad n_{k}=m_{k}+r_{k-1}
$$

We stop when we obtain a remainder $r_{k}=0$.
a) Show that $n_{k}=k n_{1}-(2 k+1)\left(q_{1}+q_{2}+\cdots+q_{r-1}\right)$ and $m_{k}=n_{1}-$ $2 \cdot\left(q_{1}+q_{2}+\cdots+q_{k-1}\right)$.
b) Show that if $(2 k+1) \mid n$, then $(2 k+1) \mid n_{k}$ and $n=(2 k+1) m_{k+1}$.
c) Factor 5899 using the method of Draim factorization.
6. In this problem, we develop a factorization technique known as Euler's method. It is applicable when the integer being factored is odd and can be written as the sum of two squares in two different ways. Let n be odd and let $n=a^{2}+b^{2}=c^{2}+d^{2}$, where a and c are odd positive integers, and b and d are even positive integers.
a) Let $u=(a-c, b-d)$. Show that u is even and that if $r=(a-c) / u$ and $s=(d-b) / u$, then $(r, s)=1, r(a+c)=s(d+b)$, and $s \mid a+c$.
b) Let $s v=a+c$. Show that $r v=d+b, v=(a+c, d+b)$, and v is even.
c) Conclude that n may be factored as $n=\left[(u / 2)^{2}+(v / 2)^{2}\right]\left(r^{2}+s^{2}\right)$.
d) Use Euler's method to factor $221=10^{2}+11^{2}=5^{2}+14^{2}, 2501=50^{2}+1^{2}$ $=49^{2}+10^{2}$ and $1000009=1000^{2}+3^{2}=972^{2}+235^{2}$.
7. Show that any number of the form $2^{4 n+2}+1$ can be easily factored by the use of the identity $4 x^{4}+1=\left(2 x^{2}+2 x+1\right)\left(2 x^{2}-2 x+1\right)$. Factor $2^{18}+1$ using this identity.
8. Show that if a is a positive integer and $a^{m}+1$ is a prime, then $m=2^{n}$ for some positive integer n. (Hint: Recall the identity $a^{m}+1=\left(a^{k}+1\right)$ $\left(a^{k(\ell-1)}-a^{k(\ell-2)}+\cdots-a^{k}+1\right)$ where $m=k \ell$ and l is odd $)$.
9. Show that the last digit in the decimal expansion of $F_{n}=2^{2}+1$ is 7 if $n \geqslant 2$. (Hint: Using mathematical induction, show that the last decimal digit of $2^{2^{*}}$ is 6.)
10. Use the fact that every prime divisor of $F_{4}=2^{2^{2}}+1=65537$ is of the form $2^{6} k+1=64 k+1$ to verify that F_{4} is prime. (You should need only one trial division.)
11. Use the fact that every prime divisor of $F_{2}=2^{2^{3}}+1$ is of the form $2^{7} k+1=128 k+1$ to demonstrate that the prime factorization of F_{5} is $F_{5}=641 \cdot 6700417$.
12. Find all primes of the form $2^{2^{*}}+5$, where n is a nonnegative integer.
13. Estimate the number of decimal digits in the Fermat number F_{n}.

2.4 Computer Projects

Write programs to do the following:

1. Find the prime factorization of a positive integer.
2. Perform Fermat factorization.
3. Perform Draim factorization (see problem 5).
4. Check a Fermat number for prime factors, using Proposition 2.4.

2.5 Linear Diophantine Equations

Consider the following problem. A man wishes to purchase $\$ 510$ of travelers checks. The checks are available only in denominations of $\$ 20$ and $\$ 50$. How many of each denomination should he buy? If we let x denote the number of $\$ 20$ checks and y the number of $\$ 50$ checks that he should buy, then the equation $20 x+50 y=510$ must be satisfied. To solve this problem, we need to find all solutions of this equation, where both x and y are nonnegative integers.

A related problem arises when a woman wishes to mail a package. The postal clerk determines the cost of postage to be 83 cents but only 6 -cent and 15 -cent stamps are available. Can some combination of these stamps be used to mail the package? To answer this, we first let x denote the number of 6cent stamps and y the number of 15 -cent stamps to be used. Then we must have $6 x+15 y=83$, where both x and y are nonnegative integers.

When we require that solutions of a particular equation come from the set of integers, we have a diophantine equation. Diophantine equations get their name from the ancient Greek mathematician Diophantus, who wrote extensively on such equations. The type of diophantine equation $a x+b y=c$, where a, b, and c are integers is called a linear diophantine equations in two variables. We now develop the theory for solving such equations. The following theorem tells us when such an equation has solutions, and when there are solutions, explicitly describes them.

Theorem 2.8. Let a and b be positive integers with $d=(a, b)$. The equation $a x+b y=c$ has no integral solutions if $d \backslash c$. If $d \mid c$, then there are infinitely many integral solutions. Moveover, if $x=x_{0}, y=y_{0}$ is a particular solution of the equation, then all solutions are given by

$$
x=x_{0}+(b / d) n, y=y_{0}-(a / d) n,
$$

where n is an integer.
Proof. Assume that x and y are integers such that $a x+b y=c$. Then, since $d \mid a$ and $d \mid b$, by Proposition 1.4, $d \mid c$ as well. Hence, if $d \backslash c$, there are no integral solutions of the equation.

Now assume that $d \mid c$. From Theorem 2.1, there are integers s and t with

$$
\begin{equation*}
d=a s+b t \tag{2.3}
\end{equation*}
$$

Since $d \mid c$, there is an integer e with $d e=c$. Multiplying both sides of (2.3) by e, we have

$$
c=d e=(a s+b t) e=a(s e)+b(t e)
$$

To show that there are infinitely many solutions, let $x=\hat{x}_{x_{0}}+(b / d)_{n}$ and $y=\xi_{0}^{t}-(a / d) n$, where n is an integer. We see that this pair (x, y) is a solution, since \quad Vraw graph

$$
a x+b y=a x_{0}+a(b / d) n+b y_{0}-b(a / d) n=a x_{0}+b y_{0}=c .
$$

We now show that every solution of the equation $a x+b y=c$ must be of the form described in the theorem. Suppose that x and y are integers with $a x+b y=c$. Since

$$
a x_{0}+b y_{0}=c,
$$

by subtraction we find that

$$
(a x+b y)-\left(a x_{0}+b y_{0}\right)=0
$$

which implies that

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)=0
$$

Hence,

$$
a\left(x-x_{0}\right)=b\left(y_{0}-y\right)
$$

Dividing both sides of this last equality by d, we see that

$$
(a / d)\left(x-x_{0}\right)=(b / d)\left(y_{c}-y\right) .
$$

By Proposition 2.1, we know that $(a / d, b / d)=1$. Using Lemma 2.3, it
follows that $(a / d) \mid\left(y_{0}-y\right)$. Hence, there is an integer n with $(a / d) n=y_{0}-y$; this means that $y=y_{0}-(a / d) n$. Now putting this value of y into the equation $a\left(x-x_{0}\right)=b\left(y_{0}-y\right)$, we find that $a\left(x-x_{0}\right)=b(a / d) n$, which implies that $x=x_{0}+(b / d) n$.

We now demonstrate how Theorem 2.8 is used to find the solutions of particular linear diophantine equations in two variables.

Consider the problems of finding all the integral solutions of the two diophantine equations described at the beginning of this section. We first consider the equation $6 x+15 y=83$. The greatest common divisor of 6 and 15 is $(6,15)=3$. Since $3 \ 83$, we know that there are no integral solutions. Hence, no combination of 6 - and 15 -cent stamps gives the correct postage.

Next, consider the equation $20 x+50 y=510$. The greatest common divisor of 20 and 50 is $(20,50)=10$, and since $10 \mid 510$, there are infinitely many integral solutions. Using the Euclidean algorithm, we find that $20(-2)+50=10$. Multiplying both sides by 51 , we obtain $20(-102)+50(51)=510$. Hence, a particular solution is given by $x_{0}=-102$ and $y_{0}=51$. Theorem 2.8 tells us that all integral solutions are of the form $x=-102+5 n$ and $y=51-2 n$. Since we want both x and y to be nonnegative, we must have $-102+5 n \geqslant 0$ and $51-2 n \geqslant 0$; thus, $n \geqslant 202 / 5$ and $n \leqslant 251 / 2$. Since n is an integer, it follows that $n=21,22,23,24$, or 25 . Hence, we have the following 5 solutions: $(x, y)=$ $(3,9),(8,7),(13,5),(18,3)$, and $(23,1)$.

2.5 Problems

1. For each of the following linear diophantine equations, either find all solutions, or show that there are no integral solutions
a) $2 x+5 y=11$
b) $17 x+13 y=100$
c) $21 x+14 y=147$
d) $60 x+18 y=97$
e) $1402 x+1969 y=1$.
2. A student returning from Europe changes his French francs and Swiss francs into U.S. money. If he receives $\$ 11.91$ and has received 17 c for each French franc and $48 c$ for each Swiss franc, how much of each type of currency did he exchange?
3. A grocer orders apples and oranges at a total cost of $\$ 8.39$. If apples cost him $25 c$ each and oranges cost him $18 c$ each and he ordered more apples than oranges, how many of each type of fruit did he order? les
4. A shopper spends a total of $\$ 5.49$ for oranges, which cost $18 c$ each, and grapefruits, which cost 33 c each. What is the minimum number of pieces of fruit the shopper could have bought?
5. A postal clerk has only 14 -cent and 21 -cent stamps to sell. What combinations of these may be used to mail a package requiring postage of exactly
a) $\$ 3.50$
b) $\quad \$ 4.00$
c) $\$ 7.77$?
6. At a clambake, the total cost of a lobster dinner is $\$ 11$ and of a chicken dinner is $\$ 8$. What can you conclude if the total bill is
a) $\$ 777$
b) $\$ 96$
c) $\$ 69$?
7. Show that the linear diophantine equation $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b$ has no solutions if $d \backslash b$, where $d=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, and has infinitely many solutions if $d \mid b$.
8. Find all integer solutions of the following linear diophantine equations
a) $2 x+3 y+4 z=5$
b) $7 x+21 y+35 z=8$
c) $101 x+102 y+103 z=1$.
9. Which combinations of pennies, dimes, and quarters have a total value 99c?
10. How many ways can change be made for one dollar using
a) dimes and quarters
b) nickels, dimes, and quarters
c) pennies, nickels, dimes, and quarters?
11. Find all integer solutions of the following systems of linear diophantine equations
a) $x+y+z=100$ $x+8 y+50 z=156$
b) $x+y+z=100$ $x+6 y+21 z=121$
c) $x+y+z+w=100$ $x+2 y+3 z+4 w=300$ $x+4 y+9 z+16 w=1000$.
12. A piggy bank contains 24 coins, all nickels, dimes, and quarters. If the total value of the Coins is two dollars, what combinations of coins are possible?
13. Nadir Airways offers three types of tickets on their Boston to New York flights. First-class tickets are $\$ 70$, second-class tickets are $\$ 55$, and stand-by tickets are $\$ 39$. If 69 passengers pay a total of $\$ 3274$ for their tickets on a particular flight, how many of each type of tickets were sold?
14. Is it possible to have 50 coins, all pennies, dimes, and quarters worth $\$ 3$?
15. Let a and b be relatively prime positive integers and let n be a positive integer. We call a solution x, y of the linear diophantine equation $a x+b y=n$ nonnegative when both x and y are nonnegative.
a) Show that whenever $n \geqslant(a-1)(b-1)$ there is a nonnegative solution of this equation.
b) Show that if $n=a b-a-b$, then there are no nonnegative solutions.
c) Show that there are exactly $(a-1)(b-1) / 2$ positive integers n such that the equation has a nonnegative solution.
d) The post office in a small Maine town is left with stamps of only two values. They discover that there are exactly 33 postage amounts that cannot be made up using these stamps, including 46c. What are the values of the remaining stamps?

2.5 Computer Projects

Write programs to do the following:

1. Find the solutions of a linear diophantine equation in two variables.
2. Find the positive solutions of a linear diophantine equation in two variables.
3. Find the solutions of a linear diophantine equation in an arbitrary number of variables.
4. Find all positive integers n for which the linear diophantine equation $a x+b y=n$ has no positive solutions (see problem 15).

3

Congruences

3.1 Introduction to Congruences

The special language of congruences that we introduce in this chapter is extremely useful in number theory. This language of congruences was developed at the beginning of the nineteenth century by Gauss.

Definition. If a and b are integers, we say that a is congruent to b modulo m if $m \mid(a-b)$.

If a is congruent to b modulo m, we write $a \equiv b(\bmod m)$. If $m \backslash(a-b)$, we write $a \not \equiv b(\bmod m)$, and say that a and b are incongruent modulo m.

Example. We have $22 \equiv 4(\bmod 9)$, since $9 \mid(22-4)=18$. Likewise $3 \equiv-6(\bmod 9)$ and $200 \equiv 2(\bmod 9)$.

Congruences often arise in everyday life. For instance, clocks work either modulo 12 or 24 for hours, and modulo 60 for minutes and seconds, calendars work modulo 7 for days of the week and modulo 12 for months. Utility meters often operate modulo 1000, and odometers usually work modulo 100000 .

In working with congruences, it is often useful to translate them into equalities. To do this, the following proposition is needed.

Proposition 3.1. If a and b are integers, then $a \equiv b(\bmod m)$ if and only if there is an integer k such that $a=b+k m$.

Proof. If $a \equiv b(\bmod m)$, then $m \mid(a-b)$. This means that there is an integer k with $k m=a-b$, so that $a=b+k m$.

Conversely, if there is an integer k with $a=b+k m$, then $k m=a-b$. Hence $m \mid(a-b)$, and consequently, $a \equiv b(\bmod m)$.

Example. We have $19 \equiv-2(\bmod 7)$ and $19=-2+3 \cdot 7$.
The following proposition establishes some important properties of congruences.

Proposition 3.2. Let m be a positive integer. Congruences modulo m satisfy the following properties:
(i) Reflexive property. If a is an integer, then $a \equiv a(\bmod m)$.
(ii) Symmetric property. If a and b are integers such that $a \equiv b(\bmod m)$, then $b \equiv a(\bmod m)$.
(iii) Transitive property. If a, b, and c are integers with $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$, then $a \equiv c(\bmod m)$.

Proof.

(i) We see that $a \equiv a(\bmod m)$, since $m \mid(a-a)=0$.
(ii) If $a \equiv b(\bmod m)$, then $m \mid(a-b)$. Hence, there is an integer k with $k m=a-b$. This shows that $(-k) m=b-a$, so that $m \mid(b-a)$. Consequently, $b \equiv a(\bmod m)$.
(iii) If $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$, then $m \mid(a-b)$ and $m \mid(b-c)$. Hence, there are integers k and ℓ with $k m=a-b$ and $\quad l m=b-c$. Therefore, $\quad a-c=(a-b)+(b-c)=$ $k m+\ell m=(k+\ell) m . \quad$ Consequently, $\quad m \mid(a-c) \quad$ and $a \equiv c(\bmod m)$.
From Proposition 3.2, we see that the set of integers is divided into m different sets called congruence classes modulo m, each containing integers which are mutually congruent modulo m.

Example. The four congruence classes modulo 4 are given by

$$
\begin{aligned}
& \cdots \equiv-8 \equiv-4 \equiv 0 \equiv 4 \equiv 8 \equiv \cdots(\bmod 4) \\
& \cdots \equiv-7 \equiv-3 \equiv 1 \equiv 5 \equiv 9 \equiv \cdots(\bmod 4) \\
& \cdots \equiv-6 \equiv-2 \equiv 2 \equiv 6 \equiv 10 \equiv \cdots(\bmod 4) \\
& \cdots \equiv-5 \equiv-1 \equiv 3 \equiv 7 \equiv 11 \equiv \cdots(\bmod 4)
\end{aligned}
$$

Let a be an integer. Given the positive integer $m, m>1$, by the division algorithm, we have $a=b m+r$ where $0 \leqslant r \leqslant m-1$. From the equation $a=b m+r$, we see that $a \equiv r(\bmod m)$. Hence, every integer is congruent modulo m to one of the integers of the set $0,1, \ldots, m-1$, namely the remainder when it is divided by m. Since no two of the integers $0,1, \ldots, m-1$ are congruent modulo m, we have m integers such that every integer is congruent to exactly one of these m integers.

Definition. A complete system of residues modulo m is a set of integers such that every integer is congruent modulo m to exactly one integer of the set.

Example. The division algorithm shows that the set of integers $0,1,2, \ldots, m-1$ is a complete system of residues modulo m. This is called the set of least nonnegative residues modulo m.

Example. Let m be an odd positive integer. Then the set of integers

$$
-\frac{m-1}{2},-\frac{m-3}{2}, \ldots,-1,0,1, \ldots, \frac{m-3}{2}, \frac{m-1}{2}
$$

is a complete system of residues called the set of absolute least residues modulo m.

We will often do arithmetic with congruences. Congruences have many of the same properties that equalities do. First, we show that an addition, subtraction, or multiplication to both sides of a congruence preserves the congruence.

Theorem 3.1. If a, b, c, and m are integers with $m>0$ such that $a \equiv b(\bmod m)$, then
(i) $a+c \equiv b+c(\bmod m)$,
(ii) $a-c \equiv b-c(\bmod m)$,
(iii) $a c \equiv b c(\bmod m)$.

Proof. Since $a \equiv b(\bmod m)$, we know that $m \mid(a-b)$. From the identity $(a+c)-(b+c)=a-b$, we see $m \mid[(a+c)-(b+c)]$, so that (i) follows. Likewise, (ii) follows from the fact that $(a-c)-(b-c)=a-b$. To show that (iii) holds, note that $a c-b c=c(a-b)$. Since $m \mid(a-b)$, it follows that $m \mid c(a-b)$, and hence, $a c \equiv b c(\bmod m)$.

Example. Since $19 \equiv 3(\bmod 8)$, it follows from Theorem 3.1 that
$26=19+7 \equiv 3+7=10(\bmod 8), 15=19-4 \equiv 3-4 \equiv-1(\bmod 8)$, and $38=19 \cdot 2 \equiv 3 \cdot 2=6(\bmod 8)$.

What happens when both sides of a congruence are divided by an integer? Consider the following example.

Example. We have $14=7 \cdot 2 \equiv 4 \cdot 2=8(\bmod 6)$. But $7 \not \equiv 4(\bmod 6)$.
This example shows that it is not necessarily true that we preserve a congruence when we divide both sides by an integer. However, the following theorem gives a valid congruence when both sides of a congruence are divided by the same integer.

Theorem 3.2. If a, b, c and m are integers such that $m>0, d=(c, m)$, and $a c \equiv b c(\bmod m)$, then $a \equiv b(\bmod m / d)$.

Proof. If $a c \equiv b c(\bmod m)$, we know that $m \mid(a c-b c)=c(a-b)$. Hence, there is an integer k with $c(a-b)=k m$. By dividing both sides by d, we have $(c / d)(a-b)=k(m / d)$. Since $(m / d, c / d)=1$, from Proposition 2.1 it follows that $m / d \mid(a-b)$. Hence, $a \equiv b(\bmod m / d)$.

Example. Since $50 \equiv 20(\bmod 15)$ and $(10,5)=5$, we see that $50 / 10 \equiv 20 / 10(\bmod 15 / 5)$, or $5 \equiv 2(\bmod 3)$.

The following corollary, which is a special case of Theorem 3.2, is used often.

Corollary 3.1. If a, b, c, and m are integers such that $m>0,(c, m)=1$, and $a c \equiv b c(\bmod m)$, then $a \equiv b(\bmod m)$.

Example. Since $42 \equiv 7(\bmod 5)$ and $(5,7) \equiv 1$, we can conclude that $42 / 7 \equiv 7 / 7(\bmod 5)$, or that $6 \equiv 1(\bmod 5)$.

The following theorem, which is more general than Theorem 3.1, is also useful.

Theorem 3.3. If a, b, c, d, and m are integers such that $m>0$, $a \equiv b(\bmod m)$, and $c \equiv d(\bmod m)$, then
(i) $a+c \equiv b+d(\bmod m)$,
(ii) $a-c \equiv b-d(\bmod m)$,
(iii) $a c \equiv b d(\bmod m)$.

Proof. Since $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, we know that $m \mid(a-b)$
and $m \mid(c-d)$. Hence, there are integers k and ℓ with $k m=a-b$ and $\ell m=c-d$.

To prove (i), note that $(a+c)-(b+d)=(a-b)+(c-d)=k m+\ell m=$ $(k+\ell) m$. Hence, $\quad m \mid[(a+c)-(b+d)]$. Therefore, $a+c \equiv b+$ $d(\bmod m)$.

To prove (ii), note that $(a-c)-(b-d)=(a-b)-(c-d)=k m-l m=$ $(k-l) m$. Hence, $m \mid[(a-c)-(b-d)]$, so that $a-c \equiv b-d(\bmod m)$.

To prove (iii), note that $a c-b d=a c-b c+b c-b d=$ $c(a-b)+b(c-d)=c k m+b l m=m(c k+b l)$. Hence, $m \mid(a c-b d)$. Therefore, $a c \equiv b d(\bmod m)$.

Example. Since $13 \equiv 8(\bmod 5)$ and $7 \equiv 2(\bmod 5)$, using Theorem 3.3 we see that $20=13+7 \equiv 8+2 \equiv 0(\bmod 5), 6=13-7 \equiv 8-7 \equiv 1$ $(\bmod 5)$, and $91=13 \cdot 7=8 \cdot 2=16(\bmod 5)$.

Theorem 3.4. If $r_{1}, r_{2}, \ldots, r_{m}$ is a complete system of residues modulo m, and if a is a positive integer with $(a, m)=1$, then

$$
a r_{1}+b, a r_{2}+b, \ldots, a r_{m}+b
$$

is a complete system of residues modulo m.
Proof. First, we show that no two of the integers

$$
a r_{1}+b, a r_{2}+b, \ldots, a r_{m}+b
$$

are congruent modulo m. To see this, note that if

$$
a r_{j}+b \equiv a r_{k}+b(\bmod m)
$$

then, from (ii) of Theorem 3.1, we know that

$$
a r_{j} \equiv a r_{k}(\bmod m)
$$

Because $(a, m)=1$, Corollary 3.1 shows that

$$
r_{j} \equiv r_{k}(\bmod m)
$$

Since $r_{j} \not \equiv r_{k}(\bmod m)$ if $j \neq k$, we conclude that $j=k$.
Since the set of integers in question consists of m incongruent integers modulo m, these integers must be a complete system of residues modulo m.

The following theorem shows that a congruence is preserved when both sides are raised to the same positive integral power.

Theorem 3.5. If a, b, k, and m are integers such that $k>0, m>0$, and $a \equiv b(\bmod m)$, then $a^{k} \equiv b^{k}(\bmod m)$.

Proof. Because $a \equiv b(\bmod m)$, we have $m \mid(a-b)$. Since

$$
a^{k}-b^{k}=(a-b)\left(a^{k-1}+a^{k-2} b+\cdots+a b^{k-2}+b^{k-1}\right)
$$

we see that $(a-b) \mid\left(a^{k}-b^{k}\right)$. Therefore, from Proposition 1.2 it follows that $m \mid\left(a^{k}-b^{k}\right)$. Hence, $a^{k} \equiv b^{k}(\bmod m)$.

Example. Since $7 \equiv 2(\bmod 5)$, Theorem 3.5 tells us that $343=7^{3}$ $\equiv 2^{3} \equiv 8(\bmod 5)$.

The following result shows how to combine congruences of two numbers to different moduli.

Theorem 3.6. If $a \equiv b\left(\bmod m_{1}\right), a \equiv b\left(\bmod m_{2}\right), \ldots, a \equiv b\left(\bmod m_{k}\right)$ where $a, b, m_{1}, m_{2}, \ldots, m_{k}$ are integers with $m_{1}, m_{2}, \ldots, m_{k}$ positive, then

$$
a \equiv b\left(\bmod \left[m_{1}, m_{2}, \ldots, m_{k}\right]\right)
$$

where $\left[m_{1}, m_{2}, \ldots, m_{k}\right.$] is the least common multiple of $m_{1}, m_{2}, \ldots, m_{k}$.
Proof. Since $a \equiv b\left(\bmod m_{1}\right), a \equiv b\left(\bmod m_{2}\right), \ldots, a \equiv b\left(\bmod m_{k}\right)$, we know that $m_{1}\left|(a-b), m_{2}\right|(a-b), \ldots, m_{k} \mid(a-b)$. From problem 20 of Section 2.3, we see that

$$
\left[m_{1}, m_{2}, \ldots, m_{k}\right] \mid(a-b)
$$

Consequently,

$$
a \equiv b\left(\bmod \left[m_{1}, m_{2}, \ldots, m_{k}\right]\right)
$$

An immediate and useful consequence of this theorem is the following result.

Corollary 3.2. If $a \equiv b\left(\bmod m_{1}\right), a \equiv b\left(\bmod m_{2}\right), \ldots, a \equiv b\left(\bmod m_{k}\right)$ where a and b are integers and $m_{1}, m_{2}, \ldots, m_{k}$ are relatively prime positive integers, then

$$
a \equiv b\left(\bmod m_{1} m_{2} \cdots m_{k}\right)
$$

Proof. Since $m_{1}, m_{2}, \ldots, m_{k}$ are pairwise relatively prime, problem 34 of Section 2.3 tells us that

$$
\left[m_{1}, m_{2}, \ldots, m_{k}\right]=m_{1} m_{2} \cdots m_{k}
$$

Hence, from Theorem 3.6 we know that

$$
a \equiv b\left(\bmod m_{1} m_{2} \cdots m_{k}\right)
$$

In our subsequent studies, we will be working with congruences involving large powers of integers. For example, we will want to find the least positive residue of 2^{644} modulo 645 . If we attempt to find this least positive residue by first computing 2^{644}, we would have an integer with 194 decimal digits, a most undesirable thought. Instead, to find 2^{644} modulo 645 we first express the exponent 644 in binary notation:

$$
(644)_{10}=(1010000100)_{2} .
$$

Next, we compute the least positive residues of $2,2^{2}, 2^{4}, 2^{8}, \ldots, 2^{512}$ by successively squaring and reducing modulo 645 . This gives us the congruences

2	\equiv	2	$(\bmod 645)$,
2^{2}	\equiv	4	$(\bmod 645)$,
2^{4}	\equiv	16	$(\bmod 645)$,
2^{8}	\equiv	256	$(\bmod 645)$,
2^{16}	\equiv	391	$(\bmod 645)$,
2^{32}	\equiv	16	$(\bmod 645)$,
2^{64}	\equiv	256	$(\bmod 645)$,
2^{128}	\equiv	391	$(\bmod 645)$,
2^{256}	\equiv	16	$(\bmod 645)$,
2^{512}	\equiv	256	$(\bmod 645)$,

We can now compute 2^{644} modulo 645 by multiplying the least positive residues of the appropriate powers of 2 . This gives

$$
\begin{gathered}
2^{644}=2^{512+128+4}=2^{512} 2^{128} 2^{4} \equiv 256 \cdot 391 \cdot 16 \\
=1601536 \equiv 1(\bmod 645)
\end{gathered}
$$

We have just illustrated a general procedure for modular exponentiation, that is, for computing b^{N} modulo m where b, m, and N are positive integers. We first express the exponent N in binary notation, as $N=\left(a_{k} a_{k-1} \ldots a_{1} a_{0}\right)_{2}$. We then find the least positive residues of $b, b^{2}, b^{4}, \ldots, b^{2^{k}}$ modulo m, by successively squaring and reducing modulo m. Finally, we multiply the least positive residues modulo m of $b^{2^{j}}$ for those j with $a_{j}=1$, reducing modulo m after each multiplication.

In our subsequent discussions, we will need an estimate for the number of bit operations needed for modular exponentiation. This is provided by the following proposition.

Proposition 3.3. Let b, m, and N be positive integers with $b<m$. Then the least positive residue of b^{N} modulo m can be computed using $O\left(\left(\log _{2} m\right)^{2} \log _{2} N\right)$ bit operations.

Proof. To find the least positive residue of $b^{N}(\bmod m)$, we can use the algorithm just described. First, we find the least positive residues of $b, b^{2}, b^{4}, \ldots, b^{2^{k}}$ modulo m, where $2^{k} \leqslant N<2^{k+1}$, by successively squaring and reducing modulo m. This requires a total of $O\left(\left(\log _{2} m\right)^{2} \log _{2} N\right)$ bit operations, because we perform $\left[\log _{2} N\right]$ squarings modulo m, each requiring $O\left(\left(\log _{2} m\right)^{2}\right)$ bit operations. Next, we multiply together the least positive residues of the integers $b^{2^{\prime}}$ corresponding to the binary digits of N which are equal to one, and we reduce modulo m after each multiplication. This also requires $O\left(\left(\log _{2} m\right)^{2} \log _{2} N\right)$ bit operations, because there are at most $\log _{2} N$ multiplications, each requiring $O\left(\left(\log _{2} m\right)^{2}\right)$ bit operations. Therefore, a total of $O\left(\left(\log _{2} m\right)^{2} \log _{2} N\right)$ bit operations are needed.

3.1 Problems

1. For which positive integers m are the following statements true
a) $27 \equiv 5(\bmod m)$
b) $1000 \equiv 1(\bmod m)$
c) $1331 \equiv 0(\bmod m)$?
2. Show that if a is an even integer, then $a^{2} \equiv 0(\bmod 4)$, and if a is an odd integer, then $a^{2} \equiv 1(\bmod 4)$.
3. Show that if a is an odd integer, then $a^{2} \equiv 1(\bmod 8)$.
4. Find the least nonnegative residue modulo 13 of
a) 22
b) 100
c) $\mathbf{1 0 0 1}$
d) -1
e) -100
f) -1000 .
5. Show that if a, b, m, and n are integers such that $m>0, n>0, n \mid m$, and $a \equiv b(\bmod m)$, then $a \equiv b(\bmod n)$.
6. Show that if a, b, c, and m are integers such that $c>0, m>0$, and $a \equiv b(\bmod m)$, then $a c \equiv b c(\bmod m c)$.
7. Show that if a, b, and c are integers with $c>0$ such that $a \equiv b(\bmod c)$, then $(a, c)=(b, c)$.
8. Show that if $a_{j} \equiv b_{j}(\bmod m)$ for $j=1,2, \ldots, n$, where m is a positive integer and $a_{j}, b_{j}, j=1,2, \ldots, n$, are integers, then
a) $\sum_{j=1}^{n} a_{j} \equiv \sum_{j=1}^{n} b_{j}(\bmod m)$
b) $\prod_{j=1}^{n} a_{j} \equiv \prod_{j=1}^{n} b_{j}(\bmod m)$.

In problems 9-11 construct tables for arithmetic modulo 6 using the least nonnegative residues modulo 6 to represent the congruence classes.
9. Construct a table for addition modulo 6 .
10. Construct a table for subtraction modulo 6 .
11. Construct a table for multiplication modulo 6 .
12. What time does a clock read
a) 29 hours after it reads 11 o'clock
b) 100 hours after it reads 20^{\prime} clock
c) 50 hours before it reads 60^{\prime} clock?
13. Which decimal digits occur as the final digit of a fourth power of an integer?
14. What can you conclude if $a^{2} \equiv b^{2}(\bmod p)$, where a and b are integers and p is prime?
15. Show that if $a^{k} \equiv b^{k}(\bmod m)$ and $a^{k+1} \equiv b^{k+1}(\bmod m)$, where a, b, k, and m are integers with $k>0$ and $m>0$ such that $(a, m)=1$, then $a \equiv b(\bmod m)$. If the condition $(a, m)=1$ is dropped, is the conclusion that $a \equiv b(\bmod m)$ still valid?
16. Show that if n is a positive integer, then
a) $1+2+3+\cdots+(n-1) \equiv 0(\bmod n)$.
b) $1^{3}+2^{3}+3^{3}+\cdots+(n-1)^{3} \equiv 0(\bmod n)$.
17. For which positive integers n is it true that

$$
1^{2}+2^{2}+3^{2}+\cdots+(n-1)^{2} \equiv 0(\bmod n) ?
$$

18. Give a complete system of residues modulo 13 consisting entirely of odd integers.
19. Show that if $n \equiv 3(\bmod 4)$, then n cannot be the sum of the squares of two integers.
20. a) Show that if p is prime, then the only solutions of the congruence $x^{2} \equiv x(\bmod p)$ are those integers x with $x \equiv 0$ or $1(\bmod p)$.
b) Show that if p is prime and k is a positive integer, then the only solutions of $x^{2} \equiv x\left(\bmod p^{k}\right)$ are those integers x such that $x \equiv 0$ or $1\left(\bmod p^{k}\right)$.
21. Find the least positive residues modulo 47 of
a) 2^{32}
b) 2^{47}
c) 2^{200}.
22. Let $m_{1}, m_{2}, \ldots, m_{k}$ be pairwise relatively prime positive integers. Let $M=m_{1} m_{2} \cdots m_{k}$ and $M_{j}=M / m_{j}$ for $j=1,2, \ldots, k$. Show that

$$
M_{1} a_{1}+M_{2} a_{2}+\cdots+M_{k} a_{k}
$$

runs through a complete system of residues modulo M when $a_{1}, a_{2}, \ldots, a_{k}$ run through complete systems of residues modulo $m_{1}, m_{2}, \ldots, m_{k}$, respectively.
23. Explain how to find the sum $u+v$ from the least positive residue of $u+v$ modulo m, where u and v are positive integers less than m. (Hint: Assume that $u \leqslant v$ and consider separately the cases where the least positive residue of $u+v$ is less than u, and where it is greater than v.)
24. On a computer with word size w, multiplication modulo n, where $n<w / 2$, can be performed as outlined. Let $T=[\sqrt{n}+1 / 2]$, and $t=T^{2}-n$. For each computation, show that all the required computer arithmetic can be done without exceeding the word size. (This method was described by Head [67]).
a) Show that $|t| \leqslant T$.
b) Show that if x and y are nonnegative integers less than n, then

$$
x=a T+b, \quad y=c T+d
$$

where a, b, c, and d are integers such that $0 \leqslant a \leqslant T, 0 \leqslant b<T$, $0 \leqslant c<T$, and $0 \leqslant d<T$.
c) Let $z \equiv a d+b c(\bmod n)$, with $0 \leqslant z<n$. Show that

$$
x y \equiv a c t+z T+b d(\bmod n) .
$$

d) Let $a c=e T+f$ where e and f are integers with $0 \leqslant e<T$ and $0 \leqslant f \leqslant T$. Show that

$$
x y \equiv(z+e t) T+f t+b d(\bmod n)
$$

e) Let $v=z+e t(\bmod n)$, with $0 \leqslant v<n$. Show that we can write

$$
v=g T+h,
$$

where g and h are integers with $0 \leqslant g \leqslant T, 0 \leqslant h<T$, and such that

$$
x y \equiv h T+(f+g) t+b d(\bmod n)
$$

f) Show that the right-hand side of the congruence of part (e) can be computed without exceeding the word size by first finding j with

$$
j \equiv(f+g) t(\bmod n)
$$

and $0 \leqslant j<n$, and then finding k with

$$
k \equiv j+b d(\bmod n)
$$

and $0 \leqslant k<n$, so that

$$
x y \equiv h T+k(\bmod n)
$$

This gives the desired result.
25. Develop an algorithm for modular exponentiation from the base three expansion of the exponent.
26. Find the least positive residue of
a) 3^{10} modulo 11
b) 2^{12} modulo 13
c) 5^{16} modulo 17
d) 3^{22} modulo 23 .
e) Can you propose a theorem from the above congruences?
27. Find the least positive residues of
a) 6! modulo 7
b) 10 ! modulo 11
c) 12 ! modulo 13
d) $16!$ modulo 17 .
e) Can you propose a theorem from the above congruences?
28. Prove Theorem 3.5 using mathematical induction.
29. Show that the least nonnegative residue modulo m of the product of two positive integers less than m can be computed using $O\left(\log ^{2} m\right)$ bit operations.
30. a) Five men and a monkey are shipwrecked on an island. The men have collected a pile of coconuts which they plan to divide equally among themselves the next morning. Not trusting the other men, one of the group wakes up during the night and divides the coconuts into five equal parts with one left over, which he gives to the monkey. He then hides his portion of the pile. During the night, each of the other four men does exactly the same thing by dividing the pile they find into five equal parts leaving one coconut for the monkey and hiding his portion. In the morning, the men
gather and split the remaining pile of coconuts into five parts and one is left over for the monkey. What is the minimum number of coconuts the men could have collected for their original pile?
b) Answer the same question as in part (a) if instead of five men and one monkey, there are n men and k monkeys, and at each stage the monkeys receive one coconut each.

3.1 Computer Projects

Write computer programs to do the following:

1. Find the least nonnegative residue of an integer with respect to a fixed modulus.
2. Perform modular addition and subtraction when the modulus is less than half of the word size of the computer.
3. Perform modular multiplication when the modulus is less than half of the word size of the computer using problem 24.
4. Perform modular exponentiation using the algorithm described in the text.

3.2 Linear Congruences

A congruence of the form

$$
a x \equiv b(\bmod m)
$$

where x is an unknown integer, is called a linear congruence in one variable. In this section we will see that the study of such congruences is similar to the study of linear diophantine equations in two variables.

We first note that if $x=x_{0}$ is a solution of the congruence $a x \equiv b(\bmod m)$, and if $x_{1} \equiv x_{0}(\bmod m)$, then $a x_{1} \equiv a x_{0} \equiv b(\bmod m)$, so that x_{1} is also a solution. Hence, if one member of a congruence class modulo m is a solution, then all members of this class are solutions. Therefore, we may ask how many of the m congruence classes modulo m give solutions; this is exactly the same as asking how many incongruent solutions there are modulo m. The following theorem tells us when a linear congruence in one variable has solutions, and if it does, tells exactly how many incongruent solutions there are modulo m.

Theorem 3.7. Let a, b, and m be integers with $m>0$ and (a, m) $=d$. If $d \backslash b$, then $a x \equiv b(\bmod m)$ has no solutions. If $d \mid b$, then $a x \equiv b(\bmod m)$ has exactly d incongruent solutions modulo m.

Proof. From Proposition 3.1, the linear congruence $a x \equiv b(\bmod m)$ is equivalent to the linear diophantine equation in two variables $a x-m y=b$. The integer x is a solution of $a x \equiv b(\bmod m)$ if and only if there is an integer y with $a x-m y=b$. From Theorem 2.8 , we know that if $d \backslash b$, there are no solutions, while if $d \mid b, a x-m y=b$ has infinitely many solutions, given by

$$
x=x_{0}+(m / d) t, y=y_{0}+(a / d) t
$$

where $x=x_{0}$ and $y=y_{0}$ is a particular solution of the equation. The values of x given above,

$$
x=x_{0}+(m / d) t
$$

are the solutions of the linear congruence; there are infinitely many of these.
To determine how many incongruent solutions there are, we find the condition that describes when two of the solutions $x_{1}=x_{0}+(m / d) t_{1}$ and $x_{2}=x_{0}+(m / d) t_{2}$ are congruent modulo m. If these two solutions are congruent, then

$$
x_{0}+(m / d) t_{1} \equiv x_{0}+(m / d) t_{2}(\bmod m)
$$

Subtracting x_{0} from both sides of this congruence, we find that

$$
(m / d) t_{1} \equiv(m / d) t_{2}(\bmod m)
$$

Now $(m, m / d)=m / d$ since $(m / d) \mid m$, so that by Theorem 3.2° we see that

$$
t_{1} \equiv t_{2}(\bmod d) . \quad d=\frac{m}{m / d}
$$

This shows that a complete set of incongruent solutions is obtained by taking $x=x_{0}+(m / d) t$, where t ranges through a complete system of residues modulo d. One such set is given by $x=x_{0}+(m / d) t$ where $t=0,1,2, \ldots, d-1$.

We now illustrate the use of Theorem 3.7.
Example. To find all solutions of $9 x \equiv 12(\bmod 15)$, we first note that since $(9,15)=3$ and $3 \mid 9$ there are exactly three incongruent solutions. We can find these solutions by first finding a particular solution and then adding the appropriate multiples of $15 / 3=5$.

To find a particular solution, we consider the linear diophantine equation $9 x-15 y=12$. The Euclidean algorithm shows that
p- 58

$$
\begin{aligned}
15 & =9 \cdot 1+6 \\
9 & =6 \cdot 1+3 \\
6 & =3 \cdot 2,
\end{aligned}
$$

so that $3=9-6 \cdot 1=9-(15-9 \cdot 1)=9 \cdot 2-15$. Hence $9 \cdot 8-15 \cdot 4=12$, and a particular solution of $9 x-15 y=12$ is given by $x_{0}=8$ and $y_{0}=4$.

From the proof of Theorem 3.7, we see that a complete set of 3 incongruent solutions is given by $x=x_{0} \equiv 8(\bmod 15), x=x_{0}+5 \equiv 13(\bmod 15)$, and $x=x_{0}+5 \cdot 2 \equiv 18 \equiv 3(\bmod 15)$.

We now consider congruences of the special form $a x \equiv 1(\bmod m)$. From Theorem 3.7, there is a solution to this congruence if and only if $(a, m)=1$, and then all solutions are congruent modulo m. Given an integer a with $(a, m)=1$, a solution of $a x \equiv 1(\bmod m)$ is called an inverse of a modulo m.

$$
7 x-31 y=3 i=4-7+3 \quad 7=2.3 .1 \quad 1=7-2(3 i-7-7)=7-9-3 i .2
$$

Example. Since the solutions of $7 x \equiv 1(\bmod 31)$ satisfy $x \equiv 9(\bmod 31), 9$, and all integers congruent to 9 modulo 31 , are inverses of 7 modulo 31. Analogously, since $9 \cdot 7 \equiv 1(\bmod 31), 7$ is an inverse of 9 modulo 31 .

When we have an inverse of a modulo m, we can use it to solve any congruence of the form $a x \equiv b(\bmod m)$. To see this, let \bar{a} be an inverse of a modulo m, so that $a \bar{a} \equiv 1(\bmod m)$. Then, if $a x \equiv b(\bmod m)$, we can multiply both sides of this congruence by \bar{a} to find that $\bar{a}(a x) \equiv \bar{a} b(\bmod m)$, so that $x \equiv \bar{a} b(\bmod m)$.

Example. To find the solutions of $7 x \equiv 22(\bmod 31)$, we multiply both sides of this congruence by 9 , an inverse of 7 modulo 31 , to obtain $9 \cdot 7 x \equiv 9 \cdot 22(\bmod 31)$. Hence, $x \equiv 198 \equiv 12(\bmod 31)$.

We note here that if $(a, m)=1$, then the linear congruence $a x \equiv b(\bmod m)$ has a unique solution modulo m.

Example. To find all solutions of $7 x \equiv 4(\bmod 12)$, we note that since $(7,12)=1$, there is a unique solution modulo 12 . To find this, we need only obtain a solution of the linear diophantine equation $7 x-12 y=4$. The Euclidean algorithm gives

$$
\begin{aligned}
12 & =7 \cdot 1+5 \\
7 & =5 \cdot 1+2 \\
5 & =2 \cdot 2+1 \\
2 & =1 \cdot 2 .
\end{aligned}
$$

Hence

$$
1=5-2 \cdot 2=5-(7-5 \cdot 1) \cdot 2=5 \cdot 3-2 \cdot 7=(12-7 \cdot 1)=3-2 \cdot 7=
$$

$12 \cdot 3-5 \cdot 7$. Therefore, a particular solution to the linear diophantine equation is $x_{0}=-20$ and $y_{0}=12$. Hence, all solutions of the linear congruences are given by $x \equiv-20 \equiv 4(\bmod 12)$.

Later on, we will want to know which integers are their own inverses modulo p where p is prime. The following proposition tells us which integers have this property.

Proposition 3.4. Let p be prime. The positive integer a is its own inverse modulo p if and only if $a \equiv 1(\bmod p)$ or $a \equiv-1(\bmod p)$.

Proof. If $a \equiv 1(\bmod p)$ or $a \equiv-1(\bmod p)$, then $a^{2} \equiv 1(\bmod p)$, so that a is its own inverse modulo p.

Conversely, if a is its own inverse modulo p, then $a^{2}=a \cdot a \equiv 1(\bmod p)$. Hence, $p \mid\left(a^{2}-1\right)$. Since $a^{2}-1=(a-1)(a+1)$, either $p \mid(a-1)$ or $p \mid(a+1)$. Therefore, either $a \equiv 1(\bmod p)$ or $a \equiv-1(\bmod p)$.

3.2 Problems

1. Find all solutions of each of the following linear congruences.
a) $3 x \equiv 2(\bmod 7)$
b) $6 x \equiv 3(\bmod 9)$
c) $17 x \equiv 14(\bmod 21)$
d) $15 x \equiv 9(\bmod 25)$
e) $128 x \equiv 833(\bmod 1001)$
f) $987 x \equiv 610(\bmod 1597)$.
2. Let a, b, and m be positive integers with $a>0, m>0$, and $(a, m)=1$. The following method can be used to solve the linear congruence $a x \equiv b(\bmod m)$.
a) Show that if the integer x is a solution of $a x \equiv b(\bmod m)$, then x is also a solution of the linear congruence

$$
a_{1} x \equiv-b[m / a](\bmod m)
$$

where a_{1} is the least positive residue of m modulo a. Note that this congruence is of the same type as the original congruence, with a positive integer smaller than a as the coefficient of x.
b) When the procedure of part (a) is iterated, one obtains a sequence of linear congruences with coefficients of x equal to $a_{0}=a>a_{1}>a_{2}>\cdots$. Show that there is a positive integer n with $a_{n}=1$, so that at the nth stage, one obtains a linear congruence $x \equiv B(\bmod m)$.
c) Use the method described in part (b) to solve the linear congruence $6 x \equiv 7(\bmod 23)$.
3. An astronomer knows that a satellite orbits the earth in a period that is an exact multiple of 1 hour that is less than 1 day. If the astronomer notes that the satellite completes 11 orbits in an interval starting when a 24 -hour clock reads 0 hours and ending when the clock reads 17 hours, how long is the orbital period of the satellite?
4. For which integers c with $0 \leqslant c<30$ does the congruence $12 x \equiv c(\bmod 30)$ have solutions? When there are solutions, how many incongruent solutions are there?
5. Find an inverse modulo 17 of
a) 4
b) 5
c) 7
d) 16 .
6. Show that if \bar{a} is an inverse of a modulo m and \bar{b} is an inverse of b modulo m, then $\bar{a} \bar{b}$ is an inverse of $a b$ modulo m.
7. Show that the linear congruence in two variables $a x+b y \equiv c(\bmod m)$, where a, b, c, and m are integers, $m>0$, with $d=(a, b, m)$, has exactly $d m$ incongruent solutions if $d \mid c$, and no solutions otherwise.
8. Find all solutions of the following linear congruences in two variables
a) $2 x+3 y \equiv 1(\bmod 7)$
b) $2 x+4 y \equiv 6(\bmod 8)$
c) $6 x+3 y \equiv 0(\bmod 9)$
d) $10 x+5 y \equiv 9(\bmod 15)$.
9. Let p be an odd prime and k a positive integer. Show that the congruence $x^{2} \equiv 1\left(\bmod p^{k}\right)$ has exactly two incongruent solutions, namely $x \equiv \pm 1\left(\bmod p^{k}\right)$.
10. Show that the congruence $x^{2} \equiv 1\left(\bmod 2^{k}\right)$ has exactly four incongruent solutions, namely $x \equiv \pm 1$ or $\pm\left(1+2^{k-1}\right)\left(\bmod 2^{k}\right)$, when $k>2$. Show that when $k=1$ there is one solution and when $k=2$ there are two incongruent solutions.
11. Show that if a and m are relatively prime positive integers with $a<m$, then an inverse of a modulo m can be found using $O(\log m)$ bit operations.
12. Show that if p is an odd prime and a is a positive integer not divisible by p, then the congruence $x^{2} \equiv a(\bmod p)$ has either no solution or exactly two incongruent solutions.

3.2 Computer Projects

Write programs to do the following:

1. Solve linear congruence using the method given in the text.
2. Solve linear congruences using the method given in problem 2.
3. Find inverses modulo m of integers relatively prime to m where m is a positive integer.
4. Solve linear congruences using inverses.
5. Solve linear congruences in two variables.

3.3 The Chinese Remainder Theorem

In this section and in the one following, we discuss systems of simultaneous congruences. We will study two types of such systems. In the first type, there are two or more linear congruences in one variable, with different moduli (moduli is the plural of modulus). The second type consists of more than one simultaneous congruence in more than one variable, where all congruences have the same modulus.

First, we consider systems of congruences that involve only one variable, but different moduli. Such systems arose in ancient Chinese puzzles such as the following: Find a number that leaves a remainder of 1 when divided by 3, a remainder of 2 when divided by 5 , and a remainder of 3 when divided by 7 . This puzzle leads to the following system of congruences:

$$
x \equiv 1(\bmod 3), x \equiv 2(\bmod 5), x \equiv 3(\bmod 7)
$$

We now give a method for finding all solutions of systems of simultaneous congruences such as this. The theory behind the solution of systems of this type is provided by the following theorem, which derives its name from the ancient Chinese heritage of the problem.

The Chinese Remainder Theorem. Let $m_{1}, m_{2}, \ldots, m_{r}$ be pairwise relatively prime positive integers. Then the system of congruence

$$
\begin{aligned}
x & \equiv a_{1}\left(\bmod m_{1}\right), \\
x & \equiv a_{2}\left(\bmod m_{2}\right), \\
& \cdot \\
& \cdot \\
x & \equiv a_{r}\left(\bmod m_{t}\right),
\end{aligned}
$$

has a unique solution modulo $M=m_{1} m_{2} \cdots m_{r}$.

Proof. First, we construct a simultaneous solution to the system of congruences. To do this, let $M_{k}=M / m_{k}=m_{1} m_{2} \cdots m_{k-1} m_{k+1} \cdots m_{r}$. We know that $\left(M_{k}, m_{k}\right)=1$ from problem 8 of Section 2.1, since $\left(m_{j}, m_{k}\right)=1$ whenever $j \neq k$. Hence, from Theorem 3.7, we can find an inverse y_{k} of M_{k} modulo m_{k}, so that $M_{k} y_{k} \equiv 1\left(\bmod m_{k}\right)$. We now form the sum

$$
x=a_{1} M_{1} y_{1}+a_{2} M_{2} y_{2}+\cdots+a_{r} M_{r} y_{r} .
$$

The integer x is a simultaneous solution of the r congruences. To demonstrate this, we must show that $x \equiv a_{k}\left(\bmod m_{k}\right)$ for $k=1,2, \ldots, r$. Since $m_{k} \mid M_{j}$ whenever $j \neq k$, we have $M_{j} \equiv 0\left(\bmod m_{k}\right)$. Therefore, in the sum for x, all terms except the k th term are congruent to $0\left(\bmod m_{k}\right)$. Hence, $x \equiv a_{k} M_{k} y_{k} \equiv a_{k}\left(\bmod m_{k}\right)$, since $M_{k} y_{k} \equiv 1\left(\bmod m_{k}\right)$.

We now show that any two solutions are congruent modulo M. Let x_{0} and x_{1} both be simultaneous solutions to the system of r congruences. Then, for each $k, x_{0} \equiv x_{1} \equiv a_{k}\left(\bmod m_{k}\right)$, so that $m_{k} \mid\left(x_{0}-x_{1}\right)$. Using Theorem 3.7, we see that $M \mid\left(x_{0}-x_{1}\right)$. Therefore, $x_{0} \equiv x_{1}(\bmod M)$. This shows that the simultaneous solution of the system of r congruences is unique modulo M.

We illustrate the use of the Chinese remainder theorem by solving the system that arises from the ancient Chinese puzzle.

Example. To solve the system

$$
\begin{aligned}
& x \equiv 1(\bmod 3) \\
& x \equiv 2(\bmod 5) \\
& x \equiv 3(\bmod 7),
\end{aligned}
$$

we have $M=3 \cdot 5 \cdot 7=105, \quad M_{1}=105 / 3=35, \quad M_{2}=105 / 5=21, \quad$ and $M_{3}=105 / 7=15$. To determine y_{1}, we solve $35 y_{1} \equiv 1(\bmod 3)$, or equivalently, $2 y_{1} \equiv 1(\bmod 3)$. This yields $y_{1} \equiv 2(\bmod 3)$. We find y_{2} by solving $21 y_{2} \equiv 1(\bmod 5)$; this immediately gives $y_{2} \equiv 1(\bmod 5)$. Finally, we find y_{3} by solving $15 y_{3} \equiv 1(\bmod 7)$. This gives $y_{3} \equiv 1(\bmod 7)$. Hence,

$$
\begin{aligned}
x & \equiv 1 \cdot 35 \cdot 2+2 \cdot 21 \cdot 1+3 \cdot 15 \cdot 1 \\
& \equiv 157 \equiv 52(\bmod 105) .
\end{aligned}
$$

There is also an iterative method for solving simultaneous systems of congruences. We illustrate this method with an example. Suppose we wish to solve the system

$$
\begin{aligned}
& x \equiv 1(\bmod 5) \\
& x \equiv 2(\bmod 6) \\
& x \equiv 3(\bmod 7)
\end{aligned}
$$

We use Proposition 3.1 to rewrite the first congruence as an equality, namely $x=5 t+1$, where t is an integer. Inserting this expression for x into the second congruence, we find that

$$
5 t+1 \equiv 2(\bmod 6)
$$

which can easily be solved to show that $t \equiv 5(\bmod 6)$. Using Proposition 3.1 again, we write $t=6 u+5$ where u is an integer. Hence, $x=5(6 u+5)+1=30 u+26$. When we insert this expression for x into the third congruence, we obtain

$$
30 u+26 \equiv 3(\bmod 7)
$$

When this congruence is solved, we find that $u \equiv 6(\bmod 7)$. Consequently, Proposition 3.1 tells us that $u=7 v+6$, where v is an integer. Hence,

$$
x=30(7 v+6)+26=210 v+206
$$

Translating this equality into a congruence, we find that

$$
x \equiv 206(\bmod 210)
$$

and this is the simultaneous solution.
Note that the method we have just illustrated shows that a system of simultaneous questions can be solved by successively solving linear congruences. This can be done even when the moduli of the congruences are not relatively prime as long as congruences are consistent. (See problems 7-10 at the end of this section.)

The Chinese remainder theorem provides a way to perform computer arithmetic with large integers. To store very large integers and do arithmetic with them requires special techniques. The Chinese remainder theorem tells us that given pairwise relatively prime moduli $m_{1}, m_{2}, \ldots, m_{r}$, a positive integer n with $n<M=m_{1} m_{2} \cdots m_{r}$ is uniquely determined by its least positive residues moduli m_{j} for $j=1,2, \ldots, r$. Suppose that the word size of a computer is only 100 , but that we wish to do arithmetic with integers as large as 10^{6}. First, we find pairwise relatively prime integers less than 100 with a product exceeding 10^{6}; for instance, we can take $m_{1}=99, m_{2}=98, m_{3}=97$, and $m_{4}=95$. We convert integers less than 10^{6} into 4 -tuples consisting of their least positive residues modulo m_{1}, m_{2}, m_{3}, and m_{4}. (To convert integers as
large as 10^{6} into their list of least positive residues, we need to work with large integers using multiprecision techniques. However, this is done only once for each integer in the input and once for the output.) Then, for instance, to add integers, we simply add their respective least positive residues modulo m_{1}, m_{2}, m_{3}, and m_{4}, making use of the fact that if $x \equiv x_{i}\left(\bmod m_{i}\right)$ and $y \equiv y_{i}\left(\bmod m_{i}\right)$, then $x+y \equiv x_{i}+y_{i}\left(\bmod m_{i}\right)$. We then use the Chinese remainder theorem to convert the set of four least positive residues for the sum back to an integer.

The following example illustrates this technique.
Example. We wish to add $x=123684$ and $y=413456$ on a computer of word size 100 . We have

$$
\begin{array}{ll}
x \equiv 33(\bmod 99), & y \equiv 32(\bmod 99) \\
x \equiv 8(\bmod 98), & y \equiv 92(\bmod 98) \\
x \equiv 9(\bmod 97), & y \equiv 42(\bmod 97) \\
x \equiv 89(\bmod 95), & y \equiv 16(\bmod 95)
\end{array}
$$

so that

$$
\begin{aligned}
& x+y \equiv 65(\bmod 99) \\
& x+y \equiv 2(\bmod 98) \\
& x+y \equiv 51(\bmod 97) \\
& x+y \equiv 10(\bmod 95)
\end{aligned}
$$

We now use the Chinese remainder theorem to find $x+y$ modulo $99 \cdot 98 \cdot 97 \cdot 95$. We have $M=99 \cdot 98 \cdot 97 \cdot 95=89403930, M_{1}=M / 99=903070$, $M_{2}=M / 98=912288, M_{3}=M / 97=921690$, and $M_{4}=M / 95=941094$. We need to find the inverse of $M_{i}\left(\bmod y_{i}\right)$ for $i=1,2,3,4$. To do this, we solve the following congruences (using the Euclidean algorithm):

$$
\begin{aligned}
& 903070 y_{1} \equiv 91 y_{1} \equiv 1(\bmod 99), \\
& 912285 y_{2} \equiv 3 y_{2} \equiv 1(\bmod 98), \\
& 921690 y_{3} \equiv 93 y_{3} \equiv 1(\bmod 97), \\
& 941094 y_{4} \equiv 24 y_{4} \equiv 1(\bmod 95) .
\end{aligned}
$$

We find that $y_{1} \equiv 37(\bmod 99), y_{2} \equiv 38(\bmod 98), y_{3} \equiv 24(\bmod 97)$, and $y_{4} \equiv 4(\bmod 95)$. Hence,

$$
\begin{aligned}
x+y & \equiv 65 \cdot 903070 \cdot 37+2 \cdot 912285 \cdot 33+51 \cdot 921690 \cdot 24+10 \cdot 941094 \cdot 4 \\
& =3397886480 \\
& \equiv 537140(\bmod 89403930)
\end{aligned}
$$

Since $0<x+y<89403930$, we conclude that $x+y=537140$.

On most computers the word size is a large power of 2 , with 2^{35} a common value. Hence, to use modular arithmetic and the Chinese remainder theorem to do computer arithmetic, we need integers less than 2^{35} that are pairwise relatively prime which multiply together to give a large integer. To find such integers, we use numbers of the form $2^{m}-1$, where m is a positive integer. Computer arithmetic with these numbers turns out to be relatively simple (see Knuth [57]). To produce a set of pairwise relatively prime numbers of this form, we first prove some lemmata.

Lemma 3.1. If a and b are positive integers, then the least positive residue of $2^{a}-1$ modulo $2^{b}-1$ is $2^{r}-1$, where r is the least positive residue of a modulo b.

Proof. From the division algorithm, $a=b q+r$ where r is the least positive residue of a modulo b. We have $\left(2^{a}-1\right)=\left(2^{b q+r}-1\right)=$ $\left(2^{b}-1\right)\left(2^{b(q-1)+r}+\cdots+2^{b+r}+2^{r}\right)+\left(2^{r}-1\right)$, which shows that the remainder when $2^{a}-1$ is divided by $2^{b}-1$ is $2^{r}-1$; this is the least positive residue of $2^{a}-1$ modulo $2^{b}-1$.

We use Lemma 3.1 to prove the following result.
Lemma 3.2. If a and b are positive integers, then the greatest common divisor of $2^{a}-1$ and $2^{b}-1$ is $2^{(a, b)}-1$.

Proof. When we perform the Euclidean algorithm with $a=r_{0}$ and $b=r_{1}$, we obtain

$$
\begin{array}{rlrl}
r_{0} & =r_{1} q_{1}+r_{2} & & 0 \leqslant r_{2}<r_{1} \\
r_{1} & =r_{2} q_{2}+r_{3} & & 0 \leqslant r_{3}<r_{2} \\
\cdot & & \\
\cdot & & \\
\cdot & & \\
r_{n-3} & =r_{n-2} q_{n-2}+r_{n-1} & & 0 \leqslant r_{n-1}<r_{n-2} \\
r_{n-2} & =r_{n-1} q_{n-1} . & &
\end{array}
$$

where the last remainder, r_{n-1}, is the greatest common divisor of a and b.
Using Lemma 3.1, and the steps of the Euclidean algorithm with $a=r_{0}$ and $b=r_{1}$, when we perform the Euclidean algorithm on the pair $2^{a}-1=R_{0}$ and $2^{b}-1=R_{1}$, we obtain

$$
\begin{array}{rlrl}
R_{0} & =R_{1} Q_{1}+R_{2} & R_{2}=2^{r_{2}}-1 \\
R_{1} & =R_{2} Q_{2}+R_{3} & R_{3}=2^{r_{3}}-1 \\
& \cdot & \\
\cdot & & \\
\cdot & & \\
R_{n-3} & =R_{n-2} Q_{n-2}+R_{n-1} & & R_{n-1}=2^{r_{n-1}-1} \\
R_{n-2} & =R_{n-1} Q_{n-1} . & &
\end{array}
$$

Here the last non-zero remainder, $R_{n-1}=2^{r_{n-1}}-1=2^{(a, b)}-1$, is the greatest common divisor of R_{0} and R_{1}.

From Lemma 3.2, we have the following proposition.
Proposition 3.5. The positive integers $2^{a}-1$ and $2^{b}-1$ are relatively prime if and only if a and b are relatively prime.

We can now use Proposition 3.5 to produce a set of pairwise relatively prime integers, each of which is less than 2^{35}, with product greater than a specified integer. Suppose that we wish to do arithmetic with integers as large as 2^{186}. We pick $\quad m_{1}=2^{35}-1, \quad m_{2}=2^{34}-1, \quad m_{3}=2^{33}-1, \quad m_{4}=2^{31}-1$, $m_{5}=2^{29}-1$, and $m_{6}=2^{25}-1$. Since the exponents of 2 in the expressions for the m_{j} are relatively prime, by Proposition 3.5 the M_{j} 's are pairwise relatively prime. Also, we have $M=m_{1} m_{2} m_{3} m_{4} m_{5} m_{6}>2^{186}$. We can now use modular arithmetic and the Chinese remainder theorem to perform arithmetic with integers as large as 2^{186}.

Although it is somewhat awkward to do computer operations with large integers using modular arithmetic and the Chinese remainder theorem, there are some definite advantages to this approach. First, on many high-speed computers, operations can be performed simultaneously. So, reducing an operation involving two large integers to a set of operations involving smaller integers, namely the least positive residues of the large integers with respect to the various moduli, leads to simultaneous computations which may be performed more rapidly than one operation with large integers. Second, even without taking into account the advantages of simultaneous computations, multiplication of large integers may be done faster using these ideas than with many other multiprecision methods. The interested reader should consult Knuth [56].

3.3 Problems

1. Find all the solutions of each of the following systems of congruences.
a) $x \equiv 4(\bmod 11)$
c) $x \equiv 0(\bmod 2)$
$x \equiv 3(\bmod 17)$
$x \equiv 0(\bmod 3)$
b) $x \equiv 1(\bmod 2)$
$x \equiv 1(\bmod 5)$
$x \equiv 2(\bmod 3)$
$x \equiv 3(\bmod 5)$
d) $x \equiv 2(\bmod 11)$
$x \equiv 3(\bmod 12)$
$x \equiv 4(\bmod 13)$
$x \equiv 5(\bmod 17)$
$x \equiv 6(\bmod 19)$.
2. A troop of 17 monkeys store their bananas in eleven piles of equal size with a twelfth pile of six left over. When they divide the bananas into 17 equal groups none remain. What is the smallest number of bananas they can have?
3. As an odometer check, a special counter measures the miles a car travels modulo 7. Explain how this counter can be used to determine whether the car has been driven 49335,149335 , or 249335 miles when the odometer reads 49335 and works modulo 100000 .
4. Find a multiple of 11 that leaves a remainder of 1 when divided by each of the integers $2,3,5$, and 7 .
5. Show that there are arbitrarily long strings of integers each divisible by a perfect square. (Hint: Use the Chinese remainder theorem to show that there is a simultaneous solution to the system of congruences $x \equiv 0(\bmod 4)$, $x \equiv-1(\bmod 9), x \equiv-2(\bmod 25), \ldots, x \equiv-k+1\left(\bmod p_{k}^{2}\right)$, where p_{k} is the k th prime.)
6. Show that if a, b, and c are integers with $(a, b)=1$, then there is an integer n such that $(a n+b, c)=1$.

In problems 7-10 we will consider systems of congruences where the moduli of the congruences are not necessarily relatively prime.
7. Show that the system of congruences

$$
\begin{aligned}
& x \equiv a_{1}\left(\bmod m_{1}\right) \\
& x \equiv a_{2}\left(\bmod m_{2}\right)
\end{aligned}
$$

has a solution if and only if $\left(m_{1}, m_{2}\right) \mid\left(a_{1}-a_{2}\right)$. Show that when there is a solution, it is unique modulo ($\left[m_{1}, m_{2}\right]$). (Hint: Write the first congruence as $x=a_{1}+k m_{1}$ where k is an integer, and then insert this expression for x into the second congruence.)
8. Using problem 7, solve the following simultaneous system of congruences
a) $x \equiv 4(\bmod 6)$
b) $x \equiv 7(\bmod 10)$
$x \equiv 13(\bmod 15)$
$x \equiv 4(\bmod 15)$.
9. Show that the system of congruences

$$
\begin{aligned}
& x \equiv a_{1}\left(\bmod m_{1}\right) \\
& x \equiv a_{2}\left(\bmod m_{2}\right) \\
& \cdot \\
& \cdot \\
& x \equiv a_{r}\left(\bmod m_{r}\right)
\end{aligned}
$$

has a solution if and only if $\left(m_{i}, m_{j}\right) \mid\left(a_{i}-a_{j}\right)$ for all pairs of integers (i, j) with $1 \leqslant i<j \leqslant r$. Show that if a solution exists, then it is unique modulo [$m_{1}, m_{2}, \ldots, m_{r}$]. (Hint: Use problem 7 and mathematical induction.)
10. Using problem 9 , solve the following systems of congruences
a) $x \equiv 5(\bmod 6)$
d) $x \equiv 2(\bmod 6)$
$x \equiv 3(\bmod 10)$
$x \equiv 4(\bmod 8)$
$x \equiv 8(\bmod 15)$
$x \equiv 2(\bmod 14)$
$x \equiv 14(\bmod 15)$
b) $x \equiv 2(\bmod 14)$
$x \equiv 16(\bmod 21)$
e) $x \equiv 7(\bmod 9)$
$x \equiv 2(\bmod 10)$
$x \equiv 3(\bmod 12)$
c) $x \equiv 2(\bmod 9)$
$x \equiv 6(\bmod 15)$.
$x \equiv 8(\bmod 15)$
$x \equiv 10(\bmod 25)$
11. What is the smallest number of eggs in a basket if one egg is left over when the eggs are removed $2,3,4,5$, or 6 at a time, but no eggs are left over when they are removed 7 at a time?
12. Using the Chinese remainder theorem, explain how to add and how to multiply 784 and 813 on a computer of word size 100.
13. A positive integer $x \neq 1$ with n base b digits is called an automorph to the base b if the last n base b digits of x^{2} are the same as those of x.
a) Find the base 10 automorphs with four or fewer digits.
b) How many base b automorphs are there with n or fewer base b digits, if b has prime-power factorization $b=p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{k}^{b_{k}}$?
14. According to the theory of biorhythms, there are three cycles in your life that start the day you are born. These are the physical, emotional, and intellectual cycles, of lengths 23,28 , and 33 days, respectively. Each cycle follows a sine
curve with period equal to the length of that cycle, starting with amplitude zero, climbing to amplitude 1 one quarter of the way through the cycle, dropping back to amplitude zero one half of the way through the cycle, dropping further to amplitude minus one three quarters of the way through the cycle, and climbing back to amplitude zero at the end of the cycle.

Answer the following questions about biorhythms, measuring time in quarter days (so that the units will be integers).
a) For which days of your life will you be at a triple peak, where all of your three cycles are at maximum amplitudes?
b) For which days of your life will you be at a triple nadir, where all three of your cycles have lowest amplitude?
c) When in your life will all three cycles be a neutral position (amplitude 0)?
15. A set of congruences to distinct moduli greater than one that has the property that every integer satisfies at least one of the congruences is called a covering set of congruences.
a) Show the set of congruences $x \equiv 0(\bmod 2), x \equiv 0(\bmod 3)$, $x \equiv 1(\bmod 4), x \equiv 1(\bmod 6)$, and $x \equiv 11(\bmod 12)$ is a covering set of congruences.
b) Show that the set of congruences $x \equiv 0(\bmod 2), x \equiv 0(\bmod 3)$, $x \equiv 0(\bmod 5), x \equiv 0(\bmod 7), x \equiv 1(\bmod 6), x \equiv 1(\bmod 10), x \equiv 1$ $(\bmod 14), x \equiv 2(\bmod 15), x \equiv 2(\bmod 21), x \equiv 23(\bmod 30), x \equiv 4$ $(\bmod 35), x \equiv 5(\bmod 42), x \equiv 59(\bmod 70)$, and $x \equiv 104(\bmod 105)$ is a covering set of congruences.
16. Let m be a positive integer with prime-power factorization
 2^{r+e} solutions where $e=0$ if $a_{0}=0$ or $1, e=1$ if $a_{0}=2$, and $e=2$ if $a_{0}>2$. (Hint: Use problems 9 and 10 of Section 2.3.)
17. The three children in a family have feet that are 5 inches, 7 inches, and 9 inches long. When they measure the length of the dining room of their house using their feet, they each find that there are 3 inches left over. How long is the dining room?

3.3 Computer Projects

Write programs to do the following:

1. Solve systems of linear congruences of the type found in the Chinese remainder theorem.
2. Solve systems of linear congruences of the type given in problems 7-10.
3. Add large integers exceeding the word size of the computer using the Chinese remainder theorem.
4. Multiply large integers exceeding the word size of the computer using the Chinese remainder theorem.
5. Find automorphs to the base b, where b is a positive integer greater than one (see problem 13).
6. Plot biorhythm charts and find triple peaks and triple nadirs (see problem 14).

3.4 Systems of Linear Congruences

We will consider systems of more than one congruence involving the same number of unknowns as congruences, where all congruences have the same modulus. We begin our study with an example.

Suppose we wish to find all integers x and y such that both of the congruences

$$
\begin{aligned}
& 3 x+4 y \equiv 5(\bmod 13) \\
& 2 x+5 y \equiv 7(\bmod 13)
\end{aligned}
$$

are satisfied. To attempt to find the unknowns x and y, we multiply the first congruence by 5 and the second by 4 , to obtain

$$
\begin{aligned}
15 x+20 y & \equiv 25(\bmod 13) \\
8 x+20 y & \equiv 28(\bmod 13)
\end{aligned}
$$

We subtract the first congruence from the second, to find that

$$
7 x \equiv-3(\bmod 13)
$$

Since 2 is an inverse of $7(\bmod 13)$, we multiply both sides of the above congruences by 2 . This gives

$$
2 \cdot 7 x \equiv-2 \cdot 3(\bmod 13)
$$

which tells us that

$$
x \equiv 7(\bmod 13)
$$

Likewise, we can multiply the first congruence by 2 and the second by 3, to see that

$$
\begin{aligned}
& 6 x+8 y \equiv 10(\bmod 13) \\
& 6 x+15 y \equiv 21(\bmod 13)
\end{aligned}
$$

When we subtract the first congruence from the second, we obtain

$$
7 y \equiv 11(\bmod 13)
$$

To solve for y, we multiply both sides of this congruence by 2 , an inverse of 7 modulo 13 . We get

$$
2.7 y \equiv 2 \cdot 11(\bmod 13)
$$

so that

$$
y \equiv 9(\bmod 13)
$$

What we have shown is that any solution (x, y) must satisfy

$$
x \equiv 7(\bmod 13), y \equiv 9(\bmod 13)
$$

When we insert these congruences for x and y into the original system, we see that these pairs actually are solutions, since

$$
\begin{aligned}
& 3 x+4 y \equiv 3 \cdot 7+4 \cdot 9=57 \equiv 5(\bmod 13) \\
& 2 x+5 y \equiv 2 \cdot 7+5 \cdot 9=59 \equiv 7(\bmod 13)
\end{aligned}
$$

Hence, the solutions of this system of congruences are all pairs (x, y) with $x \equiv 7(\bmod 13)$ and $y \equiv 9(\bmod 13)$.

We now give a general result concerning certain systems of two congruences in two unknowns.

Theorem 3.8. Let a, b, c, d, e, f, and m be integers with $m>0$, such that $(\Delta, m)=1$, where $\Delta=a d-b c$. Then, the system of congruences

$$
\begin{aligned}
& a x+b y \equiv e(\bmod m) \\
& c x+d y \equiv f(\bmod m)
\end{aligned}
$$

has a unique solution modulo m given by

$$
\begin{aligned}
& x \equiv \bar{\Delta}(d e-b f)(\bmod m) \\
& y \equiv \bar{\Delta}(a f-c e)(\bmod m)
\end{aligned}
$$

where $\bar{\Delta}$ is an inverse of Δ modulo m.

Proof. We multiply the first congruence of the system by d and the second by b, to obtain

$$
\begin{aligned}
a d x+b d y & \equiv d e(\bmod m) \\
b c x+b d y & \equiv b f(\bmod m)
\end{aligned}
$$

Then, we subtract the second congruence from the first, to find that

$$
(a d-b c) x \equiv d e-b f(\bmod m)
$$

or, since $\Delta=a d-b c$,

$$
\Delta x \equiv d e-b f(\bmod m) .
$$

Next, we multiply both sides of this congruence by $\bar{\Delta}$, an inverse of Δ modulo m, to conclude that

$$
x \equiv \bar{\Delta}(d e-b f)(\bmod m)
$$

In a similar way, we multiply the first congruence by c and the second by a, to obtain

$$
\begin{aligned}
a c x+b c y & \equiv c e(\bmod m) \\
a c x+a d y & \equiv a f(\bmod m)
\end{aligned}
$$

We subtract the first congruence from the second, to find that

$$
(a d-b c) y \equiv a f-c e(\bmod m)
$$

or

$$
\Delta y \equiv a f-c e(\bmod m)
$$

Finally, we multiply both sides of the above congruence by $\bar{\Delta}$ to see that

$$
y \equiv \bar{\Delta}(a f-c e)(\bmod m)
$$

We have shown that if (x, y) is a solution of the system of congruences, then

$$
x \equiv \bar{\Delta}(d e-b f)(\bmod m), \quad y \equiv \bar{\Delta}(a f-c e)(\bmod m)
$$

We can easily check that any such pair (x, y) is a solution. When $x \equiv \bar{\Delta}(d e-b f)(\bmod m)$ and $y \equiv \Delta(a f-c e)(\bmod m)$, we have

$$
\begin{aligned}
a x+b y & \equiv a^{\bar{\Delta}}(d e-b f)+b \bar{\Delta}(a f-c e) \\
& \equiv \bar{\Delta}(a d e-a b f-a b f-b c e) \\
& \equiv \bar{\Delta}(a d-b c) e \\
& \equiv e(\bmod m)
\end{aligned}
$$

and

$$
\begin{aligned}
c x+d y & \equiv c \bar{\Delta}(d e-b f)+d \bar{\Delta}(a f-c e) \\
& \equiv \bar{\Delta}(c d e-b c f+a d f-c d e) \\
& \equiv \bar{\Delta}(a d-b c) f \\
& \equiv \bar{\Delta} \Delta f \\
& \equiv f(\bmod m)
\end{aligned}
$$

This establishes the theorem.
By similar methods, we may solve systems of n congruences involving n unknowns. However, we will develop the theory of solving such systems, as well as larger systems, by methods taken from linear algebra. Readers unfamiliar with linear algebra may wish to skip the remainder of this section.

Systems of n linear congruences involving n unknowns will arise in our subsequent cryptographic studies. To study these systems when n is large, it is helpful to use the language of matrices. We will use some of the basic notions of matrix arithmetic which are discussed in most linear algebra texts, such as Anton [60].

We need to define congruences of matrices before we proceed.

Definition. Let A and B be $n \times k$ matrices with integer entries, with (i, j) th entries $a_{i j}$ and $b_{i j}$, respectively. We say that A is congruent to B modulo m if $a_{i j} \equiv b_{i j}(\bmod m)$ for all pairs (i, j) with $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant k$. We write $A \equiv B(\bmod m)$ if A is congruent to B modulo m.

The matrix congruence $A \equiv B(\bmod m)$ provides a succinct way of expressing the $n k$ congruences $a_{i j} \equiv b_{i j}(\bmod m)$ for $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant k$.

Example. We easily see that

$$
\left(\begin{array}{rr}
15 & 3 \\
8 & 12
\end{array}\right) \equiv\left(\begin{array}{ll}
4 & 3 \\
3 & 1
\end{array}\right)(\bmod 11)
$$

The following proposition will be needed.

Proposition 3.6. If A and B are $n \times k$ matrices with $A \equiv B(\bmod m), C$ is an $k \times p$ matrix and D is a $p \times n$ matrix, all with integer entries, then $A C \equiv B C(\bmod m)$ and $D A \equiv D B(\bmod m)$.

Proof. Let the entries of A and B be $a_{i j}$ and $b_{i j}$, respectively, for $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant k$, and let the entries of C be $c_{i j}$ for $1 \leqslant i \leqslant k$ and $1 \leqslant j \leqslant p$. The (i, j) th entries of $A C$ and $B C$ are $\sum_{t=1}^{n} a_{i t} c_{t j}$ and $\sum_{t=1}^{n} b_{i t} c_{t j}$, respectively. Since $A \equiv B(\bmod m)$, we know that $a_{i t} \equiv b_{i t}(\bmod m)$ for all i and k. Hence, from Theorem 3.3 we see that $\sum_{i=1}^{n} a_{i t} c_{t j} \equiv$ $\sum_{t=1}^{n} b_{i t} c_{t j}(\bmod m)$. Consequently, $A C \equiv B C(\bmod m)$.

The proof that $D A \equiv D B(\bmod m)$ is similar and is omitted.
Now let us consider the system of congruences

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+ & \cdots+a_{1 n} x_{n} \equiv b_{1}(\bmod m) \\
a_{21} x_{1}+a_{22} x_{2}+ & \cdots+a_{2 n} x_{n} \equiv b_{2}(\bmod m) \\
& \cdots \\
& \cdots \\
& \cdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+ & \cdots+a_{n n} x_{n} \equiv b_{n}(\bmod m)
\end{aligned}
$$

Using matrix notation, we see that this system of n congruences is equivalent to the matrix congruence $A X \equiv B(\bmod m)$,
where $\mathrm{A}=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \cdot & & \\ \cdot & & \\ \cdot & & \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right), \mathrm{X}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \cdot \\ \cdot \\ \cdot \\ x_{n}\end{array}\right)$, and $\mathrm{B}=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \cdot \\ \cdot \\ \cdot \\ b_{n}\end{array}\right)$.

Example. The system

$$
\begin{aligned}
& 3 x+4 y \equiv 5(\bmod 13) \\
& 2 x+5 y \equiv 7(\bmod 13)
\end{aligned}
$$

can be written as

$$
\left(\begin{array}{ll}
3 & 4 \\
2 & 5
\end{array}\right)\binom{x}{y} \equiv\binom{5}{7}(\bmod 13)
$$

We now develop a method for solving congruences of the form $\underline{A} X \equiv B(\bmod m)$. This method is based on finding a matrix \bar{A} such that $\bar{A} A \equiv I(\bmod m)$, where I is the identity matrix.

Definition. If A and \bar{A} are $n \times n$ matrices of integers and if
$\bar{A} A \equiv A \bar{A} \equiv I(\bmod m)$, where $\mathrm{I}=\left(\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ & \cdots & \\ 0 & 0 & \cdots & 1\end{array}\right)$ is the identity matrix of order n, then \bar{A} is said to be an inverse of A modulo m.

If \bar{A} is an inverse of A and $B \equiv \bar{A}(\bmod m)$, then B is also an inverse of A. This follows from Proposition 3.6 , since $B A \equiv \bar{A} A \equiv I(\bmod m)$.

Conversely, if B_{1} and B_{2} are both inverses of A, then $B_{1} \equiv B_{2}(\bmod m)$. To see this, using Proposition 3.6 and the congruence $B_{1} A \equiv B_{2} A \equiv I(\bmod m)$, we have $B_{1} A B_{1} \equiv B_{2} A B_{1}(\bmod m)$. Since $A B_{1} \equiv I(\bmod m)$, we conclude that $B_{1} \equiv B_{2}(\bmod m)$.

Example. Since

$$
\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)\left(\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right)=\left(\begin{array}{ll}
6 & 10 \\
10 & 16
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)(\bmod 5)
$$

and

$$
\left(\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)=\left(\begin{array}{ll}
11 & 25 \\
5 & 11
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)(\bmod 5)
$$

we see that the matrix $\left(\begin{array}{ll}3 & 4 \\ 1 & 2\end{array}\right)$ is an inverse of $\left(\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right)$ modulo 5.
The following proposition gives an easy method for finding inverses for 2×2 matrices.

Proposition 3.7. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be a matrix of integers, such that $\Delta=\operatorname{det} A=a d-b c$ is relatively prime to the positive integer m. Then, the
matrix

$$
\bar{A}=\bar{\Delta}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

where $\bar{\Delta}$ is the inverse of Δ modulo m, is an inverse of A modulo m.
Proof. To verify that the matrix \bar{A} is an inverse of A modulo m, we need only verify that $A \bar{A} \equiv \bar{A} A \equiv I(\bmod m)$.

To see this, note that

$$
\begin{aligned}
A \bar{A} & \equiv\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \bar{\Delta}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \equiv \bar{\Delta}\left(\begin{array}{cc}
a d-b c & 0 \\
0 & -b c+a d
\end{array}\right) \\
& \equiv \bar{\Delta}\left(\begin{array}{ll}
\Delta & 0 \\
0 & \Delta
\end{array}\right) \equiv\left(\begin{array}{cc}
\bar{\Delta} \Delta & 0 \\
0 & \bar{\Delta} \Delta
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I(\bmod m)
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{A} A & \equiv \bar{\Delta}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv \bar{\Delta}\left(\begin{array}{cc}
a d-b c & 0 \\
0 & -b c+a d
\end{array}\right) \\
& \equiv \bar{\Delta}\left(\begin{array}{ll}
\Delta & 0 \\
0 & \Delta
\end{array}\right) \equiv\left(\begin{array}{cc}
\bar{\Delta} \Delta & 0 \\
0 & \bar{\Delta} \Delta
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I(\bmod m)
\end{aligned}
$$

where $\bar{\Delta}$ is an inverse of $\Delta(\bmod m)$, which exists because $(\Delta, m)=1$.
Example. Let $A=\left(\begin{array}{ll}3 & 4 \\ 2 & 5\end{array}\right)$. Since 2 is an inverse $\operatorname{det} A=7$ modulo 13, we have

$$
\bar{A} \equiv 2\left(\begin{array}{cr}
5 & -4 \\
-2 & 3
\end{array}\right) \equiv\left(\begin{array}{cc}
10 & -8 \\
-4 & 6
\end{array}\right) \equiv\left(\begin{array}{cc}
10 & 5 \\
9 & 6
\end{array}\right)(\bmod 13)
$$

To provide a formula for an inverse of an $n \times n$ matrix where n is a positive integer, we need a result from linear algebra. This result may be found in Anton [60; page 79]. It involves the notion of the adjoint of a matrix, which is defined as follows.

Definition. The adjoint of an $n \times n$ matrix A is the $n \times n$ matrix with (i, j) th entry $C_{j i}$, where $C_{j i}$ is $(-1)^{i+j}$ times the determinant of the matrix obtained by deleting the i th row and j th column from A. The adjoint of A is denoted
by $\operatorname{adj}(A)$.
Theorem 3.9. If A is an $n \times n$ matrix with $\operatorname{det} A \neq 0$, then $A(\operatorname{adj} A)=(\operatorname{det} A) I$, where $\operatorname{adj} A$ is the adjoint of A.

Using this theorem, the following proposition follows readily.
Proposition 3.8. If A is an $n \times n$ matrix with integer entries and m is a positive integer such that $(\operatorname{det} A, \underline{m})=1$, then the matrix $\bar{A}=\bar{\Delta}(\operatorname{adj} A)$ is an inverse of A modulo m, where $\bar{\Delta}$ is an inverse of $\Delta=\operatorname{det} A$ modulo m.

Proof. If $(\operatorname{det} A, m)=1$, then we know that $\operatorname{det} A \neq 0$. Hence, from Theorem 3.9, we have

$$
A \operatorname{adj} A=(\operatorname{det} A) I=\Delta I
$$

Since $(\operatorname{det} A, m)=1$, there is an inverse $\bar{\Delta}$ of $\Delta=\operatorname{det} A$ modulo m. Hence,

$$
A(\bar{\Delta} \operatorname{adj} A) \equiv A \cdot(\operatorname{adj} A) \bar{\Delta} \equiv \Delta \bar{\Delta} I \equiv I(\bmod m)
$$

and

$$
\bar{\Delta}(\operatorname{adj} A) A \equiv \bar{\Delta}(\operatorname{adj} A \cdot A) \equiv \bar{\Delta} \Delta I \equiv I(\bmod m)
$$

This shows that $\bar{A}=\bar{\Delta} \cdot(\operatorname{adj} A)$ is an inverse of A modulo m.
Example. Let $A=\left(\begin{array}{lll}2 & 5 & 6 \\ 2 & 0 & 2 \\ 1 & 2 & 3\end{array}\right)$. Then $\operatorname{det} A=-5$. Since $(\operatorname{det} A, 7)=1$, and an inverse of $\operatorname{det} A=-5$ is $4(\bmod 7)$, we find that

$$
\bar{A}=4(\operatorname{adj} A)=4\left(\begin{array}{rrr}
-2 & -3 & 5 \\
-5 & 0 & 10 \\
4 & 1 & -10
\end{array}\right)=\left(\begin{array}{rrr}
-8 & -12 & 20 \\
-20 & 0 & 40 \\
0 & 4 & -40
\end{array}\right) \equiv\left(\begin{array}{lll}
6 & 2 & 6 \\
1 & 0 & 5 \\
2 & 4 & 2
\end{array}\right)(\bmod 7)
$$

We can use an inverse of A modulo m to solve the system

$$
A X \equiv B(\bmod m)
$$

where (det A, m) $=1$. By_Proposition 3.6 , when we multiply both sides of this congruence by an inverse \bar{A} of A, we obtain

$$
\begin{aligned}
\bar{A}(A X) & \equiv \bar{A} B(\bmod m) \\
(A A) X & \equiv \bar{A} B(\bmod m) \\
X & \equiv \bar{A} B(\bmod m)
\end{aligned}
$$

Hence, we find the solution X by forming $\bar{A} B(\bmod m)$.
Note that this method provides another proof of Theorem 3.8. To see this,
let $\quad A X=B, \quad$ where $\quad A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \quad X=\binom{x}{y}, \quad$ and $\quad B=\binom{e}{f} . \quad$ If $\Delta=\operatorname{det} A=a d-b c$ is relatively prime to m, then

$$
\binom{x}{y}=X \equiv \bar{A} B \equiv \bar{\Delta}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)\binom{e}{f}=\bar{\Delta}\binom{d e-b f}{a f-c e}(\bmod m)
$$

This demonstrates that (x, y) is a solution if and only if

$$
x \equiv \Delta(d e-b f)(\bmod m), y \equiv \bar{\Delta}(a f-c e)(\bmod m)
$$

Next, we give an example of the solution of a system of three congruences in three unknowns using matrices.

Example. We consider the system of three congruences

$$
\begin{aligned}
2 x_{1}+5 x_{2}+6 x_{3} & \equiv 3(\bmod 7) \\
2 x_{1}+x_{3} & \equiv 4(\bmod 7) \\
x_{1}+2 x_{2}+3 x_{3} & \equiv 1(\bmod 7)
\end{aligned}
$$

This is equivalent to the matrix congruence

$$
\left(\begin{array}{lll}
2 & 5 & 6 \\
2 & 0 & 1 \\
1 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \equiv\left(\begin{array}{l}
3 \\
4 \\
1
\end{array}\right)(\bmod 7)
$$

We have previously shown that the matrix $\left(\begin{array}{lll}6 & 2 & 6 \\ 1 & 0 & 5 \\ 2 & 4 & 2\end{array}\right)$ is an inverse of $\left(\begin{array}{lll}2 & 5 & 6 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{array}\right)(\bmod 7)$. Hence, we have

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{lll}
6 & 2 & 6 \\
1 & 0 & 5 \\
2 & 4 & 2
\end{array}\right)\left(\begin{array}{l}
3 \\
4 \\
1
\end{array}\right)=\left(\begin{array}{c}
32 \\
8 \\
24
\end{array}\right) \equiv\left(\begin{array}{l}
4 \\
1 \\
3
\end{array}\right)(\bmod 7)
$$

Before leaving this subject, we should mention that many methods used for solving systems of linear equations may be adapted to solve systems of congruences. For instance, Gaussian elimination may be adapted to solve systems of congruences where division is always replaced by multiplication by inverses modulo m. Also, there is a method for solving systems of congruences analagous to Cramer's rule. We leave the development of these methods as problems for those readers familiar with linear algebra.

3.4 Problems

1. Find the solutions of the following systems of linear congruences.
a) $x+2 y \equiv 1(\bmod 5)$
$2 x+y \equiv 1(\bmod 5)$
b) $x+3 y \equiv 1(\bmod 5)$
$3 x+4 y \equiv 2(\bmod 5)$
c) $4 x+y \equiv 2(\bmod 5)$ $2 x+3 y \equiv 1(\bmod 5)$.
2. Find the solutions of the following systems of linear congruences.
a) $2 x+3 y \equiv 5(\bmod 7)$
$x+5 y \equiv 6(\bmod 7)$
b) $4 x+y \equiv 5(\bmod 7)$ $x+2 y \equiv 4(\bmod 7)$.
3. What are the possibilities for the number of incongruent solutions of the system of linear congruences

$$
\begin{aligned}
& a x+b y \equiv c(\bmod p) \\
& d x+e y \equiv f(\bmod p)
\end{aligned}
$$

where p is a prime and a, b, c, d, e, and f are positive integers?
4. Find the matrix C such that

$$
C \equiv\left(\begin{array}{ll}
2 & 1 \\
4 & 3
\end{array}\right)\left(\begin{array}{ll}
4 & 0 \\
2 & 1
\end{array}\right)(\bmod 5)
$$

and all entries of C are nonnegative integers less than 5 .
5. Use mathematical induction to prove that if A and B are $n \times n$ matrices with integer entries such that $A \equiv B(\bmod m)$, then $A^{k} \equiv B^{k}(\bmod m)$ for all positive integers k.
6. A matrix $A \neq I$ is called involutory modulo m if $A^{2} \equiv I(\bmod m)$.
a) Show that $\left(\begin{array}{ll}4 & 11 \\ 1 & 22\end{array}\right)$ is involutory modulo 26 .
b) Show that if A is a 2×2 involutory matrix modulo m, then $\operatorname{det} A \equiv \pm 1(\bmod m)$.
7. Find an inverse modulo 5 of each of the following matrices
a) $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
b) $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$
c) $\left(\begin{array}{ll}2 & 2 \\ 1 & 2\end{array}\right)$.
8. Find an inverse modulo 7 of each of the following matrices
a) $\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right)$
b) $\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 5 \\ 1 & 4 & 6\end{array}\right)$
c) $\left(\begin{array}{llll}1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1\end{array}\right)$.
9. Use the results of problem 8 to find all solutions of each of the following systems
a) $x+y \equiv 1(\bmod 7)$
$x+z \equiv 2(\bmod 7)$ $y+z \equiv 3(\bmod 7)$
b) $x+2 y+3 z \equiv 1(\bmod 7)$
$x+3 y+5 z \equiv 1(\bmod 7)$
$x+4 y+6 z \equiv 1(\bmod 7)$
c) $x+y+z \equiv 1(\bmod 7)$
$x+y+w \equiv 1(\bmod 7)$
$x+z+w \equiv 1(\bmod 7)$
$y+z+w \equiv 1(\bmod 7)$.
10. How many incongruent solutions does each of the following systems of congruences have
a) $x+y+z \equiv 1(\bmod 5)$
$2 x+4 y+3 z \equiv 1(\bmod 5)$
b) $2 x+3 y+z \equiv 3(\bmod 5)$
$x+2 y+3 z \equiv 1(\bmod 5)$
$2 x+z \equiv 1(\bmod 5)$
c) $3 x+y+3 z \equiv 1(\bmod 5)$
$x+2 y+4 z \equiv 2(\bmod 5)$
$4 x+3 y+2 z \equiv 3(\bmod 5)$
d) $2 x+y+z \equiv 1(\bmod 5)$
$x+2 y+z \equiv 1(\bmod 5)$
$x+y+2 z \equiv 1(\bmod 5)$.
11. Develop an analogue of Cramer's rule for solving systems of n linear congruences in n unknowns.
12. Develop an analogue of Gaussian elimination to solve systems of n linear congruences in m unknowns (where m and n may be different).
13. A magic square is a square array of integers with the property that the sum of the integers in a row or in a column is always the same. In this problem, we present a method for producing magic squares.
a) Show that the n^{2} integers $0,1, \ldots, n^{2}-1$ are put into the n^{2} positions of an $n \times n$ square, without putting two integers in the same position, if the integer k is placed in the i th row and j th column, where

$$
\begin{aligned}
& i \equiv a+c k+e[k / n](\bmod n) \\
& j \equiv b+d k+f[k / n](\bmod n)
\end{aligned}
$$

$1 \leqslant i \leqslant n, 1 \leqslant j \leqslant n$, and a, b, c, d, e, and f are integers with $(c f-d e, n)=1$.
b) Show that a magic square is produced in part (a) if $(c, n)=(d, n)=(e, n)=(f, n)=1$.
c) The positive and negative diagonals of an $n \times n$ square consist of the integers in positions (i, j), where $i+j \equiv k(\bmod n) \quad$ and $i-j \equiv k(\bmod n)$, respectively, where k is a given integer. A square is called diabolic if the sum of the integers in a positive or negative diagonal is always the same. Show that a diabolic square is produced using the procedure given in part (a) if $(c+d, n)=(c-d, n)=(e+f, n)=$ $(e-f, n)=1$.

3.4 Computer Projects

Write programs to do the following:

1. Find the solutions of a system of two linear congruences in two unknowns using Theorem 3.8.
2. Find inverses of 2×2 matrices using Proposition 3.7.
3. Find inverses of $n \times n$ matrices using Theorem 3.9.
4. Solve systems of n linear congruences in n unknowns using inverses of matrices.
5. Solve systems of n linear congruences in n unknowns using an analogue of Cramer's rule (see problem 11).
6. Solve system of n linear congruences in m unknowns using an analogue of Gaussian elimination (see problem 12).
7. Produce magic squares by the method given in problem 13.

Applications of Congruences

4.1 Divisibility Tests

Using congruences, we can develop divisibility tests for integers based on their expansions with respect to different bases.

We begin with tests which use decimal notation. In the following discussion let $n=\left(a_{k} a_{k-1} \ldots a_{1} a_{0}\right)_{10}$. Then $n=a_{k} 10^{k}+a_{k-1} 10^{k-1}+\cdots+a_{1} 10+a_{0}$, with $0 \leqslant a_{j} \leqslant 9$ for $j=0,1,2, \ldots, k$.
First, we develop tests for divisibility by powers of 2. Since $10 \equiv 0(\bmod 2)$, Theorem 3.5 tells us that $10^{j} \equiv 0\left(\bmod 2^{j}\right)$ for all positive integers j. Hence,

$$
\begin{aligned}
& n \equiv\left(a_{o}\right)_{10}(\bmod 2) \\
& n \equiv\left(a_{1} a_{0}\right)_{10}\left(\bmod 2^{2}\right) \\
& n \equiv\left(a_{2} a_{1} a_{0}\right)_{10}\left(\bmod 2^{3}\right) \\
& \cdot \\
& \cdot \\
& \cdot \\
& n \equiv\left(a_{j-1} a_{j-2} \ldots a_{2} a_{1} a_{0}\right)_{10}\left(\bmod 2^{j}\right)
\end{aligned}
$$

These congruences tell us that to determine whether an integer n is divisible by 2 , we only need to examine its last digit for divisibility by 2 . Similarly, to determine whether n is divisible by 4 , we only need to check the integer made up of the last two digits of n for divisibility by 4 . In general, to test n for divisibility by 2^{j}, we only need to check the integer made up of the last j digits of n for divisibility by 2^{j}.

Example. Let $n=32688048$. We see that $2 \mid n$ since $2|8,4| n$ since $4|48,8| n$ since $8|48,16| n$ since $16 \mid 8048$, but $32 \backslash n$ since $32 \mid 88048$.

To develop tests for divisibility by powers of 5 , first note that since $10 \equiv 0(\bmod 5)$, we have $10^{j} \equiv 0\left(\bmod 5^{j}\right)$. Hence, divisibility tests for powers of 5 are analogous to those for powers of 2 . We only need to check the integer made up of the last j digits of n to determine whether n is divisible by 5^{j}.

Example. Let $n=15535375$. Since $5|5,5| n$, since $25|75,25| n$, since $125|375,125| n$, but since $625 \backslash 5375,625 \ell n$.

Next, we develop tests for divisibility by 3 and by 9 . Note that both the congruences $10 \equiv 1(\bmod 3)$ and $10 \equiv 1(\bmod 9)$ hold. Hence, $10^{k} \equiv 1(\bmod 3)$ and $(\bmod 9)$. This gives us the useful congruences

$$
\begin{aligned}
\left(a_{k} a_{k-1} \ldots a_{1} a_{0}\right) & =a_{k} 10^{k}+a_{k-1} 10^{k-1}+\cdots+a_{1} 10+a_{0} \\
& \equiv a_{k}+a_{k-1}+\cdots+a_{1}+a_{0}(\bmod 3) \text { and }(\bmod 9)
\end{aligned}
$$

Hence, we only need to check whether the sum of the digits of n is divisible by 3 , or by 9 , to see whether n is divisible by 3 , or by 9 .

Example. Let $n=4127835$. Then, the sum of the digits of n is $4+1+2+7+8+3+5=30$. Since $3 \mid 30$ but $9 \backslash 30,3 \mid n$ but $9 \lambda n$.

A rather simple test can be found for divisibility by 11 . Since $10 \equiv-1(\bmod 11)$, we have

$$
\begin{aligned}
\left(a_{k} a_{k-1} \ldots a_{1} a_{0}\right)_{10} & =a_{k} 10^{k}+a_{k-1} 10^{k-1}+\cdots+a_{1} 10+a_{0} \\
& \equiv a_{k}(-1)^{k}+a_{k-1}(-1)^{k-1}+\cdots-a_{1}+a_{0}(\bmod 11)
\end{aligned}
$$

This shows that $\left(a_{k} a_{k-1} \ldots a_{1} a_{0}\right)_{10}$ is divisible by 11 , if and only if $a_{0}-a_{1}+a_{2}-\cdots+(-1)^{k} a_{k}$, the integer formed by alternately adding and subtracting the digits, is divisible by 11 .

Example. We see that 723160823 is divisible by 11 , since alternately adding and subtracting its digits yields $3-2+8-0+6-1+3-2+7=22$ which is divisible 11. On the other hand, 33678924 is not divisible by 11 , since $4-2+9-8+7-6+3-3=4$ is not divisible by 11 .

Next, we develop a test to simultaneously test for divisibility by the primes 7,11 , and 13. Note that $7 \cdot 11 \cdot 13=1001$ and $10^{3}=1000 \equiv-1(\bmod 1001)$. Hence,

$$
\begin{aligned}
\left(a_{k} a_{k-1} \ldots a_{0}\right)_{10} & =a_{k} 10^{k}+a_{k-1} 10^{k-1}+\cdots+a_{1} 10+a_{0} \\
& \equiv\left(a_{0}+10 a_{1}+100 a_{2}\right)+1000\left(a_{3}+10 a_{4}+100 a_{5}\right)+ \\
& (1000)^{2}\left(a_{6}+10 a_{7}+100 a_{8}\right)+\cdots \\
\equiv & \left(100 a_{2}+10 a_{1}+a_{0}\right)-\left(100 a_{5}+10 a_{4}+a_{3}\right)+ \\
& \left(100 a_{8}+10 a_{7}+a_{6}\right)-\cdots \\
& \equiv\left(a_{2} a_{1} a_{0}\right)_{10}-\left(a_{5} a_{4} a_{3}\right)_{10}+\left(a_{8} a_{7} a_{6}\right)_{10}-\cdots(\bmod 1001) .
\end{aligned}
$$

This congruence tells us that an integer is congruent modulo 1001 to the integer formed by successively adding and subtracting the three-digit integers with decimal expansions formed from successive blocks of three decimal digits of the original number, where digits are grouped starting with the rightmost digit. As a consequence, since 7,11 , and 13 are divisors of 1001 , to determine whether an integer is divisible by 7,11 , or 13 , we only need to check whether this alternating sum and difference of blocks of three digits is divisible by 7,11 , or 13.

Example. Let $n=59358208$. Since the alternating sum and difference of the integers formed from blocks of three digits, $208-358+59=-91$, is divisible by 7 and 13, but not by 11 , we see that n is divisible by 7 and 13 , but not by 11 .
All of the divisibility tests we have developed thus far are based on decimal representations. We now develop divisibility tests using base b representations, where b is a positive integer.

Divisibility Test 1. If $d \mid b$ and j and k are positive integers with $j<k$, then $\left(a_{k} \ldots a_{1} a_{0}\right)_{b}$ is divisible by d^{j} if and only if $\left(a_{j-1} \ldots a_{1} a_{0}\right)_{b}$ is divisible by d^{j}.

Proof. Since $b \equiv 0(\bmod d)$, Theorem 3.5 tells us that $b^{j} \equiv 0\left(\bmod d^{j}\right)$. Hence,

$$
\begin{aligned}
\left(a_{k} a_{k-1} \ldots a_{1} a_{0}\right)_{b} & =a_{k} b^{k}+\cdots+a_{j} b^{j}+a_{j-1} b^{j-1}+\cdots+a_{1} b+a_{0} \\
& \equiv a_{j-1} b^{j-1}+\cdots+a_{1} b+a_{0} \\
& =\left(a_{j-1} \ldots a_{1} a_{0}\right)_{b}\left(\bmod d^{j}\right)
\end{aligned}
$$

Consequently, $d \mid\left(a_{k} a_{k-1} \ldots a_{1} a_{0}\right)_{b}$ if and only if $d \mid\left(a_{j-1} \ldots a_{1} a_{0}\right)_{b}$.
Divisibility Test 2. If $d \mid(b-1)$, then $n=\left(a_{k} \ldots a_{1} a_{0}\right)_{b}$ is divisible by d if and only if $a_{k}+\cdots+a_{1}+a_{0}$ is divisible by d.

Proof. Since $d \mid(b-1)$, we have $b \equiv 1(\bmod d)$, so that by Theorem 3.5 we know that $b^{j} \equiv 1(\bmod d)$ for all positive integers b. Hence, $\left(a_{k} \ldots a_{1} a_{0}\right)_{b}=$
$a_{k} b^{k}+\cdots+a_{1} b+a_{0} \equiv a_{k}+\cdots+a_{1}+a_{0}(\bmod d)$. This shows that $d \mid n$ if and only if $d \mid\left(a_{k}+\cdots+a_{1}+a_{0}\right)$.

Divisibility Test 3. If $d \mid(b+1)$, then $n=\left(a_{k} \ldots a_{1} a_{0}\right)_{b}$ is divisible by d if and only if $(-1)^{k} a_{k}+\cdots-a_{1}+a_{0}$ is divisible by d.

Proof. Since $d \mid(b+1)$, we have $b \equiv-1(\bmod d)$. Hence, $b^{j} \equiv(-1)^{j}$ $(\bmod d)$, and consequently, $n=\left(a_{k} \ldots a_{1} a_{0}\right)_{b} \equiv(-1)^{k} a_{k}+\cdots-a_{1}$ $+a_{0}(\bmod d)$. Hence, $d \mid n$ if and only if $d \mid\left((-1)^{k} a_{k}+\cdots-a_{1}\right.$ $+a_{0}$).

Example. Let $n=(7 F 28 A 6)_{16}$ (in hex notation). Then, since $2 \mid 16$, from Divisibility Test 1 , we know that $2 \mid n$, since $2 \mid 6$. Likewise, since $4 \mid 16$, we see that $4 \backslash n$, since $4 \backslash 6$. By Divisibility Test 2 , since $3 \mid(16-1)$, $5 \mid(16-1)$, and $15 \mid(16-1)$, and $7+F+2+8+A+6=(30)_{16}$, we know that $3 \mid n$, since $3 \mid(30)_{16}$, while $5 \backslash n$ and $15 \backslash n$, since $5 \backslash(30)_{16}$ and $15 \backslash(30)_{16}$. Furthermore, by Divisibility Test 3 , since $17 \mid(16+1)$ and $n \equiv 6-A+8-2+F-7=(A)_{16}(\bmod 17)$, we conclude that $17 \backslash n$, since $17 \backslash(A)_{16}$.

Example. Let $n=(1001001111)_{2}$. Then, using Divisibility Test 3, we see that $3 \mid n$, since $n \equiv 1-1+1-1+0-0+1-0+0-1 \equiv 0(\bmod 3)$ and $3 \mid(2+1)$.

4.1 Problems

1. Determine the highest power of 2 dividing each of the following positive integers
a) 201984
b) 1423408
c) 89375744
d) 41578912246 .
2. Determine the highest power of 5 dividing each of the following positive integers
a) 112250
b) 4860625
c) 235555790
d) 48126953125 .
3. Which of the following integers are divisible by 3 ? Of those that are, which are divisible by 9 ?
a) 18381
b) 65412351
c) 987654321
d) 78918239735
4. Which of the following integers are divisible by 11
a) 10763732
b) 1086320015
c) 674310976375
d) 8924310064537 ?
5. A repunit is an integer with decimal expansion containing all 1's.
a) Determine which repunits are divisible by 3 ; and which are divisible by 9 .
b) Determine which repunits are divisible by 11 .
c) Determine which repunits are divisible by 1001 . Which are divisible by 7 ? by 13 ?
d) Determine which repunits with fewer than 10 digits are prime.
6. A base b repunit is an integer with base b expansion containing all 1 's.
a) Determine which base b repunits are divisible by factors of $b-1$.
b) Determine which base b repunits are divisible by factors of $b+1$.
7. A base b palindromic integer is an integer whose base b representation reads the same forward and backward.
a) Show that every decimal palindromic integer with an even number of digits is divisible by 11 .
b) Show that every base 7 palindromic integer with an even number of digits is divisible by 8 .
8. Develop a test for divisibility by 37 , based on the fact that $10^{3} \equiv 1(\bmod 37)$. Use this to check 443692 and 11092785 for divisibility by 37.
9. Devise a divisibility test for integers represented in base b notation for divisibility by n where n in a divisor of $b^{2}+1$. (Hint: Split the digits of the base b representation of the integer into blocks of two, starting on the right).
10. Use the test you developed in problem 9 to decide whether
a) $(101110110)_{2}$ is divisible by 5 .
b) $(12100122)_{3}$ is divisible by 2 , and whether it is divisible by 5 .
c) $(364701244)_{8}$ is divisible by 5 , and whether it is divisible by 13 .
d) $(5837041320219)_{10}$ is divisible by 101 .
11. An old receipt has faded. It reads 88 chickens at a total of $\$ x 4.2 y$ where x and y are unreadable digits. How much did each chicken cost?
12. Use a congruence modulo 9 to find the missing digit, indicated by a question mark: $89878 \cdot 58965=5299$? 56270 .
13. We can check a multiplication $c=a b$ by determining whether the congruence $c \equiv a b(\bmod m) \quad$ is valid, where m is any modulus. If we find that
$c \neq a b(\bmod m)$, then we know an error has been made. When we take $m=9$ and use the fact that an integer in decimal notation is congruent modulo 9 to the sum of its digits, this check is called casting out nines. Check each of the following multiplications by casting out nines
a) $875961 \cdot 2753=2410520633$
b) $14789 \cdot 23567=348532367$
c) $24789 \cdot 43717=1092700713$.
d) Are your checks foolproof?
14. What combinations of digits of a decimal expansion of an integer are congruent to this integer modulo 99? Use your answer to devise a check for multiplication based on casting out ninety nines. Then use the test to check the multiplications in problem 13.

4.1 Computer Projects

Write programs to do the following:

1. Determine the highest powers of 2 and of 5 that divide an integer.
2. Test an integer for divisibility by $3,7,9,11$, and 13 . (Use congruences modulo 1001 for divisibility by 7 and 13.)
3. Determine the highest power of each factor of b that divides an integer from the base b expansion of the integer.
4. Test an integer from its base b expansion, for divisibility by factors of $b-1$ and of $b+1$.

4.2 The Perpetual Calendar

In this section, we derive a formula that gives us the day of the week of any day of any year. Since the days of the week form a cycle of length seven, we use a congruence modulo 7. We denote each day of the week by a number in the set $0,1,2,3,4,5,6$, setting Sunday $=0$, Monday $=1$, Tuesday $=2$, Wednesday $=3$, Thursday $=4$, Friday $=5$, and Saturday $=6$.

Julius Caesar changed the Egyptian calendar, which was based on a year of exactly 365 days, to a new calendar with a year of average length $365 \frac{1 / 4}{}$ days, with leap years every fourth year, to better reflect the true length of the year. However, more recent calculations have shown that the true length of the year is approximately 365.2422 days. As the centuries passed, the discrepancies of 0.0078 days per year added up, so that by the year 1582 approximately 10 extra days had been added unnecessarily as leap years. To remedy this, in

1582 Pope Gregory set up a new calendar. First, 10 days were added to the date, so that October 5, 1582, became October 15, 1582 (and the 6th through the 14th of October were skipped). It was decided that leap years would be precisely the years divisible by 4 , except those exactly divisible by 100 , i.e., the years that mark centuries, would be leap years only when divisible by 400 . As an example, the years $1700,1800,1900$, and 2100 are not leap years but 1600 and 2000 are. With this arrangement, the average length of a calendar year is 365.2425 days, rather close to the true year of 365.2422 days. An error of 0.0003 days per year remains, which is 3 days per 10000 years. In the future, this discrepancy will have to be accounted for, and various possibilities have been suggested to correct for this error.

In dealing with calendar dates for various parts of the world, we must also take into account the fact that the Gregorian calendar was not adopted everywhere in 1582. In Britain, the Gregorian calendar was adopted only in 1752, and by then, it was necessary to add 11 days. Japan changed over 1873, the Soviet Union and nearby countries in 1917, while Greece held out until 1923.

We now set up our procedure for finding the day of the week in the Gregorian calendar for a given date. We first must make some adjustments, because the extra day in a leap year comes at the end of February. We take care of this by renumbering the months, starting each year in March, and considering the months of January and February part of the preceding year. For instance, February 1984, is considered the 12th month of 1983, and May 1984, is considered the 3rd month of 1984. With this convention, for the day of interest, let $k=$ day of the month, $m=$ month, and $N=$ year, with $N=100 C+Y$, where $C=$ century and $Y=$ particular year of the century. For example, June 12, 1954, has $k=12, m=4, N=1954, C=19$, and $Y=54$.

We use March 1, of each year as our basis. Let d_{N} represent the day of the week of March 1 , in year N. We start with the year 1600 and compute the day of the week March 1, falls on in any given year. Note that between March 1 of year $N-1$ and March 1 of year N, if year N is not a leap year, 365 days have passed, and since $365 \equiv 1(\bmod 7)$, we see that $d_{N} \equiv d_{N-1}$ $+1(\bmod 7)$, while if year N is a leap year, since there is an extra day between the consecutive firsts of March, we see that $d_{N} \equiv d_{N-1}+2(\bmod 7)$. Hence, to find d_{N} from d_{1600}, we must find out how many leap years have occurred between the year 1600 and the year N (not including 1600, but including N). To compute this, we first note that there are [$(N-1600) / 4$] years divisible by 4 between 1600 and N, there are [$(N-1600) / 100$] years divisible by 100 between 1600 and N, and there are [$(N-1600) / 400$] years divisible by 400 between 1600 and N. Hence, the number of leap years
between 1600 and N is

$$
\begin{aligned}
{[(N-1600) / 4] } & -[(N-1600) / 100]+[(N-1600) / 400] \\
& =[N / 4]-400-[N / 100]+16+[N / 400]-4 \\
& =[N / 4]-[N / 100]+[N / 400]-388 .
\end{aligned}
$$

(We have used Proposition 1.5 to simplify this expression). Now putting this in terms of C and Y, we see that the number of leap years between 1600 and N is

$$
\begin{aligned}
{[25 C+(Y / 4)]-[C} & +(Y / 100)]+[(C / 4)+(Y / 400)]-388 \\
& =25 C+[Y / 4]-C+[C / 4]-388 \\
& \equiv 3 C+[C / 4]+[Y / 4]-3(\bmod 7)
\end{aligned}
$$

Here we have again used Proposition 1.5, the inequality $Y / 100<1$, and the equation $[(C / 4)+(Y / 400)]=[C / 4]$ (which follows from problem 20 of Section 1.2 , since $Y / 400<1 / 4)$.

We can now compute d_{N} from d_{1600} by shifting d_{1600} by one day for every year that has passed, plus an extra day for each leap year between 1600 and N. This gives the following formula:

$$
d_{N} \equiv d_{1600}+100 C+Y-1600+3 C+[C / 4]+[Y / 4]-3(\bmod 7)
$$

Simplifying, we have

$$
d_{N} \equiv d_{1600}-2 C+Y+[C / 4]+[Y / 4](\bmod 7)
$$

Now that we have a formula relating the day of the week for March 1, of any year, with the day of the week of March 1,1600 , we can use the fact that March 1, 1982, is a Monday to find the day of the week of March 1, 1600. For 1982, since $N=1982$, we have $C=19$, and $Y=82$, and since $d_{1982}=1$, it follows that

$$
1 \equiv d_{1600}-38+82+[19 / 4]+[82 / 4] \equiv d_{1600}-2(\bmod 7)
$$

Hence, $d_{1600}=3$, so that March 1,1600 , was a Wednesday. When we insert the value of d_{1600}, the formula for d_{N} becomes

$$
d_{N} \equiv 3-2 C+Y+[C / 4]+[Y / 4](\bmod 7)
$$

We now use this formula to compute the day of the week of the first day of each month of year N. To do this, we have to use the number of days of the week that the first of the month of a particular month is shifted from the first of the month of the preceding month. The months with 30 days shift the first of the following month up 2 days, because $30 \equiv 2(\bmod 7)$, and those with 31
days shift the first of the following month up 3 days, because $31 \equiv 3(\bmod 7)$. Therefore, we must add the following amounts:

from March 1, to April 1:	3 days
from April 1, to May 1:	2 days
from May 1, to June 1:	3 days
from June 1, to July 1:	2 days
from July 1, to August 1:	3 days
from August 1, to September 1:	3 days
from September 1, to October 1:	2 days
from October 1, to November 1:	3 days
from November 1, to December 1:	2 days
from December 1, to January 1:	3 days
from January 1, to February 1:	3 days.

We need a formula that gives us the same increments. Notice that we have 11 increments totaling 29 days, so that each increment averages 2.6 days. By inspection, we find that the function [2.6m-0.2] - 2 has exactly the same increments as m goes from 1 to 11 , and is zero when $m=1$. Hence, the day of the week of the first day of month m of year N is given by by the least positive residue of $d_{N}+[2.6 m-0.2]-2$ modulo 7 .

To find W, the day of the week of day k of month m of year N, we simply add $k-1$ to the formula we have devised for the day of the week of the first day of the same month. We obtain the formula:

$$
W \equiv k+[2.6 m-0.2]-2 C+Y+[Y / 4]+[C / 4](\bmod 7)
$$

We can use this formula to find the day of the week of any date of any year in the Gregorian calendar.

Example. To find the day of the week of January 1, 1900, we have $C=18, Y=99, m=11$, and $k=1$ (since we consider January as the eleventh month of the preceding year). Hence, we have $W \equiv 1+28-36+99+4+24 \equiv 1(\bmod 7)$, so that the first day of the twentieth century was a Monday.

4.2 Problems

1. Find the day of the week of the day you were born, and of your birthday this year.
2. Find the day of the week of the following important dates in U. S. history (use the Julian calendar before 1752, and the Gregorian calendar from 1752 to the present)
a) October 12, 1492
b) May 6, 1692
c) June 15,1752
d) July 4, 1776
e) March 30,1867
f) March 17,1888
g) February 15,1898
h) July 2, 1925
i) July 16,1945
j) July 20, 1969
k) August 9, 1974
l) March 28, 1979
(Columbus sights land in the Caribbean) (Peter Minuit buys Manhattan from the natives)
(Benjamin Franklin invents the lightening rod)
(U. S. Declaration of Independence)
(U. S. buys Alaska from Russia)
(Great blizzard in the Eastern U. S.)
(U. S. Battleship Maine blown up in Havana Harbor)
(Scopes convicted of teaching evolution)
(First atomic bomb exploded)
(First man on the moon)
(Nixon resigns)
(Three Mile Island nuclear mishap).
3. To correct the small discrepancy between the number of days in a year of the Gregorian calendar and an actual year, it has been suggested that the years exactly divisible by 4000 should not be leap years. Adjust the formula for the day of the week of a given date to take this correction into account.
4. Which of your birthdays, until your one hundredth, fall on the same day of the week as the day you were born?
5. Show that days with the same calendar date in two different years of the same century, 28,56 , or 84 years apart, fall on the identical day of the week.
6. A new calendar called the International Fixed Calendar has been proposed. In this calendar, there are 13 months, including all our present months, plus a new month, called Sol, which is placed between June and July. Each month has 28 days, except for the June of leap years which has an extra day (leap years are determined the same way as in the Gregorian calendar). There is an extra day, Year End Day, which is not in any month, which we may consider as December 29. Devise a perpetual calendar for the International Fixed Calendar to give day of the week for any calendar date.

4.2 Computer Projects

Write programs to do the following:

1. To give the day of the week of any date.
2. To print out a calendar of any year.
3. To print out a calendar for the International Fixed Calendar (See problem 6).

4.3 Round-Robin Tournaments

Congruences can be used to schedule round-robin tournaments. In this section, we show how to schedule a tournament for N different teams, so that each team plays every other team exactly once. The method we describe was developed by Freund [65].

First note that if N is odd, not all teams can be scheduled in each round, since when teams are paired, the total number of teams playing is even. So, if N is odd, we add a dummy team, and if a team is paired with the dummy team during a particular round, it draws a bye in that round and does not play. Hence, we can assume that we always have an even number of teams, with the addition of a dummy team if necessary.

Now label the N teams with the integers $1,2,3, \ldots, N-1, N$. We construct a schedule, pairing teams in the following way. We have team i, with $i \neq N$, play team j, with $j \neq N$ and $j \neq i$, in the k th round if $i+j \equiv k(\bmod N-1)$. This schedules games for all teams in round k, except for team N and the one team i for which $2 i \equiv k(\bmod N-1)$. There is one such team because Theorem 3.7 tells us that the congruence $2 x \equiv k(\bmod N-1)$ has exactly one solution with $1 \leqslant x \leqslant N-1$, since $(2, N-1)=1$. We match this team i with team N in the k th round.

We must now show that each team plays every other team exactly once. We consider the first $N-1$ teams. Note that team i, where $1 \leqslant i \leqslant N-1$, plays team N in round k where $2 i \equiv k(\bmod N-1)$, and this happens exactly once. In the other rounds, team i does not play the same team twice, for if team i played team j in both rounds k and k^{\prime}, then $i+j \equiv k(\bmod N-1)$, and $i+j \equiv k^{\prime}(\bmod N-1)$ which is an obvious contradiction because $k \neq k^{\prime}(\bmod N-1)$. Hence, since each of the first $N-1$ teams plays $N-1$ games, and does not play any team more than once, it plays every team exactly once. Also, team N plays $N-1$ games, and since every other team plays team N exactly once, team N plays every other team exactly once.

Example. To schedule a round-robin tournament with 5 teams, labeled $1,2,3,4$, and 5 , we include a dummy team labeled 6 . In round one, team 1 plays team j where $1+j \equiv 1(\bmod 5)$. This is the team $j=5$ so that team 1 plays team 5. Team 2 is scheduled in round one with team 4 , since the solution of $2+j \equiv 1(\bmod 5)$ is $j=4$. Since $i=3$ is the solution of the congruence $2 i \equiv 1(\bmod 5)$, team 3 is paired with the dummy team 6 , and hence, draws a bye in the first round. If we continue this procedure and finish scheduling the other rounds, we end up with the pairings shown in Figure 4.1, where the opponent of team i in round k is given in the k th row and i th column.

Team	1	2	3	4	5
1	5	4	bye	2	1
2	bye	5	4	3	2
3	2	1	5	bye	3
4	3	bye	1	5	4
5	4	3	2	1	bye

Figure 4.1. Round-Robin Schedule for Five Teams.

4.3 Problems

1. Set up a round-robin tournament schedule for
a) 7 teams
b) 8 teams
c) 9 teams
d) 10 teams.
2. In round-robin tournament scheduling, we wish to assign a home team and an away team for each game so that each of n teams, where n is odd, plays an equal number of home games and away games. Show that if when $i+j$ is odd, we assign the smaller of i and j as the home team, while if $i+j$ is even, we assign the larger of i and j as the home team, then each team plays an equal number of home and away games.
3. In a round-robin tournament scheduling, use problem 2 to determine the home team for each game when there are
a) 5 teams
b) 7 teams
c) 9 teams.

4.3 Computer Projects

Write programs to do the following:

1. Schedule round-robin tournaments.
2. Using problem 2, schedule round-robin tournaments for an odd number of teams, specifying the home team for each game.

4.4 Computer File Storage And Hashing Functions

A university wishes to store a file for each of its students in its computer. The identifying number or key for each file is the social security number of the student enrolled. The social security number is a nine-digit integer, so it is extremely unfeasible to reserve a memory location for each possible social security number. Instead, a systematic way to arrange the files in memory, using a reasonable amount of memory locations, should be used so that each file can be easily accessed. Systematic methods of arranging files have been developed based on hashing functions. A hashing function assigns to the key of each file a particular memory location. Various types of hashing functions have been suggested, but the type most commonly used involves modular arithmetic. We discuss this type of hashing function here. For a general discussion of hashing functions see Knuth [57] or Kronsjö [58].

Let k be the key of the file to be stored; in our example, k is the social security number of a student. Let m be a positive integer. We define the hashing function $h(k)$ by

$$
h(k) \equiv k(\bmod m)
$$

where $0 \leqslant h(k)<m$, so that $h(k)$ is the least positive residue of k modulo m. We wish to pick m intelligently, so that the files are distributed in a reasonable way throughout the m different memory locations $0,1,2, \ldots, m-1$.

The first thing to keep in mind is that m should not be a power of the base b which is used to represent the keys. For instance, when using social security numbers as keys, m should not be a power of 10 , such as 10^{3}, because the value of the hashing function would simply be the last several digits of the key; this may not distribute the keys uniformly throughout the memory locations. For instance, the last three digits of early issued social security numbers may often be between 000 and 099, but seldom between 900 and 999. Likewise, it is unwise to use a number dividing $b^{k} \pm a$ where k and a are small integers for the modulus m. In such a case, $h(k)$ would depend too strongly on the particular digits of the key, and different keys with similar, but rearranged, digits may be sent to the same memory location, For instance, if $m=111$, then, since $111 \mid\left(10^{3}-1\right)=999$, we have $10^{3} \equiv 1(\bmod 111)$, so that the social security numbers 064212848 and 064848212 are sent to the same memory location, since

$$
h(064212848) \equiv 064212848 \equiv 064+212+848 \equiv 1124 \equiv 14(\bmod 111)
$$

and
$h(064848212) \equiv 064848212 \equiv 064+848+212 \equiv 1124 \equiv 14(\bmod 111)$.
To avoid such difficulties, m should be a prime approximating the number of available memory locations devoted to file storage. For instance, if there are 5000 memory locations available for storage of 2000 student files we could pick m to be equal to the prime 4969 .

We have avoided mentioning the problem that arises when the hashing function assigns the same memory location to two different files. When this occurs, we say the there is a collision. We need a method to resolve collisions, so that files are assigned to different memory locations. There are two kinds of collision resolution policies. In the first kind, when a collision occurs, extra memory locations are linked together to the first memory location. When one wishes to access a file where this collision resolution policy has been used, it is necessary to first evaluate the hashing function for the particular key involved. Then the list linked to this memory location is searched.

The second kind of collision resolution policy is to look for an open memory location when an occupied location is assigned to a file. Various suggestions, such as the following technique have been made for accomplishing this.

Starting with our original hashing function $h_{0}(k)=h(k)$, we define a sequence of memory locations $h_{1}(k), h_{2}(k), \ldots$. We first attempt to place the file with key k at location $h_{0}(k)$. If this location is occupied, we move to location $h_{1}(k)$. If this is occupied, we move to location $h_{2}(k)$, etc.

We can choose the sequence of functions $h_{j}(k)$ in various ways. The simplest way is to let

$$
h_{j}(k) \equiv h(k)+j(\bmod m), 0 \leqslant h_{j}(k)<m .
$$

This places the file with key k as near as possible past location $h(k)$. Note that with this choice of $h_{j}(k)$, all memory locations are checked, so if there is an open location, it will be found. Unfortunately, this simple choice of $h_{j}(k)$ leads to difficulties; files tend to cluster. We see that if $k_{1} \neq k_{2}$ and $h_{i}\left(k_{1}\right)=h_{j}\left(k_{2}\right)$ for nonnegative integers i and j, then $h_{i+k}\left(k_{1}\right)=h_{j+k}\left(k_{2}\right)$ for $k=1,2,3, \ldots$, so that exactly the same sequence of locations are traced out once there is a collision. This lowers the efficiency of the search for files in the table. We would like to avoid this problem of clustering, so we choose the function $h_{j}(k)$ in a different way.

To avoid clustering, we use a technique called double hashing. We choose, as before,

$$
h(k) \equiv k(\bmod m)
$$

with $0 \leqslant h(k)<m$, where m is prime, as the hashing function. We take a second hashing function

$$
g(k) \equiv k+1(\bmod m-2)
$$

where $0<g(k) \leqslant m-1$, so that $(g(k), m)=1$. We take as a probing sequence

$$
h_{j}(k) \equiv h(k)+j g(k)(\bmod m)
$$

where $0 \leqslant h_{j}(k)<m$. Since $(g(k), m)=1$, as j runs through the integers $0,1,2, \ldots, m-1$, all memory locations are traced out. The ideal situation would be for $m-2$ to also be prime, so that the values $g(k)$ are distributed in a reasonable way. Hence, we would like $m-2$ and m to be twin primes.

Example. In our example using social security numbers, both $m=4969$, and $m-2=4967$ are prime. Our probing sequence is

$$
h_{j}(k) \equiv h(k)+j g(k)(\bmod 4969)
$$

where $0 \leqslant h_{j}(k)<4969, h(k) \equiv k(\bmod 4969)$, and $g(k) \equiv k+1$ $(\bmod 4967)$.

Suppose we wish to assign memory locations to files for students with social security numbers:

$$
\begin{array}{ll}
k_{1}=344401659 & k_{6}=372500191 \\
k_{2}=325510778 & k_{7}=034367980 \\
k_{3}=212228844 & k_{8}=546332190 \\
k_{4}=329938157 & k_{9}=509496993 \\
k_{5}=047900151 & k_{10}=132489973 .
\end{array}
$$

Since $k_{1} \equiv 269, k_{2} \equiv 1526$, and $k_{3} \equiv 2854(\bmod 4969)$, we assign the first three files to locations 269,1526 , and 2854 , respectively. Since $k_{4} \equiv$ $1526(\bmod 4969)$, but location 1526 is taken, we compute $h_{1}\left(k_{4}\right) \equiv h\left(k_{4}\right)+$ $g\left(k_{4}\right)=1526+216=1742(\bmod 4969), \quad$ since $\quad g\left(k_{4}\right) \equiv 1+k_{4} \equiv$ $216(\bmod 4967)$. Since location 1742 is free, we assign the fourth file to this location. The fifth, six, seventh, and eighth files go into the available locations 3960, 4075, 2376, and 578, respectively, because $k_{5} \equiv 3960, k_{6} \equiv 4075$, $k_{7} \equiv 2376$, and $k_{8} \equiv 578(\bmod 4969)$. We find that $k_{9} \equiv 578(\bmod 4969)$;
because location 578 is occupied, we compute $h_{1}\left(k_{9}\right)+g\left(k_{9}\right)=578+2002$ $=2580(\bmod 4969)$, where $g\left(k_{9}\right)=1+k_{9} \equiv 2002(\bmod 4967)$. Hence, we assign the ninth file to the free location 2580 . Finally, we find that $k_{10} \equiv$ $1526(\bmod 4967)$, but location 1526 is taken. We compute $h_{1}\left(k_{10}\right) \equiv h\left(k_{10}\right)$ $+g\left(k_{10}\right)=1526+216=1742(\bmod 4969)$, because $g\left(k_{10}\right)=k_{10} \equiv 216$ (mod 4967), but location 1742 is taken. Hence, we continue by finding $h_{2}\left(k_{10}\right) \equiv h\left(k_{10}\right)+2 g\left(k_{10}\right) \equiv 1958(\bmod 4969)$ and in this available location, we place the tenth file.

Table 4.1 lists the assignments for the files of students by their social security numbers. In the table, the file locations are shown in boldface.

Social Security Number	$h(k)$	$h_{1}(k)$	$h_{2}(k)$
344401659	$\mathbf{2 6 9}$		
325510778	$\mathbf{1 5 2 6}$		
212228844	$\mathbf{2 8 5 4}$		
329938157	1526	$\mathbf{1 7 4 2}$	
047900151	$\mathbf{3 9 6 0}$		
372500191	$\mathbf{4 0 7 5}$		
034367980	$\mathbf{2 3 7 6}$		
546332190	$\mathbf{5 7 8}$		
509496993	578	$\mathbf{2 5 8 0}$	
132489973	1526	1742	$\mathbf{1 9 5 8}$

Table 4.1. Hashing Function for Student Files.
We wish to find conditions where double hashing leads to clustering. Hence, we find conditions when

$$
\begin{equation*}
h_{i}\left(k_{1}\right)=h_{j}\left(k_{2}\right) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{i+1}\left(k_{1}\right)=h_{j+1}\left(k_{2}\right) \tag{4.2}
\end{equation*}
$$

so that the two consecutive terms of two probe sequences agree. If both (4.1) and (4.2) occur, then

$$
h\left(k_{1}\right)+i g\left(k_{1}\right) \equiv h\left(k_{2}\right)+j g\left(k_{2}\right)(\bmod m)
$$

and

$$
h\left(k_{1}\right)+(i+1) g\left(k_{1}\right) \equiv h\left(k_{2}\right)+(j+1) g\left(k_{2}\right)(\bmod m)
$$

Subtracting the first of these two congruences from the second, we obtain

$$
g\left(k_{1}\right) \equiv g\left(k_{2}\right)(\bmod m)
$$

so that

$$
k_{1} \equiv k_{2}(\bmod m-2)
$$

Since $g\left(k_{1}\right)=g\left(k_{2}\right)$, we can substitute this into the first congruence to obtain

$$
h\left(k_{1}\right) \equiv h\left(k_{2}\right)(\bmod m)
$$

which shows that

$$
k_{1} \equiv k_{2}(\bmod m)
$$

Consequently, since $(m-2, m)=1$, Theorem 3.6 tells us that

$$
k_{1} \equiv k_{2}(\bmod m(m-2))
$$

Therefore, the only way that two probing sequences can agree for two consecutive terms is if the two keys involved, k_{1} and k_{2}, are congruent modulo $m(m-2)$. Hence, clustering is extremely rare. Indeed, if $m(m-2)>k$ for all keys k, clustering will never occur.

4.4 Problems

1. A parking lot has 101 parking places. A total of 500 parking stickers are sold and only $50-75$ vehicles are expected to be parked at a time. Set up a hashing function and collision resolution policy for assigning parking places based on license plates displaying six-digit numbers.
2. Assign memory locations for students in your class, using as keys the day of the month of birthdays of students with hashing function $h(K) \equiv K(\bmod 19)$,
a) with probing sequence $h_{j}(K) \equiv h(K)+j(\bmod 19)$.
b) with probing sequence $h_{j}(K) \equiv h(K)+j \cdot g(K), 0 \leqslant j \leqslant 16$, where $g(K) \equiv 1+K(\bmod 17)$.
3. Let the hashing function be $h(K) \equiv K(\bmod m)$, with $0 \leqslant h(K)<m$, and let the probing sequence for collision resolution be $h_{j}(K) \equiv h(K)+j q(\bmod m)$, $0 \leqslant h_{j}(K)<m$, for $j=1,2, \ldots, m-1$. Show that all memory locations are
probed
a) if m is prime and $1 \leqslant q \leqslant m-1$.
b) if $m=2^{r}$ and q is odd.
4. A probing sequence for resolving collisions where the hashing function is $h(K) \equiv K(\bmod m), \quad 0 \leqslant h(K)<m, \quad$ is given by $\quad h_{j}(K) \equiv h(K)$ $+j(2 h(K)+1)(\bmod m), 0 \leqslant h_{j}(K)<m$.
a) Show that if m is prime, then all memory sequences are probed.
b) Determine conditions for clustering to occur, i.e., when $h_{j}\left(K_{1}\right)=h_{j}\left(K_{2}\right)$ and $h_{j+r}\left(K_{1}\right)=h_{j+r}\left(K_{2}\right)$ for $r=1,2, \ldots$.
5. Using the hashing function and probing sequence of the example in the text, find open memory locations for the files of students with social security numbers: $k_{11}=137612044, k_{12}=505576452, k_{13}=157170996, k_{14}=131220418$. (Add these to the ten files already stored.)

4.4 Computer Projects

Write programs to assign memory locations to student files, using the hashing function $h(k) \equiv k(\bmod 1021), 0 \leqslant h(k)<1021$, where the keys are the social security numbers of students.

1. Linking files together when collisions occur.
2. Using $h_{j}(k) \equiv h(k)+j(\bmod 1021), j=0,1,2, \ldots$ as the probing sequence.
3. Using $h_{j}(k) \equiv h(k)+j \cdot g(k), j=0,1,2, \ldots$ where $g(k) \equiv 1+k(\bmod 1019)$ as the probing sequence.

5

Some Special Congruences

5.1 Wilson's Theorem and Fermat's Little Theorem

In this section, we discuss two important congruences that are often useful in number theory. We first discuss a congruence for factorials called Wilson's theorem.

Wilson's Theorem. If p is prime, then $(p-1)!\equiv-1(\bmod p)$.
The first proof of Wilson's Theorem was given by the French mathematician Joseph Lagrange in 1770. The mathematician after whom the theorem is named, John Wilson, conjectured, but did not prove it. Before proving Wilson's theorem, we use an example to illustrate the idea behind the proof.

Example. Let $p=7$. We have $(7-1)!=6!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6$. We will rearrange the factors in the product, grouping together pairs of inverses modulo 7. We note that $2.4 \equiv 1 \quad(\bmod 7)$ and $3.5 \equiv 1(\bmod 7)$. Hence, $6!\equiv 1 \cdot(2 \cdot 4) \cdot(3 \cdot 5) \cdot 6 \equiv 1 \cdot 6 \equiv-1(\bmod 7)$. Thus, we have verified a special case of Wilson's theorem.

We now use the technique illustrated in the example to prove Wilson's theorem.

Proof. When $p=2$, we have $(p-1)!\equiv 1 \equiv-1(\bmod 2)$. Hence, the theorem is true for $p=2$. Now, let p be a prime greater than 2. Using Theorem 3.7, for each integer a with $1 \leqslant a \leqslant p-1$, there is an inverse $\bar{a}, 1 \leqslant \bar{a} \leqslant p-1$, with $a \bar{a} \equiv 1(\bmod p)$. From Proposition 3.4, the only positive integers less than p that are their own inverses are 1 and $p-1$. Therefore, we can group
the integers from 2 to $p-2$ into $(p-3) / 2$ pairs of integers, with the product of each pair congruent to 1 modulo p. Hence, we have

$$
2 \cdot 3 \cdots(p-3) \cdot(p-2) \equiv 1(\bmod p)
$$

We conclude the proof by multiplying both sides of the above congruence by 1 and $p-1$ to obtain

$$
(p-1)!=1 \cdot 2 \cdot 3 \cdots(p-3)(p-2)(p-1) \equiv 1 \cdot(p-1) \equiv-1(\bmod p)
$$

An interesting observation is that the converse of Wilson's theorem is also true, as the following theorem shows.

Theorem 5.1. If n is a positive integer such that $(n-1)!\equiv-1(\bmod n)$, then n is prime.

Proof. Assume that n is a composite integer and that $(n-1)!\equiv-1(\bmod n)$. Since n is composite, we have $n=a b$, where $1<a<n$ and $1<b<n$. Since $a<n$, we know that $a \mid(n-1)$!, because a is one of the $n-1$ numbers multiplied together to form $(n-1)$!. Since $(n-1)!\equiv-1(\bmod n)$, it follows that $n \mid[(n-1)!+1]$. This means, by the use of Proposition 1.3 , that a also divides $(n-1)!+1$. From Proposition 1.4, since $a \mid(n-1)!$ and $a \mid[(n-1)!+1]$, we conclude that $a \mid[(n-1)!+1]-(n-1)!=1$. This is an obvious contradiction, since $a>1$.

We illustrate the use of this result with an example.
Example. Since $(6-1)!=5!=120 \equiv 0(\bmod 6)$, Theorem 5.1 verifies the obvious fact that 6 is not prime.

As we can see, the converse of Wilson's theorem gives us a primality test. To decide whether an integer n is prime, we determine whether $(n-1)!\equiv-1(\bmod n)$. Unfortunately, this is an impractical test because $n-1$ multiplications modulo n are needed to find $(n-1)$!, requiring $O\left(n\left(\log _{2} n\right)^{2}\right)$ bit operations.

When working with congruences involving exponents, the following theorem is of great importance.

Fermat's Little Theorem. If p is prime and a is a positive integer with $p, b a$, then $a^{p-1} \equiv 1(\bmod p)$.
$u^{p} \equiv a^{\text {mod }}$ p)
Proof. Consider the $p-1$ integers $a, 2 a, \ldots,(p-1) a$. None of these integers are divisible by p, for if $p \mid j a$, then by Lemma $2.3, p \mid j$, since $p \mid a$. This
is impossible because $1 \leqslant j \leqslant p-1$. Furthermore, no two of the integers $a, 2 a, \ldots,(p-1) a$ are congruent modulo p. To see this, assume that $j a \equiv k a(\bmod p)$. Then, from Corollary 3.1 , since $(a, p)=1$, we have $j \equiv k(\bmod p)$. This is impossible, since j and k are positive integers less than $p-1$.

Since the integers $a, 2 a, \ldots,(p-1) a$ are a set of $p-1$ integers all incongruent to zero, and no two congruent modulo p, we know that the least positive residues of $a, 2 a, \ldots,(p-1) a$, taken in some order, must be the integers $1,2, \ldots, p-1$. As a consequence, the product of the integers $a, 2 a, \ldots,(p-1) a$ is congruent modulo p to the product of the first $p-1$ positive integers. Hence,

$$
a \cdot 2 a \cdots(p-1) a \equiv 1 \cdot 2 \cdots(p-1)(\bmod p)
$$

Therefore,

$$
a^{p-1}(p-1)!\equiv(p-1)!(\bmod p)
$$

Since $((p-1)!, p)=1$, using Corollary 3.1 , we cancel $(p-1)!$ to obtain

$$
a^{p-1} \equiv 1(\bmod p)
$$

We illustrate the ideas of the proof with an example.
Example. Let $p=7$ and $a=3$. Then, $1 \cdot 3 \equiv 3(\bmod 7), 2 \cdot 3 \equiv 6(\bmod 7)$, $3 \cdot 3 \equiv 2(\bmod 7), 4 \cdot 3 \equiv 5(\bmod 7), 5 \cdot 3 \equiv 1(\bmod 7)$, and $6 \cdot 3 \equiv 4(\bmod 7)$. Consequently,

$$
(1 \cdot 3) \cdot(2 \cdot 3) \cdot(3 \cdot 3) \cdot(4 \cdot 3) \cdot(5 \cdot 3) \cdot(6 \cdot 3) \equiv 3 \cdot 6 \cdot 2 \cdot 5 \cdot 1 \cdot 4(\bmod 7)
$$

so that $3^{6} \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \equiv 3 \cdot 6 \cdot 2 \cdot 5 \cdot 1 \cdot 4(\bmod 7)$. Hence, $3^{6} \cdot 6!\equiv 6!(\bmod 7)$, and therefore, $3^{6} \equiv 1(\bmod 7)$.

On occasion, we would like to have a congruence like Fermat's little theorem that holds for all integers a, given the prime p. This is supplied by the following result.

Theorem 5.2. If p is prime and a is a positive integer, then $a^{p} \equiv a(\bmod p)$.

Proof. If $p \backslash a$, by Fermat's little theorem we know that $a^{p-1} \equiv 1(\bmod p)$. Multiplying both sides of this congruence by a, we find that $a^{p} \equiv a(\bmod p)$. If $p \mid a$, then $p \mid a^{p}$ as well, so that $a^{p} \equiv a \equiv 0(\bmod p)$. This finishes the proof, since $a^{p} \equiv a(\bmod p)$ if $p \backslash a$ and if $p \mid a$.

Fermat's little theorem is useful in finding the least positive residues of powers.

Example. We can find the least positive residue of 3^{201} modulo 11 with the help of Fermat's little theorem. We know that $3^{10} \equiv 1(\bmod 11)$. Hence, $3^{201}=\left(3^{10}\right)^{20} \cdot 3 \equiv 3(\bmod 11)$.

A useful application of Fermat's little theorem is provided by the following result.

Theorem 5.3. If p is prime and a is an integer with $p \backslash a$, then a^{p-2} is an inverse of a modulo p.

Proof. If $p \nmid a$, then Fermat's little theorem tells us that $a \cdot a^{p-2}=a^{p-1} \equiv 1(\bmod p)$. Hence, a^{p-2} is an inverse of a modulo p.

Example. From Theorem 5.3, we know that $2^{9}=512 \equiv 6(\bmod 11)$ is an inverse of 2 modulo 11 .

Theorem 5.3 gives us another way to solve linear congruences with respect to prime moduli.

Corollary 5.1. If a and b are positive integers and p is prime with $p \backslash a$, then the solutions of the linear congruence $a x \equiv b(\bmod p)$ are the integers x such that $x \equiv a^{p-2} b(\bmod p)$.

Proof. Suppose that $a x \equiv b(\bmod p)$. Since $p \backslash a$, we know from Theorem 5.2 that a^{p-2} is an inverse of $a(\bmod p)$. Multiplying both sides of the original congruence by a^{p-2}, we have

$$
a^{p-2} a x \equiv a^{p-2} b(\bmod p)
$$

Hence,

$$
x \equiv a^{p-2} b(\bmod p)
$$

5.1 Problems

1. Using Wilson's theorem, find the least positive residue of $8 \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13$ modulo 7.
2. Using Fermat's little theorem, find the least positive residue of $2^{1000000}$ modulo 17.
3. Show that $3^{10} \equiv 1\left(\bmod 11^{2}\right)$.
4. Using Fermat's little theorem, find the last digit of the base 7 expansion of 3^{100}.
5. Using Fermat's little theorem, find the solutions of the linear congruences
a) $7 x \equiv 12(\bmod 17)$
b) $4 x \equiv 11(\bmod 19)$.
6. Show that if n is a composite integer with $n \neq 4$, then $(n-1)!\equiv 0(\bmod n)$.
7. Show that if p is an odd prime, then $2(p-3)!\equiv-1(\bmod p)$.
8. Show that if n is odd and $3 \backslash n$, then $n^{2} \equiv 1(\bmod 24)$.
9. Show that $42 \mid\left(n^{7}-n\right)$ for all positive integers n.
10. Show that if p and q are distinct primes, then $p^{q-1}+q^{p-1} \equiv 1(\bmod p q)$.
11. Show that p is prime and a and b are integers such that $a^{p} \equiv b^{p}(\bmod p)$, then $a^{p} \equiv b^{P}\left(\bmod p^{2}\right)$.
12. Show that if p is an odd prime, then $1^{2} 3^{2} \cdots(p-4)^{2}(p-2)^{2} \equiv$ $(-1)^{(p+1) / 2}(\bmod p)$.
13. Show that if p is prime and $p \equiv 3(\bmod 4)$, then $\{(p-1) / 2\}!\equiv \pm 1(\bmod p)$.
14. a) Let p be prime and suppose that r is a positive integer less then p such that $(-1)^{r} r!\equiv-1(\bmod p)$. Show that $(p-r+1)!\equiv-1(\bmod p)$.
b) Using part (a), show that $61!\equiv 63!\equiv-1(\bmod 71)$.
15. Using Wilson's theorem, show that if p is a prime and $p \equiv 1(\bmod 4)$, then the congruence $x^{2} \equiv-1(\bmod p)$ has two incongruent solutions given by $x \equiv \pm[(p-1) / 2]!(\bmod p)$.
16. Show that if p is a prime and $0<k<p$, then $(p-k)!(k-1)$! $\equiv(-1)^{k}(\bmod p)$.
17. Show that if p is prime and a is an integer, then $p \mid\left[a^{p}+(p-1)!a\right]$.
18. For which positive integers n is $n^{4}+4^{n}$ prime?
19. Show that the pair of positive integers n and $n+2$ are twin primes if and only if $4[(n-1)!+1]+n \equiv 0(\bmod n(n+2))$, where $n \neq 1$.
20. Show that the positive integers n and $n+k$, where $n>k$ and k is an even positive integer, are both prime if and only if $(k!)^{2}[(n-1)!+1]$ $+n(k!-1)(k-1)!\equiv 0(\bmod n(n+k))$.
21. Show that if p is prime, then $\binom{2 p}{p} \equiv 2(\bmod p)$.
22. a) In problem 17 of Section 1.5, we showed that the binomial coefficient $\binom{p}{k}$, where $1 \leqslant k \leqslant p-1$, is divisible by p when p is prime. Use this fact and the binomial theorem to show that if a and b are integers, then

$$
(a+b)^{p} \equiv a^{p}+b^{p}(\bmod p)
$$

b) Use part (a) to prove Fermat's little theorem by mathematical induction. (Hint: In the induction step, use part (a) to obtain a congruence for $(a+1)^{p}$.)
23. Using problem 16 of Section 3.3, prove Gauss' generalization of Wilson's theorem, namely that the product of all the positive integers less than m that are relatively prime to m is congruent to $1(\bmod m)$, unless $m=4, p^{t}$, or $2 p^{t}$ where p is an odd prime and t is a positive integer, in which case, it is congruent to $-1(\bmod m)$.
24. A deck of cards is shuffled by cutting the deck into two piles of 26 cards. Then, the new deck is formed by alternating cards from the two piles, starting with the bottom pile.
a) Show that if a card begins in the c th position in the deck, it will be in the b th position in the new deck where $b \equiv 2 c(\bmod 53)$ and $1 \leqslant b \leqslant 52$.
b) Determine the number of shuffles of the type described above that are needed to return the deck of cards to its original order.
25. Let p be prime and let a be a positive integer not divisible by p. We define the Fermat quotient $q_{p}(a)$ by $q_{p}(a)=\left(a^{p-1}-1\right) / p$. Show that if a and b are positive integers not divisible by the prime p, then $q_{p}(a b) \equiv q_{p}(a)+q_{p}(b)(\bmod p)$.
26. Let p be prime and let $a_{1}, a_{2}, \ldots, a_{p}$ and $b_{1}, b_{2}, \ldots, b_{p}$ be complete systems of residues modulo p. Show that $a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{p} b_{p}$ is not a complete system of residues modulo p.

5.1 Computer Projects

Write programs to do the following:

1. Find all Wilson primes less than 10000 . A Wilson prime is a prime p for which $(p-1)!\equiv-1\left(\bmod p^{2}\right)$.
2. Find the primes p less than 10000 for which $2^{p-1} \equiv 1\left(\bmod p^{2}\right)$.
3. Solve linear congruences with prime moduli via Fermat's little theorem.

5.2 Pseudoprimes

Fermat's little theorem tells us that if n is prime and b is any integer, then $b^{n} \equiv b(\bmod n)$. Consequently, if we can find an integer b such that $b^{n} \not \equiv b(\bmod n)$, then we know that n is composite.

Example. We can show 63 is not prime by observing that

$$
2^{63}=2^{60} \cdot 2^{3}=\left(2^{6}\right)^{10} \cdot 2^{3}=64^{10} 2^{3} \equiv 2^{3} \equiv 8 \not \equiv 2(\bmod 63)
$$

Using Fermat's little theorem, we can show that an integer is composite. It would be even more useful if it also provided a way to show that an integer is prime. The ancient Chinese believed that if $2^{n} \equiv 2(\bmod n)$, then n must be prime. Unfortunately, the converse of Fermat's little theorem is not true, as the following example shows.

Example. Let $n=341=11 \cdot 31$. By Fermat's little theorem, we see that 2^{10} $\equiv 1(\bmod 11)$, so that $2^{340}=\left(2^{10}\right)^{34} \equiv 1(\bmod 11)$. Also $2^{340}=\left(2^{5}\right)^{68} \equiv$ $(32)^{68} \equiv 1(\bmod 31)$. Hence, by Theorem 3.1 , we have $2^{340} \equiv 1(\bmod 341)$. By multiplying both sides of this congruence by 2 , we have $2^{341} \equiv 2(\bmod 341)$, even though 341 is not prime.

Examples such as this lead to the following definition.
Definition. Let b be a positive integer. If n is a composite positive integer and $b^{n} \equiv b(\bmod n)$, then n is called a pseudoprime to the base b.

Note that if $(b, n)=1$, then the congruence $b^{n} \equiv b(\bmod n)$ is equivalent to the congruence $b^{n-1} \equiv 1(\bmod n)$. To see this, note that by Corollary 3.1 we can divide both sides of the first congruence by b, since $(b, n)=1$, to obtain the second congruence. By Theorem 3.1, we can multiply both sides of the second congruence by b to obtain the first. We will often use this equivalent condition.

Example. The integers $341=11 \cdot 31,561=3 \cdot 11 \cdot 17$ and $645=3 \cdot 5 \cdot 43$ are pseudoprimes to the base 2 , since it is easily verified that $2^{340} \equiv 1(\bmod 341)$, $2^{560} \equiv 1(\bmod 561)$, and $2^{644} \equiv 1(\bmod 645)$.

If there are relatively few pseudoprimes to the base b, then checking to see whether the congruence $b^{n} \equiv b(\bmod n)$ holds is an effective test; only a small fraction of composite numbers pass this test. In fact, the pseudoprimes to the base b have been shown to be much rarer than prime numbers. In particular, there are 455052512 primes, but only 14884 pseudoprimes to the base 2 , less than 10^{10}. Although pseudoprimes to any given base are rare, there are, nevertheless, infinitely many pseudoprimes to any given base. We will prove this for the base 2 . The following lemma is useful in the proof.

Lemma 5.1. If d and n are positive integers such that d divides n, then $2^{d}-1$ divides $2^{n}-1$.

Proof. Since $d \mid n$, there is a positive integer t with $d t=n$. By setting $x=2^{d}$ in the identity $x^{t}-1=(x-1)\left(x^{t-1}+x^{t-2}+\cdots+1\right)$, we find
that $2^{n}-1=\left(2^{d}-1\right)\left(2^{d(t-1)}+2^{d(t-2)}+\cdots+2^{d}+1\right)$. Consequently, $\left(2^{d}-1\right) \mid\left(2^{n}-1\right)$.

We can now prove that there are infinitely many pseudoprimes to the base 2.

Theorem 5.4. There are infinitely many pseudoprimes to the base 2 .
Proof. We will show that if n is an odd pseudoprime to the base 2, then $m=2^{n}-1$ is also an odd pseudoprime to the base 2 . Since we have at least one odd pseudoprime to the base 2 , namely $n_{0}=341$, we will be able to construct infinitely many odd pseudoprimes to the base 2 by taking $n_{0}=341$ and $n_{k+1}=2^{n_{k}}-1$ for $k=0,1,2,3, \ldots$. These odd integers are all different, since $n_{0}<n_{1}<n_{2}<\cdots<n_{k}<n_{k+1}<\cdots$.

To continue the proof, let n be an odd pseudoprime, so that n is composite and $2^{n-1} \equiv 1(\bmod n)$. Since n is composite, we have $n=d t$ with $1<d<n$ and $1<t<n$. We will show that $m=2^{n}-1$ is also pseudoprime by first showing that it is composite, and then by showing that $2^{m-1} \equiv 1(\bmod m)$.

To see that m is composite, we use Lemma 5.1 to note that $\left(2^{d}-1\right) \mid\left(2^{n}-1\right)=m$. To show that $2^{m-1} \equiv 1(\bmod m)$, we first note that since $2^{n} \equiv 2(\bmod n)$, there is an integer k with $2^{n}-2=k n$. Hence, $2^{m-1}=2^{2^{n-2}}=2^{k n}$. By Lemma 5.1, we know that $m=\left(2^{n}-1\right) \mid\left(2^{k n}-1\right)=2^{m-1}-1$. Hence, $2^{m-1}-1 \equiv 0(\bmod m)$, so that $2^{m-1} \equiv 1(\bmod m)$. We conclude that m is also a pseudoprime to the base 2 .

If we want to know whether an integer n is prime, and we find that $2^{n-1} \equiv 1(\bmod n)$, we know that n is either prime or n is a pseudoprime to the base 2. One follow-up approach is to test n with other bases. That is, we check to see whether $b^{n-1} \equiv 1(\bmod n)$ for various positive integers b. If we find any values of b with $(b, n)=1$ and $b^{n-1} \not \equiv 1(\bmod n)$, then we know that n is composite.

Example. We have seen that 341 is a pseudoprime to the base 2. Since

$$
7^{3}=343 \equiv 2(\bmod 341)
$$

and

$$
2^{10}=1024 \equiv 1(\bmod 341)
$$

we have

$$
\begin{aligned}
7^{340} & =\left(7^{3}\right)^{113} 7 \equiv 2^{113} 7=\left(2^{10}\right)^{11} \cdot 2^{3 \cdot 7} \\
& \equiv 8 \cdot 7 \equiv 56 \not \equiv 1(\bmod 341)
\end{aligned}
$$

Hence, we see that 341 is composite, since $7^{340} \not \equiv 1(\bmod 341)$.
Unfortunately, there are composite integers n that cannot be shown to be composite using the above approach, because there are integers which are pseudoprimes to every base, that is, there are composite integers n such that $b^{n-1} \equiv 1(\bmod n)$, for all b with $(b, n)=1$. This leads to the following definition.

Definition. A composite integer which satisfies $b^{n-1} \equiv 1(\bmod n)$ for all positive integers b with $(b, n)=1$ is called a Carmichael number.

Example. The integer $561=3 \cdot 11 \cdot 17$ is a Carmichael number. To see this, note that if $(b, 561)=1$, then $(b, 3)=(b, 11)=(b, 17)=1$. Hence, from Fermat's little theorem, we have $b^{2} \equiv 1(\bmod 3), b^{10} \equiv 1(\bmod 11)$, and $b^{16} \equiv 1(\bmod 17)$. Consequently, $b^{560}=\left(b^{2}\right)^{280} \equiv 1(\bmod 3), b^{560}=\left(b^{10}\right)^{56}$ $\equiv 1(\bmod 11)$, and $b^{560}=\left(b^{16}\right)^{35} \equiv 1(\bmod 17)$. Therefore, by Theorem $3.1, b^{560} \equiv 1(\bmod 561)$ for all b with $(b, n)=1$.

It has been conjectured that there are infinitely many Carmichael numbers, but so far this has not been demonstrated. We can prove the following thecrem, which provides conditions which produce Carmichael numbers.

Theorem 5.5. If $n=q_{1} q_{2} \cdots q_{k}$, where the q_{j} 's are distinct primes that satisfy $\left(q_{j}-1\right) \mid(n-1)$ for all j, then n is a Carmichael number.

Proof. Let b be a positive integer with $(b, n)=1$. Then $\left(b, q_{j}\right)=1$ for $j=1,2, \ldots, k$, and hence, by Fermat's little theorem, $b^{q_{j}-1} \equiv 1\left(\bmod q_{j}\right)$ for $j=1,2, \ldots, k$. Since $\left(q_{j}-1\right) \mid(n-1)$ for each integer $j=1,2, \ldots, k$, there are integers t_{j} with $t_{j}\left(q_{j}-1\right)=n-1$. Hence, for each j, we know that $b^{n-1}=b^{\left(q_{j}-1\right) t_{j}} \equiv 1\left(\bmod q_{j}\right)$. Therefore, by Corollary 3.2, we see that $b^{n-1} \equiv 1(\bmod n)$, and we conclude that n is a Carmichael number.

Example. Theorem 5.5 shows that $6601=7.23 .41$ is a Carmichael number, because 7,23 , and 41 are all prime, $6=(7-1) \mid 6600,22=$ $(23-1) \mid 6600$, and $40=(41-1) \mid 6600$.

The converse of Theorem 5.5 is also true, that is, all Carmichael numbers are of the form $q_{1} q_{2} \cdots q_{k}$ where the $q_{j}{ }^{\prime}$ s are distinct primes and $\left(q_{j}-1\right) \mid(n-1)$ for all j. We prove this fact in Chapter 8.

Once the congruence $b^{n-1} \equiv 1(\bmod n)$ has been verified, another possible approach is to consider the least positive residue of $b^{(n-1) / 2}$ modulo n. We note that if $x=b^{(n-1) / 2}$, then $x^{2}=b^{n-1} \equiv 1(\bmod n)$. If n is prime, by Proposition 3.4, we know that either $x \equiv 1$ or $x \equiv-1(\bmod n)$. Consequently, once we have found that $b^{n-1} \equiv 1(\bmod n)$, we can check to see whether $b^{(n-1) / 2} \equiv \pm 1(\bmod n)$. If this congruence does not hold, then we know that n is composite.

Example. Let $b=5$ and let $n=561$, the smallest Carmichael number. We find that $5^{(561-1) / 2}=5^{280} \equiv 67(\bmod 561)$. Hence, 561 is composite.

We continue developing primality tests with the following definitions.
Definition. Let n be a positive integer with $n-1=2^{s} t$, where s is a nonnegative integer and t is an odd positive integer. We say that n passes Miller's test for the base b if either $b^{t} \equiv 1(\bmod n)$ or $b^{2^{\prime} t} \equiv-1(\bmod n)$ for some j with $0 \leqslant j \leqslant s-1$.

We now show that if n is prime, then n passes Miller's test for all bases b with $n \backslash b$.

Theorem 5.6. If n is prime and b is a positive integer with $n \backslash b$, then n passes Miller's test for the base b.

Proof. Let $n-1=2^{s} t$, where s is a nonnegative integer and t is an odd positive integer. Let $x_{k}=b^{(n-1) / 2^{k}}=b^{2^{\prime-k} t}$, for $k=0,1,2, \ldots, s$. Since n is prime, Fermat's little theorem tells us that $x_{0}=b^{n-1} \equiv 1(\bmod n)$. By Proposition $\quad 3.4$, since $\quad x_{1}^{2}=\left(b^{(n-1) / 2}\right)^{2}=x_{0} \equiv 1(\bmod n)$, either $x_{1} \equiv-1(\bmod n) \quad$ or $\quad x_{1} \equiv 1(\bmod n)$. If $\quad x_{1} \equiv 1(\bmod n)$, since $x_{2}^{2}=x_{1} \equiv 1(\bmod n)$, either $x_{2} \equiv-1(\bmod n)$ or $x_{2} \equiv 1(\bmod n)$. In general, if we have found that $x_{0} \equiv x_{1} \equiv x_{2} \equiv \cdots \equiv x_{k} \equiv 1(\bmod n)$, with $k<s$, then, since $x_{k+1}^{2}=x_{k} \equiv 1(\bmod n)$, we know that either $x_{k+1} \equiv-1(\bmod n)$ or $x_{k+1} \equiv 1(\bmod n)$.

Continuing this procedure for $k=1,2, \ldots, s$, we find that either $x_{k} \equiv 1(\bmod n)$, for $k=0,1, \ldots, s$, or $x_{k} \equiv-1(\bmod n)$ for some integer k. Hence, n passes Miller's test for the base b.

If the positive integer n passes Miller's test for the base b, then either $b^{t} \equiv 1(\bmod n)$ or $b^{2^{\prime t} t} \equiv-1(\bmod n)$ for some j with $0 \leqslant j \leqslant s-1$, where $n-1=2^{s} t$ and t is odd.

In either case, we have $b^{n-1} \equiv 1(\bmod n)$, since $b^{n-1}=\left(b^{2^{t} t}\right)^{2^{2-1}}$ for $j=0,1,2, \ldots, s$, so that an integer n that passes Miller's test for the base b is automatically a pseudoprime to the base b. With this observation, we are
led to the following definition.
Definition. If n is composite and passes Miller's test for the base b, then we say n is a strong pseudoprime to the base b.

Example. Let $n=2047=23 \cdot 89$. Then $2^{2046}=\cdot\left(2^{11}\right)^{186}=(2048)^{186} \equiv 1$ $(\bmod 2047)$, so that 2047 is a pseudoprime to the base 2 . Since $2^{2046 / 2}=$ $2^{1023}=\left(2^{11}\right)^{93}=(2048)^{93} \equiv 1(\bmod 2047), 2047$ passes Miller's test for the base 2. Hence, 2047 is a strong pseudoprime to the base 2.

Although strong pseudoprimes are exceedingly rare, there are still infinitely many of them. We demonstrate this for the base 2 with the following theorem.

Theorem 5.7. There are infinitely many strong pseudoprimes to the base 2 .
Proof. We shall show that if n is a pseudoprime to the base 2, then $N=2^{n}-1$ is a strong pseudoprime to the base 2.

Let n be an odd integer which is a pseudoprime to the base 2. Hence, n is composite, and $2^{n-1} \equiv 1(\bmod n)$. From this congruence, we see that $2^{n-1}-1=n k$ for some integer k; furthermore, k must be odd. We have

$$
N-1=2^{n}-2=2\left(2^{n-1}-1\right)=2^{1} n k
$$

this is the factorization of $N-1$ into an odd integer and a power of 2 .
We now note that

$$
2^{(N-1) / 2}=2^{n k}=\left(2^{n}\right)^{k} \equiv 1(\bmod N)
$$

because $2^{n}=\left(2^{n}-1\right)+1=N+1 \equiv 1(\bmod N)$. This demonstrates that N passes Miller's test.

In the proof of Theorem 5.4, we showed that if n is composite, then $N=2^{n}-1$ also is composite. Hence, N passes Miller's Test and is composite, so that N is a strong pseudoprime to the base 2. Since every pseudoprime n to the base 2 yields a strong pseudoprime $2^{n}-1$ to the base 2 and since there are infinitely many pseudoprimes to the base 2 , we conclude that there are infinitely many strong pseudoprimes to the base 2 .

The following observations are useful in combination with Miller's test for checking the primality of relatively small integers. The smallest odd strong pseudoprime to the base 2 is 2047, so that if $n<2047, n$ is odd, and n passes Miller's test to the base 2, then n is prime. Likewise, 1373653 is the smallest
odd strong pseudoprime to both the bases 2 and 3, giving us a primality test for integers less than 1373653. The smallest odd strong pseudoprime to the bases 2,3 , and 5 is 25326001 , and the smallest odd strong pseudoprime to all the bases $2,3,5$, and 7 is 3215031751 . Also, less than $25 \cdot 10^{9}$, the only odd integer which is a pseudoprime to all the bases $2,3,5$, and 7 is 3251031751. This leads us to a primality test for integers less than $25 \cdot 10^{9}$. An odd integer n is prime if $n<25 \cdot 10^{9}, n$ passes Miller's test for the bases 2,3,5, and 7, and $n \neq 3215031751$.

There is no analogy of a Carmichael number for strong pseudoprimes. This is a consequence of the following theorem.

Theorem 5.8. If n is an odd composite positive integer, then n passes Miller's test for at most $(n-1) / 4$ bases b with $1 \leqslant b \leqslant n-1$.

We prove Theorem 5.8 in Chapter 8. Note that Theorem 5.8 tells us that if n passes Miller's tests for more than ($n-1$)/4 bases less than n, then n must be prime. However, this is a rather lengthy way, worse than performing trial divisions, to show that a positive integer n is prime. Miller's test does give an interesting and quick way of showing an integer n is "probably prime". To see this, take at random an integer b with $1 \leqslant b \leqslant n-1$ (we will see how to make this "random" choice in Chapter 8). From Theorem 5.8, we see that if n is composite the probability that n passes Miller's test for the base b is less than $1 / 4$. If we pick k different bases less than n and perform Miller's tests for each of these bases we are led to the following result.

Rabin's Probabilistic Primality Test. Let n be a positive integer. Pick k different positive integers less than n and perform Miller's test on n for each of these bases. If n is composite the probability that n passes all k tests is less than $(1 / 4)^{k}$.

Let n be a composite positive integer. Using Rabin's probabilistic primality test, if we pick 100 different integers at random between 1 and n and perform Miller's test for each of these 100 bases, then the probability than n passes all the tests is less than 10^{-60}, an extremely small number. In fact, it may be more likely that a computer error was made than that a composite integer passes all the 100 tests. Using Rabin's primality test does not definitely prove that an integer n that passes all 100 tests is prime, but does give extremely strong, indeed almost overwhelming, evidence that the integer is prime.

There is a famous conjecture in analytic number theory called the generalized Riemann hypothesis. A consequence of this hypothesis is the following conjecture.

Conjecture 5.1. For every composite positive integer n, there is a base b with $b<70\left(\log _{2} n\right)^{2}$, such that n fails Miller's test for the base b.

If this conjecture is true, as many number theorists believe, the following result provides a rapid primality test.

Proposition 5.1. If the generalized Riemann hypothesis is valid, then there is an algorithm to determine whether a positive integer n is prime using $O\left(\left(\log _{2} n\right)^{5}\right)$ bit operations.

Proof. Let b be a positive integer less than n. To perform Miller's test for the base b on n takes $O\left(\left(\log _{2} n\right)^{3}\right)$ bit operations, because this test requires that we perform no more than $\log _{2} n$ modular exponentiations, each using $O\left(\left(\log _{2} b\right)^{2}\right)$ bit operations. Assume that the generalized Riemann hypothesis is true. If n is composite, then by Conjective 5.1 , there is a base b with $1<b<70\left(\log _{2} n\right)^{2}$ such that n fails Miller's test for b. To discover this b requires less than $O\left(\left(\log _{2} n\right)^{3}\right) \cdot O\left(\left(\log _{2} n\right)^{2}\right)=O\left(\left(\log _{2} n\right)^{5}\right)$ bit operations, by Proposition 1.7. Hence, after performing $O\left(\left(\log _{2} n\right)^{5}\right)$ bit operations, we can determine whether n is composite or prime.

The important point about Rabin's probabilistic primality test and Proposition 5.1 is that both results indicate that it is possible to check an integer n for primality using only $O\left(\left(\log _{2} n\right)^{k}\right)$ bit operations, where k is a positive integer. This contrasts strongly with the problem of factoring. We have seen that the best algorithm known for factoring an integer requires a number of bit operations exponential in the square root of the logarithm of the number of bits in the integer being factored, while primality testing seems to require only a number of bit operations less than a polynomial in the number bits of the integer tested. We capitalize on this difference by presenting a recently invented cipher system in Chapter 7.

5.2 Problems

1. Show that 91 is a pseudoprime to the base 3 .
2. Show that 45 is a pseudoprime to the bases 17 and 19 .
3. Show that the even integer $n=161038=2 \cdot 73 \cdot 1103$ satisfies the congruence $2^{n} \equiv 2(\bmod n)$. The integer 161038 is the smallest even pseudoprime to the base 2.
4. Show that every odd composite integer is a pseudoprime to both the base 1 and the base -1 .
5. Show that if n is an odd composite integer and n is a pseudoprime to the base a, then n is a pseudoprime to the base $n-a$.
6. Show that if $n=\left(a^{2 p}-1\right) /\left(a^{2}-1\right)$, where a is an integer, $a>1$, and p is an odd prime not dividing $a\left(a^{2}-1\right)$, then n is a pseudoprime to the base a. Conclude that there are infinitely many pseudoprimes to any base a. (Hint: To establish that $a^{n-1} \equiv 1(\bmod n)$, show that $2 p \mid(n-1)$, and demonstrate that $\left.a^{2 p} \equiv 2(\bmod n).\right)$
7. Show that every composite Fermat number $F_{m}=2^{2-}+1$ is a pseudoprime to the base 2.
8. Show that if p is prime and the Mersenne number $M_{p}=2^{p}-1$ is composite, then M_{p} is a pseudoprime to the base 2.
9. Show that if n is a pseudoprime to the bases a and b, then n is also a pseudoprime to the base $a b$.
10. Show that if n is a pseudoprime to the base a, then n is a pseudoprime to the base \bar{a}, where \bar{a} is an inverse of a modulo n.
11. a) Show that if n is a pseudoprime to the base a, but not a pseudoprime to the base b, then n is not a pseudoprime to the base $a b$.
b) Show that if there is an integer b with $(b, n)=1$ such that n is not a pseudoprime to the base b, then n is a pseudoprime to less than or equal to $\phi(n)$ different bases a with $1 \leqslant a<n$. (Hint: Show that the sets $a_{1}, a_{2}, \ldots, a_{r}$ and $b a_{1}, b a_{2}, \ldots, b a_{r}$ have no common elements, where $a_{1}, a_{2}, \ldots, a_{r}$ are the bases less than n to which n is a pseudoprime.)
12. Show that 25 is a strong pseudoprime to the base 7 .
13. Show that 1387 is a pseudoprime, but not a strong pseudoprime to the base 2 .
14. Show that 1373653 is a strong pseudoprime to both bases 2 and 3 .
15. Show that 25326001 is a strong pseudoprime to bases 2,3 , and 5 .
16. Show that the following integers are Carmichael numbers
a) $2821=7 \cdot 13 \cdot 31$
b) $10585=5 \cdot 29 \cdot 73$
c) $29341=13 \cdot 37 \cdot 61$
d) $314821=13 \cdot 61 \cdot 397$
e) $27845=5 \cdot 17 \cdot 29 \cdot 113$
f) $172081=7 \cdot 13 \cdot 31 \cdot 61$
g) $564651361=43 \cdot 3361 \cdot 3907$.
17. Find a Carmichael number of the form $7 \cdot 23 \cdot q$ where q is an odd prime.
18. a) Show that every integer of the form $(6 m+1)(12 m+1)(18 m+1)$, where m is a positive integer such that $6 m+1,12 m+1$, and $18 m+1$ are all primes, is a Carmichael number.
b) Conclude from part (a) that $1729=7 \cdot 13 \cdot 19,294409=37 \cdot 73 \cdot 109,55164051$
$=211 \cdot 421.631,118901521=271.541 .811$, and $72947529=307.613 .919$ are Carmichael numbers.
19. Show that if n is a positive integer with $n \equiv 3(\bmod 4)$, then Miller's test takes $O\left(\left(\log _{2} n\right)^{2}\right)$ bit operations.

5.2 Computer Projects

Write programs to do the following:

1. Given a positive integer n, determine whether n satisfies the congruence $b^{n-1} \equiv 1(\bmod n)$ where b is a positive integer less than n; if it does, then n is either a prime or a pseudoprime to the base b.
2. Given a positive integer integer n, determine whether n passes Miller's test to the base b; if it does then n is either prime or a strong pseudoprime to the base b.
3. Perform a primality test for integers less than $25 \cdot 10^{9}$ based on Miller's tests for the bases $2,3,5$, and 7. (Use the remarks that follow Theorem 5.7.)
4. Perform Rabin's probabilistic primality test.
5. Find Carmichael numbers.

5.3 Euler's Theorem

Fermat's little theorem tells us how to work with certain congruences involving exponents when the modulus is a prime. How do we work with the corresponding congruences modulo a composite integer? For this purpose, we first define a special counting function.

Definition. Let n be a positive integer. The Euler phi-function $\phi(n)$ is defined to be the number of positive integers not exceeding n which are relatively prime to n.

In Table 5.1 we display the values of $\phi(n)$ for $1 \leqslant n \leqslant 12$. The values of $\phi(n)$ for $1 \leqslant n \leqslant 100$ are given in Table 2 of the Appendix.

n	1	2	3	4	5	6	7	8	9	10	11	12
$\phi(n)$	1	1	2	2	4	2	6	4	6	4	10	4

Table 5.1. The Values of Euler's Phi-function for $1 \leqslant n \leqslant 12$.

In Chapter 6, we study the Euler phi-function further. In this section, we use the phi-function to give an analogue of Fermat's little theorem for composite moduli. To do this, we need to lay some groundwork.

Definition. A reduced residue system modulo n is a set of $\phi(n)$ integers such that each element of the set is relatively prime to n, and no two different elements of the set are congruent modulo n.

Example. The set $1,3,5,7$ is a reduced residue system modulo 8 . The set $-3,-1,1,3$ is also such a set.

We will need the following theorem about reduced residue systems.
Theorem 5.9. If $r_{1}, r_{2}, \ldots, r_{\phi(n)}$ is a reduced residue system modulo n, and if a is a positive integer with $(a, n)=1$, then the set $a r_{1}, a r_{2}, \ldots, a r_{\phi(n)}$ is also a reduced residue system modulo n.

Proof. To show that each integer $a r_{j}$ is relatively prime to n, we assume that $\left(a r_{j}, n\right)>1$. Then, there is a prime divisor p of $\left(a r_{j}, n\right)$. Hence, either $p \mid a$ or $p \mid r_{j}$. Thus, we either have $p \mid a$ and $p \mid n$, or $p \mid r_{j}$ and $p \mid n$. However, we cannot have both $p \mid r_{j}$ and $p \mid n$, since r_{j} is a member of a reduced residue modulo n, and both $p \mid a$ and $p \mid n$ cannot hold since $(a, n)=1$. Hence, we can conclude that $a r_{j}$ and n are relatively prime for $j=1,2, \ldots, \phi(n)$.

To demonstrate that no two $a r_{j}$'s are congruent modulo n, we assume that $a r_{j} \equiv a r_{k}(\bmod n)$, where j and k are distinct positive integers with $1 \leqslant j \leqslant \phi(n)$ and $1 \leqslant k \leqslant \phi(n)$. Since $(a, n)=1$, by Corollary 3.1 we see that $r_{j} \equiv r_{k}(\bmod n)$. This is a contradiction, since r_{j} and r_{k} come from the original set of reduced residues modulo n, so that $r_{j} \not \equiv r_{k}(\bmod n)$.

We illustrate the use of Theorem 5.9 by the following example.
Example. The set $1,3,5,7$ is a reduced residue system modulo 8. Since $(3,8)=1$, from Theorem $5 \cdot 9$, the set $3 \cdot 1=3,3 \cdot 3=9,3 \cdot 5=15,3 \cdot 7=21$ is also a reduced residue system modulo 8.

We now state Euler's theorem.
Euler's Theorem. If m is a positive integer and a is an integer with $(a, m)=1$, then $a^{\phi(m)} \equiv 1(\bmod m)$.

Before we prove Euler's theorem, we illustrate the idea behind the proof with an example.

Example. We know that both the sets $1,3,5,7$ and $3 \cdot 1,3 \cdot 3,3 \cdot 5,3 \cdot 7$ are reduced residue systems modulo 8 . Hence, they have the same least positive residues modulo 8 . Therefore,

$$
(3 \cdot 1) \cdot(3 \cdot 3) \cdot(3 \cdot 5) \cdot(3 \cdot 7) \equiv 1 \cdot 3 \cdot 5 \cdot 7(\bmod 8)
$$

and

$$
3^{4} \cdot 1 \cdot 3 \cdot 5 \cdot 7 \equiv 1 \cdot 3 \cdot 5 \cdot 7(\bmod 8)
$$

Since $(1 \cdot 3 \cdot 5 \cdot 7,8)=1$, we conclude that

$$
3^{4}=3^{\phi(8)} \equiv 1(\bmod 8)
$$

We now use the ideas illustrated by this example to prove Euler's theorem.
Proof. Let $r_{1}, r_{2}, \ldots, r_{\phi(m)}$ denote the reduced residue system made up of the positive integers not exceeding m that are relatively prime to m. By Theorem 5.9 , since $(a, m)=1$, the set $a r_{1}, a r_{2}, \ldots, a r_{\phi(m)}$ is also a reduced residue system modulo m. Hence, the least positive residues of $a r_{1}, a r_{2}, \ldots, a r_{\phi(m)}$ must be the integers $r_{1}, r_{2}, \ldots, r_{\phi(m)}$ in some order. Consequently, if we multiply together all terms in each of these reduced residue systems, we obtain

$$
a r_{1} a r_{2} \cdots a r_{\phi(m)} \equiv r_{1} r_{2} \cdots r_{\phi(m)}(\bmod m)
$$

Thus,

$$
a^{\phi(m)} r_{1} r_{2} \cdots r_{\phi(m)} \equiv r_{1} r_{2} \cdots r_{\phi(m)}(\bmod m)
$$

Since $\left(r_{1} r_{2} \cdots r_{\phi(m)}, m\right)=1$, from Corollary 3.1, we can conclude that $a^{\phi(m)} \equiv 1(\bmod m)$.

We can use Euler's Theorem to find inverses modulo m. If a and m are relatively prime, we know that

$$
a \cdot a^{\phi(m)-1}=a^{\phi(m)} \equiv 1(\bmod m)
$$

Hence, $a^{\phi(m)-1}$ is an inverse of a modulo m.
Example. We know that $2^{\phi(9)-1}=2^{6-1}=2^{5}=32 \equiv 5(\bmod 9)$ is an inverse of 2 modulo 9 .

We can solve linear congruences using this observation. To solve $a x \equiv b(\bmod m)$, where $(a, m)=1$, we multiply both sides of this
congruence by $a^{\phi(m)-1}$ to obtain

$$
a^{\phi(m)-1} a x \equiv a^{\phi(m)-1} b(\bmod m)
$$

Therefore, the solutions are those integers x such that $x \equiv a^{\phi(m)-1} b(\bmod m)$.

Example. The solutions of $3 x \equiv 7(\bmod 10)$ are given by $x \equiv 3^{\phi(10)-1} \cdot 7 \equiv 3^{3} \cdot 7 \equiv 9(\bmod 10)$, since $\phi(10)=4$.

5.3 Problems

1. Find a reduced residue system modulo
a) 6
b) 9
c) 10
d) 14
e) 16
f) 17 .
2. Find a reduced residue system modulo 2^{m}, where m is a positive integer.
3. Show if $c_{1}, c_{2}, \ldots, c_{\phi(m)}$ is a reduced residue system modulo m, then $c_{1}+c_{2}+\cdots+c_{\phi(m)} \equiv 0(\bmod m)$.
4. Show that if m is a positive integer and a is an integer relatively prime to m, then $1+a+a^{2}+\cdots+a^{\phi(m)-1} \equiv 0(\bmod m)$.
5. Use Euler's theorem to find the least positive residue of 3^{100000} modulo 35.
6. Show that if a is an integer, then $a^{7} \equiv a(\bmod 63)$.
7. Show that if a is an integer relatively prime to 32760 , then $a^{12} \equiv 1(\bmod 32760)$.
8. Show that $a^{\phi(b)}+b^{\phi(a)} \equiv 1(\bmod a b)$, if a and b are relatively prime positive integers.
9. Solve the following linear congruences using Euler's theorem
a) $5 x \equiv 3(\bmod 14)$
b) $4 x \equiv 7(\bmod 15)$
c) $3 x \equiv 5(\bmod 16)$.
10. Show that the solutions to the simultaneous system of congruences

$$
\begin{aligned}
x & \equiv a_{1}\left(\bmod m_{1}\right) \\
x & \equiv a_{2}\left(\bmod m_{2}\right) \\
& \cdot \\
& \cdot \\
& \cdot \\
x & \equiv a_{r}\left(\bmod m_{r}\right)
\end{aligned}
$$

where the m_{j} are pairwise relatively prime, are given by

$$
x \equiv a_{1} M_{1}^{\phi\left(m_{1}\right)}+a_{2} M_{2}^{\phi\left(m_{2}\right)}+\cdots+a_{r} M_{r}^{\phi(m)}(\bmod M)
$$

where $M=m_{1} m_{2} \cdots m_{r}$ and $M_{j}=M / m_{j}$ for $j=1,2, \ldots, r$.
11. Using Euler's theorem, find
a) the last digit in the decimal expansion of 7^{1000}
b) the last digit in the hexadecimal expansion of $5^{1,000000}$.
12. Find $\phi(n)$ for the integers n with $13 \leqslant n \leqslant 20$.
13. a) Show every positive integer relatively prime to 10 divides infinitely many repunits (see problem 5 of Section 4.1). (Hint: Note that the n-digit repunit $\left.111 \cdots 11=\left(10^{n}-1\right) / 9.\right)$
b) Show every positive integer relatively prime to b divides infinitely many base b repunits (see problem 6 of Section 4.1).
14. Show that if m is a positive integer, $m>1$, then $a^{m} \equiv a^{m-\phi(m)}(\bmod m)$ for all positive integers a.

5.3 Computer Projects

Write programs to do the following:

1. Solve linear congruences using Euler's theorem.
2. Find the solutions of a system of linear congruences using Euler's theorem and the Chinese remainder theorem (see problem 10).

6

Multiplicative Functions

6.1 The Euler Phi-function

In this chapter we study the Euler phi-function and other functions with similar properties. First, we present some definitions.

Definition. An arithmetic function is a function that is defined for all positive integers.

Throughout this chapter, we are interested in arithmetic functions that have a special property.

Definition. An arithmetic function f is called multiplicative if $f(m n)=f(m) f(n)$ whenever m and n are relatively prime positive integers.

Example. The function $f(n)=1$ for all n is multiplicative because $f(m n)=1, \quad f(m)=1, \quad$ and $f(n)=1, \quad$ so that $f(m n)=f(m) f(n)$. Similarly, the function $g(n)=n$ is multiplicative, since $g(m n)=m n=g(m) g(n)$. Notice that $f(m n)=f(m) f(n) \quad$ and $g(m n)=g(m) g(n)$ for all pairs of integers m and n, whether or not $(m, n)=1$. Multiplicative functions with this property are called completely multiplicative functions.

If f is a multiplicative function, then we can find a simple formula for $f(n)$ given the prime-power factorization of n.

Theorem 6.1. If f is a multiplicative function and if $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{s}^{a_{4}}$ is
the prime-power factorization of the positive integer n, then $f(n)=f\left(p_{1}^{a_{1}}\right) f\left(p_{2}^{a_{2}}\right) \cdots f\left(p_{s}^{a^{a}}\right)$.

Proof. Since f is multiplicative and $\left(p_{1}^{a_{1}}, p_{2}^{a_{2}} \cdots p_{s}^{a}\right)=1$, we see that $f(n)=f\left(p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{s}^{a_{s}}\right)=f\left(p_{1}^{a_{1}} \cdot\left(p_{2}^{a_{2}} \cdots p_{s}^{a_{s}}\right)\right)=f\left(p_{1}^{a_{1}}\right) f\left(p_{2}^{a_{2}} p_{3}^{a_{3}} \cdots p_{s}^{a_{0}}\right)$. Since $\left(p_{2}^{a_{2}}, p_{3}^{a_{3}} \cdots p_{s}^{a_{s}}\right)=1$, we know that $f\left(p_{2}^{a_{2}} p_{3}^{a_{3}} \cdots p_{s}^{a_{4}}\right)=f\left(p_{2}^{a_{2}}\right)$ $f\left(p_{3}^{a_{3}} \cdots p_{s}^{a_{4}}\right)$, so that $f(n)=f\left(p_{1}^{a_{1}}\right) f\left(p_{2}^{a_{2}}\right) f\left(p_{3}^{a_{3}} \cdots p_{s}^{a}\right)$. Continuing in this way, we find that $f(n)=f\left(p_{1}^{a_{1}}\right) f\left(p_{2}^{a_{2}}\right) f\left(p_{3}^{a_{3}}\right) \cdots f\left(p_{s}^{a}\right)$.

We now return to the Euler phi-function. First, we consider its values at primes and then at prime powers.

Theorem 6.2. If p is prime. then $\phi(p)=p-1$. Conversely, if p is a positive integer with $\phi(p)=p-1$, then p is prime.

Proof. If p is prime then every positive integer less than p is relatively prime to p. Since there are $p-1$ such integers, we have $\phi(p)=p-1$.

Conversely, if p is composite, then p has a divisor d with $1<d<p$, and, of course, p and d are not relatively prime. Since we know that at least one of the $p-1$ integers $1,2, \ldots, p-1$, namely d, is not relatively prime to p, $\phi(p) \leqslant p-2$. Hence, if $\phi(p)=p-1$, then p must be prime.

We now find the value of the phi-function at prime powers.
Theorem 6.3. Let p be a prime and a a positive integer. Then $\phi\left(p^{a}\right)=p^{a}-p^{a-1}=p^{a-1}(p-1)$
Proof. The positive integers less than p^{a} that are not relatively prime to p are those integers not exceeding p^{a} that are divisible by p. There are exactly p^{a-1} such integers, so there are $p^{a}-p^{a-1}$ integers less than p^{a} that are relatively prime to p^{a}. Hence, $\phi\left(p^{a}\right)=p^{a}-p^{a-1}$.

Example. Using Theorem 6.3, we find that $\phi\left(5^{3}\right)=5^{3}-5^{2}=100$, $\phi\left(2^{10}\right)=2^{10}-2^{9}=512$, and $\phi\left(11^{2}\right)=11^{2}-11=110$.

To find a formula for $\phi(n)$, given the prime factorization of n, we must show that ϕ is multiplicative. We illustrate the idea behind the proof with the following example.

Example. Let $m=4$ and $n=9$, so that $m n=36$. We list the integers from 1 to 36 in a rectangular chart, as shown in Figure 6.1.

Figure 6.1.
Neither the second nor fourth row contains integers relatively prime to 36 , since each element in these rows is not relatively prime to 4 , and hence not relatively prime to 36 . We enclose the other two rows; each element of these rows is relatively prime to 4 . Within each of these rows, there are 6 integers relatively prime to 9 . We circle these; they are the 12 integers in the list relatively prime to 36 . Hence $\phi(36)=2 \cdot 6=\phi(4) \phi(9)$.

We now state and prove the theorem that shows that ϕ is multiplicative.
Theorem 6.4. Let m and n be relatively prime positive integers. Then $\phi(m n)=\phi(m) \phi(n)$.

Proof. We display the positive integers not exceeding $m n$ in the following way.

1	$m+1$	$2 m+1$	\ldots	$(n-1) m+1$
2	$m+2$	$2 m+2$	\ldots	$(n-1) m+2$
3	$m+3$	$2 m+3$	\ldots	$(n-1) m+3$
				.
\cdot	\cdot	\cdot	\cdot	
\cdot	\cdot	\cdot	\cdot	
m	$2 m$	$3 m$		$m n$

Now suppose r is a positive integer not exceeding m. Suppose $(m, r)=d>1$. Then no number in the r th row is relatively prime to $m n$, since any element of this row is of the form $k m+r$, where k is an integer
with $1 \leqslant k \leqslant n-1$, and $d \mid(k m+r)$, since $d \mid m$ and $d \mid r$.
Consequently, to find those integers in the display that are relatively prime to $m n$, we need to look at the r th row only if $(m, r)=1$. If $(m, r)=1$ and $1 \leqslant r \leqslant m$, we must determine how many integers in this row are relatively prime to $m n$. The elements in this row are $r, m+r$, $2 m+r, \ldots,(n-1) m+r$. Since $(r, m)=1$, each of these integers is relatively prime to m. By Theorem 3.4, the n integers in the r th row form a complete system of residues modulo n. Hence, exactly $\phi(n)$ of these integers are relatively prime to n. Since these $\phi(n)$ integers are also relatively prime to m, they are relatively prime to $m n$.

Since there are $\phi(m)$ rows, each containing $\phi(n)$ integers relatively prime to $m n$, we can conclude that $\phi(m n)=\phi(m) \phi(n)$.

Combining Theorems 6.3 and 6.4 , we derive the following formula for $\phi(n)$.
Theorem 6.5. Let $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$ be the prime-power factorization of the positive integer n. Then

$$
\phi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right) .
$$

Proof. Since ϕ is multiplicative, Theorem 6.1 tells us that if the prime-power factorization of n is $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$, then

$$
\phi(n)=\phi\left(p_{1}^{a_{1}}\right) \phi\left(p_{2}^{a_{2}}\right) \cdots \phi\left(p_{k}^{a_{k}}\right) .
$$

In addition, from Theorem 6.3 we know that

$$
\phi\left(p_{j}^{a_{j}}\right)=p_{j}^{a_{j}}-p_{j}^{a_{j}^{\prime-1}}=p_{j}^{a_{j}}\left(1-\frac{1}{p_{j}}\right)
$$

for $j=1,2, \ldots, k$. Hence,

$$
\begin{aligned}
\phi(n) & =p_{1}^{a_{1}}\left(1-\frac{1}{p_{1}}\right) p_{2}^{a_{2}}\left(1-\frac{1}{p_{2}}\right) \cdots p_{k}^{a_{k}}\left(1-\frac{1}{p_{k}}\right) \\
& =p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right) \\
& =n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right) .
\end{aligned}
$$

This is the desired formula for $\phi(n)$.

We illustrate the use of Theorem 6.5 with the following example.
Example. Using Theorem 6.5, we note that

$$
\phi(100)=\phi\left(2^{2} 5^{2}\right)=100\left(1-\frac{1}{2}\right)\left(1-\frac{1}{5}\right)=40 .
$$

and

$$
\phi(720)=\phi\left(2^{4} 3^{2} 5\right)=720\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)=192 .
$$

We now introduce a type of summation notation which is useful in working with multiplicative functions.

Let f be an arithmetic function. Then

$$
\sum_{d \mid n} f(d)
$$

represents the sum of the values of f at all the positive divisors of n.
Example. If f is an arithmetic function, then

$$
\sum_{d \mid 12} f(d)=f(1)+f(2)+f(3)+f(4)+f(6)+f(12)
$$

For instance,

$$
\begin{aligned}
\sum_{d \mid 12} d^{2} & =1^{2}+2^{2}+3^{2}+4^{2}+6^{2}+12^{2} \\
& =1+4+9+16+36+144=210
\end{aligned}
$$

The following result, which states that n is the sum of the values of the phi-function at all the positive divisors of n, will also be useful in the sequel.

Theorem 6.6. Let n be a positive integer. Then

$$
\sum_{d \mid n} \phi(d)=n
$$

Proof. We split the set of integers from 1 to n into classes. Put the integer m into the class C_{d} if the greatest common divisor of m and n is d. We see that m is in C_{d}, i.e. $(m, n)=d$, if and only if $(m / d, n / d)=1$. Hence, the number of integers in C_{d} is the number of positive integers not exceeding n / d that are relatively prime to the integer n / d. From this observation, we see that there
are $\phi(n / d)$ integers in C_{d}. Since we divided the integers 1 to n into disjoint classes and each integer is in exactly one class, n is the sum of the numbers of elements in the different classes. Consequently, we see that

$$
n=\sum_{d \mid n} \phi(n / d)
$$

As d runs through the positive integers that divide $n, n / d$ also runs through these divisors, so that

$$
n=\sum_{d \mid n} \phi(n / d)=\sum_{d \mid n} \phi(d)
$$

This proves the theorem.
Example. We illustrate the proof of Theorem 6.6 when $n=18$. The integers from 1 to 18 can be split into classes C_{d} where $d \mid 18$ such that the class C_{d} contains those integers m with $(m, 18)=d$. We have

$$
\begin{array}{ll}
C_{1}=\{1,5,7,11,13,17\} & C_{6}=\{6,12\} \\
C_{2}=\{2,4,8,10,14,16\} & C_{9}=\{9\} \\
C_{3}=\{3,15\} & C_{18}=\{18\}
\end{array}
$$

We see that the class C_{d} contains $\phi(18 / d)$ integers, as the six classes contain $\phi(18)=6, \phi(9)=6, \phi(6)=2, \phi(3)=2, \phi(2)=1$, and $\phi(1)=1$ integers, respectively. We note that $18=\phi(18)+\phi(9)+\phi(6)+\phi(3)+$ $\phi(2)+\phi(1)=\sum_{d \mid 18} \phi(d)$.

6.1 Problems

1. Find the value of the Euler phi-function for each of the following integers
a) 100
b) 256
c) 1001
d) $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13$
e) 10 !
f) $20!$.
2. Find all positive integers n such that $\phi(n)$ has the value
a) 1
b) 2
c) 3
d) 6
e) 14
f) 24 .
3. For which positive integers n is $\phi(n)$
a) odd
b) divisible by 4
c) equal to $n / 2$?
4. Show that if n is a positive integer, then

$$
\phi(2 n)= \begin{cases}\phi(n) & \text { if } n \text { is odd } \\ 2 \phi(n) & \text { if } n \text { is even }\end{cases}
$$

5. Show that if n is a positive integer having k distinct odd prime divisors, then $\phi(n)$ is divisible by 2^{k}.
6. For which positive integers n is $\phi(n)$ a power of 2 ?
7. Show that if m and k are positive integers, then $\phi\left(m^{k}\right)=m^{k-1} \phi(m)$.
8. For which positive integers m does $\phi(m)$ divide m ?
9. Show that if a and b are positive integers, then

$$
\phi(a b)=(a, b)_{\phi}(a)_{\phi}(b) / \phi((a, b))
$$

10. Show that if m and n are positive integers with $m \mid n$, then $\phi(m) \mid \phi(n)$.
11. Prove Theorem 6.5, using the principle of inclusion-exclusion (see problem 17 of Section 1.1).
12. Show that a positive integer n is composite if and only if $\phi(n) \leqslant n-\sqrt{n}$.
13. Let n be a positive integer. Define the sequence of positive integers $n_{1}, n_{2}, n_{3}, \ldots$ recursively by $n_{1}=\phi(n)$ and $n_{k+1}=\phi\left(n_{k}\right)$ for $k=1,2,3, \ldots$. Show that there is a positive integer r such that $n_{r}=1$.
14. Two arithmetic functions f and g may be multiplied using the Dirichlet product which is defined by

$$
\left(f^{*} g\right)(n)=\sum_{d \mid n} f(d) g(n / d)
$$

a) Show that $f^{*} g=g^{*} f$.
b) Show that $\left(f^{*} g\right) * h=f^{*}\left(g^{*} h\right)$.
c) Show that if ι is the multiplicative function defined by

$$
(n)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n>1\end{cases}
$$

then $\iota^{*} f=f^{*} \iota=f$ for all arithmetic functions f.
d) The arithmetic function g is said to be the inverse of the arithmetic function f if $f^{*} g=g^{*} f=\iota$. Show that the arithmetic function f has an inverse if and only if $f(1) \neq 0$. Show that if f has an inverse it is unique. (Hint: When $f(1) \neq 0$, find the inverse f^{-1} of f by calculating $f(n)$ recursively, using the fact that $\left.\iota(n)=\sum_{d \mid n} f(d) f^{-1}(n / d).\right)$
15. Show that if f and g are multiplicative functions, then the Dirichlet product $f^{*} g$ is also multiplicative.
16. Show that the Möbius function defined by

$$
\mu(n)= \begin{cases}1 & \text { if } n=1 \\ (-1)^{s} & \text { if } n \text { is square }- \text { free with prime factorization } \\ \quad n=p_{1} p_{2} \cdots p_{s} \\ 0 & \text { if } n \text { has square factor larger than } 1\end{cases}
$$

is multiplicative.
17. Show that if n is a positive integer greater than one, then $\sum_{d \mid n} \mu(d)=0$.
18. Let f be an arithmetic function. Show that if F is the arithmetic function defined by

$$
F(n)=\sum_{d \mid n} f(d)
$$

then

$$
f(n)=\sum_{d \mid n} \mu(d) F(n / d) .
$$

This result is called the Möbius inversion formula.
19. Use the Möbius inversion formula to show that if f is an arithmetic function and F is the arithmetic function defined by

$$
F(n)=\sum_{d \mid n} f(d)
$$

then if F is multiplicative, so is f.
20. Using the Möbius inversion formula and the fact that $n=\sum_{d \mid n} \phi(n / d)$, prove that
a) $\phi\left(p^{t}\right)=p^{t}-p^{t-1}$, where p is a prime and t is a positive integer.
b) $\phi(n)$ is multiplicative.
21. Show that the function $f(n)=n^{k}$ is completely multiplicative for every real number k.
22. a) We define Liouville's function $\lambda(n)$ by $\lambda(1)=1$ and for $n>1$ by $\lambda(n)=(-1)^{a_{1}+a_{2}+\ldots+a_{-}}$, if the prime-power factorization of n is $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{m}^{a}$. Show that $\lambda(n)$ is completely multiplicative.
b) Show that if n is a positive integer then $\sum_{d \mid n} \lambda(n)$ equals 0 if n is not a perfect square, and equals 1 if n is a perfect square.
23. a) Show that if f and g are multiplicative functions then $f g$ is also multiplicative.
b) Show that if f and g are completely multiplicative functions then $f g$ is also completely multiplicative.
24. Show that if f is completely multiplicative, then $f(n)=f\left(p_{1}\right)^{a_{1}} f\left(p_{2}\right)^{a_{1}}$ $\cdots f\left(p_{m}\right)^{a}$ - when the prime-power factorization of n is $n=p_{1}^{a_{1} p_{2}^{a}} \cdots p_{m}^{a_{m}}$.
25. A function f that satisfies the equation $f(m n)=f(m)+f(n)$ for all relatively prime positive integers m and n is called additive, and if the above equation holds for all positive integers m and n, f is called completely additive.
a) Show that the function $f(n)=\log n$ is completely additive.
b) Show that if $\omega(n)$ is the function that denotes the number of distinct prime factors of n, then ω is additive, but not completely additive.
c) Show that if f is an additive function and if $g(n)=2^{f(n)}$, then g is multiplicative.

6.1 Computer Projects

Write programs to do the following:

1. Find values of the Euler phi-function.
2. Find the integer r in problem 13.

6.2 The Sum and Number of Divisors

We will also study two other arithmetic functions in some detail. One of these is the sum of the divisors function.

Definition. The sum of the divisors function, denoted by σ, is defined by setting $\sigma(n)$ equal to the sum of all the positive divisors of n.

In Table 6.1 we give $\sigma(n)$ for $1 \leqslant n \leqslant 12$. The values of $\sigma(n)$ for $1 \leqslant n \leqslant 100$ are given in Table 2 of the Appendix.

n	1	2	3	4	5	6	7	8	9	10	11	12
$\sigma(n)$	1	3	4	7	6	12	8	15	13	18	12	28

Table 6.1. The Sum of the Divisors for $1 \leqslant n \leqslant 12$.
The other function which we will study is the number of divisors.
Definition. The number of divisors function, denoted by τ, is defined by setting $\tau(n)$ equal to the number of positive divisors of n.

In Table 6.2 we give $\tau(n)$ for $1 \leqslant n \leqslant 12$. The values of $\tau(n)$ for $1 \leqslant n \leqslant 100$ are given in Table 2 of the Appendix.

n	1	2	3	4	5	6	7	8	9	10	11	12
$\tau(n)$	1	2	2	3	2	4	2	4	3	4	2	6

Table 6.2. The Number of Divisors for $1 \leqslant n \leqslant 12$.
Note that we can express $\sigma(n)$ and $\tau(n)$ in terms of summation notation. It is simple to see that

$$
\sigma(n)=\sum_{d \mid n} d
$$

and

$$
\tau(n)=\sum_{d \mid n} 1
$$

To prove that σ and τ are multiplicative, we use the following theorem.
Theorem 6.7. If f is a multiplicative function, then the arithmetic function $F(n)=\sum_{d \mid n} f(d)$ is also multiplicative.

Before we prove the theorem, we illustrate the idea behind its proof with the following example. Let f be a multiplicative function, and let $F(n)=\sum_{d \mid n} f(d) . \quad$ Let $\quad m=4$ and $n=15$. We will show that
$F(60)=F(4) F(15)$. Each of the divisors of 60 may be written as the product of a divisor of 4 and a divisor of 15 in the following way: $1=1 \cdot 1$, $2=2 \cdot 1,3=1 \cdot 3,4=4 \cdot 1,5=1 \cdot 5,6=2 \cdot 3,10=2 \cdot 5,12=4 \cdot 3,15=1 \cdot 15$, $20=4 \cdot 5,30=2 \cdot 15,60=4 \cdot 15$ (in each product, the first factor is the divisor of 4 , and the second is the divisor of 15). Hence,

$$
\begin{aligned}
F(60)= & f(1)+f(2)+f(3)+f(4)+f(5)+f(6)+f(10)+f(12) \\
& +f(15)+f(20)+f(30)+f(60) \\
= & f(1 \cdot 1)+f(2 \cdot 1)+f(1 \cdot 3)+f(4 \cdot 1)+f(1 \cdot 5)+f(2 \cdot 3) \\
& +f(2 \cdot 5)+f(4 \cdot 3)+f(1 \cdot 15)+f(4 \cdot 5)+f(2 \cdot 15)+f(4 \cdot 15) \\
= & f(1) f(1)+f(2) f(1)+f(1) f(3)+f(4) f(1)+f(1) f(5) \\
& \quad+f(2) f(3)+f(2) f(5)+f(4) f(3)+f(1) f(15)+f(4) f(5) \\
& \quad+f(2) f(15)+f(4) f(15) \\
= & (f(1)+f(2)+f(4))(f(1)+f(3)+f(5)+f(15)) \\
= & F(4) F(15) .
\end{aligned}
$$

We now prove Theorem 6.7 using the idea illustrated by the example.
Proof. To show that F is a multiplicative function, we must show that if m and n are relatively prime positive integers, then $F(m n)=F(m) F(n)$. So let us assume that $(m, n)=1$. We have

$$
F(m n)=\sum_{d \mid m n} f(d)
$$

By Lemma 2.5 , since $(m, n)=1$, each divisor of $m n$ can be written uniquely as the product of relatively prime divisors d_{1} of m and d_{2} of n, and each pair of divisors d_{1} of m and d_{2} of n corresponds to a divisor $d=d_{1} d_{2}$ of $m n$. Hence, we can write

$$
F(m n)=\sum_{\substack{d_{1}\left|m \\ d_{2}\right| n}} f\left(d_{1} d_{2}\right)
$$

Since f is multiplicative and since $\left(d_{1}, d_{2}\right)=1$, we see that

$$
\begin{aligned}
F(m n) & =\sum_{\substack{d_{1}\left|n \\
d_{2}\right| n}} f\left(d_{1}\right) f\left(d_{2}\right) \\
& =\sum_{d_{1} \mid m} f\left(d_{1}\right) \sum_{d_{2} \mid n} f\left(d_{2}\right) \\
& =F(m) F(n)
\end{aligned}
$$

Now that we know σ and τ are multiplicative, we can derive formulae for their values based on prime factorizations. First, we find formulae for $\sigma(n)$ and $\tau(n)$ when n is the power of a prime.

Lemma 6.1. Let p be prime and a a positive integer. Then

$$
\sigma\left(p^{a}\right)=\left(1+p+p^{2}+\cdots+p^{a}\right)=\frac{p^{a+1}-1}{p-1}
$$

and

$$
\tau\left(p^{a}\right)=a+1
$$

Proof. The divisors of p^{a} are $1, p, p^{2}, \ldots, p^{a-1}, p^{a}$. Consequently, p^{a} has exactly $a+1$ divisors, so that $\tau\left(p^{a}\right)=a+1$. Also, we note that $\sigma\left(p^{a}\right)=1+p+p_{2}+\cdots+p^{a-1}+p^{a}=\frac{p^{a+1}-1}{p-1}$, where we have used Theorem 1.1.

Example. When we apply Lemma 6.1 with $p=5$ and $a=3$, we find that $\sigma\left(5^{3}\right)=1+5+5^{2}+5^{3}=\frac{5^{4}-1}{5-1}=156$ and $\tau\left(5^{3}\right)=1+3=4$.

The above lemma and the fact that σ and τ are multiplicative lead to the following formulae.

Theorem 6.8. Let the positive integer n have prime factorization $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{s^{\prime}}^{a}$. Then

$$
\sigma(n)=\frac{p_{1}^{a_{1}+1}-1}{p_{1}-1} \cdot \frac{p_{2}^{a_{2}+1}-1}{p_{2}-1} \cdot \cdots \cdot \frac{p_{s}^{a_{s}+1}-1}{p_{s}-1}=\prod_{j=1}^{s} \frac{p_{j}^{a_{j}+1}-1}{p_{j}-1}
$$

and

$$
\tau(n)=\left(a_{1}+1\right)\left(a_{2}+1\right) \cdots\left(a_{s}+1\right)=\prod_{j=1}^{s}\left(a_{j}+1\right)
$$

Proof. Since both σ and τ are multiplicative, we see that $\sigma(n)=$ $\sigma\left(p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{s}^{a^{a}}\right)=\sigma\left(p_{1}^{a_{1}}\right) \sigma\left(p_{2}^{a_{2}}\right) \cdots \quad \sigma\left(p_{s}^{a}\right) \quad$ and $\quad \tau(n)=\tau\left(p_{1}^{a_{1}} p_{2}^{a_{2}}\right.$ $\left.\cdots p_{s}^{a_{s}}\right)=\tau\left(p_{1}^{a_{1}}\right) \tau\left(p_{2}^{a_{2}}\right) \cdots \tau\left(p_{s}^{a^{*}}\right)$. Inserting the values for $\sigma\left(p_{i}^{a_{1}}\right)$ and $\tau\left(p_{i}{ }^{a}\right)$ found in Lemma 6.1, we obtain the desired formulae.

We illustrate how to use Theorem 6.8 with the following example.
Example. Using Theorem 6.8, we find that

$$
\sigma(200)=\sigma\left(2^{3} 5^{2}\right)=\frac{2^{4}-1}{2-1} \cdot \frac{5^{3}-1}{5-1}=15 \cdot 31=465
$$

and

$$
\tau(200)=\tau\left(2^{3} 5^{2}\right)=(3+1)(2+1)=12
$$

Also

$$
\sigma(720)=\sigma\left(2^{4} \cdot 3^{2} \cdot 5\right)=\frac{2^{5}-1}{2-1} \cdot \frac{3^{2}-1}{3-1} \cdot \frac{5^{2}-1}{5-1}=31 \cdot 13 \cdot 6=2418
$$

and

$$
\tau\left(2^{4} \cdot 3^{2} \cdot 5\right)=(4+1)(2+1)(1+1)=30
$$

6.2 Problems

1. Find the sum of the positive integer divisors of
a) 35
b) 196
c) 1000
d) 2^{100}
e) $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$
f) $2^{5} 3^{4} 5^{3} 7^{2} 11$
g) $10!$
h) $20!$.
2. Find the number of positive integer divisors of
a) 36
b) 99
c) 144
d) $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$
e) $2 \cdot 3^{2} \cdot 5^{3} \cdot 7^{4} \cdot 11^{5} \cdot 13^{4} \cdot 17^{5} \cdot 19^{5}$
f) 20 !.
3. Which positive integers have an odd number of positive divisors?
4. For which positive integers n is the sum of divisors of n odd?
5. Find all positive integers n with $\sigma(n)$ equal to
a) 12
b) 18
c) 24
d) 48
e) 52
f) 84 .
6. Find the smallest positive integer n with $\tau(n)$ equal to
a) 1
b) 2
c) 3
d) 6
e) 14
f) 100 .
7. Show that if $k>1$ is an integer, then the equation $\tau(n)=k$ has infinitely many solutions.
8. Which positive integers have exactly
a) two positive divisors
b) three positive divisors
c) four positive divisors?
9. What is the product of the positive divisors of a positive integer n ?
10. Let $\sigma_{k}(n)$ denote the sum of the k th powers of the divisors of n, so that $\sigma_{k}(n)=\sum_{d \mid n} d^{k}$. Note that $\sigma_{1}(n)=\sigma(n)$.
a) Find $\sigma_{3}(4), \sigma_{3}(6)$ and $\sigma_{3}(12)$.
b) Give a formula for $\sigma_{k}(p)$, where p is prime.
c) Give a formula for $\sigma_{k}\left(p^{a}\right)$, where p is prime, and a is a positive integer.
d) Show that the function σ_{k} is multiplicative.
e) Using parts (c) and (d), find a formula for $\sigma_{k}(n)$, where n has prime-power factorization $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{m}^{a^{\prime}}$.
11. Find all positive integers n such that $\phi(n)+\sigma(n)=2 n$.
12. Show that no two positive integers have the same product of divisors.
13. Show that the number of pairs of positive integers with least common multiple equal to the positive integer n is $\tau\left(n^{2}\right)$.
14. Let n be a positive integer. Define the sequence of integers $n_{1}, n_{2}, n_{3}, \ldots$ by $n_{1}=\tau(n)$ and $n_{k+1}=\tau\left(n_{k}\right)$ for $k=1,2,3, \ldots$. Show that there is a positive integer r such that $2=n_{r}=n_{r+1}=n_{r+2}=\cdots$.
15. Show that a positive integer n is composite if and only if $\sigma(n)>n+\sqrt{n}$.
16. Show that if n is a positive integer then $\tau(n)^{2}=\sum_{d \mid n} \tau(d)^{3}$.

6.2 Computer Projects

Write programs to do the following:

1. Find the number of divisors of a positive integer.
2. Find the sum of the divisors of a positive integer.
3. Find the integer r defined in problem 14.

6.3 Perfect Numbers and Mersenne Primes

Because of certain mystical beliefs, the ancient Greeks were interested in those integers that are equal to the sum of all their proper positive divisors. These integers are called perfect numbers.

Definition. If n is a positive integer and $\sigma(n)=2 n$, then n is called a perfect number.

Example. Since $\sigma(6)=1+2+3+6=12$, we see that 6 is perfect. We also note that $\sigma(28)=1+2+4+7+14+28=56$, so that 28 is another perfect number.

The ancient Greeks knew how to find all even perfect numbers. The following theorem tells us which even positive integers are perfect.

Theorem 6.9. The positive integer n is an even perfect number if and only if

$$
n=2^{m-1}\left(2^{m}-1\right)
$$

where m is a positive integer such that $2^{m}-1$ is prime.
Proof. First, we show that if $n=2^{m-1}\left(2^{m}-1\right)$ where $2^{m}-1$ is prime, then n is perfect. We note that since $2^{m}-1$ is odd, we have $\left(2^{m-1}, 2^{m}-1\right)=1$. Since σ is a multiplicative function, we see that

$$
\sigma(n)=\sigma\left(2^{m-1}\right) \sigma\left(2^{m}-1\right)
$$

Lemma 6.1 tells us that $\sigma\left(2^{m-1}\right)=2^{m}-1$ and $\sigma\left(2^{m}-1\right)=2^{m}$, since we are assuming that $2^{m}-1$ is prime. Consequently,

$$
\sigma(n)=\left(2^{m}-1\right) 2^{m}=2 n
$$

demonstrating that n is a perfect number.
To show that the converse is true, let n be an even perfect number. Write $n=2^{s} t$ where s and t are positive integers and t is odd. Since $\left(2^{s}, t\right)=1$, we see from Lemma 6.1 that

$$
\begin{equation*}
\sigma(n)=\sigma\left(2^{s} t\right)=\sigma\left(2^{s}\right) \sigma(t)=\left(2^{s+1}-1\right) \sigma(t) \tag{6.1}
\end{equation*}
$$

Since n is perfect, we have

$$
\begin{equation*}
\sigma(n)=2 n=2^{s+1} t \tag{6.2}
\end{equation*}
$$

Combining (6.1) and (6.2) shows that

$$
\begin{equation*}
\left(2^{s+1}-1\right) \sigma(t)=2^{s+1} t \tag{6.3}
\end{equation*}
$$

Since $\left(2^{s+1}, 2^{s+1}-1\right)=1$, from Lemma 2.3 we see that $2^{s+1} \mid \sigma(t)$. Therefore, there is an integer q such that $\sigma(t)=2^{s+1} q$. Inserting this expression for $\sigma(t)$ into (6.3) tells us that

$$
\left(2^{s+1}-1\right) 2^{s+1} q=2^{s+1} t
$$

and, therefore,

$$
\begin{equation*}
\left(2^{s+1}-1\right) q=t \tag{6.4}
\end{equation*}
$$

Hence, $q \mid t$ and $q \neq t$.
When we replace t by the expression on the left-hand side of (6.4), we find that

$$
\begin{equation*}
t+q=\left(2^{s+1}-1\right) q+q=2^{s+1} q=\sigma(t) \tag{6.5}
\end{equation*}
$$

We will show that $q=1$. Note that if $q \neq 1$, then there are at least three distinct positive divisors of t, namely $1, q$, and t. This implies that $\sigma(t) \geqslant t+q+1$, which contradicts (6.5). Hence, $q=1$ and, from (6.4), we conclude that $t=2^{s+1}-1$. Also, from (6.5), we see that $\sigma(t)=t+1$, so that t must be prime, since its only positive divisors are 1 and t. Therefore, $n=2^{s}\left(2^{s+1}-1\right)$, where $2^{s+1}-1$ is prime.

From Theorem 6.9 we see that to find even perfect numbers, we must find primes of the form $2^{m}-1$. In our search for primes of this form, we first show that the exponent m must be prime.

Theorem 6.10. If m is a positive integer and $2^{m}-1$ is prime, then m must be
prime.
Proof. Assume that m is not prime, so that $m=a b$ where $1<a<m$ and $1<b<m$. Then

$$
2^{m}-1=2^{a b}-1=\left(2^{a}-1\right)\left(2^{a(b-1)}+2^{a(b-2)}+\ldots+2^{a}+1\right)
$$

Since both factors on the right side of the equation are greater than 1 , we see that $2^{m}-1$ is composite if m is not prime. Therefore, if $2^{m}-1$ is prime, then m must also be prime.

From Theorem 6.10 we see that to search for primes of the form $2^{m}-1$, we need to consider only integers m that are prime. Integers of the form $2^{m}-1$ have been studied in great depth; these integers are named after a French monk of the seventeenth century, Mersenne, who studied these integers.

Definition. If m is a positive integer, then $M_{m}=2^{m}-1$ is called the m th Mersenne number, and, if p is prime and $M_{p}=2^{p}-1$ is also prime, then M_{p} is called a Mersenne prime.

Example. The Mersenne number $M_{7}=2^{7}-1$ is prime, whereas the Mersenne number $M_{11}=2^{11}-1=2047=23.89$ is composite.

It is possible to prove various theorems that help decide whether Mersenne numbers are prime. One such theorem will now be given. Related results are found in the problems of Chapter 9.

Theorem 6.11. If p is an odd prime, then any divisor of the Mersenne number $M_{p}=2^{p}-1$ is of the form $2 k p+1$ where k is a positive integer.

Proof. Let q be a prime dividing $M_{p}=2^{p}-1$. From Fermat's little theorem, we know that $q \mid\left(2^{q-1}-1\right)$. Also, from Lemma 3.2 we know that

$$
\begin{equation*}
\left(2^{p}-1,2^{q-1}-1\right)=2^{(p, q-1)}-1 \tag{6.6}
\end{equation*}
$$

Since q is a common divisor of $2^{p}-1$ and $2^{q-1}-1$, we know that $\left(2^{p}-1,2^{q-1}-1\right)>1$. Hence, $(p, q-1)=p$, since the only other possibility, namely $(p, q-1)=1$, would imply from (6.6) that $\left(2^{p}-1,2^{q-1}-1\right)=1$. Hence $p \mid(q-1)$, and, therefore, there is a positive integer m with $q-1=m p$. Since q is odd we see that m must be even, so that $m=2 k$, where k is a positive integer. Hence, $q=m p+1=2 k p+1$.

We can use Theorem 6.11 to help decide whether Mersenne numbers are prime. We illustrate this with the following examples.

Example. To decide whether $M_{13}=2^{13}-1=8191$ is prime, we only need look for a prime factor not exceeding $\sqrt{8191}=90.504 \ldots$. Furthermore, from Theorem 6.11, any such prime divisor must be of the form $26 k+1$. The only candidates for primes dividing M_{13} less than or equal to $\sqrt{M_{13}}$ are 53 and 79. Trial division easily rules out these cases, so that M_{13} is prime.

Example. To decide whether $M_{23}=2^{23}-1=8388607$ is prime, we only need to determine whether M_{23} is divisible by a prime less than or equal to $\sqrt{M_{23}}=2896.309 \ldots$ of the form $46 k+1$. The first prime of this form is 47 . A trial division shows that $8388607=47 \cdot 178481$, so that M_{23} is composite.

Because there are special primality tests for Mersenne numbers, it has been possible to determine whether extremely large Mersenne numbers are prime. Following is one such primality test. This test has been used to find the largest known Mersenne primes, which are the largest known primes. The proof of this test may be found in Lenstra [71] and Sierpiński [35].

The Lucas-Lehmer Test. Let p be a prime and let $M_{p}=2^{p}-1$ denote the p th Mersenne number. Define a sequence of integers recursively by setting $r_{1}=4$, and for $k \geqslant 2$,

$$
r_{k} \equiv r_{k-1}^{2}-2\left(\bmod M_{p}\right), 0 \leqslant r_{k}<M_{p}
$$

Then, M_{p} is prime if and only if $r_{p-1} \equiv 0\left(\bmod M_{p}\right)$.
We use an example to illustrate an application of the Lucas-Lehmer test.
Example. Consider the Mersenne number $M_{5}=2^{5}-1=31$. Then $r_{1}=4$, $r_{2} \equiv 4^{2}-2=14(\bmod 31), r_{3} \equiv 14^{2}-2 \equiv 8(\bmod 31)$, and $r_{4} \equiv$ $8^{2}-2 \equiv 0(\bmod 31)$. Since $r_{4} \equiv 0(\bmod 31)$, we conclude that $M_{5}=31$ is prime.

The Lucas-Lehmer test can be performed quite rapidly as the following corollary states.

Corollary 6.1. Let p be prime and let $M_{p}=2^{p}-1$ denote the p th Mersenne number. It is possible to determine whether M_{p} is prime using $O\left(p^{3}\right)$ bit operations.

Proof. To determine whether M_{p} is prime using the Lucas-Lehmer test requires $p-1$ squarings modulo M_{p}, each requiring $O\left(\left(\log M_{p}\right)^{2}\right)=O\left(p^{2}\right)$ bit operations. Hence, the Lucas-Lehmer test requires $O\left(p^{3}\right)$ bit operations.

Much activity has been directed toward the discovery of Mersenne primes， especially since each new Mersenne prime discovered has become the largest prime known，and for each new Mersenne prime，there is a new perfect number．At the present time，a total of 29 Mersenne primes are known and these include all Mersenne primes M_{p} with $p \leqslant 62981$ and with $75000<p<100000$ ．The known Mersenne primes are listed in Table 6．3．

	p	Number of decimal digits in M_{p}	Date of Discovery
	2	1	ancient times
1	32	1	ancient times
2	5	2	ancient times
2	7	3	ancient times
6	13	4	Mid 15th century
4	17	6	1603
2	19	6	1603
12	31	10	1772
30	61	19	1883
28	89 ip	27	1911
18	107	33	1914
20	127 i2	39	1876
394	521	157	1952
86	607 为	183	1952
672	1279	386	1952
924	2203 扣	664	1956
78	2281	687	1952
936	3217	969	1957
	4253	1281	1961
	4423 吅	1332	1961
5266	9689	2917	1963
	9941 2	2993	1963
	11213	3376	1963
8724	19937	6002	1971
	21701	6533	1978
	23209	6987	1979
	44497	13395	1979
	86243	25962	1983
	132049	39751	1983
	216,091	65050	1985

Table 6．3．The Known Mersenne Primes．

Computers were used to find the 17 largest Mersenne primes known. The discovery by high school students of the 25th and 26th Mersenne prime received much publicity, including coverage on the nightly news of a major television network. An interesting account of the search for the 27th Mersenne prime and related historical and computational information may be found in [77]. A report of the discovery of the 28th Mersenne prime is given in [64]. It has been conjectured but has not been proved, that there are infinitely many Mersenne primes.

We have reduced the study of even perfect numbers to the study of Mersenne primes. We may ask whether there are odd perfect numbers. The answer is still unknown. It is possible to demonstrate that if they exist, odd perfect numbers must have certain properties (see problems 11-14, for example). Furthermore, it is known that there are no odd perfect numbers less than 10^{200}, and it has been shown that any odd perfect number must have at least eight different prime factors. A discussion of odd perfect numbers may be found in Guy [17], and information concerning recent results about odd perfect numbers is given by Hagis [68].

6.3 Problems

1. Find the six smallest even perfect numbers.
2. Show that if n is a positive integer greater than 1 , then the Mersenne number M_{n} cannot be the power of a positive integer.
3. If n is a positive integer, then we say that n is deficient if $\sigma(n)<2 n$, and we say that n is abundant if $\sigma(n)>2 n$. Every integer is either deficient, perfect, or abundant.
a) Find the six smallest abundant positive integers.
b) Find the smallest odd abundant positive integer.
c) Show that every prime power is deficient.
d) Show that any divisor of a deficient or perfect number is deficient.
e) Show that any multiple of an abundant or perfect number is abundant.
f) Show that if $n=2^{m-1}\left(2^{m}-1\right)$, where m is a positive integer such that $2^{m}-1$ is composite, then n is abundant.
4. Two positive integers m and n are called an amicable pair if $\sigma(m)=\sigma(n)=m+n$. Show that each of the following pairs of integers are amicable pairs
a) 220,284
b) 1184,1210
c) 79750,88730 .
5. a) Show that if n is a positive integer with $n \geqslant 2$, such that $3 \cdot 2^{n-1}-1,3 \cdot 2^{n}-1$, and $3^{2} \cdot 2^{2 n-1}-1$ are all prime, then $2^{n}\left(3 \cdot 2^{n-1}-1\right)\left(3 \cdot 2^{n}-1\right)$ and $2^{n}\left(3^{2} \cdot 2^{2 n-1}-1\right)$ form an amicable pair.
b) Find three amicable pairs using part (a).
6. An integer n is called k-perfect if $\sigma(n)=k n$. Note that a perfect number is 2-perfect.
a) Show that $120=2^{3} \cdot 3 \cdot 5$ is 3 -perfect.
b) Show that $30240=2^{5} \cdot 3^{2} \cdot 5 \cdot 7$ is 4 -perfect.
c) Show that $14182439040=2^{7} \cdot 3^{4} \cdot 5 \cdot 7 \cdot 11^{2} \cdot 17 \cdot 19$ is 5 -perfect.
d) Find all 3 -perfect numbers of the form $n=2^{k} \cdot 3 \cdot p$, where p is an odd prime.
e) Show that if n is 3 -perfect and $3 \lambda n$, then $3 n$ is 4 -perfect.
7. A positive integer n is called superperfect if $\sigma(\sigma(n))=2 n$.
a) Show that 16 is superperfect.
b) Show that if $n=2^{q}$ where $2^{q+1}-1$ is prime, then n is superperfect.
c) Show that every even superperfect number is of the form $n=2^{q}$ where $2^{q+1}-1$ is prime.
d) Show that if $n=p^{2}$ where p is an odd prime; then n is not superperfect.
8. Use Theorem 6.11 to determine whether the following Mersenne numbers are prime
a) M_{7}
b) M_{11}
c) M_{17}
d) M_{29}.
9. Use the Lucas-Lehmer test to determine whether the following Mersenne numbers are prime
a) M_{3}
b) M_{7}.
c) M_{11}
d) M_{13}.
10. a) Show that if n is a positive integer and $2 n+1$ is prime, then either $(2 n+1) \mid M_{n}$ or $(2 n+1) \mid\left(M_{n}+2\right)$. (Hint: Use Fermat's little theorem to show that $M_{n}\left(M_{n}+2\right) \equiv 0(\bmod 2 n+1)$)
b) Use part (a) to show that M_{11} and M_{23} are composite.
11. a) Show that if n is an odd perfect number, then $n=p^{a} m^{2}$ where p is an odd prime and $p \equiv a \equiv 1(\bmod 4)$.
b) Use part (a) to show that if n is an odd perfect number, then $n \equiv 1(\bmod 4)$.
12. Show that if $n=p^{a} m^{2}$ is an odd perfect number where p is prime, then $n \equiv p(\bmod 8)$.
13. Show that if n is an odd perfect number, then 3,5 , and 7 are not all divisors of n.
14. Show that if n is an odd perfect number then n has
a) at least three different prime divisors.
b) at least four different prime divisors.
15. Find all positive integers n such that the product of all divisors of n other than n is exactly n^{2}. (These integers are multiplicative analogues of perfect numbers.)
16. Let n be a positive integer. Define the sequence n_{1}, n_{2}, n_{3},..., recursively by $n_{1}=\sigma(n)-n$ and $n_{k+1}=\sigma\left(n_{k}\right)-n_{k}$ for $k=1,2,3, \ldots$.
a) Show that if n is perfect, then $n=n_{1}=n_{2}=n_{3}=\cdots$.
b) Show that if n and m are an amicable pair, then $n_{1}=m, n_{2}=n, n_{3}=m$, $n_{4}=n, \ldots$ and so on, i.e., the sequence $n_{1}, n_{2}, n_{3}, \ldots$ is periodic with period 2 .
c) Find the sequence of integers generated if $n=12496=2^{4} \cdot 11 \cdot 71$.

It has been conjectured that for all integers n, the sequence of integers $n_{1}, n_{2}, n_{3}, \ldots$ is periodic.

6.3 Computer Projects

Write programs to do the following:

1. Classify positive integers according to whether they are deficient, perfect, or abundant (see problem 3).
2. Use Theorem 6.11 to look for factors of Mersenne numbers.
3. Determine whether Mersenne numbers are prime using the Lucas-Lehmer test.
4. Given a positive integer n, determine if the sequence defined in problem 16 is pericuic.
5. Find amicable pairs.

7

Cryptology

7.1 Character Ciphers

From ancient times to the present, secret messages have been sent. Classically, the need for secret communication has occurred in diplomacy and in military affairs. Now, with electronic communication coming into widespread use, secrecy has become an important issue. Just recently, with the advent of electronic banking, secrecy has become necessary even for financial transactions. Hence, there is a great deal of interest in the techniques of making messages unintelligible to everyone except the intended receiver.

Before discussing specific secrecy systems, we present some terminology. The discipline devoted to secrecy systems is called cryptology. Cryptography is the part of cryptology that deals with the design and implementation of secrecy systems, while cryptanalysis is aimed at breaking these systems. A message that is to be altered into a secret form is called plaintext. A cipher is a method for altering a plaintext message into ciphertext by changing the letters of the plaintext using a transformation. The key determines the particular transformation from a set of possible transformations that is to be used. The process of changing plaintext into ciphertext is called encryption or enciphering, while the reverse process of changing the ciphertext back to the plaintext by the intended receiver, possessing knowledge of the method for doing this, is called decryption or deciphering. This, of course, is different from the process someone other than the intended receiver uses to make the message intelligible through cryptanalysis.

In this chapter, we present secrecy systems based on modular arithmetic. The first of these had its origin with Julius Caesar. The newest secrecy system we will discuss was invented in the late 1970's. In all these systems we start by translating letters into numbers. We take as our standard alphabet the letters of English and translate them into the integers from 0 to 25, as shown in Table 7.1.

Table 7.1. The Numerical Equivalents of Letters.
Of course, if we were sending messages in Russian, Greek, Hebrew or any other language we would use the appropriate alphabet range of integers. Also, we may want to include punctuation marks, a symbol to indicate blanks, and perhaps the digits for representing numbers as part of the message. However, for the sake of simplicity, we restrict ourselves to the letters of the English alphabet.

First, we discuss secrecy systems based on transforming each letter of the plaintext message into a different letter to produce the ciphertext. Such ciphers are called character or monographic ciphers, since each letter is changed individually to another letter by a substitution. Altogether, there are 26 ! possible ways to produce a monographic transformation. We will discuss a set that is based on modular arithmetic.

A cipher, that was used by Julius Caesar, is based on the substitution in which each letter is replaced by the letter three further down the alphabet, with the last three letters shifted to the first three letters of the alphabet. To describe this cipher using modular arithmetic, let P be the numerical equivalent of a letter in the plaintext and C the numerical equivalent of the corresponding ciphertext letter. Then

$$
C \equiv P+3(\bmod 26), \quad 0 \leqslant C \leqslant 25
$$

The correspondence between plaintext and ciphertext is given in Table 7.2.

plaintext	$\begin{gathered} \mathrm{A} \\ 0 \end{gathered}$	B	C	D	E		F	G	H 7	I	J	K	L	M	N 13	O	P 15	Q		$\begin{gathered} \mathrm{S} \\ 18 \end{gathered}$	$\begin{gathered} T \\ 19 \end{gathered}$		V		$\begin{gathered} X \\ 23 \end{gathered}$	$\begin{gathered} Y \\ 24 \end{gathered}$	Z
	3	4	5	6	67		8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	0	1	2
ciphertext	D	E	F	G	H	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C

Table 7.2. The Correspondence of Letters for the Caesar Cipher.
To encipher a message using this transformation, we first change it to its numerical equivalent, grouping letters in blocks of five. Then we transform each number. The grouping of letters into blocks helps to prevent successful cryptanalysis based on recognizing particular words. We illustrate this procedure by enciphering the message

THIS MESSAGE IS TOP SECRET.

Broken into groups of five letters, the message is

THISM ESSAG EISTO PSECR ET.

Converting the letters into their numerical equivalents, we obtain

19	7	8	18	12	4	18	18	0	6	4	8	18	19	14
15	18	4	3	17	4	19								

Using the Caesar transformation $C \equiv P+3(\bmod 26)$, this becomes

22	10	11	21	15	7	21	21	3	9	7	11	21	22	17
18	21	7	6	20	7	22								

Translating back to letters, we have

WKLVP HVVDJ HLVWR SVHGU HW.

This is the message we send.
The receiver deciphers it in the following manner. First, the letters are converted to numbers. Then, the relationship $P \equiv C-3(\bmod 26)$, $0 \leqslant P \leqslant 25$, is used to change the ciphertext back to the numerical version of the plaintext, and finally the message is converted to letters.

We illustrate the deciphering procedure with the following message enciphered by the Ceasar cipher:

WKLVL VKRZZ HGHFL SKHU.

First, we change these letters into their numerical equivalents, to obtain

$$
2210112111 \quad 2110172525 \quad 767511 \quad 1810720 .
$$

Next, we perform the transformation $P \equiv C-3(\bmod 26)$ to change this to plaintext, and we obtain

$$
1978188 \quad 187142222 \quad 43428 \quad 157417 .
$$

We translate this back to letters and recover the plaintext message

THISI SHOWW EDECI PHER.

By combining the appropriate letters into words, we find that the message reads

THIS IS HOW WE DECIPHER.

The Caesar cipher is one of a family of similar ciphers described by a shift transformation

$$
C \equiv P+k(\bmod 26), \quad 0 \leqslant C \leqslant 25
$$

where k is the key representing the size of the shift of letters in the alphabet. There are 26 different transformations of this type, including the case of $k \equiv 0(\bmod 26), \quad$ where letters are not altered, since in this case $C \equiv P(\bmod 26)$.

More generally, we will consider transformations of the type

$$
\begin{equation*}
C \equiv a P+b(\bmod 26), \quad 0 \leqslant C \leqslant 25, \tag{7.1}
\end{equation*}
$$

where a and b are integers with $(a, 26)=1$. These are called affine transformations. Shift transformations are affine transformations with $a=1$. We require that $(a, 26)=1$, so that as P runs through a complete system of residues modulo $26, C$ also does. There are $\phi(26)=12$ choices for a, and 26 choices for b, giving a total of $12 \cdot 26=312$ transformations of this type (one of these is $C \equiv P(\bmod 26)$ obtained when $a=1$ and $b=0)$. If the relationship between plaintext and ciphertext is described by (7.1), then the inverse relationship is given by

$$
P \equiv \bar{a}(C-b)(\bmod 26), \quad 0 \leqslant P \leqslant 25,
$$

where \bar{a} is an inverse of $a(\bmod 26)$.
As an example of such a cipher, let $a=7$ and $b=10$, so that $C \equiv 7 P+10(\bmod 26)$. Hence, $P \equiv 15(C-10) \equiv 15 C+6(\bmod 26)$, since 15 is an inverse of 7 modulo 26. The correspondence between letters is given in Table 7.3.

plaintext	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
ciphertext	10	17	24	5	12	19	0	7	14	21	2	9	16	23	4	11	18	25	6	13	20	1	8	15	22	3
	K	R	Y	F	M	T	A	H	0	V	C	J	Q	X	E	L	S	Z	G	N	V	B	I	P	W	D

Table 7.3. The Correspondence of Letters for the Cipher with $C \equiv 7 P+10(\bmod 26)$.
To illustrate how we obtained this correspondence, note that the plaintext letter L with numerical equivalent 11 corresponds to the ciphertext letter J , since $7 \cdot 11+10=87 \equiv 9(\bmod 26)$ and 9 is the numerical equivalent of J .

To illustrate how to encipher, note that

PLEASE SEND MONEY

is transformed to

> LJMKG MGXFQ EXMW.

Also note that the ciphertext

FEXEN XMBMK JNHMG MYZMN

corresponds to the plaintext

DONOT REVEA LTHES ECRET,

or combining the appropriate letters

DO NOT REVEAL THE SECRET.

We now discuss some of the techniques directed at the cryptanalysis of ciphers based on affine transformations. In attempting to break a monographic cipher, the frequency of letters in the ciphertext is compared with the frequency of letters in ordinary text. This gives information concerning the correspondence between letters. In various frequency counts of English text, one finds the percentages listed in Table 7.4 for the occurrence of the 26 letters of the alphabet. Counts of letter frequencies in other languages may be found in [48] and [52].

letter	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0		Q	R	S	T	U	V	W	X	Y	Z
frequency (in \%)	7	1	3	4	13	3	2	3	8	<1	<1	4	3	8	7	3	<1	8	6	9	3	1	1	<1	2	<1

Table 7.4. The Frequencies of Occurrence of the Letters of the Alphabet.
From this information, we see that the most frequently occurring letters are E, T, N, O, and A, in that order. We can use this information to determine which cipher based on an affine transformation has been used to encipher a message.

First, suppose that we know in advance that a shift cipher has been employed to encipher a message; each letter of the message has been transformed by a correspondence $C \equiv P+k(\bmod 26), 0 \leqslant C \leqslant 25$. To cryptanalyze the ciphertext

YFXMP	CESPZ	CJTDF	DPQFW	QZCPY
NTASP	CTYRX	PDDLR	PD,	

we first count the number of occurrences of each letter in the ciphertext. This is displayed in Table 7.5.

Table 7.5. The Number of Occurrences of Letters in a Ciphertext.
We notice that the most frequently occurring letter in the ciphertext is P with the letters C,D,F,T, and Y occurring with relatively high frequency. Our initial guess would be that P represents E , since E is the most frequently occurring letter in English text. If this is so, then $15 \equiv 4+k(\bmod 26)$, so that $k \equiv 11(\bmod 26)$. Consequently, we would have $C \equiv P+11(\bmod 26)$ and $P \equiv C-11(\bmod 26)$. This correspondence is given in Table 7.6.

ciphertext	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
plaintext	15	16	17	18	19	20	21	22	23	24	25	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	P	Q	R	S	T	U	V	W	Z	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O

Table 7.6. Correspondence of Letters for the Sample Ciphertext.
Using this correspondence, we attempt to decipher the message. We obtain

> NUMBE RTHEO RYISU SEFUL FOREN CIPHE RINGM ESSAG ES.

This can easily be read as

NUMBER THEORY IS USEFUL FOR ENCIPHERING MESSAGES.

Consequently, we made the correct guess. If we had tried this transformation, and instead of the plaintext, it had produced garbled text, we would have tried another likely transformation based on the frequency count of letters in the ciphertext.

Now, suppose we know that an affine transformation of the form $C \equiv a P+b(\bmod 26), 0 \leqslant C \leqslant 25$, has been used for enciphering. For instance, suppose we wish to cryptanalyze the enciphered message

> USLEL JUTCC YRTPS URKLT YGGFV ELYUS LRYXD JURTU ULVCU URJRK QLLQL YXSRV LBRYZ CYREK LVEXB RYZDG HRGUS LJLLM LYPDJ LJTJU FALGU PTGVT JULYU SLDAL TJRWU SLJFE OLPU.

The first thing to do is to count the occurrences of each letter; this count is displayed in Table 7.7

Table 7.7. The Number of Occurrences of Letters in a Ciphertext.
With this information, we guess that the letter L, which is the most frequently occurring letter in the ciphertext, corresponds to E, while the letter U, which occurs with the second highest frequency, corresponds to T. This implies, if the transformation is of the form $C \equiv a P+b(\bmod 26)$, the pair of congruences

$$
\begin{aligned}
4 a+b & \equiv 11(\bmod 26) \\
19 a+b & \equiv 20(\bmod 26)
\end{aligned}
$$

By Theorem 3.8, we see that the solution of this system is $a \equiv 11(\bmod 26)$ and $b \equiv 19(\bmod 26)$.

If this is the correct enciphering transformation, then using the fact that 19 is an inverse of 11 modulo 26 , the deciphering transformation is

$$
P \equiv 19(C-19) \equiv 19 C-361 \equiv 19 C+3(\bmod 26), 0 \leqslant P \leqslant 25
$$

This gives the correspondence found in Table 7.8.

ciphertext	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
plaintext	3	22	15	8	1	20	13	6	25	19	11	4	23	16	9	2	21	14	7	0	19	12	5	24	17	10
	D	W	\mathbf{P}	I	B	U	N	G	Z	S	L	E	X	Q	J	C	V	O	H	A	T	M	P	Y	R	K

Table 7.8. The Correspondence of Letters for the Sample Ciphertext.
With this correspondence, we try to read the ciphertext. The ciphertext becomes

> THEBE STAPP ROACH TOLEA RNNUM BERTH EORYI STOAT TEMPT TOSOL VEEVE RYHOM EWORK PROBL EMBYW ORKIN GONTH ESEEX ERCIS ESAST UDENT CANMA STERT HEIDE ASOFT HESUB JECT.

We leave it to the reader to combine the appropriate letters into words to see that the message is intelligible.

7.1 Problems

1. Using the Caesar cipher, encipher the message ATTACK AT DAWN.
2. Decipher the ciphertext message LFDPH LVDZL FRQTX HUHG that has been enciphered using the Caesar cipher.
3. Encipher the message SURRENDER IMMEDIATELY using the affine transformation $C \equiv 11 P+18(\bmod 26)$.
4. Decipher the message RTOLK TOIK, which was enciphered using the affine transformation $C \equiv 3 P+24(\bmod 26)$.
5. If the most common letter in a long ciphertext, enciphered by a shift transformation $C \equiv P+k(\bmod 26)$ is Q , then what is the most likely value of k ?
6. If the two most common letters in a long ciphertext, enciphered by an affine transformation $C \equiv a P+b(\bmod 26)$ are W and B , respectively, then what are the most likely values for a and b ?
7. Given two ciphers, plaintext may be enciphered by using one of the ciphers, and by then using the other cipher. This procedure produces a product cipher.
a) Find the product cipher obtained by using the transformation $C \equiv 5 P+13$ $(\bmod 26)$ followed by the transformation $C \equiv 17 P+3(\bmod 26)$.
b) Find the product cipher obtained by using the transformation $C \equiv a P+b$ $(\bmod 26)$ followed by the transformation $C \equiv c P+d(\bmod 26)$, where $(a, 26)=(c, 26)=1$.
8. A Vignère cipher operates in the following way. A sequence of letters $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$, with numerical equivalents $k_{1}, k_{2}, \ldots, k_{n}$, serves as the key. Plaintext messages are split into blocks of length n. To encipher a plaintext block of letters with numerical equivalents $p_{1}, p_{2}, \ldots, p_{n}$ to obtain a ciphertext block of letters with numerical equivalents $c_{1}, c_{2}, \ldots, c_{n}$, we use a sequence of shift ciphers with

$$
c_{i} \equiv p_{i}+k_{i}(\bmod 26), 0 \leqslant c_{i} \leqslant 25
$$

for $i=1,2, \ldots, n$. In this problem, we use the word SECRET as the key for a Vignère cipher.
a) Using this Vignère cipher, encipher the message

DO NOT OPEN THIS ENVELOPE.

b) Decipher the following message which was enciphered using this Vignère cipher:

WBRCSL AZGJMG KMFV.

c) Describe how cryptanalysis of ciphertext, which was enciphered using a Vignère cipher, can be carried out.

7.1 Computer Projects

Write programs to do the following:

1. Encipher messages using the Caesar cipher.
2. Encipher messages using the transformation $C \equiv P+k(\bmod 26)$, where k is a given integer.
3. Encipher messages using the transformation $C \equiv a P+b(\bmod 26)$, where a and b are integers with $(a, 26)=1$.
4. Decipher messages that have been enciphered using the Caesar cipher.
5. Decipher messages that have been enciphered using the transformation $C \equiv P+k(\bmod 26)$, where k is a given integer.
6. Decipher messages that have been enciphered using the transformation $C \equiv a P+b(\bmod 26)$, where a and b are integers with $(a, 26)=1$.
7. Cryptanalyze, using frequency counts, ciphertext that was enciphered using a transformation of the form $C \equiv P+k(\bmod 26)$ where k is an unknown integer.
8. Cryptanalyze, using frequency counts, ciphertext that was enciphered using a transformation of the form $C \equiv a P+b(\bmod 26)$ where a and b are unknown integers with $(a, 26)=1$.
9. Encipher messages using Vignère ciphers (see problem 8).
10. Decipher messages that have been enciphered using Vignère ciphers.

7.2 Block Ciphers

We have seen that monographic ciphers based on substitution are vulnerable to cryptanalysis based on the frequency of occurrence of letters in the ciphertext. To avoid this weakness, cipher systems were developed that substitute for each block of plaintext letters of a specified length, a block of ciphertext letters of the same length. Ciphers of this sort are called block or polygraphic ciphers. In this section, we will discuss some polygraphic ciphers based on modular arithmetic; these were developed by Hill [87] around 1930.

First, we consider digraphic ciphers; in these ciphers each block of two letters of plaintext is replaced by a block of two letters of ciphertext. We illustrate this process with an example.

The first step is to split the message into blocks of two letters (adding a dummy letter, say X , at the end of the message, if necessary, so that the final block has two letters). For instance, the message

THE GOLD IS BURIED IN ORONO

is split up as
TH EG OL DI SB UR IE DI NO RO NO.

Next, these letters are translated into their numerical equivalents (as previously done) to obtain

19	7	4	6	14	11	3	8	18	1	20	17	8	4	3
13	14	17	14	13	14.									
14														

Each block of two plaintext numbers $P_{1} P_{2}$ is converted into a block of two ciphertext numbers $C_{1} C_{2}$:

$$
\begin{aligned}
& C_{1} \equiv 5 P_{1}+17 P_{2}(\bmod 26) \\
& C_{2} \equiv 4 P_{1}+15 P_{2}(\bmod 26)
\end{aligned}
$$

For instance, the first block 197 is converted to. 625 , because

$$
\begin{aligned}
& C_{1} \equiv 5 \cdot 19+17 \cdot 7 \equiv 6(\bmod 26) \\
& C_{2} \equiv 4 \cdot 19+15 \cdot 7 \equiv 25(\bmod 26)
\end{aligned}
$$

After performing this operation on the entire message, the following ciphertext is obtained:

$$
\begin{array}{llllllllllllllllll}
6 & 25 & 18 & 2 & 23 & 13 & 21 & 2 & 3 & 9 & 25 & 23 & 4 & 14 & 21 & 2 & 17 & 2
\end{array} 1118172 .
$$

When these blocks are translated into letters, we have the ciphertext message
GZ SC XN VC DJ ZX EO VC RC LS RC.

The deciphering procedure for this cipher system is obtained by using Theorem 3.8. To find the plaintext block $P_{1} P_{2}$ corresponding to the ciphertext block $C_{1} C_{2}$, we use the relationship

$$
\begin{aligned}
& P_{1} \equiv 17 C_{1}+5 C_{2}(\bmod 26) \\
& P_{2} \equiv 18 C_{1}+23 C_{2}(\bmod 26)
\end{aligned}
$$

The digraphic cipher system we have presented here is conveniently described using matrices. For this cipher system, we have

$$
\binom{C_{1}}{C_{2}} \equiv\left(\begin{array}{ll}
5 & 17 \\
4 & 15
\end{array}\right)\binom{P_{1}}{P_{2}} \quad(\bmod 26)
$$

From Proposition 3.7, we see that the matrix $\left(\begin{array}{cc}17 & 5 \\ 18 & 23\end{array}\right)$ is an inverse of $\left(\begin{array}{ll}5 & 17 \\ 4 & 15\end{array}\right)$ modulo 26. Hence, Proposition 3.6 tells us that deciphering can be done using the relationship

$$
\binom{P_{1}}{P_{2}} \equiv\left(\begin{array}{ll}
17 & 5 \\
18 & 23
\end{array}\right)\binom{C_{1}}{C_{2}} \quad(\bmod 26)
$$

In general, a Hill cipher system may be obtained by splitting plaintext into blocks of n letters, translating the letters into their numerical equivalents, and forming ciphertext using the relationship

$$
C \equiv A P(\bmod 26)
$$

where A is an $n \times n$ matrix with $(\operatorname{det} A, 26)=1, C=\left(\begin{array}{l}C_{1} \\ C_{2} \\ . \\ . \\ \cdot \\ C_{n}\end{array}\right)$ and $P=\left(\begin{array}{l}P_{1} \\ P_{2} \\ . \\ . \\ . \\ P_{n}\end{array}\right)$
and where $C_{1} C_{2} \ldots C_{n}$ is the ciphertext block that corresponds to the plaintext block $P_{1} P_{2} \ldots P_{n}$. Finally, the ciphertext numbers are translated back to letters. For deciphering, we use the matrix \bar{A}, an inverse of A modulo 26 , which may be obtained using Proposition 3.8. Since $\bar{A} A \equiv I(\bmod 26)$, we have

$$
\bar{A} C \equiv \bar{A}(A P) \equiv(\bar{A} A) P \equiv P(\bmod 26)
$$

Hence, to obtain plaintext from ciphertext, we use the relationship

$$
P \equiv \bar{A} C(\bmod 26)
$$

We illustrate this procedure using $n=3$ and the enciphering matrix

$$
A=\left(\begin{array}{ccc}
11 & 2 & 19 \\
5 & 23 & 25 \\
20 & 7 & 1
\end{array}\right)
$$

Since $\operatorname{det} A \equiv 5(\bmod 26)$, we have $(\operatorname{det} A, 26)=1$. To encipher a plaintext block of length three, we use the relationship

$$
\left(\begin{array}{l}
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right) \equiv A\left(\begin{array}{l}
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right) \quad(\bmod 26)
$$

To encipher the message STOP PAYMENT, we first split the message into blocks of three letters, adding a final dummy letter X to fill out the last block. We have plaintext blocks

STO PPA YME NTX.

We translate these letters into their numerical equivalents

$$
181914 \quad 15150 \quad 24124 \quad 131923 .
$$

We obtain the first block of ciphertext in the following way:

$$
\left(\begin{array}{l}
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right)=\left(\begin{array}{ccc}
11 & 2 & 19 \\
5 & 23 & 25 \\
20 & 7 & 1
\end{array}\right)\left(\begin{array}{l}
18 \\
19 \\
14
\end{array}\right)=\left(\begin{array}{c}
8 \\
19 \\
13
\end{array}\right)(\bmod 26)
$$

Enciphering the entire plaintext message in the same manner, we obtain the ciphertext message

$$
81913 \quad 13415 \quad 0222 \quad 20110 .
$$

Translating this message into letters, we have our ciphertext message

> ITN NEP ACW ULA.

The deciphering process for this polygraphic cipher system takes a ciphertext block and obtains a plaintext block using the transformation

$$
\left(\begin{array}{l}
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right) \equiv \bar{A}\left(\begin{array}{l}
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right) \quad(\bmod 26)
$$

where

$$
\bar{A}=\left(\begin{array}{ccc}
6 & -5 & 11 \\
-5 & -1 & -10 \\
-7 & 3 & 7
\end{array}\right)
$$

is an inverse of A modulo 26, which may be obtained using Proposition 3.8.
Because polygraphic ciphers operate with blocks, rather than with individual letters, they are not vulnerable to cryptanalysis based on letter frequency. However, polygraphic ciphers operating with blocks of size n are vulnerable to cryptanalysis based on frequencies of blocks of size n. For instance, with a digraphic cipher system, there are $26^{2}=676$ digraphs, blocks of length two. Studies have been done to compile the relative frequencies of digraphs in typical English text. By comparing the frequencies of digraphs in the ciphertext with the average frequencies of digraphs, it is often possible to successfully attack digraphic ciphers. For example, according to some counts, the most common digraph in English is TH, followed closely by HE. If a Hill digraphic cipher system has been employed and the most common digraph is KX, followed by VZ, we may guess that the ciphertext digraphs KX and VZ correspond to TH and HE, respectively. This would mean that the blocks 197 and 74 are sent to 1023 and 2125 , respectively. If A is the enciphering matrix, this implies that

$$
A\left(\begin{array}{rr}
19 & 7 \\
7 & 4
\end{array}\right) \equiv\left(\begin{array}{ll}
10 & 21 \\
23 & 25
\end{array}\right)(\bmod 26)
$$

Since $\left(\begin{array}{cc}4 & 19 \\ 19 & 19\end{array}\right)$ is an inverse of $\left(\begin{array}{cc}19 & 7 \\ 7 & 4\end{array}\right)(\bmod 26)$, we find that

$$
A \equiv\left(\begin{array}{ll}
10 & 21 \\
23 & 25
\end{array}\right)\left(\begin{array}{rr}
4 & 19 \\
19 & 19
\end{array}\right) \equiv\left(\begin{array}{rr}
23 & 17 \\
21 & 2
\end{array}\right)(\bmod 26)
$$

which gives a possible key. After attempting to decipher the ciphertext using $\bar{A}=\left(\begin{array}{cc}2 & 9 \\ 5 & 23\end{array}\right)$ to transform the ciphertext, we would know if our guess was correct.

In general, if we know n correspondences between plaintext blocks of size n and ciphertext blocks of size n, for instance if we know that the ciphertext blocks $\quad C_{1 j} C_{2 j} \ldots C_{n j}, j=1,2, \ldots, n$, correspond to the plaintext blocks $P_{1 j} P_{2 j} \ldots P_{n j}, j=1,2, \ldots, n$, respectively, then we have

$$
A\left(\begin{array}{l}
P_{1 j} \\
\cdot \\
\cdot \\
P_{n j}
\end{array}\right) \equiv\left(\begin{array}{l}
C_{1 j} \\
\cdot \\
\cdot \\
\cdot \\
C_{n j}
\end{array}\right) \quad(\bmod 26)
$$

for $j=1,2, \ldots, n$.
These n congruences can be succinctly expressed using the matrix congruence

$$
A P \equiv C \quad(\bmod 26)
$$

where P and C are $n \times n$ matrices with $i j$ th entries $P_{i j}$ and $C_{i j}$, respectively. If ($\operatorname{det} P, 26$) $=1$, then we can find the enciphering matrix A via

$$
A \equiv C \bar{P} \quad(\bmod 26)
$$

where P is an inverse of P modulo 26 .
Cryptanalysis using frequencies of polygraphs is only worthwhile for small values of n, where n is the size of the polygraphs. When $n=10$, for example, there are 26^{10}, which is approximately 1.4×10^{14}, polygraphs of this length. Any analysis of the relative frequencies of these polygraphs is extremely infeasible.

7.2 Problems

1. Using the digraphic cipher that sends the plaintext block $P_{1} P_{2}$ to the ciphertext block $C_{1} C_{2}$ with

$$
\begin{aligned}
& C_{1} \equiv 3 P_{1}+10 P_{2} \quad(\bmod 26) \\
& C_{2} \equiv 9 P_{1}+7 P_{2} \quad(\bmod 26)
\end{aligned}
$$

encipher the message BEWARE OF THE MESSENGER.
2. Decipher the ciphertext message UW DM NK QB EK, which was enciphered using the digraphic cipher which sends the plaintext block $P_{1} P_{2}$ into the ciphertext block $C_{1} C_{2}$ with

$$
\begin{aligned}
& C_{1} \equiv 23 P_{1}+3 P_{2} \quad(\bmod 26) \\
& C_{2} \equiv 10 P_{1}+25 P_{2} \quad(\bmod 26)
\end{aligned}
$$

3. A cryptanalyst has determined that the two most common digraphs in a ciphertext message are RH and NI and guesses that these ciphertext digraphs correspond to the two most common diagraphs in English text, TH and HE. If
the plaintext was enciphered using a Hill digraphic cipher described by

$$
\begin{aligned}
& C_{1} \equiv a P_{1}+b P_{2} \quad(\bmod 26) \\
& C_{2} \equiv c P_{1}+d P_{2} \quad(\bmod 26),
\end{aligned}
$$

what are a, b, c, and d ?
4. How many pairs of letters remain unchanged when encryption is performed using the following digraphic ciphers
a) $\quad C_{1} \equiv 4 P_{1}+5 P_{2}(\bmod 26)$
$C_{2} \equiv 3 P_{1}+P_{2}(\bmod 26)$
b) $\quad C_{1} \equiv 7 P_{1}+17 P_{2}(\bmod 26)$
$C_{2} \equiv P_{1}+6 P_{2} \quad(\bmod 26)$
c) $C_{1} \equiv 3 P_{1}+5 P_{2}(\bmod 26)$
$C_{2} \equiv 6 P_{1}+3 P_{2}(\bmod 26) ?$
5. Show that if the enciphering matrix A in the Hill cipher system is involutory modulo 26 , i.e, $A^{2} \equiv I(\bmod 26)$, then A also serves as a deciphering matrix for this cipher system.
6. A cryptanalyst has determined that the three most common trigraphs (blocks of length three) in a ciphertext are, LME, WRI and ZYC and guesses that these ciphertext trigraphs correspond to the three most common trigraphs in English text, THE, AND, and THA. If the plaintext was enciphered using a Hill trigraphic cipher described by $C \equiv A P(\bmod 26)$, what are the entries of the 3×3 enciphering matrix A ?
7. Find the product cipher obtained by using the digraphic Hill cipher with enciphering matrix
enciphering matrix $\left(\begin{array}{rr}2 & 3 \\ 1 & 17 \\ 5 & 1 \\ 25 & 4\end{array}\right)$ followed by using the digraphic Hill cipher with enciphering matrix $\left(\begin{array}{rr}5 & 1 \\ 25 & 4\end{array}\right)$.
8. Show that the product cipher obtained from two digraphic Hill ciphers is again a digraphic Hill cipher.
9. Show that the product cipher obtained by enciphering first using a Hill cipher with blocks of size m and then using a Hill cipher with blocks of size n is again a Hill cipher using blocks of size $[m, n]$.
10. Find the 6×6 enciphering matrix corresponding to the product cipher obtained by first using the Hill cipher with enciphering matrix $\left(\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right)$, followed by using the Hill cipher with enciphering matrix $\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right)$.
11. A transposition cipher is a cipher where blocks of a specified size are enciphered by permuting their characters in a specified manner. For instance, plaintext biocks of length five, $P_{1} P_{2} P_{3} P_{4} P_{5}$, may be sent to ciphertext blocks $C_{1} C_{2} C_{3} C_{4} C_{5}=P_{4} P_{5} P_{2} P_{1} P_{3}$. Show that every such transposition cipher is a

Hill cipher with an enciphering matrix that contains only 0 's and 1's as entries with the property that each row and each column contains exactly one 1 .

7.2 Computer Projects

Write programs to do the following:

1. Encipher messages using a Hill cipher.
2. Decipher messages that were enciphered using a Hill cipher.
3. Cryptanalyze messages that were enciphered using a digraphic Hill cipher, by analyzing the frequency of digraphs in the ciphertext.

7.3 Exponentiation Ciphers

In this section, we discuss a cipher, based on modular exponentiation, that was invented in 1978 by Pohlig and Hellman [91]. We will see that ciphers produced by this system are resistant to cryptanalysis.

Let p be an odd prime and let e, the enciphering key, be a positive integer with $(e, p-1)=1$. To encipher a message, we first translate the letters of the message into numerical equivalents (retaining initial zeros in the two-digit numerical equivalents of letters). We use the same relationship we have used before, as shown in Table 7.9.

letter	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
numerical equivalent	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Table 7.9. Two-digit Numerical Equivalents of Letters.
Next, we group the resulting numbers into blocks of $2 m$ decimal digits, where $2 m$ is the largest positive even integer such that all blocks of numerical equivalents corresponding to m letters (viewed as a single integer with $2 m$ decimal digits) are less than p, e.g. if $2525<p<252525$, then $m=2$.

For each plaintext block P, which is an integer with $2 m$ decimal digits, we form a ciphertext block C using the relationship

$$
C \equiv P^{e}(\bmod p), 0 \leqslant C<p
$$

The ciphertext message consists of these ciphertext blocks which are integers
less than p. We illustrate the enciphering technique with the following example.

Example. Let the prime to be used as the modulus in the enciphering procedure be $p=2633$ and let the enciphering key to be used as the exponent in the modular exponentiation be $e=29$, so that $(e, p-1)=(29,2632)=1$. To encipher the plaintext message,

THIS IS AN EXAMPLE OF AN EXPONENTIATION CIPHER,

we first convert the letters of the message into their numerical equivalents, and then form blocks of length four from these digits, to obtain

1907	0818	0818	0013	0423
0012	1511	0414	0500	1304
2315	1413	0413	1908	0019
0814	1302	0815	0704	1723.

Note that we have added the two digits 23 , corresponding to the letter X , at the end of the message to fill out the final block of four digits.

We next translate each plaintext block P into a ciphertext block C using the relationship

$$
C \equiv P^{29}(\bmod 2633), 0<C<2633
$$

For instance, to obtain the first ciphertext block from the first plaintext block we compute

$$
C \equiv 1907^{29} \equiv 2199(\bmod 2633)
$$

To efficiently carry out the modular exponentiation, we use the algorithm given in Section 3.1. When we encipher the blocks in this way, we find that the ciphertext message is

2199	1745	1745	1206	2437
2425	1729	1619	0935	0960
1072	1541	1701	1553	0735
2064	1351	1704	1841	1459.

To decipher a ciphertext block C, we need to know a deciphering key, namely an integer d such that $d e \equiv 1(\bmod p-1)$, so that d is an inverse of $e(\bmod p-1)$, which exists since $(e, p-1)=1$. If we raise the ciphertext block C to the d th power modulo p, we recover our plaintext block P, since

$$
C^{d} \equiv\left(P^{e}\right)^{d}=P^{e d} \equiv P^{k(p-1)+1} \equiv\left(P^{p-1}\right)^{k} P \equiv P(\bmod p)
$$

where $d e=k(p-1)+1$, for some integer k, since $d e \equiv 1(\bmod p-1)$. (Note that we have used Fermat's little theorem to see that $\left.P^{p-1} \equiv 1(\bmod p).\right)$

Example. To decipher the ciphertext blocks generated using the prime modulus $p=2633$ and the enciphering key $e=29$, we need an inverse of e modulo $p-1=2632$. An easy computation, as done in Section 3.2, shows that $d=2269$ is such an inverse. To decipher the ciphertext block C in order to find the corresponding plaintext block P, we use the relationship

$$
P \equiv C^{2269}(\bmod 2633) .
$$

For instance, to decipher the ciphertext block 2199, we have

$$
P \equiv 2199^{2269} \equiv 1907(\bmod 2633) .
$$

Again, the modular exponentiation is carried out using the algorithm given in Section 3.2.

For each plaintext block P that we encipher by computing $P^{e}(\bmod p)$, we use only $O\left(\left(\log _{2} p\right)^{3}\right)$ bit operations, as Proposition 3.3 demonstrates. Before we decipher we need to find an inverse d of e modulo $p-1$. This can be done using $O(\log p)$ bit operations (see problem 11 of Section 3.2), and this needs to be done only once. Then, to recover the plaintext block P from a ciphertext block C, we simply need to compute the least positive residue of C^{d} modulo p; we can do this using $O\left(\left(\log _{2} p\right)^{3}\right)$ bit operations. Consequently, the processes of enciphering and deciphering using modular exponentiation can be done rapidly.
On the other hand, cryptanalysis of messages enciphered using modular exponentiation generally cannot be done rapidly. To see this, suppose we know the prime p used as the modulus, and moreover, suppose we know the plaintext block P corresponding to a ciphertext block C, so that

$$
\begin{equation*}
C \equiv P^{e}(\bmod p) \tag{7.2}
\end{equation*}
$$

For successful cryptanalysis, we need to find the enciphering key e. When the relationship (7.2) holds, we say that e is the logarithm of C to the base P modulo p. There are various algorithms for finding logarithms to a given base modulo a prime. The fastest such algorithm requires approximately $\exp (\sqrt{\log p \log \log p})$ bit operations (see [81]). To find logarithms modulo a prime with n decimal digits using the fastest known algorithm requires approximately the same number of bit operations as factoring integers with
the same number of decimal digits, when the fastest known factoring algorithm is used. Consulting Table 2.1, we see that finding logarithms modulo a prime p requires an extremely long time. For instance, when p has 100 decimal digits, finding logarithms modulo p requires approximately 74 years, whereas when p has 200 decimal digits, approximately 3.8×10^{9} years are required.

We should mention that for primes p where $p-1$ has only small prime factors, it is possible to use special techniques to find logarithms modulo p using $O\left(\log ^{2} p\right)$ bit operations. Clearly, this sort of prime should not be used as a modulus in this cipher system. Taking a prime $p=2 q+1$, where q is also prime, obviates this difficulty.

Modular exponentiation is useful for establishing common keys to be used by two or more individuals. These common keys may, for instance, be used as keys in a cipher system for sessions of data communication, and should be constructed so that unauthorized individuals cannot discover them in a feasible amount of computer time.

Let p be a large prime and let a be an integer relatively prime to p. Each individual in the network picks a key k that is an integer relatively prime to $p-1$. When two individuals with keys k_{1} and k_{2} wish to exchange a key, the first individual sends the second the integer y_{1}, where

$$
y_{1} \equiv a^{k_{1}}(\bmod p), \quad 0<y_{1}<p,
$$

and the second individual finds the common key K by computing

$$
K \equiv y_{1}^{k_{2}} \equiv a^{k_{1} k_{2}}(\bmod p), \quad 0<K<p .
$$

Similarly, the second individual sends the first the integer y_{2} where

$$
y_{2} \equiv a^{k_{2}}(\bmod p), \quad 0<y_{2}<p
$$

and the first individual finds the common key K by computing

$$
K \equiv y_{2}^{k_{1}} \equiv a^{k_{1} k_{2}}(\bmod p), \quad 0<K<p .
$$

We note that other individuals in the network cannot find this common key K in a feasible amount of computer time, since they must compute logarithms modulo p to find K.

In a similar manner, a common key can be shared by any group of n individuals. If these individuals have keys $k_{1}, k_{2}, \ldots, k_{n}$, they can share the common key

$$
K=a^{k_{1} k_{2} \ldots k_{2}}(\bmod p)
$$

We leave an explicit description of a method used to produce this common key K as a problem for the reader.

An amusing application of exponentiation ciphers has been described by Shamir, Rivest, and Adleman [96]. They show that by using exponentiation ciphers, a fair game of poker may be played by two players communicating via computers. Suppose Alex and Betty wish to play poker. First, they jointly choose a large prime p. Next, they individually choose secret keys e_{1} and e_{2}, to be used as exponents in modular exponentiation. Let $E_{e_{1}}$ and $E_{e_{2}}$ represent the corresponding enciphering transformations, so that

$$
\begin{aligned}
& E_{e_{1}}(M) \equiv M^{e_{1}} \quad(\bmod p) \\
& E_{e_{2}}(M) \equiv M^{e_{2}} \quad(\bmod p)
\end{aligned}
$$

where M is a plaintext message. Let d_{1} and d_{2} be the inverses of e_{1} and e_{2} modulo p respectively, and let $D_{e_{1}}$ and $D_{e_{2}}$ be the corresponding deciphering transformations, so that

$$
\begin{aligned}
& D_{e_{1}}(C) \equiv C^{d_{1}}(\bmod p) \\
& D_{e_{2}}(C) \equiv C^{d_{2}}(\bmod p)
\end{aligned}
$$

where C is a ciphertext message.
Note that enciphering transformations commute, that is

$$
E_{e_{1}}\left(E_{e_{2}}(M)\right)=E_{e_{2}}\left(E_{e_{1}}(M)\right)
$$

since

$$
\left(M^{e_{2}}\right)^{e_{1}} \equiv\left(M^{e_{1}}\right)^{e_{2}}(\bmod p)
$$

To play electronic poker, the deck of cards is represented by the 52 messages

$$
\begin{aligned}
& M_{1}=\text { "TWO OF CLUBS" } \\
& M_{2}=\text { "THREE OF CLUBS" } \\
& \cdot \\
& \cdot \\
& M_{52}=\text { "ACE OF SPADES." }
\end{aligned}
$$

When Alex and Betty wish to play poker electronically, they use the following sequence of steps. We suppose Betty is the dealer.
i. Betty uses her enciphering transformation to encipher the 52 messages for the cards. She obtains $E_{e_{2}}\left(M_{1}\right), E_{e_{2}}\left(M_{2}\right), \ldots, E_{e_{2}}\left(M_{52}\right)$. Betty shuffles the deck, by randomly reordering the enciphered messages. Then she sends the 52 shuffled enciphered messages to Alex.
ii. Alex selects, at random, five of the enciphered messages that Betty has sent him. He returns these five messages to Betty and she deciphers them to find her hand, using her deciphering transformation $D_{e_{2}}$, since $D_{e_{2}}\left(E_{e_{2}}(M)\right)=M$ for all messages M. Alex cannot determine which cards Betty has, since he cannot decipher the enciphered messages $E_{e_{2}}\left(M_{j}\right), j=1,2, \ldots, 52$.
iii. Alex selects five other enciphered messages at random. Let these messages be $C_{1}, C_{2}, C_{3}, C_{4}$, and C_{5}, where

$$
C_{j}=E_{e_{2}}\left(M_{i j}\right)
$$

$j=1,2,3,4,5$. Alex enciphers these five previously enciphered messages using his enciphering transformation. He obtains the five messages

$$
C_{j}^{*}=E_{e_{1}}\left(C_{j}\right)=E_{e_{1}}\left(E_{e_{2}}\left(M_{i_{j}}\right)\right)
$$

$j=1,2,3,4,5$. Alex sends these five messages that have been enciphered twice (first by Betty and afterwards by Alex) to Betty.
iv. Betty uses her deciphering transformation $D_{e_{2}}$ to find

$$
\begin{aligned}
D_{e_{2}}\left(C_{j}^{*}\right) & =D_{e_{2}}\left(E_{e_{1}}\left(E_{e_{2}}\left(M_{i_{j}}\right)\right)\right) \\
& =D_{e_{2}}\left(E_{e_{2}}\left(E_{e_{1}}\left(M_{i_{j}}\right)\right)\right) \\
& =E_{e_{1}}\left(M_{i_{j}}\right),
\end{aligned}
$$

since $\quad E_{e_{1}}\left(E_{e_{2}}(M)\right)=E_{e_{2}}\left(E_{e_{1}}(M)\right)$ and $D_{e_{2}}\left(E_{e_{2}}(M)\right)=M$ for all messages M. Betty sends the fives message $E_{e_{1}}\left(M_{i j}\right)$ back to Alex.
v. Alex uses his deciphering transformation $D_{e_{1}}$ to obtain his hand, since

$$
D_{e_{1}}\left(E_{e_{1}}\left(M_{i,}\right)\right)=M_{i,} .
$$

When a game is played where it is necessary to deal additional cards, such as draw poker, the same steps are followed to deal additional cards from the remaining deck. Note that using the procedure we have described, neither player knows the cards in the hand of the other player, and all hands are equally likely for each player. To guarantee that no cheating has occurred, at the end of the game both players reveal their keys, so that each player can verify that the other player was
actually dealt the cards claimed.
A description of a possible weakness in this scheme, and how it may be overcome, may be found in problem 38 of Section 9.1.

7.3 Problems

1. Using the prime $p=101$ and enciphering key $e=3$, encipher the message GOOD MORNING using modular exponentiation.
2. What is the plaintext message that corresponds to the ciphertext 1213090205391208123411031374 produced using modular exponentiation with modulus $p=2591$ and enciphering key $e=13$?
3. Show that the enciphering and deciphering procedures are identical when enciphering is done using modular exponentiation with modulus $p=31$ and enciphering key $e=11$.
4. With modulus $p=29$ and unknown enciphering key e, modular exponentiation produces the ciphertext $\begin{array}{llllllllll}04 & 19 & 19 & 11 & 04 & 24 & 09 & 15 & 15\end{array}$. Cryptanalyze the above cipher, if it is also known that the ciphertext block 24 corresponds to the plaintext letter U (with numerical equivalent 20). (Hint: First find the logarithm of 24 to the base 20 modulo 29 using some guesswork.)
5. Using the method described in the text for exchanging common keys, what is the common key that can be used by individuals with keys $k_{1}=27$ and $k_{2}=31$ when the modulus is $p=101$ and the base is $a=5$?
6. What is the group key K that can be shared by four individuals with keys $k_{1}=11, k_{2}=12, k_{3}=17, k_{4}=19$ using the modulus $p=1009$ and base $a=3$?
7. Describe a procedure to allow n individuals to share the common key described in the text.

7.3 Computer Projects

Write programs to do the following:

1. Encipher messages using modular exponentiation.
2. Decipher messages that have been enciphered using modular exponentiation.
3. Cryptanalyze ciphertext that has been enciphered using modular exponentiation when a correspondence between a plaintext block P and a ciphertext block C is known.
4. Produce common keys for individuals in a network.
5. Play electronic poker using encryption via modular exponentiation.

7.4 Public-Key Cryptography

If one of the cipher systems previously described in this chapter is used to establish secure communications within a network, then each pair of communicants must employ an enciphering key that is kept secret from the other individuals in the network, since once the enciphering key in one of those cipher systems is known, the deciphering key can be found using a small amount of computer time. Consequently, to maintain secrecy the enciphering keys must themselves be transmitted over a channel of secure communications.

To avoid assigning a key to each pair of individuals that must be kept secret from the rest of the network, a new type of cipher system, called a public-key cipher system, has been recently introduced. In this type of cipher system, enciphering keys can be made public, since an unrealistically large amount of computer time is required to find a deciphering transformation from an enciphering transformation. To use a public-key cipher system to establish secret communications in a network of n individuals, each individual produces a key of the type specified by the cipher system, retaining certain private information that went into the construction of the enciphering transformation $E(k)$, obtained from the key k according to a specified rule. Then a directory of the n keys $k_{1}, k_{2}, \ldots, k_{n}$ is published. When individual i wishes to send a message to individual j, the letters of the message are translated into their numerical equivalents and combined into blocks of specified size. Then, for each plaintext block P a corresponding ciphertext block $C=E_{k_{j}}(P)$ is computed using the enciphering transformation E_{k}. To decipher the message, individual j applies the deciphering transformation D_{k}, to each ciphertext block C to find P, i.e.

$$
D_{k_{j}}(C)=D_{k_{j}}\left(E_{k_{j}}(P)\right)=P
$$

Since the deciphering transformation D_{k}, cannot be found in a realistic amount of time by anyone other than individual j, no unauthorized individuals can decipher the message, even though they know the key k_{j}. Furthermore, cryptanalysis of the ciphertext message, even with knowledge of k_{j}, is extremely infeasible due to the large amount of computer time needed.

The RSA cipher system, recently invented by Rivest, Shamir, and Adleman [93], is a public-key cipher system based on modular exponentiation where the keys are pairs (e, n), consisting of an exponent e and a modulus n that is the product of two large primes, i.e. $n=p q$, where p and q are large

$$
\text { secret: } \quad \frac{d}{p, q} \text { decrypting }
$$

primes, so that $(e, \phi(n))=1$. To encipher a message, we first translate the letters into their numerical equivalents and then form blocks of the largest possible size (with an even number of digits). To encipher a plaintext block P, we form a ciphertext block C by

$$
E(P)=C \equiv P^{e}(\bmod n), \quad 0<C<n .
$$

The deciphering procedure requires knowledge of an inverse d of e modulo $\phi(n)$, which exists since $(e, \phi(n))=1$. To decipher the ciphertext block C, we find

$$
\begin{aligned}
D(C) & \equiv C^{d}=\left(P^{e}\right)^{d}=P^{e d}=P^{k \phi(n)+1} \\
& \equiv\left(P^{\phi(n)}\right)^{k} P \equiv P(\bmod n),
\end{aligned}
$$

where $e d=k \phi(n)+1$ for some integer k, since $e d \equiv 1(\bmod \phi(n))$, and by Euler's theorem, we have $P^{\phi(n)} \equiv 1(\bmod n)$, when $(P, n)=1$ (the probability that P and n are not relatively prime is extremely small; see problem 2 at the end of this section) . The pair (d, n) is a deciphering key.

To illustrate how the RSA cipher system works, we present an example where the enciphering modulus is the product of the two primes 43 and 59 (which are smaller than the large primes that would actually be used). We have $n=43 \cdot 59=2537$ as the modulus and $e=13$ as the exponent for the RSA cipher. Note that we have $(e, \phi(n))=(13,42 \cdot 58)=1$. To encipher the message

PUBLIC KEY CRYPTOGRAPHY,

we first translate the letters into their numerical equivalents, and then group these numbers together into blocks of four. We obtain

1520	0111	0802	1004
2402	1724	1519	1406
1700	1507	2423,	

where we have added the dummy letter $X=23$ at the end of the passage to fill out the final block.

We encipher each plaintext block into a ciphertext block, using the relationship

$$
C \equiv P^{13} \quad(\bmod 2537)
$$

For instance, when we encipher the first plaintext block 1520 , we obtain the ciphertext block

$$
C \equiv(1520)^{13} \equiv 95 \quad(\bmod 2537)
$$

Enciphering all the plaintext blocks, we obtain the ciphertext message

0095	1648	1410	1299
0811	2333	2132	0370
1185	1457	1084.	

In order to decipher messages that were enciphered using the RSA cipher, we must find an inverse of $e=13$ modulo $\phi(2537)=\phi(43 \cdot 59)=$ $42 \cdot 58=2436$. A short computation using the Euclidean algorithm, as done in Section 3.2, shows that $d=937$ is an inverse of 13 modulo 2436. Consequently, to decipher the cipher text block C, we use the relationship

$$
P \equiv C^{937}(\bmod 2537), 0 \leqslant P \leqslant 2537
$$

which is valid because

$$
C^{937} \equiv\left(P^{13}\right)^{937} \equiv\left(P^{2436}\right)^{5} P \equiv P \quad(\bmod 2537)
$$

note that we have used Euler's theorem to see that

$$
P^{\phi(2537)}=P^{2436} \equiv 1(\bmod 2537)
$$

when $(P, 2537)=1$ (which is true for all of the plaintext blocks in our example).

To understand how the RSA cipher system fulfills the requirements of a public-key cipher system, first note that each individual can find two large primes p and q, with 100 decimal digits, in just a few minutes of computer time. These primes can be found by picking odd integers with 100 digits at random; by the prime number theorem, the probability that such an integer is prime is approximately $2 / \log 10^{100}$. Hence, we expect to find a prime after examining an average of $1 /\left(2 / \log 10^{100}\right)$, or approximately 115 , such integers. To test these randomly chosen odd integers for primality, we use Rabin's probabilistic primality test discussed in Section 5.2. For each of these 100digit odd integers we perform Miller's test for 100 bases less than the integer; the probability that a composite integer passes all these tests is less than 10^{-60}. The procedure we have just outlined requires only a few minutes of computer time to find a 100 -digit prime, and each individual need do it only twice.

Once the primes p and q have been found, an enciphering exponent e should be chosen with $(e, \phi(p q))=1$. One suggestion for choosing e is to take any prime greater than both p and q. No matter how e is found, it should be true that $2^{e}>n=p q$, so that it is impossible to recover the
plaintext block $P, P \neq 0$ or 1 , just by taking the e th root of the integer C with $C \equiv P^{e}(\bmod n), 0<C<n$. As long as $2^{e}>n$, every message other than $P=0$ and 1 , is enciphered by exponentiation followed by a reduction modulo n.

We note that the modular exponentiation needed for enciphering messages using the RSA cipher system can be done using only a few seconds of computer time when the modulus, exponent, and base in the modular exponentiation have as many as 200 decimal digits. Also, using the Euclidean algorithm, we can rapidly find an inverse d of the enciphering exponent e modulo $\phi(n)$ when the primes p and q are known, so that $\phi(n)=\phi(p q)=(p-1)(q-1)$ is known.

To see why knowledge of the enciphering key (e, n) does not easily lead to the deciphering key (d, n), note that to find d, an inverse of e modulo $\phi(n)$, requires that we first find $\phi(n)=\phi(p q)=(p-1)(q-1)$. Note that finding $\phi(n)$ is not easier than factoring the integer n. To see why, note that $p+q=n-\phi(n)+1$ and $p-q=\sqrt{(p+q)^{2}-4 p q}=\sqrt{(p+q)^{2}-4 n}$, so that $p=1 / 2[(p+q)+(p-q)]$ and $q=1 / 2[(p+q)+(p-q)]$, and consequently p and q can easily be found when $n=p q$ and $\phi(n)=(p-1)(q-1)$ are known. Note that when p and q both have around 100 decimal digits, $n=p q$ has around 200 decimal digits. From Table 2.1, we see that using the fastest factorization algorithm known, 3.8×10^{9} years of computer time are required to factor an integer of this size. Also, if the integer d is known, but $\phi(n)$ is not, then n may also be factored easily, since ed -1 is a multiple of $\phi(n)$ and there are special algorithms for factoring an integer n using any multiple of $\phi(n)$ (see Miller [72]). It has not been proven that it is impossible to decipher messages enciphered using the RSA cipher system without factoring n, but so far no such method has been discovered. As yet, all deciphering methods suggested that work in general are equivalent to factoring n, and as we have remarked, factoring large integers seems to be an intractable problem, requiring tremendous amounts of computer time.

A few extra precautions should be taken in choosing the primes p and q to be used in the RSA cipher system to prevent the use of special rapid techniques to factor $n=p q$. For example, both $p-1$ and $q-1$ should have large prime factors, $(p-1, q-1)$ should be small, and p and q should have decimal expansions differing in length by a few digits.

For the RSA cipher system, once the modulus n has been factored, it is easy to find the deciphering transformation from the enciphering transformation. It may be possible to somehow find the deciphering transformation from the enciphering transformation without factoring n, although this seems unlikely. Rabin [92] has discovered a variant of the RSA
cipher system for which factorization of the modulus n has almost the same computational complexity as obtaining the deciphering transformation from the enciphering transformation. To describe Rabin's cipher system, let $n=p q$, where p and q are odd primes, and let b be an integer with $0 \leqslant b<n$. To encipher the plaintext message P, we form

$$
C \equiv P(P+b)(\bmod n)
$$

We will not discuss the deciphering procedure for Rabin ciphers here, because it relies on some concepts we have not yet developed (see problem 36 in Section 9.1). However, we remark that there are four possible values of P for each ciphertext C such that $C \equiv P(P+b)(\bmod n)$, an ambiguity which complicates the deciphering process. When p and q are known, the deciphering procedure for a Rabin cipher can be carried out rapidly since $O(\log n)$ bit operations are needed.

Rabin has shown that if there is an algorithm for deciphering in this cipher system, without knowledge of the primes p and q, that requires $f(n)$ bit operations, then there is an algorithm for the factorization of n requiring only $2(f(n)+\log n)$ bit operations. Hence the process of deciphering messages enciphered with a Rabin cipher without knowledge of p and q is a problem of computational complexity similar to that of factorization.

Public-key cipher systems can also be used to send signed messages. When signatures are used, the recipient of a message is sure that the message came from the sender, and can convince an impartial judge that only the sender could be the source of the message. This authentication is needed for electronic mail, electronic banking, and electronic stock market transactions. To see how the RSA cipher system can be used to send signed messages, suppose that individual i wishes to send a signed message to individual j. The first thing that individual i does to a plaintext block P is to compute

$$
S=D_{k_{i}}(P) \equiv P^{d_{i}}\left(\bmod n_{i}\right)
$$

where $\left(d_{i}, n_{i}\right)$ is the deciphering key for individual i, which only individual i knows. Then, if $n_{j}>n_{i}$, where (e_{j}, n_{j}) is the enciphering key for individual j, individual i enciphers S by forming

$$
C=E_{k_{j}}(S) \equiv S^{e_{j}}\left(\bmod n_{j}\right), \quad 0<C<n_{j}
$$

When $n_{j}<n_{i}$ individual i splits S into blocks of size less than n_{j} and enciphers each block using the enciphering transformation $E_{k_{j}}$.

For deciphering, individual j first uses the private deciphering transformation D_{k}, to recover S, since

$$
D_{k_{j}}(C)=D_{k_{j}}\left(E_{k_{j}}(S)\right)=S
$$

To find the plaintext message P, supposedly sent by individual i, individual j next uses the public enciphering transformation $E_{k_{t}}$, since

$$
E_{k_{1}}(S)=E_{k_{1}}\left(D_{k_{1}}(P)\right)=P
$$

Here, we have used the identity $E_{k_{1}}\left(D_{k_{1}}(P)\right)=P$, which follows from the fact that

$$
E_{k_{1}}\left(D_{k_{1}}(P)\right) \equiv\left(P^{d_{i}}\right)^{e_{i}} \equiv P^{d_{i} e_{t}} \equiv P \quad\left(\bmod n_{i}\right)
$$

since

$$
d_{i} e_{i} \equiv 1 \quad\left(\bmod \phi\left(n_{i}\right)\right)
$$

The combination of the plaintext block P and the signed version S convinces individual j that the message actually came from individual i. Also, individual i cannot deny sending the message, since no one other than individual i could have produced the signed message S from the original message P.

The RSA cipher system relies on the difference in the computer time needed to find primes and the computer time needed to factor. In Chapter 9, we will use this same difference to develop a technique to "flip coins" electronically.

7.4 Problems

1. Find the primes p and q if $n=p q=4386607$ and $\phi(n)=4382136$.
2. Suppose a cryptanalyst discovers a message P that is not relatively prime to the enciphering modulus $n=p q$ used in a RSA cipher.
a) Show that the cryptanalyst can factor $n . \quad(P, n)=p$ or q
b) Show that it is extremely unlikely that such a message can be discovered by demonstrating that the probability that a message P is not relatively prime to n is $\frac{1}{p}+\frac{1}{q}-\frac{1}{p q}$, and if p and q are both larger than 10^{100}, this probability is less than 10^{-99}.
3. What is the ciphertext that is produced when the RSA cipher with key $(e, n)=(3,2669)$ is used to encipher the message BEST WISHES?
4. If the ciphertext message produced by the RSA cipher with key $(e, n)=(5,2881)$ is 05041874034705152088235607360468 , what is the
plaintext message?
5. Harold and Audrey have as their RSA keys $(3,23 \cdot 47)$ and $(7,31 \cdot 59)$, respectively.
a) Using the method in the text, what is the signed ciphertext sent by Harold to Audrey, when the plaintext message is CHEERS HAROLD?
b) Using the method in the text, what is the signed ciphertext sent by Audrey to Harold when the plaintext message is SINCERELY AUDREY?
In problems 6 and 7, we present two methods for sending signed messages using the RSA cipher system, avoiding possible changes in block sizes.
6. Let H be a fixed integer. Let each individual have two pairs of enciphering keys: $k=(e, n)$ and $k^{*}=\left(e, n^{*}\right)$ with $n<H<n^{*}$, where n and n^{*} are both the product of two primes. Using the RSA cipher system, individual i can send a signed message P to individual j by sending $E_{k_{j}^{*}}\left(D_{k_{1}}(P)\right.$).
a) Show that is is not necessary to change block sizes when the transformation $E_{k_{j}^{*}}$ is applied after $D_{k_{1}}$ has been applied.
b) Explain how individual j can recover the plaintext message P, and why no one other than individual i could have sent the message.
c) Let individual i have enciphering keys $(3,11.71)$ and $(3,29.41)$ so that $781=11.71<1000<1189=29.41$, and let individual j have enciphering keys $(7,19 \cdot 47)$ and $(7,31 \cdot 37)$, so that $893=19 \cdot 47<1000<1147=31 \cdot 37$. What ciphertext message does individual i send to individual j using the method given in this problem when the signed plaintext message is HELLO ADAM? What ciphertext message does individual j send to individual i when the signed plaintext message is GOODBYE ALICE?
7. a) Show that if individuals i and j have enciphering keys $k_{i}=\left(e_{i}, n_{i}\right)$ and $k_{j}=\left(e_{j}, n_{j}\right)$, respectively, where both n_{i} and n_{j} are products of two distinct primes, then individual i can send a signed message P to individual j without needing to change the size of blocks by sending

$$
\begin{aligned}
& E_{k_{1}}\left(D_{k_{1}}(P)\right) \text { if } n_{i}<n_{j} \\
& D_{k_{1}}\left(E_{k_{1}}(P)\right) \text { if } n_{i}>n_{j} .
\end{aligned}
$$

b) How can individual j recover P ?
c) How can individual j guarantee that a message came from individual i ?
d) Let $k_{i}=(11,47 \cdot 61)$ and $k_{j}=(13,43 \cdot 59)$. Using the method described in part (a), what does individual i send to individual j if the message is REGARDS FRED, and what does individual j send to individual i if the message is REGARDS ZELDA?
8. Encipher the message SELL NOW using the Rabin cipher $C \equiv P(P+5)(\bmod 2573)$.

7.4 Computer Projects

Write programs to do the following:

1. Encipher messages with an RSA cipher.
2. Decipher messages that were enciphered using an RSA cipher.
3. Send signed messages using an RSA cipher and the method described in the text.
4. Send signed messages using an RSA cipher and the method in problem 6.
5. Send signal messages using an RSA cipher and the method in problem 7.
6. Encipher messages using a Rabin cipher.

7.5 Knapsack Ciphers

In this section, we discuss cipher systems based on the knapsack problem. Given a set of positive integers $a_{1}, a_{2}, \ldots, a_{n}$ and a sum S of a subset of these integers, the knapsack problem asks which of these integers add together to give S. Another way to phrase the knapsack problem is to ask for the values of $x_{1}, x_{2}, \ldots, x_{n}$, each either 0 or 1 , such that

$$
\begin{equation*}
S=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \tag{7.3}
\end{equation*}
$$

We use an example to illustrate the knapsack problem.
Example. Let $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=(2,7,8,11,12)$. By inspection, we see that there are two subsets of these five integers that add together to give 21, namely $21=2+8+11=2+7+12$. Equivalently, there are exactly two solutions to the equation $2 x_{1}+7 x_{2}+8 x_{3}+11 x_{4}+12 x_{5}=21$, with $x_{i}=0$ or 1 for $i=1,2,3,4,5$, namely $x_{1}=x_{3}=x_{4}=1, \quad x_{2}=x_{5}=0$, and $x_{1}=x_{2}=x_{5}=1, x_{3}=x_{4}=0$.

To verify that equation (7.3) holds, where each x_{i} is either 0 or 1 , requires that we perform at most n additions. On the other hand, to search by trial and error for solutions of (7.3), may require that we check all 2^{n} possibilities for ($x_{1}, x_{2}, \ldots, x_{n}$). The best method known for finding a solution of the knapsack problem requires $O\left(2^{n / 2}\right)$ bit operations, which makes a computer solution of a general knapsack problem extremely infeasible even when $n=100$.

Certain values of the integers $a_{1}, a_{2}, \ldots, a_{n}$ make the solution of the knapsack problem much easier than the solution in the general case. For instance, if $a_{j}=2^{j-1}$, to find the solution of $S=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}$, where $x_{i}=0$ or 1 for $i=1,2, \ldots, n$, simply requires that we find the binary expansion of S. We can also produce easy knapsack problems by choosing the integers $a_{1}, a_{2}, \ldots, a_{n}$ so that the sum of the first $j-1$ of these integers is always less than the j th integer, i.e. so that

$$
\sum_{i=1}^{j-1} a_{i}<a_{j}, \quad j=2,3, \ldots, n
$$

If a sequence of integers $a_{1}, a_{2}, \ldots, a_{n}$ satisfies this inequality, we call the sequence super-increasing.

Example. The sequence 2,3,7,14,27 is super-increasing because $3>2,7>3+2,14>7+3+2$, and $27>14+7+3+2$.

To see that knapsack problems involving super-increasing sequences are easy to solve, we first consider an example.

Example. Let us find the integers from the set 2, 3, 7, 14, 27 that have 37 as their sum. First, we note that since $2+3+7+14<27$, a sum of integers from this set can only be greater than 27 if the sum contains the integer 27. Hence, if $2 x_{1}+3 x_{2}+7 x_{3}+14 x_{4}+27 x_{5}=37$ with each $x_{i}=0$ or 1 , we must have $x_{5}=1$ and $2 x_{1}+3 x_{2}+7 x_{3}+14 x_{4}=10$. Since $14>10, x_{4}$ must be 0 and we have $2 x_{1}+3 x_{2}+7 x_{3}=10$. Since $2+3<7$, we must have $x_{3}=1$ and therefore $2 x_{1}+3 x_{2}=3$. Obviously, we have $x_{2}=1$ and $x_{1}=0$. The solution is $37=3+7+27$.

In general, to solve knapsack problems for a super-increasing sequence a_{1}, a_{2}, \ldots, a_{n}, i.e. to find the values of $x_{1}, x_{2}, \ldots, x_{n}$ with $S=a_{1} x_{1}+a_{2} x_{2}+$ $\cdots+a_{n} x_{n}$ and $x_{i}=0$ or 1 for $i=1,2, \ldots, n$ when S is given, we use the following algorithm. First, we find x_{n} by noting that

$$
x_{n}=\left\{\begin{array}{l}
1 \text { if } \quad S \geqslant a_{n} \\
0 \text { if } \quad S<a_{n} .
\end{array}\right.
$$

Then, we find $x_{n-1}, x_{n-2}, \ldots, x_{1}$, in succession, using the equations

$$
x_{j}=\left\{\begin{array}{l}
1 \text { if } S-\sum_{i=j+1}^{n} x_{i} a_{i} \geqslant a_{j} \\
0 \text { if } S-\sum_{i=j+1}^{n} x_{i} a_{i}<a_{j}
\end{array}\right.
$$

for $j=n-1, n-2, \ldots, 1$.
To see that this algorithm works, first note that if $x_{n}=0$ when $S \geqslant a_{n}$, then $\sum_{i=1}^{n} a_{i} x_{i} \leqslant \sum_{i=1}^{n-1} a_{i}<a_{n} \leqslant S$, contradicting the condition $\sum_{j=1}^{n} a_{j} x_{j}=S$. Similarly, if $x_{j}=0$ when $S-\sum_{i=j+1}^{n} x_{i} a_{i} \geqslant a_{j}$, then $\sum_{i=1}^{n} a_{i} x_{i} \leqslant \sum_{i=1}^{j-1} x_{i}+$ $\sum_{i=j+1}^{n} x_{i} a_{i}<a_{j}+\sum_{i=j+1}^{n} x_{i} a_{i} \leqslant S$, which is again a contradiction.

Using this algorithm, knapsack problems based on super-increasing sequences can be solved extremely quickly. We now discuss a cipher system based on this observation. This cipher system was invented by Merkle and Hellman [90], and was considered a good choice for a public-key cipher system until recently. We will comment more about this later.

The ciphers that we describe here are based on transformed super-increasing sequences. To be specific, let $a_{1}, a_{2}, \ldots, a_{n}$ be super-increasing and let m be a positive integer with $m>2 a_{n}$. Let w be an integer relatively prime to m with inverse \bar{w} modulo m. We form the sequence $b_{1}, b_{2}, \ldots, b_{n}$ where $b_{j} \equiv w a_{j}(\bmod m)$ and $0<b_{j}<m$. We cannot use a special technique to solve a knapsack problem of the type $S=\sum_{i=1}^{n} b_{i} x_{i}$ where S is a positive integer, since the sequence $b_{1}, b_{2}, \ldots, b_{n}$ is not super-increasing. However, when \bar{w} is known, we can find

$$
\begin{equation*}
\bar{w} S=\sum_{i=1}^{n} \bar{w} b_{i} x_{i} \equiv \sum_{i=1}^{n} a_{i} x_{i}(\bmod m) \tag{7.4}
\end{equation*}
$$

since $\bar{w} b_{j} \equiv a_{j}(\bmod m)$. From (7.4) we see that

$$
S_{0}=\sum_{i=1}^{n} a_{i} x_{i}
$$

where S_{0} is the least positive residue of $\bar{w} S$ modulo m. We can easily solve the equation

$$
S_{0}=\sum_{i=1}^{n} a_{i} x_{i}
$$

since $a_{1}, a_{2}, \ldots, a_{n}$ is super-increasing. This solves the knapsack problem

$$
S=\sum_{i=1}^{n} b_{i} x_{i}
$$

since $b_{j} \equiv w a_{j}(\bmod m)$ and $0 \leqslant b_{j}<m$. We illustrate this procedure with an example.

Example. The super-increasing sequence $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=(3,5,9,20,44)$ can be transformed into the sequence $\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right)=(23,68,69,5,11)$ by taking $b_{j} \equiv 67 a_{j}(\bmod 89)$, for $j=1,2,3,4,5$. To solve the knapsack problem $23 x_{1}+68 x_{2}+69 x_{3}+5 x_{4}+11 x_{5}=84$, we can multiply both sides of this equation by 4 , an inverse of 67 modulo 89 , and reduce modulo 89 , to obtain the congruence $3 x_{1}+5 x_{2}+9 x_{3}+20 x_{4}+44 x_{5} \equiv 336 \equiv 69(\bmod 89)$. Since $89>3+5+9+20+44$, we can conclude that $3 x_{1}+5 x_{2}+$ $9 x_{3}+20 x_{4}+44 x_{5}=69$. The solution of this easy knapsack problem is $x_{5}=x_{4}=x_{2}=1$ and $x_{3}=x_{1}=0$. Hence, the original knapsack problem has as its solution $68+5+11=84$.

The cipher system based on the knapsack problem works as follows. Each individual chooses a super-increasing sequence of positive integers of a specified length, say N, e.g. $a_{1}, a_{2}, \ldots, a_{N}$, as well as a modulus m with $m>2 a_{N}$ and a multiplier w with $(m, w)=1$. The transformed sequence $b_{1}, b_{2}, \ldots, b_{N}$, where $b_{j} \equiv w a_{j}(\bmod m), 0<b_{j}<m$, for $j=1,2, \ldots, N$, is made public. When someone wishes to send a message P to this individual, the message is first translated into a string of 0's and 1's using the binary equivalents of letters, as shown in Table 7.10. This string of zeros and ones is next split into segments of length N (for simplicity we suppose that the length of the string is divisible by N; if not, we can simply fill out the last block with all 1 's). For each block, a sum is computed using the sequence $b_{1}, b_{2}, \ldots, b_{N}$; for instance, the block $x_{1} x_{2} \ldots x_{N}$ gives $S=b_{1} x_{1}+b_{2} x_{2}+\cdots+b_{N} x_{N}$. Finally, the sums generated by each block form the ciphertext message.

We note that to decipher ciphertext generated by the knapsack cipher, without knowledge of m and w, requires that a group of hard knapsack problems of the form

$$
\begin{equation*}
S=b_{1} x_{1}+b_{2} x_{2}+\cdots+b_{N} x_{N} \tag{7.5}
\end{equation*}
$$

be solved. On the other hand, when m and w are known, the knapsack problem (7.5) can be transformed into an easy knapsack problem, since

letter	binary equivalent	letter	binary equivalent
A	00000	N	01101
B	00001	O	01110
C	00010	P	01111
D	00011	Q	10000
E	00100	R	10001
F	00101	S	10010
G	00110	T	10011
H	00111	U	10100
I	01000	V	10101
J	01001	W	10110
K	01010	X	10111
L	01011	Y	11000
M	01100	Z	11001

Table 7.10. The Binary Equivalents of Letters.

$$
\begin{aligned}
\bar{w} S & =\bar{w} b_{1} x_{1}+\bar{w} b_{2} x_{2}+\cdots+\bar{w} b_{N} x_{N} \\
& \equiv a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{N} x_{N}(\bmod m)
\end{aligned}
$$

where $\bar{w} b_{j}=a_{j}(\bmod m)$, where \bar{w} is an inverse of w modulo m, so that

$$
\begin{equation*}
S_{0}=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{N} x_{N} \tag{7.6}
\end{equation*}
$$

where S_{0} is the least positive residue of $\bar{w} S$ modulo m. We have equality in (7.6), since both sides of the equation are positive integers less than m which are congruent modulo m.

We illustrate the enciphering and deciphering procedures of the knapsack cipher with an example. We start with the super-increasing sequence $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}\right)=(2,11,14,29,58,119,241,480,959,1917)$. We take $m=3837$ as the enciphering modulus, so that $m>2 a_{10}$, and $w=1001$ as the multiplier, so that $(m, w)=1$, to transform the super-increasing sequence into the sequence $(2002,3337,2503,2170,503,172,3347,855,709,417)$.

To encipher the message
we first translate the letters of the message into their five digit binary equivalents, as shown in Table 7.10, and then group these digits into blocks of ten, to obtain

1000100100	0111101011	1100001000
0110001100	0010000011	0100000000
1001100100	0101111000	

For each block of ten binary digits, we form a sum by adding together the appropriate terms of the sequence (2002, 3337, 2503, 2170, 503, 172, 3347, $855,709,417$) in the slots corresponding to positions of the block containing a digit equal to 1 . This gives us

$$
\begin{array}{llllllll}
3360 & 12986 & 8686 & 10042 & 3629 & 3337 & 5530 & 9729 .
\end{array}
$$

For instance, we compute the first sum, 3360, by adding 2002, 503, and 855.
To decipher, we find the least positive residue modulo 3837 of 23 times each sum, since 23 is an inverse of 1001 modulo 3837 , and then we solve the corresponding easy knapsack problem with respect to the original superincreasing sequence $(2,11,14,29,58,119,241,480,959,1917)$. For example, to decipher the first block, we find that $3360 \cdot 23 \equiv 540(\bmod 3837)$, and then note that $540=480+58+2$. This tells us that the first block of plaintext binary digits is 1000100100 .

Recently, Shamir [94] has shown that knapsack ciphers are not satisfactory for public-key cryptography. The reason is that there is an efficient algorithm for solving knapsack problems involving sequences $b_{1}, b_{2}, \ldots, b_{n}$ with $b_{j} \equiv w a_{j}(\bmod m)$, where w and m are relatively prime positive integers and $a_{1}, a_{2}, \ldots, a_{n}$ is a super-increasing sequence. The algorithm found by Shamir can solve these knapsack problems using only $O(P(n))$ bit operations, where P is a polynomial, instead of requiring exponential time, as is required for general knapsack problems, involving sequences of a general nature.

There are several possibilities for altering this cipher system to avoid the weakness found by Shamir. One such possibility is to choose a sequence of pairs of relatively prime integers $\left(w_{1}, m_{1}\right),\left(w_{2}, m_{2}\right), \ldots,\left(w_{r}, m_{r}\right)$, and then form the series of sequences

$$
\begin{aligned}
& b_{j}^{(1)} \equiv w_{1} a_{j}\left(\bmod m_{1}\right) \\
& b_{j}^{(2)} \equiv w_{2} b_{j}^{(1)}\left(\bmod m_{2}\right) \\
& \cdot \cdot \\
& \cdot \\
& b_{j}^{(r)} \equiv w_{r} b_{j}^{(r-1)}\left(\bmod m_{r}\right),
\end{aligned}
$$

for $\mathrm{j}=1,2, \ldots, \mathrm{n}$. We then use the final sequence $b_{1}^{(r)}, b_{2}^{(r)}, \ldots, b_{n}^{(r)}$ as the enciphering sequence. As of mid-1983, no efficient algorithm had been found for solving knapsack problems involving sequences obtained by iterating modular multiplications with different moduli (although there are several promising methods for the production of such algorithms).

7.5 Problems

1. Decide whether each of the following sequences is super-increasing
a) $(3,5,9,19,40)$
b) $(2,6,10,15,36)$
c) $(3,7,17,30,59)$
d) $(11,21,41,81,151)$.
2. Show that if $a_{1}, a_{2}, \ldots, a_{n}$ is a super-increasing sequence, then $a_{j} \geqslant 2^{j-1}$ for $j=1,2, \ldots, n$.
3. Show that the sequence $a_{1}, a_{2}, \ldots, a_{n}$ is super-increasing if $a_{j+1}>2 a_{j}$ for $j=1,2, \ldots, n-1$.
4. Find all subsets of the integers $2,3,4,7,11,13,16$ that have 18 as their sum.
5. Find the sequence obtained from the super-increasing sequence $(1,3,5,10,20,41,80)$ when modular multiplication is applied with multiplier $w=17$ and modulus $m=162$.
6. Encipher the message BUY NOW using the knapsack cipher based on the sequence obtained from the super-increasing sequence ($17,19,37,81,160$), by performing modular multiplication with multiplier $w=29$ and modulus $m=331$.
7. Decipher the ciphertext 402105150325 that was enciphered by the knapsack cipher based on the sequence $(306,374,233,19,259)$. This sequence is obtained by using modular multiplication with multiplier $w=17$ and modulus $m=464$, to transform the super-increasing sequence $(18,22,41,83,179)$.
8. Find the sequence obtained by applying successively the modular multiplications with multipliers and moduli $(7,92)$, $(11,95)$, and $(6,101)$, respectively, on the super-increasing sequence $(3,4,8,17,33,67)$.
9. What process can be employed to decipher messages that have been enciphered using knapsack ciphers that involve sequences arising from iterating modular multiplications with different moduli?
10. A multiplicative knapsack problem is a problem of the following type: Given positive integers $a_{1}, a_{2}, \ldots, a_{n}$ and a positive integer P, find the subset, or subsets, of these integers with product P, or equivalently, find all solutions of

$$
P=a_{1}^{x_{1}} a_{2}^{x_{2}} \cdots a_{n}^{x}
$$

where $x_{j}=0$ or 1 for $j=1,2, \ldots, n$.
a) Find all products of subsets of the integers $2,3,5,6$, and 10 equal to 60 .
b) Find all products of subsets of the integers $8,13,17,21,95,121$ equal to 15960 .
c) Show that if the integers $a_{1}, a_{2}, \ldots, a_{n}$ are mutually relatively prime, then the multiplicative knapsack problem $P=a_{1}^{x_{1}} a_{2}^{x_{2}} \cdots a_{n}^{x_{4}}, x_{j}=0$ or 1 for $j=1,2, \ldots, n$, is easily solved from the prime factorizations of the integers $P, a_{1}, a_{2}, \ldots, a_{n}$, and show that if there is a solution, then it is unique.
d) Show that by taking logarithms to the base b modulo m, where $(b, m)=1$ and $0<b<m$, the multiplicative knapsack problem

$$
P=a_{1}^{x_{1}} a_{2}^{x_{1}} \cdots a_{n}^{x}
$$

is converted into an additive knapsack problem

$$
S=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n}
$$

where $S, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are the logarithms of $P, a_{1}, a_{2}, \ldots, a_{n}$ to the base b modulo m, respectively.
e) Explain how parts (c) and (d) can be used to produce ciphers where messages are easily deciphered when the mutually relatively prime integers $a_{1}, a_{2}, \ldots, a_{n}$ are known, but cannot be deciphered quickly when the integers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are known.

7.5 Computer Projects

Write programs to do the following:

1. Solve knapsack problems by trial and error.
2. Solve knapsack problems involving super-increasing sequences.
3. Encipher messages using knapsack ciphers.
4. Decipher messages that were enciphered using knapsack ciphers.
5. Encipher and decipher messages using knapsack ciphers involving sequences arising from iterating modular multiplications with different moduli.
6. Solve multiplicative knapsack problems involving sequences of mutually relatively prime integers (see problem 10).

7.6 Some Applications to Computer Science

In this section we describe two applications of cryptography to computer science. The Chinese remainder theorem is used in both applications.

The first application involves the enciphering of a database. A database is a collection of computer files or records. Here we will show how to encipher an entire database so that individual files may be deciphered without jeopardizing the security of other files in the database.

Suppose that a database B contains the n files $F_{1}, F_{2}, \ldots, F_{n}$. Since each file is a string of 0 's and 1 's, we can consider each file to be a binary integer. We first choose n distinct primes $m_{1}, m_{2}, \ldots, m_{n}$ with $m_{j}>F_{j}$ for $j=1,2, \ldots, n$. As the ciphertext we use an integer C that is congruent to F_{j} modulo m_{j} for $j=1,2, \ldots, n$; the existence of such an integer is guaranteed by the Chinese remainder theorem. We let $M=m_{1} m_{2} \cdots m_{n}$ and $M_{j}=M / m_{j}$ for $j=1,2, \ldots, n$. Furthermore, let $e_{j}=M_{j} \cdot y_{j}$ where y_{j} is an inverse of M_{j} modulo m_{j}. For the ciphertext, we take the integer C with

$$
C \equiv \sum_{j=1}^{n} e_{j} F_{j}(\bmod M), \quad 0 \leqslant C<M
$$

The integers $e_{1}, e_{2}, \ldots, e_{n}$ serve as the write subkeys of the cipher.
To retrieve the j th file F_{j} from the ciphertext C, we simply note that

$$
F_{j} \equiv C\left(\bmod m_{j}\right), 0 \leqslant F_{j}<m_{j}
$$

We call the moduli $m_{1}, m_{2}, \ldots, m_{n}$ the read subkeys of the cipher. Note that knowledge of m_{j} permits access only to file j; for access to the other files, it is necessary to know the moduli other than m_{j}.

We illustrate the enciphering and deciphering procedures for databases with the following example.

Example. Suppose our database contains four files F_{1}, F_{2}, F_{3}, and F_{4}, represented by the binary integers $(0111)_{2},(1001)_{2},(1100)_{2}$, and $(1111)_{2}$, or in decimal notation $F_{1}=7, F_{2}=9, F_{3}=12$ and $F_{4}=15$. We pick four primes, $\quad m_{1}=11, m_{2}=13, m_{3}=17$, and $m_{4}=19$, greater than the corresponding integers representing the files. To encipher this database, we
use the Chinese remainder theorem to find the ciphertext C which is the positive integer with $C \equiv 7(\bmod 11), C \equiv 9(\bmod 13), C \equiv 12(\bmod 17)$, and $C \equiv 15(\bmod 19)$, less than $M=11 \cdot 13 \cdot 17 \cdot 19=46189$. To compute C we first find $\quad M_{1}=13 \cdot 17 \cdot 19=4199, \quad M_{2}=11 \cdot 17 \cdot 19=3553$, $M_{3}=11 \cdot 13 \cdot 19=2717$, and $M_{4}=11 \cdot 13 \cdot 17=2431$. We easily find that $y_{1}=7, y_{2}=10, y_{3}=11$ and $y_{4}=18$ are inverses of M_{j} modulo m_{j} for $j=1,2,3,4$. Hence, the write subkeys are $e_{1}=4199.7=29393, e_{2}=$ $3553 \cdot 10=35530, e_{3}=2717 \cdot 11=29887$, and $e_{4}=2431 \cdot 18=43758$. To construct the ciphertext, we note that

$$
\begin{aligned}
C & \equiv e_{1} F_{1}+e_{2} F_{2}+e_{3} F_{3}+e_{4} F_{4} \\
& \equiv 29393 \cdot 7+35530 \cdot 9+29887 \cdot 12+43758 \cdot 15 \\
& \equiv 1540535 \\
& \equiv 16298 \quad(\bmod 46189)
\end{aligned}
$$

so that $C=16298$. The read subkeys are the integers $m_{j, j}=1,2,3,4$. To recover the file F_{j} from C, we simply find the least positive residue of C modulo m_{j}. For instance, we find F_{1} by noting that

$$
F_{1} \equiv 16298 \equiv 7(\bmod 11)
$$

We now discuss another application of cryptography, namely a method for sharing secrets. Suppose that in a communications network, there is some vital, but extremely sensitive information. If this information is distributed to several individuals, it becomes much more vulnerable to exposure; on the other hand, if this information is lost, there are serious consequences. An example of such information is the master key K used for access to the password file in a computer system.

In order to protect this master key K from both loss and exposure, we construct shadows $k_{1}, k_{2}, \ldots, k_{r}$ which are given to r different individuals. We will show that the key K can be produced easily from any s of these shadows, where s is a positive integer less than r, whereas the knowledge of less than s of these shadows does not permit the key K to be found. Because at least s different individuals are needed to find K, the key is not vulnerable to exposure. In addition, the key K is not vulnerable to loss, since any s individuals from the r individuals with shadows can produce K. Schemes with the properties we have just described are called (s, r) threshold schemes.

To develop a system that can be used to generate shadows with these properties, we use the Chinese remainder theorem. We choose a prime p greater than the key K and a sequence of pairwise relatively prime integers $m_{1}, m_{2}, \ldots, m_{r}$ that are not divisible by p, such that

$$
m_{1}<m_{2}<\cdots<m_{r}
$$

and

$$
\begin{equation*}
m_{1} m_{2} \cdots m_{s}>p m_{r} m_{r-1} \cdots m_{r-s+2} \tag{7.7}
\end{equation*}
$$

Note that the inequality (7.7) states that the product of the s smallest of the integers m_{j} is greater than the product of p and the $s-1$ largest of the integers m_{j}. From (7.7), we see that if $M=m_{1} m_{2} \cdots m_{s}$, then M / p is greater than the product of any set of $s-1$ of the integers m_{j}.

Now let t be a nonnegative integer less than M / p that is chosen at random. Let

$$
K_{0}=K+t p
$$

so that $0 \leqslant K_{0} \leqslant M-1$ (since $0 \leqslant K_{0}=K+t p<p+t p=(t+1) p \leqslant$ $(M / p) p=M)$.

To produce the shadows $k_{1}, k_{2}, \ldots, k_{r}$, we let k_{j} be the integer with

$$
k_{j} \equiv K_{0}\left(\bmod m_{j}\right), 0 \leqslant k_{j}<m_{j}
$$

for $j=1,2, \ldots, r$. To see that the master key K can be found by any s individuals possessing shadows, from the total of r individuals with shadows, suppose that the s shadows $k_{j_{1}}, k_{j_{2}}, \ldots, k_{j_{0}}$ are available. Using the Chinese remainder theorem, we can easily find the least positive residue of K_{0} modulo M_{j} where $M_{j}=m_{j_{1}} m_{j_{2}} \cdots m_{j_{s}}$. Since we know that $0 \leqslant K_{0}<M \leqslant M_{j}$, we can determine K_{0}, and then find $K=K_{0}-t p$.

On the other hand, suppose that we know only the $s-1$ shadows $k_{i_{1}}, k_{i_{2}}, \ldots, k_{i_{i-1}}$. By the Chinese remainder theorem, we can determine the least positive residue a of K_{0} modulo M_{i} where $M_{i}=m_{i_{1}} m_{i_{2}} \cdots m_{i_{t-1}-1}$. With these shadows, the only information we have about K_{0} is that a is the least positive residue of K_{0} modulo M_{j} and $0 \leqslant K_{0}<M$. Consequently, we only know that

$$
K_{0}=a+x M_{i}
$$

where $0 \leqslant x<M / M_{i}$. From (7.7), we can conclude that $M / M_{i}>p$, so that as x ranges through the positive integers less than $M / M_{i}, x$ takes every value in a full set of residues modulo p. Since (m_{j}, p) $=1$ for $j=1,2, \ldots, s$, we know that $\left(M_{i}, p\right)=1$, and consequently, $a+x M_{i}$ runs through a full set of residues modulo p as x does. Hence, we see that the knowledge of $s-1$ shadows is insufficient to determine K_{0}, as K_{0} could be in any of the p
congruence classes modulo p.
We use an example to illustrate this threshold scheme.
Example. Let $K=4$ be the master key. We will use a $(2,3)$ threshold scheme of the kind just described with $p=7, m_{1}=11, m_{2}=12$, and $m_{3}=17$, so that $M=m_{1} m_{2}=132>p m_{3}=119$. We pick $t=14$ randomly from among the positive integers less than $M / p=132 / 7$. This gives us

$$
K_{0}=K+t p=4+14 \cdot 7=102
$$

The three shadows k_{1}, k_{2}, and k_{3} are the least positive residues of K_{0} modulo m_{1}, m_{2}, and m_{3}, i.e.

$$
\begin{aligned}
& k_{1} \equiv 102 \equiv 3(\bmod 11) \\
& k_{2} \equiv 102 \equiv 6(\bmod 12) \\
& k_{3} \equiv 102 \equiv 0(\bmod 17)
\end{aligned}
$$

so that the three shadows are $k_{1}=3, k_{2}=6$, and $k_{3}=0$.
We can recover the master key K from any two of the three shadows. Suppose we know that $k_{1}=3$ and $k_{3}=0$. Using the Chinese remainder theorem, we can determine K_{0} modulo $m_{1} m_{3}=11 \cdot 17=187$, i.e. since $K_{0} \equiv 3(\bmod 11)$ and $K_{0} \equiv 0(\bmod 17)$ we have $k_{0} \equiv 102(\bmod 187)$. Since $0 \leqslant K_{0}<M=132<187$, we know that $K_{0}=102$, and consequently the master key is $K=K_{0}-t p=102-14 \cdot 7=4$.

We will develop another threshold scheme in problem 12 of Section 8.2. The interested reader should also consult Denning [47] for related topics in cryptography.

7.6 Problems

1. Suppose that the database B contains four files, $F_{1}=4, F_{2}=6, F_{3}=10$, and $F_{4}=13$. Let $m_{1}=5, m_{2}=7, m_{3}=11$, and $m_{4}=16$ be the read subkeys of the cipher used to encipher the database.
a) What are the write subkeys of the cipher?
b) What is the ciphertext C corresponding to the database?
2. When the database B with three files F_{1}, F_{2}, and F_{3} is enciphered using the method described in the text, with read subkeys $m_{1}=14, m_{2}=15$, and $m_{3}=19$, the corresponding ciphertext is $C=619$. If file F_{3} is changed from $F_{3}=11$ to $F_{3}=12$, what is the updated value of the ciphertext C ?
3. Decompose the master key $K=3$ into three shadows using a $(2,3)$ threshold scheme of the type described in the text with $p=5, m_{1}=8, m_{2}=9, m_{3}=11$ and with $t=13$.
4. Show how to recover the master key K from each of the three pairs of shadows found in problem 3.

7.6 Computer Projects

Write programs to do the following:

1. Using the system described in the text, encipher databases and recover files from the ciphertext version of databases.
2. Update files in the ciphertext version of databases (see problem 2).
3. Find the shadows in a threshold scheme of the type described in the text.
4. Recover the master key from a set of shadows.

8

Primitive Roots

8.1 The Order of an Integer and Primitive Roots

From Euler's theorem, if m is a positive integer and if a is an integer relatively prime to m, then $a^{\phi(m)} \equiv 1(\bmod m)$. Therefore, at least one positive integer x satisfies the congruence $a^{x} \equiv 1(\bmod m)$. Consequently, by the well-ordering property, there is a least positive integer x satisfying this congruence.

Definition. Let a and m be relatively prime positive integers. Then, the least positive integer x such that $a^{x} \equiv 1(\bmod m)$ is called the order of a modulo m.

We denote the order of a modulo m by ord ${ }_{m} a$.
Example. To find the order of 2 modulo 7, we compute the least positive residues modulo 7 of powers of 2 . We find that

$$
2^{1} \equiv 2(\bmod 7), 2^{2} \equiv 4(\bmod 7), 2^{3} \equiv 1(\bmod 7)
$$

Therefore, $\operatorname{ord}_{7} 2=3$.
Similarly, to find the order of 3 modulo 7 we compute

$$
\begin{aligned}
& 3^{1} \equiv 3(\bmod 7), 3^{2} \equiv 2(\bmod 7), 3^{3} \equiv 6(\bmod 7) \\
& 3^{4} \equiv 4(\bmod 7), 3^{5} \equiv 5(\bmod 7), 3^{6} \equiv 1(\bmod 7)
\end{aligned}
$$

We see that $\operatorname{ord}_{7} 3=6$.

In order to find all solutions of the congruence $a^{x} \equiv 1(\bmod m)$, we need the following theorem.

Theorem 8.1. If a and n are relatively prime integers with $n>0$, then the positive integer x is a solution of the congruence $a^{x} \equiv 1(\bmod n)$ if and only if $\operatorname{ord}_{n} a \mid x$.

Proof. If $\operatorname{ord}_{n} a \mid x$, then $x=k \cdot \operatorname{ord}_{n} a$ where k is a positive integer. Hence,

$$
a^{x}=a^{k \cdot \operatorname{ord}_{n} a}=\left(a^{\operatorname{ord}_{n} a}\right)^{k} \equiv 1(\bmod n)
$$

Conversely, if $a^{x} \equiv 1(\bmod n)$, we first use the division algorithm to write

$$
x=q \cdot \operatorname{ord}_{n} a+r, \quad 0 \leqslant r<\operatorname{ord}_{n} a .
$$

From this equation, we see that

$$
a^{x}=a^{q \cdot \operatorname{ord}_{a} a+r}=\left(a^{\operatorname{ord}_{a} a}\right)^{q} a^{r} \equiv a^{r}(\bmod n)
$$

Since $a^{x} \equiv 1(\bmod n)$, we know that $a^{r} \equiv 1(\bmod n)$. From the inequality $0 \leqslant r<\operatorname{ord}_{n} a$, we conclude that $r=0$, since, by definition, $y=\operatorname{ord}_{n} a$ is the least positive integer such that $a^{y} \equiv 1(\bmod n)$. Because $r=0$, we have $x=a \cdot \operatorname{ord}_{n} a$. Therefore, $\operatorname{ord}_{n} a \mid x$.

This theorem leads to the following corollary.
Corollary 8.1. If a and n are relatively prime integers with $n>0$, then $\operatorname{ord}_{n} a \mid \phi(n)$.

Proof. Since (a, n) $=1$, Euler's theorem tells us that

$$
a^{\phi(n)} \equiv 1(\bmod n)
$$

Using Theorem 8.1, we conclude that $\operatorname{ord}_{n} a \mid \phi(n)$.
We can use Corollary 8.1 as a shortcut when we compute orders. The following example illustrates the procedure.

Example. To find the order of 5 modulo 17, we first note that $\phi(17)=16$. Since the only positive divisors of 16 are $1,2,4,8$, and 16 , from Corollary 8.1 these are the only possible values of $\operatorname{ord}_{17} 5$. Since

$$
\begin{aligned}
& 5^{1} \equiv 5(\bmod 17), 5^{2} \equiv 8(\bmod 17), 5^{4} \equiv 13(\bmod 17) \\
& 5^{8} \equiv 16(\bmod 17), 5^{16} \equiv 1(\bmod 17)
\end{aligned}
$$

we conclude that $\operatorname{ord}_{17} 5=16$.

The following theorem will be useful in our subsequent discussions.
Theorem 8.2. If a and n are relatively prime integers with $n>0$, then $a^{i} \equiv a^{j},(\bmod n)$ where i and j are nonnegative integers, if and only if $i \equiv j\left(\bmod \operatorname{ord}_{n} a\right)$.

Proof. Suppose that $i \equiv j\left(\bmod \operatorname{ord}_{n} a\right)$, and $0 \leqslant j \leqslant i$. Then, we have $i=j+k \cdot \operatorname{ord}_{n} a$, where k is a positive integer. Hence,

$$
a^{i}=a^{j+k \cdot \operatorname{ord}_{n} a}=a^{j}\left(a^{\operatorname{ord}_{n} a}\right)^{k} \equiv a^{j}(\bmod n),
$$

since $a^{\operatorname{ord}_{n} a} \equiv 1(\bmod n)$.
Conversely, assume that $a^{i} \equiv a^{j}(\bmod n)$ with $i \geqslant j$. Since $(a, n)=1$, we know that $\left(a^{j}, n\right)=1$. Hence, using Corollary 3.1, the congruence

$$
a^{i} \equiv a^{j} a^{i-j} \equiv a^{j}(\bmod n)
$$

implies, by cancellation of a^{j}, that

$$
a^{i-j} \equiv 1(\bmod n)
$$

From Theorem 8.1, it follows that $\operatorname{ord}_{n} a$ divides $i-j$, or equivalently, $i \equiv j\left(\bmod \operatorname{ord}_{n} a\right)$.

Given an integer n, we are interested in integers a with order modulo n equal to $\phi(n)$. This is the largest possible order modulo n.

Definition. If r and n are relatively prime integers with $n>0$ and if $\operatorname{ord}_{n} r=\phi(n)$, then r is called a primitive root modulo n.

Example. We have previously shown that $\operatorname{ord}_{7} 3=6=\phi(7)$. Consequently, 3 is a primitive root modulo 7. Likewise, since $\operatorname{ord}_{7} 5=6$, as can easily be verified, 5 is also a primitive root modulo 7 .

Not all integers have primitive roots. For instance, there are no primitive roots modulo 8 . To see this, note that only integers less than 8 and relatively prime to 8 are $1,3,5$, and 7 , and $\operatorname{ord}_{8} 1=1$, while $\operatorname{ord}_{8} 3=\operatorname{ord}_{8} 5=\operatorname{ord}_{8} 7=2$. Since $\phi(8)=4$, there are no primitive roots modulo 8 . In our subsequent discussions, we will find all integers possessing primitive roots.

To indicate one way in which primitive roots are useful, we give the following theorem.

Theorem 8.3. If r and n are relatively prime positive integers with $n>0$ and if r is a primitive root modulo n, then the integers

$$
r^{1}, r^{2}, \ldots, r^{\phi(n)}
$$

form a reduced residue set modulo n.
Proof. To demonstrate that the first $\phi(n)$ powers of the primitive root r form a reduced residue set modulo n, we only need to show that they are all relatively prime to n, and that no two are congruent modulo n.

Since $(r, n)=1$, it follows from problem 8 of Section 2.1 that $\left(r^{k}, n\right)=1$ for any positive integer k. Hence, these powers are all relatively prime to n.

To show that no two of these powers are congruent modulo n, assume that

$$
r^{i} \equiv r^{j}(\bmod n)
$$

From Theorem 8.2, we see that $i \equiv j(\bmod \phi(n))$. However, for $1 \leqslant i \leqslant \phi(n)$ and $1 \leqslant j \leqslant \phi(n)$, the congruence $i \equiv j(\bmod \phi(n))$ implies that $i=j$. Hence, no two of these powers are congruent modulo n. This shows that we do have a reduced residue system modulo n.

Example. Note that 2 is a primitive root modulo 9, since $2^{2} \equiv 4,2^{3} \equiv 8$, and $2^{6} \equiv 1(\bmod 9)$. From Theorem 8.3 , we see that the first $\phi(9)=6$ powers of 2 form a reduced residue system modulo 9 . These are $2^{1} \equiv 2(\bmod 9), \quad 2^{2} \equiv 4(\bmod 9), \quad 2^{3} \equiv 8(\bmod 9), \quad 2^{4} \equiv 7(\bmod 9)$, $2^{5} \equiv 5(\bmod 9)$, and $2^{6} \equiv 1(\bmod 9)$.

When an integer possesses a primitive root, it usually has many primitive roots. To demonstrate this, we first prove the following theorem.

Theorem 8.4. If $\operatorname{ord}_{m} a=t$ and if u is a positive integer, then

$$
\operatorname{ord}_{m}\left(a^{u}\right)=t /(t, u)
$$

Proof. Let $s=\operatorname{ord}_{m}\left(a^{u}\right), \quad v=(t, u), \quad t=t_{1} v, \quad$ and $u=u_{1} v$. From Proposition 2.1, we know that $\left(t_{1}, u_{1}\right)=1$.

Note that

$$
\left(a^{u}\right)^{t_{1}}=\left(a^{u_{1} v}\right)^{(t / v)}=\left(a^{t}\right)^{u_{1}} \equiv 1(\bmod m)
$$

since $\operatorname{ord}_{m} a=t$. Hence, Theorem 8.1 tells us that $s \mid t_{1}$.
On the other hand, since

$$
\left(a^{u}\right)^{s}=a^{u s} \equiv 1(\bmod m)
$$

we know that $t \mid u s$. Hence, $t_{1} v \mid u_{1} v s$, and consequently, $t_{1} \mid u_{1} s$. Since
$\left(t_{1}, u_{1}\right)=1$, using Lemma 2.3, we see that $t_{1} \mid s$.
Now, since $s \mid t_{1}$ and $t_{1} \mid s$, we conclude that $s=t_{1}=t / v=t /(t, u)$. This proves the result.
We have the following corollary of Theorem 8.4.
Corollary 8.2. Let r be a primitive root modulo m where m is an integer, $m>1$. Then r^{u} is a primitive root modulo m if and only if $(u, \phi(m))=1$.

Proof. From Theorem 8.4, we know that

$$
\begin{aligned}
\operatorname{ord}_{m} r^{u} & =\operatorname{ord}_{m} r /\left(u, \operatorname{ord}_{m} r\right) \\
& =\phi(m) /(u, \phi(m)) .
\end{aligned}
$$

Consequently, $\operatorname{ord}_{m} r^{u}=\phi(m)$, and r^{u} is a primitive root modulo m, if and only if $(u, \phi(m))=1$.

This leads immediately to the following theorem.
Theorem 8.5. If the positive integer m has a primitive root, then it has a total of $\phi(\phi(m))$ incongruent primitive roots.

Proof. Let r be a primitive root modulo m. Then Theorem 8.3 tells us that the integers $r, r^{2}, \ldots, r^{\phi(m)}$ form a reduced residue system modulo m. From Corollary 8.2 , we know that r^{u} is a primitive root modulo m if and only if $(u, \phi(m))=1$. Since there are exactly $\phi(\phi(m))$ such integers u, there are exactly $\phi(\phi(m))$ primitive roots modulo m.

Example. Let $m=11$. A little computation tells us that 2 is a primitive root modulo 11. Since 11 has a primitive root, we know that 11 has $\phi(\phi(11))=4$ incongruent primitive roots. It is easily seen that $2,6,7$, and 8 are four incongruent primitive roots modulo 11 .

8.1 Problems

1. Determine the
a) order of 2 modulo 5
c) order of 10 modulo 13
b) order of 3 modulo 10
d) order of 7 modulo 19 .
2. Find a primitive root modulo
a) 4
b) 5
c) 10
d) 13
e) 14
f) 18 .
3. Show that the integer 12 has no primitive roots.
4. How many incongruent primitive roots does 13 have? Find a set of this many incongruent primitive roots modulo 13.
5. Show that if \bar{a} is an inverse of a modulo n, then $\operatorname{ord}_{n} a=\operatorname{ord}_{n} \bar{a}$.
6. Show that if n is a positive integer and a and b are integers relatively prime to n such that $\left(\operatorname{ord}_{n} a, \operatorname{ord}_{n} b\right)=1$, then $\operatorname{ord}_{n}(a b)=\operatorname{ord}_{n} a \cdot \operatorname{ord}_{n} b$.
7. Find a formula for $\operatorname{ord}_{n}(a b)$ if a and b are integers relatively prime to n when $\operatorname{ord}_{n} a$ and $\operatorname{ord}_{n} b$ are not necessarily relatively prime.
8. Decide whether it is true that if n is a positive integer and d is a divisor of $\phi(n)$, then there is an integer a with $\operatorname{ord}_{n} a=d$.
9. Show that if a is an integer relatively prime to the positive integer m and $\operatorname{ord}_{m} a=s t$, then $\operatorname{ord}_{m} a^{t}=s$.
10. Show that if m is a positive integer and a is an integer relatively prime to m such that $\operatorname{ord}_{m} a=m-1$, then m is prime.
11. Show that r is a primitive root modulo the odd prime p if and only if

$$
r^{(p-1) / q} \not \equiv 1(\bmod p)
$$

for all prime divisors q of $p-1$.
12. Show that if r is a primitive root modulo the positive integer m, then \bar{r} is also a primitive root modulo m, if \bar{r} is an inverse of r modulo m.
13. Show that $\operatorname{ord}_{F_{n}} 2 \leqslant 2^{n+1}$, where $F_{n}=2^{2^{*}}+1$ is the nth Fermat number.
14. Let p be a prime divisor of the Fermat number $F_{n}=2^{2^{n}}+1$.
a) Show that $\operatorname{ord}_{p} 2=2^{n+1}$.
b) From part (a), conclude that $2^{n+1} \mid(p-1)$, so that p must be of the form $2^{n+1} k+1$.
15. Let $m=a^{n}-1$, where a and n are positive integers. Show that $\operatorname{ord}_{m} a=n$ and conclude that $n \mid \phi(m)$.
16. a) Show that if p and q are distinct odd primes, then $p q$ is a pseudoprime to the base 2 if and only if ord $2 \mid(p-1)$ and $\operatorname{ord}_{p} 2 \mid(q-1)$.
b) Use part (a) to decide which of the following integers are pseudoprimes to the base 2: $13.67,19.73,23.89,29.97$.
17. Show that if p and q are distinct odd primes, then $p q$ is a pseudoprime to the base 2 if and only if $M_{p} M_{q}=\left(2^{p}-1\right)\left(2^{q}-1\right)$ is a pseudoprime to the base 2 .
18. There is a method for deciphering messages that were enciphered by an RSA cipher, without knowledge of the deciphering key. This method is based on iteration. Suppose that the public key (e, n) used for enciphering is known, but the deciphering key (d, n) is not. To decipher a ciphertext block C, we form a sequence $C_{1}, C_{2}, C_{3}, \ldots$ setting $C_{1} \equiv C^{e}(\bmod n), 0<C_{1}<n$ and $C_{j+1} \equiv$ $C_{j}^{e}(\bmod n), 0<C_{j+1}<n$ for $j=1,2,3, \ldots$.
a) Show that $C_{j} \equiv C^{e^{\prime}}(\bmod n), 0<C_{j}<n$.
b) Show that there is an index j such that $C_{j}=C$ and $C_{j-1}=P$, where P is the original plaintext message. Show that this index j is a divisor of $\operatorname{ord}_{\phi(n)} e$.
c) Let $n=47.59$ and $e=17$. Using iteration, find the plaintext corresponding to the ciphertext 1504.
(Note: This iterative method for attacking RSA ciphers is seldom successful in a reasonable amount of time. Moreover, the primes p and q may be chosen so that this attack is almost always futile. See problem 13 of Section 8.2.)

8.1 Computer Projects

Write projects to do the following:

1. Find the order of a modulo m, when a and m are relatively prime positive integers.
2. Find primitive roots when they exist.
3. Attempt to decipher RSA ciphers by iteration (see problem 18).

8.2 Primitive Roots for Primes

In this section and in the one following, our objective is to determine which integers have primitive roots. In this section, we show that every prime has a primitive root. To do this, we first need to study polynomial congruences.

Let $f(x)$ be a polynomial with integer coefficients. We say that an integer c is a root of $f(x)$ modulo m if $f(c) \equiv 0(\bmod m)$. It is easy to see that if c is a root of $f(x)$ modulo m, then every integer congruent to c modulo m is also a root.

Example. The polynomial $f(x)=x^{2}+x+1$ has exactly two incongruent roots modulo 7 , namely $x \equiv 2(\bmod 7)$ and $x \equiv 4(\bmod 7)$.

Example. The polynomial $g(x)=x^{2}+2$ has no roots modulo 5 .
Example. Fermat's little theorem tells us that if p is prime, then the polynomial $h(x)=x^{p-1}-1$ has exactly $p-1$ incongruent roots modulo p, namely $x \equiv 1,2,3, \ldots, p-1(\bmod p)$.

We will need the following important theorem concerning roots of polynomials modulo p where p is a prime.

Lagrange's Theorem. Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be a polynomial of degree n with integer coefficients and with leading coefficient a_{n} not divisible by p. Then $f(x)$ has at most n incongruent roots modulo p.

Proof. To prove the theorem, we use mathematical induction. When $n=1$, we have $f(x)=a_{1} x+a_{0}$ with $p \lambda a_{1}$. A root of $f(x)$ modulo p is a solution of the linear congruence $a_{1} x \equiv-a_{0}(\bmod p)$. By Theorem 3.7, since $\left(a_{1}, p\right)=1$, this linear congruence has exactly one solution, so that there is exactly one root modulo p of $f(x)$. Clearly, the theorem is true for $n=1$.

Now suppose that the theorem is true for polynomials of degree $n-1$, and let $f(x)$ be a polynomial of degree n with leading coefficient not divisible by p. Assume that the polynomial $f(x)$ has $n+1$ incongruent roots modulo p, say $c_{0}, c_{1}, \ldots, c_{n}$, so that $f\left(c_{k}\right) \equiv 0(\bmod p)$ for $k=0,1, \ldots, n$. We have

$$
\begin{aligned}
f(x)-f\left(c_{0}\right)= & a_{n}\left(x^{n}-c_{0}^{n}\right)+a_{n-1}\left(x^{n-1}-c_{0}^{n-1}\right)+\cdots+a_{1}\left(x-c_{0}\right) \\
= & a_{n}\left(x-c_{0}\right)\left(x^{n-1}+x^{n-2} c_{0}+\cdots+x c_{0}^{n-2}+c_{0}^{n-1}\right) \\
& +a_{n-1}\left(x-c_{0}\right)\left(x^{n-2}+x^{n-3} c_{0}+\cdots+x c_{0}^{n-3}+c_{0}^{n-2}\right) \\
& +\cdots+a_{1}\left(x-c_{0}\right) \\
= & \left(x-c_{0}\right) g(x),
\end{aligned}
$$

where $g(x)$ is a polynomial of degree $n-1$ with leading coefficient a_{n}. We now show that $c_{1}, c_{2}, \ldots, c_{n}$ are all roots of $g(x)$ modulo p. Let k be an integer, $1 \leqslant k \leqslant n$. Since $f\left(c_{k}\right) \equiv f\left(c_{0}\right) \equiv 0(\bmod p)$, we have

$$
f\left(c_{k}\right)-f\left(c_{0}\right)=\left(c_{k}-c_{0}\right) g\left(c_{k}\right) \equiv 0(\bmod p)
$$

From Corollary 2.2 , we know that $g\left(c_{k}\right) \equiv 0(\bmod p)$, since $c_{k}-c_{0} \not \equiv 0(\bmod p)$. Hence, c_{k} is a root of $g(x)$ modulo p. This shows that the polynomial $g(x)$, which is of degree $n-1$ and has a leading coefficient not divisible by p, has n incongruent roots modulo p. This contradicts the induction hypothesis. Hence, $f(x)$ must have no more than n incongruent roots modulo p. The induction argument is complete.

We use Lagrange's theorem to prove the following result.

Theorem 8.6. Let p be prime and let d be a divisor of $p-1$. Then the polynomial $x^{d}-1$ has exactly d incongruent roots modulo p.

Proof. Let $p-1=d e$. Then

$$
\begin{aligned}
x^{p-1}-1 & =\left(x^{d}-1\right)\left(x^{d(e-1)}+x^{d(e-2)}+\cdots+x^{e}+1\right) \\
& =\left(x^{d}-1\right) g(x) .
\end{aligned}
$$

From Fermat's little theorem, we see that $x^{p-1}-1$ has $p-1$ incongruent roots modulo p. Furthermore, from Corollary 2.2, we know that any root of $x^{p-1}-1$ modulo p is either a root of $x^{d}-1$ modulo p or a root of $g(x)$ modulo p.

Lagrange's theorem tells us that $g(x)$ has at most $d(e-1)=p-d-1$ roots modulo p. Since every root of $x^{p-1}-1$ modulo p that is not a root of $g(x)$ modulo p must be a root of $x^{d}-1$ modulo p, we know that the polynomial $x^{d}-1$ has at least $(p-1)-(p-d-1)=d$ incongruent roots modulo p. On the other hand, Lagrange's theorem tells us that it has at most d incongruent roots modulo p. Consequently, $x^{d}-1$ has precisely d incongruent roots modulo p.

Theorem 8.6 can be used to prove the following result which tells us how many incongruent integers have a given order modulo p.

Theorem 8.7. Let p be a prime and let d be a positive divisor of $p-1$. Then the number of incongruent integers of order d modulo p is equal to $\phi(d)$.

Proof. For each positive integer d dividing $p-1$, let $F(d)$ denote the number of positive integers of order d modulo p that are less than p. Since the order modulo p of an integer not divisible by p divides $p-1$, it follows that

$$
p-1=\sum_{d \mid p-1} F(d)
$$

From Theorem 6.6, we know that

$$
p-1=\sum_{\left.d\right|_{p-1}} \phi(d) .
$$

We will show that $F(d) \leqslant \phi(d)$ when $d \mid(p-1)$. This inequality, together with the equality

$$
\sum_{\left.d\right|_{p-1}} F(d)=\sum_{\left.d\right|_{p-1}} \phi(d)
$$

implies that $F(d)=\phi(d)$ for each positive divisor d of $p-1$.
Let $d \mid(p-1)$. If $F(d)=0$, it is clear that $F(d) \leqslant \phi(d)$. Otherwise, there is an integer a of order d modulo p. Since $\operatorname{ord}_{p} a=d$, the integers

$$
a, a^{2}, \ldots, a^{d}
$$

are incongruent modulo p. Furthermore, each of these powers of a is a root of $x^{d}-1$ modulo p, since $\left(a^{k}\right)^{d} \equiv\left(a^{d}\right)^{k} \equiv 1(\bmod p)$ for all positive integers k. From Theorem 8.6, we know that $x^{d}-1$ has exactly d incongruent roots modulo p, so every root modulo p is congruent to one of these powers of a. However, from Theorem 8.4, we know that the powers of a with order d are those of the form a^{k} with $(k, d)=1$. There are exactly $\phi(d)$ such integers k with $1 \leqslant k \leqslant d$, and consequently, if there is one element of order d modulo p, there must be exactly $\phi(d)$ such positive integers less than d. Hence, $F(d) \leqslant \phi(d)$.

Therefore, we can conclude that $F(d)=\phi(d)$, which tells us that there are precisely $\phi(d)$ incongruent integers of order d modulo p.

The following corollary is derived immediately from Theorem 8.7.
Corollary 8.3. Every prime has a primitive root.
Proof. Let p be a prime. By Theorem 8.7, we know that there are $\phi(p-1)$ incongruent integers of order $p-1$ modulo p. Since each of these is, by definition, a primitive root, p has $\phi(p-1)$ primitive roots.

The smallest positive primitive root of each prime less than 1000 is given in Table 3 of the Appendix.

8.2 Problems

1. Find the number of primitive roots of the following primes:
a) 7
b) 13
c) 17
d) 19
e) 29
f) 47 .
2. Let r be a primitive root of the prime p with $p \equiv 1(\bmod 4)$. Show that $-r$ is also a primitive root.
3. Show that if p is a prime and $p \equiv 1(\bmod 4)$, there is an integer x such that $x^{2} \equiv-1(\bmod p)$. (Hint: Use Theorem 8.7 to show that there is an integer x of order 4 modulo p.)
4. a) Find the number of incongruent roots modulo 6 of the polynomial $x^{2}-x$.
b) Explain why the answer to part (a) does not contradict Lagrange's theorem.
5. a) Use Lagrange's theorem to show that if p is a prime and $f(x)$ is a polynomial of degree n with integer coefficients and more than n roots modulo p, then p divides every coefficient of $f(x)$.
b) Let p be prime. Using part (a), show that every coefficient of the polynomial $f(x)=(x-1)(x-2) \cdots(x-p+1)-x^{p-1}+1$ is divisible by p.
c) Using part (b), give a proof of Wilson's theorem. (Hint: Consider the constant term of $f(x)$.)
6. Find the least positive residue of the product of a set of $\phi(p-1)$ incongruent primitive roots modulo a prime p.
7. A systematic method for constructing a primitive root modulo a prime p is outlined in this problem. Let the prime factorization of $\phi(p)=p-1$ be

a) Use Theorem 8.7 to show that there are integers $a_{1}, a_{2}, \ldots, a_{r}$ such that $\operatorname{ord}_{p} a_{1}=q_{1}^{t_{1}^{\prime}}, \operatorname{ord}_{p} a_{2}=q_{2}^{t_{2}}, \ldots, \operatorname{ord}_{p} a_{r}=q_{r}^{t}$.
b) Use problem 6 of Section 8.1 to show that $a=a_{1} a_{2} \cdots a_{r}$ is a primitive root modulo p.
c) Follow the procedure outlined in parts (a) and (b) to find a primitive root modulo 29.
8. Let the positive integer n have prime-power factorization $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a}$. Show that the number of incongruent bases modulo n for which n is a pseudoprime to that base is $\prod_{j=1}^{r}\left(n-1, p_{j}-1\right)$.
9. Use problem 8 to show that every odd composite integer that is not a power of 3 is a pseudoprime to at least two bases other than ± 1.
10. Show that if p is prime and $p=2 q+1$, where q is prime and a is a positive integer with $1<a<p-1$, then $p-a^{2}$ is a primitive root modulo p.
11. a) Suppose that $f(x)$ is a polynomial with integer coefficients of degree $n-1$. Let $x_{1}, x_{2}, \ldots, x_{n}$ be n incongruent integers modulo p. Show that for all integers x, the congruence

$$
f(x) \equiv \sum_{j=1}^{n} f\left(x_{j}\right) \prod_{\substack{i=1 \\ i \neq j}}^{n}\left(x-x_{i}\right) \overline{\left(x_{j}-x_{i}\right)}(\bmod p)
$$

holds, where $\overline{x_{j}-x_{i}}$ is an inverse of $x_{j}-x_{i}(\bmod n)$. This technique for finding $f(x)$ modulo p is called Lagrange interpolation.
b) Find the least positive residue of $f(5)$ modulo 11 if $f(x)$ is a polynomial of degree 3 with $f(1) \equiv 8, f(2) \equiv 2$, and $f(3) \equiv 4(\bmod 11)$.
12. In this problem, we develop a threshold scheme for protection of master keys in a computer system, different than the scheme discussed in Section 7.6. Let $f(x)$ be a randomly chosen polynomial of degree $r-1$, with the condition that K, the master key, is the constant term of the polynomial. Let p be a prime, such that $p>K$ and $p>s$. The s shadows $k_{1}, k_{2}, \ldots, k_{s}$ are computed by finding the least positive residue of $f\left(x_{j}\right)$ modulo p for $j=1,2, \ldots, s$ where $x_{1}, x_{2}, \ldots, x_{s}$ are randomly chosen integers incongruent modulo p, i.e.,

$$
k_{j} \equiv f\left(x_{j}\right)(\bmod p), 0 \leqslant k_{j}<p,
$$

for $j=1,2, \ldots, s$.
a) Use Lagrange interpolation, described in problem 11, to show that the master key K can be determined from any r shadows.
b) Show that the master key K cannot be determined from less than r shadows.
c) Let $K=33, p=47, r=4$, and $s=7$. Let $f(x)=4 x^{3}+x^{2}+$ $31 x+33$. Find the seven shadows corresponding to the values of $f(x)$ at $1,2,3,4,5,6$, and 7 .
d) Show how to find the master key from the four shadows $f(1), f(2), f(3)$, and $f(4)$.
13. Show that an RSA cipher with enciphering modulus $n=p q$ is resistant to attack by iteration (see problem 18 of Section 8.1) if $p=2 p^{\prime}+1$ and $q=2 q^{\prime}+1$, where p^{\prime} and q^{\prime} are primes.

8.2 Computer Projects

Write programs to do the following:

1. Find a primitive root of a prime using problem 7.
2. Implement the threshold scheme given in problem 12.

8.3 The Existence of Primitive Roots

In the previous section, we showed that every prime has a primitive root. In this section, we will find all positive integers having primitive roots. First, we will show that every power of an odd prime possesses a primitive root. We begin by considering squares of primes.

Theorem 8.8. If p is an odd prime with primitive root r, then either r or
$r+p$ is a primitive root modulo p^{2}.
Proof. Since r is a primitive root modulo p, we know that

$$
\operatorname{ord}_{p} r=\phi(p)=p-1
$$

Let $n=\operatorname{ord}_{p^{2}} r$, so that

$$
r^{n} \equiv 1\left(\bmod p^{2}\right)
$$

Since a congruence modulo p^{2} obviously holds modulo p, we have

$$
r^{n} \equiv 1(\bmod p)
$$

From Theorem 8.1, it follows that

$$
p-1=\operatorname{ord}_{p} r \mid n .
$$

On the other hand, Corollary 8.1 tells us that

$$
n \mid \phi\left(p^{2}\right)=p(p-1)
$$

Since $n \mid p(p-1)$ and $p-1 \mid n$, either $n=p-1$ or $n=p(p-1)$. If $n=p(p-1)$, then r is a primitive root modulo p^{2}, since $\operatorname{ord}_{p^{2}} r=\phi\left(p^{2}\right)$. Otherwise, we have $n=p-1$, so that

$$
\begin{equation*}
r^{p-1} \equiv 1\left(\bmod p^{2}\right) \tag{8.1}
\end{equation*}
$$

Let $s=r+p$. Then, since $s \equiv r(\bmod p)$, s is also a primitive root modulo p. Hence, $\operatorname{ord}_{p^{2}} s$ equals either $p-1$ or $p(p-1)$. We will show that $\operatorname{ord}_{p} s \neq p-1$. The binomial theorem tells us that

$$
\begin{aligned}
s^{p-1}=(r+p)^{p-1} & =r^{p-1}+(p-1) r^{p-2} p+\binom{p-1}{2} r^{p-3} p^{2}+\cdots+p^{p-1} \\
& \equiv r^{p-1}+(p-1) p \cdot r^{p-2}\left(\bmod p^{2}\right) .
\end{aligned}
$$

Hence, using (8.1), we see that

$$
s^{p-1} \equiv 1+(p-1) p \cdot r^{p-2} \equiv 1-p r^{p-2}\left(\bmod p^{2}\right)
$$

From this last congruence, we can conclude that

$$
s^{p-1} \not \equiv 1\left(\bmod p^{2}\right) .
$$

To see this, note that if $s^{p-1} \equiv 1\left(\bmod p^{2}\right)$, then $p r^{p-2} \equiv 0\left(\bmod p^{2}\right)$. This last congruence implies that $r^{p-2} \equiv 0(\bmod p)$, which is impossible, since
$p \nmid r$ (remember r is a primitive root of p). Hence, $\operatorname{ord}_{p} s=p(p-1)=$ $\phi\left(p^{2}\right)$. Consequently, $s=r+p$ is a primitive root of p^{2}.

Example. The prime $p=7$ has $r=3$ as a primitive root. From the proof of Theorem 8.8, we see that $r=3$ is also a primitive root modulo $p^{2}=49$, since

$$
r^{p-1}=3^{6} \not \equiv 1(\bmod 49) .
$$

We note that it is extremely rare for the congruence

$$
r^{p-1} \equiv 1\left(\bmod p^{2}\right)
$$

to hold when r is a primitive root modulo the prime p. Consequently, it is very seldom that a primitive root r modulo the prime p is not also a primitive root modulo p^{2}. The smallest prime p for which there is a primitive root that is not also a primitive root modulo p^{2} is $p=487$. For the primitive root 10 modulo 487, we have

$$
10^{486} \equiv 1\left(\bmod 487^{2}\right)
$$

Hence, 10 is not a primitive root modulo 487^{2}, but by Theorem 8.8, we know that $497=10+487$ is a primitive root modulo 487^{2}.

We now turn our attention to arbitrary powers of primes.
Theorem 8.9. Let p be an odd prime, then p^{k} has a primitive root for all positive integers k. Moreover, if r is a primitive root modulo p^{2}, then r is a primitive root modulo p^{k}, for all positive integers k.

Proof. From Theorem 8.8, we know that p has a primitive root r that is also a primitive root modulo p^{2}, so that

$$
\begin{equation*}
r^{p-1} \not \equiv 1\left(\bmod p^{2}\right) \tag{8.2}
\end{equation*}
$$

Using mathematical induction, we will prove that for this primitive root r ,

$$
\begin{equation*}
r^{p^{k-2}(p-1)} \not \equiv 1\left(\bmod p^{k}\right) \tag{8.3}
\end{equation*}
$$

for all positive integers k . Once we have established this congruence, we can show that r is also a primitive root modulo p^{k} by the following reasoning. Let

$$
n=\operatorname{ord}_{p^{k}} r
$$

From Theorem 6.8, we know that $n \mid \phi\left(p^{k}\right)=p^{k-1}(p-1)$. On the other hand, since

$$
r^{n} \equiv 1\left(\bmod p^{k}\right)
$$

we also know that

$$
r^{n} \equiv 1(\bmod p)
$$

From Theorem 8.1, we see that $p-1=\phi(p) \mid n$. Because $(p-1) \mid n$, and $n \mid p^{k-1}(p-1)$, we know that $n=p^{t}(p-1)$, where t is an integer such that $0 \leqslant t \leqslant k-1$. If $n=p^{t}(p-1)$ with $t \leqslant k-2$, then

$$
r^{p^{k-2}(p-1)}=\left(r^{p^{t}(p-1)}\right)^{p^{k-2-1}} \equiv 1\left(\bmod p^{k}\right)
$$

which would contradict (8.3). Hence, $\operatorname{ord}_{p^{k}} r=p^{k-1}(p-1)=\phi\left(p^{k}\right)$. Consequently, r is also a primitive root modulo p^{k}.

All that remains is to prove (8.3) using mathematical induction. The case of $k=2$ follows from (8.2). Let us assume the assertion is true for the positive integer $k \geqslant 2$. Then

$$
r^{p^{k-2}(p-1)} \not \equiv 1\left(\bmod p^{k}\right) .
$$

Since $(r, p)=1$, we know that $\left(r, p^{k-1}\right)=1$. Consequently, from Euler's theorem, we know that

$$
r^{p^{k-2}(p-1)} \equiv r^{\phi\left(p^{k-1}\right)}
$$

Therefore, there is an integer d such that

$$
r^{p^{k-2}(p-1)}=1+d p^{k-1}
$$

where $p \backslash d$, since by hypothesis $r^{p^{k-2}(p-1)} \not \equiv 1\left(\bmod p^{k}\right)$. We take the p th power of both sides of the above equation, to obtain, via the binomial theorem,

$$
\begin{aligned}
r^{p^{k-1}(p-1)} & =\left(1+d p^{k-1}\right)^{p} \\
& =1+p\left(d p^{k-1}\right)+\binom{p}{2} p^{2}\left(d p^{k-1}\right)^{2}+\cdots+\left(d p^{k-1}\right)^{p} \\
& \equiv 1+d p^{k}\left(\bmod p^{k+1}\right)
\end{aligned}
$$

Since $p \lambda d$, we can conclude that

$$
r^{p^{k-1}(p-1)} \not \equiv 1\left(\bmod p^{k+1}\right)
$$

This completes the proof by induction.
Example. From a previous example, we know that $r=3$ is a primitive root
modulo 7 and 7^{2}. Hence, Theorem 8.9 tells us that $r=3$ is also a primitive root modulo 7^{k} for all positive integers k.

It is now time to discuss whether there are primitive roots modulo powers of 2. We first note that both 2 and $2^{2}=4$ have primitive roots, namely 1 and 3 , respectively. For higher powers of 2 , the situation is different, as the following theorem shows; there are no primitive roots modulo these powers of 2 .

Theorem 8.10. If a is an odd integer, and if k is an integer, $k>3$, then

$$
a^{\phi\left(2^{k}\right) / 2}=a^{2^{k-2}} \equiv 1\left(\bmod 2^{k}\right)
$$

Proof. We prove this result using mathematical induction. If a is an odd integer, then $a=2 b+1$, where b is an integer. Hence,

$$
a^{2}=(2 b+1)^{2}=4 b^{2}+4 b+1=4 b(b+1)+1 .
$$

Since either b or $b+1$ is even, we see that $8 \mid 4 b(b+1)$, so that

$$
a^{2} \equiv 1(\bmod 8)
$$

This is the congruence of interest when $k=3$.
Now to complete the induction argument, let us assume that

$$
a^{2^{k-2}} \equiv 1\left(\bmod 2^{k}\right)
$$

Then there is an integer d such that

$$
a^{a^{2}-2}=1+d \cdot 2^{k}
$$

Squaring both sides of the above equality, we obtain

$$
a^{2^{k-1}}=1+d 2^{k+1}+d^{2} 2^{2 k}
$$

This yields

$$
a^{2^{k-1}} \equiv 1\left(\bmod 2^{k+1}\right)
$$

which completes the induction argument.
Theorem 8.10 tells us that no power of 2 , other than 2 and 4, has a primitive root, since when a is an odd integer, $\operatorname{ord}_{2^{k}} a \neq \phi\left(2^{k}\right)$, since $a^{\phi\left(2^{k}\right) / 2} \equiv 1\left(\bmod 2^{k}\right)$.

Even though there are no primitive roots modulo 2^{k} for $k \geqslant 3$, there always is an element of largest possible order, namely $\phi\left(2^{k}\right) / 2$, as the following theorem shows.

Theorem 8.11. Let $k \geqslant 3$ be an integer. Then

$$
\operatorname{ord}_{2^{2}} 5=\phi\left(2^{k}\right) / 2=2^{k-2}
$$

Proof. Theorem 8.10 tells us that

$$
5^{2^{k-2}} \equiv 1\left(\bmod 2^{k}\right)
$$

for $k \geqslant 3$. From Theorem 8.1, we see that $\operatorname{ord}_{2^{k}} 5 \mid 2^{k-2}$. Therefore, if we show that $\operatorname{ord}_{2^{k}} 5 \backslash 2^{k-3}$, we can conclude that

$$
\operatorname{ord}_{2^{k}} 5=2^{k-2}
$$

To show that $\operatorname{ord}_{2^{k}} 5 \backslash 2^{k-3}$, we will prove by mathematical induction that for $k \geqslant 3$,

$$
5^{2^{k-3}} \equiv 1+2^{k-1} \not \equiv 1\left(\bmod 2^{k}\right)
$$

For $k=3$, we have

$$
5=1+4(\bmod 8)
$$

Now assume that

$$
5^{2^{k-3}} \equiv 1+2^{k-1}\left(\bmod 2^{k}\right)
$$

This means that there is a positive integer d such that

$$
5^{2^{k-3}}=\left(1+2^{k-1}\right)+d 2^{k}
$$

Squaring both sides, we find that

$$
5^{2^{k-2}}=\left(1+2^{k-1}\right)^{2}+2\left(1+2^{k-1}\right) d 2^{k}+\left(d 2^{k}\right)^{2}
$$

so that

$$
5^{2^{k-2}} \equiv\left(1+2^{k-1}\right)^{2}=1+2^{k}+2^{2 k-2} \equiv 1+2^{k}\left(\bmod 2^{k+1}\right)
$$

This completes the induction argument and shows that

$$
\operatorname{ord}_{2^{k}} 5=\phi\left(2^{k}\right) / 2
$$

We have now demonstrated that all powers of odd primes possess primitive roots, while the only powers of 2 having primitive roots are 2 and 4 . Next, we determine which integers not powers of primes, i.e. those integers divisible by two or more primes, have primitive roots. We will demonstrate that the only positive integers not powers of primes possessing primitive roots are twice
powers of odd primes.
We first narrow down the set of positive integers we need consider with the following result.

Theorem 8.12. If n is a positive integer that is not a prime power or twice a prime power, then n does not have a primitive root.

Proof. Let n be a positive integer with prime-power factorization

$$
n=p_{1}^{t_{1}} p_{2}^{t_{2}} \cdots p_{m}^{t_{m}^{m}}
$$

Let us assume that the integer n has a primitive root r. This means that $(r, n)=1$ and $\operatorname{ord}_{n} r=\phi(n)$. Since $(r, n)=1$, we know that $\left(r, p^{t}\right)=1$, whenever p^{t} is one of the prime powers occurring in the factorization of n. By Euler's theorem, we know that

$$
r^{\phi\left(p^{t}\right)} \equiv 1\left(\bmod p^{t}\right)
$$

Now let U be the least common multiple of $\phi\left(p_{1}^{t_{1}}\right), \phi\left(p_{2}^{t_{2}}\right), \ldots, \phi\left(p_{m}^{t_{m}}\right)$, i.e.

$$
U=\left[\phi\left(p_{1}^{t_{1}}\right), \phi\left(p_{2}^{t_{2}}\right), \ldots, \phi\left(p_{m}^{t_{m}}\right)\right]
$$

Since $\phi\left(p_{i}^{t_{i}}\right) \mid U$, we know that

$$
r^{U} \equiv 1\left(\bmod p_{i}^{t_{t}}\right)
$$

for $i=1,2, \ldots, m$. From this last congruence, we see that

$$
\operatorname{ord}_{n} r=\phi(n) \leqslant U .
$$

From Theorem 6.4, since ϕ is multiplicative, we have

$$
\phi(n)=\phi\left(p_{1}^{t_{1}} p_{2}^{t_{2}} \cdots p_{m}^{t_{m}}\right)=\phi\left(p_{1}^{t_{1}}\right) \phi\left(p_{2}^{t_{2}}\right) \cdots \phi\left(p_{m}^{t_{m}^{m}}\right) .
$$

This formula for $\phi(n)$ and the inequality $\phi(n) \leqslant U$ imply that

$$
\phi\left(p_{1}^{t_{1}}\right) \phi\left(p_{2}^{t_{2}}\right) \cdots \phi\left(p_{m}^{t_{m}}\right) \leqslant\left[\phi\left(p_{1}^{t_{1}}\right), \phi\left(p_{2}^{t_{2}}\right), \ldots, \phi\left(p_{m}^{t_{m}}\right)\right]
$$

Since the product of a set of integers is less than or equal to their least common multiple only if the integers are pairwise relatively prime (and then the less than or equal to relation is really just an equality), the integers $\phi\left(p_{1}^{t_{1}}\right), \phi\left(p_{2}^{t_{2}}\right), \ldots, \phi\left(p_{m}^{t^{\prime}}\right)$ must be pairwise relatively prime.

We note that $\phi\left(p^{t}\right)=p^{t-1}(p-1)$, so that $\phi\left(p^{t}\right)$ is even if p is odd, or if $p=2$ and $t \geqslant 2$. Hence, the numbers $\phi\left(p_{1}^{t_{1}}\right), \phi\left(p_{2}^{t_{2}}\right), \ldots, \phi\left(p_{m}^{t_{m}}\right)$ are not pairwise relatively prime unless $m=1$ and n is a prime power or $m=2$ and the factorization of n is $n=2 p^{t}$, where p is an odd prime and t is a positive integer.

We have now limited consideration to integers of the form $n=2 p^{t}$, where p is an odd prime and t is a positive integer. We now show that all such integers have primitive roots.

Theorem 8.13. If p is an odd prime and t is a positive integer, then $2 p^{t}$ possesses a primitive root. In fact, if r is a primitive root modulo p^{t}, then if r is odd it is also a primitive root modulo $2 p^{t}$, while if r is even, $r+p^{t}$ is a primitive root modulo $2 p^{t}$.

Proof. If r is a primitive root modulo p^{t}, then

$$
r^{\phi\left(p^{\prime}\right)} \equiv 1\left(\bmod p^{t}\right)
$$

and no positive exponent smaller than $\phi\left(p^{t}\right)$ has this property. From Theorem 6.4, we note that $\phi\left(2 p^{t}\right)=\phi(2) \phi\left(p^{t}\right)=\phi\left(p^{t}\right)$, so that $r^{\phi\left(2 p^{t}\right)} \equiv$ $1\left(\bmod p^{t}\right)$.

If r is odd, then

$$
r^{\phi\left(2 p^{\prime}\right)} \equiv 1(\bmod 2) .
$$

Thus, by Corollary 3.2, we see that $r^{\phi\left(2 p^{t}\right)} \equiv 1\left(\bmod 2 p^{t}\right)$. Since no smaller power of r is congruent to 1 modulo $2 p^{t}$, we conclude that r is a primitive root modulo $2 p^{t}$.

On the other hand, if r is even, then $r+p^{t}$ is odd. Hence,

$$
\left(r+p^{t}\right)^{\phi\left(2 p^{\prime}\right)} \equiv 1(\bmod 2) .
$$

Since $r+p^{t} \equiv r\left(\bmod p^{t}\right)$, we see that

$$
\left(r+p^{t}\right)^{\phi\left(2 p^{t}\right)} \equiv 1\left(\bmod p^{t}\right) .
$$

Therefore, $\left(r+p^{t}\right)^{\phi\left(2 p^{t}\right)} \equiv 1\left(\bmod 2 p^{t}\right)$, and as no smaller power of $r+p^{t}$ is congruent to 1 modulo $2 p^{t}$, we conclude that $r+p^{t}$ is a primitive root modulo $2 p^{t}$.

Example. Earlier in this section we showed that 3 is a primitive root modulo
7^{t} for all positive integers t. Hence, since 3 is odd, Theorem 8.13 tells us that 3 is also a primitive root modulo $2 \cdot 7^{t}$ for all positive integers t. For instance, 3 is a primitive root modulo 14 .

Similarly, we know that 2 is a primitive root modulo 5^{t} for all positive integers t. Hence, since $2+5^{t}$ is odd, Theorem 8.13 tells us that $2+5^{t}$ is a primitive root modulo $2 \cdot 5^{t}$ for all positive integers t. For instance, 27 is a primitive root modulo 50.

Combining Corollary 8.3 and Theorems $8.9,8.12,8.13$, we can now describe which positive integers have a primitive root.

Theorem 8.14. The positive integer n possesses a primitive root if and only if

$$
n=2,4, p^{t}, \text { or } 2 p^{t},
$$

where p is an odd prime and t is a positive integer.

8.3 Problems

1. Which of the integers $4,10,16,22$ and 28 have a primitive root?
2. Find a primitive root modulo
a) 11^{2}
b) 13^{2}
c) 17^{2}
d) $\quad 19^{2}$.
3. Find a primitive root, for all positive integers k, modulo
a) 3^{k}
b) 11^{k}
c) 13^{k}
d) 17^{k}.
4. Find a primitive root modulo
a) 6
b) 18
c) 26
e) 338 .
5. Find all the primitive roots modulo 22 .
6. Show that there are the same number of primitive roots modulo $2 p^{t}$ as there are of p^{t}, where p is an odd prime and t is a positive integer.
7. Show that if m has a primitive root, then the only solutions of the congruence $x^{2} \equiv 1(\bmod m)$ are $x \equiv \pm 1(\bmod m)$.
8. Let n be a positive integer possessing a primitive root. Using this primitive root, prove that the product of all positive integers less than n and relatively prime to n is congruent to -1 modulo n. (When n is prime, this result is Wilson's Theorem.)
9. Show that although there are no primitive roots modulo 2^{k} where k is an integer, $k \geqslant 3$, every odd integer is congruent to exactly one of the integers $(-1)^{\alpha} 5^{\beta}$, where $\alpha=0$ or 1 and β is an integer satisfying $0 \leqslant \beta \leqslant 2^{k-2}-1$.

8.3 Computer Projects

Write computer programs to do the following:

1. Find primitive roots modulo powers of odd primes.
2. Find primitive roots modulo twice powers of odd primes.

8.4 Index Arithmetic

In this section we demonstrate how primitive roots may be used to do modular arithmetic. Let r be a primitive root modulo the positive integer m (so that m is of the form described in Theorem 8.14). From Theorem 8.3, we know that the integers

$$
r, r^{2}, r^{3}, \ldots, r^{\phi(m)}
$$

form a reduced system of residues modulo m. From this fact, we see that if a is an integer relatively prime to m, then there is a unique integer x with $1 \leqslant x \leqslant \phi(m)$ such that

$$
r^{x} \equiv a(\bmod m)
$$

This leads to the following definition.
Definition. Let m be a positive integer with primitive root r. If a is a positive integer with $(a, m)=1$, then the unique integer x with $1 \leqslant x \leqslant \phi(m)$ and $r^{x} \equiv a(\bmod m)$ is called the index of a to the base r modulo m. With this definition, we have $a \equiv r^{\text {ind }, a}(\bmod m)$.

If x is the index of a to the base r modulo m, then we write $x=\operatorname{ind}_{r} a$, where we do not indicate the modulus m in the notation, since it is assumed to be fixed. From the definition, we know that if a and b are integers relatively prime to m and $a \equiv b(\bmod m)$, then $\operatorname{ind}_{r} a=\operatorname{ind}_{r} b$.

Example. Let $m=7$. We have seen that 3 is a primitive root modulo 7 and
that $\quad 3^{1} \equiv 3(\bmod 7), 3^{2} \equiv 2(\bmod 7), 3^{3} \equiv 6(\bmod 7), 3^{4} \equiv 4(\bmod 7)$, $3^{5} \equiv 5(\bmod 5)$, and $3^{6} \equiv 1(\bmod 7)$.

Hence, modulo 7 we have

$$
\begin{aligned}
& \operatorname{ind}_{3} 1=6, \operatorname{ind}_{3} 2=2, \operatorname{ind}_{3} 3=1, \\
& \operatorname{ind}_{3} 4=4, \operatorname{ind}_{3} 5=5, \operatorname{ind}_{3} 6=3
\end{aligned}
$$

With a different primitive root modulo 7 , we obtain a different set of indices. For instance, calculations show that with respect to the primitive root 5 ,

$$
\begin{aligned}
& \operatorname{ind}_{5} 1=6, \operatorname{ind}_{5} 2=4, \operatorname{ind}_{5} 3=5, \\
& \operatorname{ind}_{5} 4=2, \operatorname{ind}_{5} 5=1, \operatorname{ind}_{5} 6=3 .
\end{aligned}
$$

We now develop some properties of indices. These properties are somewhat similar to those of logarithms, but instead of equalities, we have congruences modulo $\phi(m)$.

Theorem 8.15. Let m be a positive integer with primitive root r, and let a and b be integers relatively prime to m. Then
(i) $\quad \operatorname{ind}_{r} 1 \equiv 0(\bmod \phi(m))$.
(ii) $\quad \operatorname{ind}_{r}(a b) \equiv \operatorname{ind}_{r} a+\operatorname{ind}_{r} b(\bmod \phi(m))$
(iii) $\quad \operatorname{ind}_{r} a^{k} \equiv k \cdot \operatorname{ind}_{r} a(\bmod \phi(m))$ if k is a positive integer.

Proof of (i). From Euler's theorem, we know that $r^{\phi(m)} \equiv 1(\bmod m)$. Since r is a primitive root modulo m, no smaller positive power of r is congruent to 1 modulo m. Hence, $\operatorname{ind}_{r} 1=\phi(m) \equiv 0(\bmod \phi(m))$.

Proof of (ii). To prove this congruence, note that from the definition of indices,

$$
r^{\text {ind, }(a b)} \equiv a b(\bmod m)
$$

and

$$
r^{\text {ind }, a+\text { ind }, b} \equiv r^{\text {ind }, a} \cdot r^{\text {ind }, b} \equiv a b(\bmod m) .
$$

Hence,

$$
r^{\text {ind, }(a b)} \equiv r^{\text {ind }, a+\operatorname{ind}, b}(\bmod m) .
$$

Using Theorem 8.2, we conclude that

$$
\operatorname{ind}_{r}(a b) \equiv \operatorname{ind}_{r} a+\operatorname{ind}_{r} b(\bmod \phi(m))
$$

Proof of (iii). To prove the congruence of interest, first note that, by definition, we have

$$
r^{\mathrm{ind}, a^{k}} \equiv a^{k}(\bmod m)
$$

and

$$
r^{k \cdot \text { ind }, a} \equiv\left(r^{\text {ind }, a}\right)^{k} \equiv a^{k}(\bmod m)
$$

Hence,

$$
r^{\mathrm{ind}, a^{k}} \equiv r^{k \cdot \mathrm{ind}, a}(\bmod m)
$$

Using Theorem 8.2, this leads us immediately to the congruence we want, namely

$$
\operatorname{ind}_{r} a^{k} \equiv k \cdot \operatorname{ind}_{r} a(\bmod \phi(m))
$$

Example. From the previous examples, we see that modulo 7, ind ${ }_{5}=4$ and ind $_{5} 3=5$. Since $\phi(7)=6$, part (ii) of Theorem 8.15 tells us that

$$
\operatorname{ind}_{5} 6=\operatorname{ind}_{5} 2 \cdot 3=\operatorname{ind}_{5} 2+\operatorname{ind}_{5} 3=4+5=9 \equiv 3(\bmod 6)
$$

Note that this agrees with the value previously found for ind ${ }_{5} 6$.
From part (iii) of Theorem 8.15, we see that

$$
\operatorname{ind}_{5} 3^{4} \equiv 4 \cdot \operatorname{ind}_{5} 3 \equiv 4 \cdot 5=20 \equiv 2(\bmod 6)
$$

Note that direct computation gives the same result, since

$$
\operatorname{ind}_{5} 3^{4}=\operatorname{ind}_{5} 81=\operatorname{ind}_{5} 4=2
$$

Indices are helpful in the solution of certain types of congruences. Consider the following examples.

Example. We will use indices to solve the congruence $6 x^{12} \equiv 11(\bmod 17)$. We find that 3 is a primitive root of $17\left(\right.$ since $\left.3^{8} \equiv-1(\bmod 17)\right)$. The indices of integers to the base 3 modulo 17 are given in Table 8.1.

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
ind $_{3} a$	16	14	1	12	5	15	11	10	2	3	7	13	4	9	6	8

Table 8.1. Indices to the Base 3 Modulo 17.
Taking the index of each side of the congruence to the base 3 modulo 17, we obtain a congruence modulo $\phi(17)=16$, namely

$$
\operatorname{ind}_{3}\left(6 x^{12}\right) \equiv \operatorname{ind}_{3} 11=7(\bmod 16)
$$

Using (ii) and (iii) of Theorem 8.15, we obtain

$$
\operatorname{ind}_{3}\left(6 x^{12}\right) \equiv \operatorname{ind}_{3} 6+\operatorname{ind}_{3}\left(x^{12}\right) \equiv 15+12 \cdot \operatorname{ind}_{3} x(\bmod 16)
$$

Hence,

$$
15+12 \cdot \operatorname{ind}_{3} x \equiv 7(\bmod 16)
$$

or

$$
12 \cdot \operatorname{ind}_{3} x \equiv 8(\bmod 16)
$$

Using Corollary 3.1, upon division by 4 we find that

$$
\operatorname{ind}_{3} x \equiv 2(\bmod 4)
$$

Hence,

$$
\operatorname{ind}_{3} x \equiv 2,6,10, \text { or } 14(\bmod 16)
$$

Consequently, from the definition of indices, we find that

$$
x \equiv 3^{2}, 3^{6}, 3^{10} \text { or } 3^{14}(\bmod 17)
$$

(note that this congruence holds modulo 17). Since $3^{2} \equiv 9,3^{6} \equiv 15,3^{10} \equiv 8$, and $3^{14} \equiv 2(\bmod 17)$, we conclude that

$$
x \equiv 9,15,8, \text { or } 2(\bmod 17)
$$

Since each step in the computations is reversible, there are four incongruent solutions of the original congruence modulo 17.

Example. We wish to find all solutions of the congruence $7^{x} \equiv 6(\bmod 17)$. When we take indices to the base 3 modulo 17 of both sides of this congruence, we find that

$$
\operatorname{ind}_{3}\left(7^{x}\right) \equiv \operatorname{ind}_{3} 6=15(\bmod 16)
$$

From part (iii) of Theorem 8.15, we obtain

$$
\operatorname{ind}_{3}\left(7^{x}\right) \equiv x \cdot \operatorname{ind}_{3} 7 \equiv 11 x(\bmod 16)
$$

Hence,

$$
11 x \equiv 15(\bmod 16)
$$

Since 3 is an inverse of 11 modulo 16 , we multiply both sides of the linear congruence above by 3 , to find that

$$
x \equiv 3 \cdot 15=45 \equiv 13(\bmod 16)
$$

All steps in this computation are reversible. Therefore, the solutions of

$$
7^{x} \equiv 6(\bmod 17)
$$

are given by

$$
x \equiv 13(\bmod 16)
$$

Next, we discuss congruences of the form $x^{k} \equiv a(\bmod m)$, where m is a positive integer with a primitive root and $(a, m)=1$. First, we present a definition.

Definition. If m and k are positive integers and a is an integer relatively prime to m, then we say that a is a kth power residue of m if the congruence $x^{k} \equiv a(\bmod m)$ has a solution.

When m is an integer possessing a primitive root, the following theorem gives a useful criterion for an integer a relatively prime to m to be a k th power residue of m.

Theorem 8.16. Let m be a positive integer with a primitive root. If k is a positive integer and a is an integer relatively prime to m, then the congruence $x^{k} \equiv a(\bmod m)$ has a solution if and only if

$$
a^{\phi(m) / d} \equiv 1(\bmod m)
$$

where $d=(k, \phi(m))$. Furthermore, if there are solutions of $x^{k} \equiv a(\bmod m)$, then there are exactly d incongruent solutions modulo m.

Proof. Let r be a primitive root modulo the positive integer m. We note that the congruence

$$
x^{k} \equiv a(\bmod m)
$$

holds if and only if

$$
\begin{equation*}
k \cdot \operatorname{ind}_{r} x \equiv \operatorname{ind}_{r} a \quad(\bmod \phi(m)) \tag{8.1}
\end{equation*}
$$

Now let $d=(k, \phi(m))$ and $y=\operatorname{ind}_{r} x$, so that $x \equiv r^{y}(\bmod m)$. From

Theorem 3.7, we note that if $d \backslash$ ind $_{r} a$, then the linear congruence

$$
\begin{equation*}
k y \equiv \operatorname{ind}_{r} a(\bmod \phi(m)) \tag{8.2}
\end{equation*}
$$

has no solutions, and hence, there are no integers x satisfying (8.1). If $d \mid \operatorname{ind}_{r} a$, then there are exactly d integers y incongruent modulo $\phi(m)$ such that (8.2) holds, and hence, exactly d integers x incongruent modulo m such that (8.1) holds. Since $d \mid$ ind $_{r} a$ if and only if

$$
(\phi(m) / d) \text { ind }_{r} a \equiv 0(\bmod \phi(m))
$$

and this congruence holds if and only if

$$
a^{\phi(m) / d} \equiv 1(\bmod m)
$$

the theorem is true.
We note that Theorem 8.16 tells us that if p is a prime, k is a positive integer, and a is an integer relatively prime to p, then a is a k th power residue of p if and only if

$$
a^{(p-1) / d} \equiv 1(\bmod p)
$$

where $d=(k, p-1)$. We illustrate this observation with an example.
Example. To determine whether 5 is a sixth power residue of 17 , i.e. whether the congruence

$$
x^{6} \equiv 5(\bmod 17)
$$

has a solution, we determine that

$$
5^{16 /(6,16)}=5^{8} \equiv-1(\bmod 17)
$$

Hence, 5 is not a sixth power residue of 17 .
A table of indices with respect to the least primitive root modulo each prime less than 100 is given in Table 4 of the Appendix.

We now present the proof of Theorem 5.8. We state this theorem again for convenience.

Theorem 5.8. If n is an odd composite positive integer, then n passes Miller's test for at most $(n-1) / 4$ bases b with $1 \leqslant b<n-1$.

We need the following lemma in the proof of Theorem 5.8.

Lemma 8.1. Let p be an odd prime and let e and q be positive integers. Then the number of incongruent solutions of the congruence $x^{q-1} \equiv 1\left(\bmod p^{e}\right)$ is $\left(q, p^{e-1}(p-1)\right)$.

Proof. Let r be a primitive root of p^{e}. By taking indices with respect to r, we see that $x^{q} \equiv 1\left(\bmod p^{e}\right)$ if and only if $q y \equiv 0\left(\bmod \phi\left(p^{e}\right)\right)$ where $y=\operatorname{ind}_{r} x$. Using Theorem 3.7, we see that there are exactly ($q, \phi\left(p^{e}\right)$) incongruent solutions of $g y \equiv 0\left(\bmod \phi\left(p^{e}\right)\right)$. Consequently, there are $\left(q, \phi\left(p^{e}\right)\right)=\left(q, p^{e-1}(p-1)\right)$ incongruent solutions of $x^{q} \equiv 1\left(\bmod p^{e}\right)$.

We now proceed with a proof of Theorem 5.8.
Proof. Let $n-1=2^{s} t$, where s is a positive integer and t is an odd positive integer. For n to be a strong pseudoprime to the base b, either

$$
b^{t} \equiv 1(\bmod n)
$$

or

$$
b^{2^{2} t} \equiv-1(\bmod n)
$$

for some integer j with $0 \leqslant j \leqslant s-1$. In either case, we have

$$
b^{n-1} \equiv 1(\bmod n)
$$

Let the prime-power factorization of n be $n=p_{1}^{e_{1}^{1}} p_{2}^{e_{2}} \cdots p_{r}^{e}$. From Lemma 8.1, we know that there are $\left(n-1, p_{j}^{e}\left(p_{j}-1\right)\right)=\left(n-1, p_{j}-1\right)$ incongruent solutions of $x^{n-1} \equiv 1\left(\bmod p_{j}^{e_{j}}\right), j=1,2, \ldots, r$. Consequently, the Chinese remainder theorem tells us that there are exactly $\prod_{j=1}^{r}\left(n-1, p_{j}-1\right)$ incongruent solutions of $x^{n-1} \equiv 1(\bmod n)$.

To prove the theorem, we first consider the case where the prime-power factorization of n contains a prime power $p_{k}^{e_{k}}$ with exponent $e_{k} \geqslant 2$. Since

$$
\left(p_{k}-1\right) / p_{k}^{e_{k}}=1 / p_{k}^{e_{k}-1}-1 / p_{k}^{e_{k}} \leqslant 2 / 9
$$

(the largest possible value occurs when $p_{j}=3$ and $e_{j}=2$), we see that

$$
\begin{aligned}
\prod_{i=1}^{r}\left(n-1, p_{j}-1\right) & \leqslant \prod_{j=1}^{r}\left(p_{j}-1\right) \\
& \leqslant\left(\prod_{\substack{j=1 \\
j \neq k}}^{r} p_{j}\right)\left(\frac{2}{9} p_{k}^{e_{k}}\right) \\
& \leqslant \frac{2}{9} n
\end{aligned}
$$

Since $\frac{2}{9} n \leqslant \frac{1}{4}(n-1)$ for $n \geqslant 9$, we see that

$$
\prod_{j=1}^{r}\left(n-1, p_{j}-1\right) \leqslant(n-1) / 4
$$

Consequently, there are at most $(n-1) / 4$ integers $b, 1 \leqslant b \leqslant n$, for which n is a strong pseudoprime to the base b.

The other case to consider is when $n=p_{1} p_{2} \cdots p_{r}$, where $p_{1}, p_{2}, \ldots, p_{r}$ are distinct odd primes. Let

$$
p_{i}-1=2^{s_{1}} t_{i}, i=1,2, \ldots, r
$$

where s_{i} is a positive integer and t_{i} is an odd positive integer. We reorder the primes $p_{1}, p_{2}, \ldots, p_{r}$ (if necessary) so that $s_{1} \leqslant s_{2} \leqslant \cdots \leqslant s_{r}$. We note that

$$
\left(n-1, p_{i}-1\right)=2^{\min \left(s, s_{i}\right)}\left(t, t_{i}\right)
$$

The number of incongruent solutions of $x^{t} \equiv 1\left(\bmod p_{i}\right)$ is $T=\left(t, t_{i}\right)$. From problem 15 at the end of this section, there are $2^{j} t_{i}$ incongruent solutions of $x^{2^{\prime}} \equiv-1\left(\bmod p_{i}\right)$ when $0 \leqslant j \leqslant s_{i}-1$, and no solutions otherwise. Hence, using the Chinese remainder theorem, there are $T_{1} T_{2} \cdots T_{r}$ incongruent solutions of $x^{t} \equiv 1(\bmod n)$, and $2^{j r} T_{1} T_{2} \cdots T_{r}$ incongruent solutions of $x^{2^{\prime} t} \equiv-1(\bmod n)$ when $0 \leqslant j \leqslant s_{1}-1$. Therefore, there are a total of

$$
T_{1} T_{2} \cdots T_{r}\left(1+\sum_{j=0}^{s_{1}-1} 2^{j r}\right)=T_{1} T_{2} \cdots T_{r}\left(1+\frac{2^{r s_{1}}-1}{2^{r-1}}\right)
$$

integers b with $1 \leqslant b \leqslant n-1$, for which n is a strong pseudoprime to the base b. (We have used Theorem 1.1 to evaluate the sum in the last formula.)

Now note that

$$
\phi(n)=\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{r}-1\right)=t_{1} t_{2} \cdots t_{r} 2^{s_{1}+s_{2}+\cdots+s_{r}} .
$$

We will show that

$$
T_{1} T_{2} \cdots T_{r}\left(1+\frac{2^{r s_{1}}-1}{2^{r}-1}\right) \leqslant \phi(n) / 4
$$

which proves the desired result. Because $T_{1} T_{2} \cdots T_{r} \leqslant t_{1} t_{2} \cdots t_{r}$, we can achieve our goal by showing that

$$
\begin{equation*}
\left(1+\frac{2^{r s_{1}}-1}{2^{r}-1}\right) / 2^{s_{1}+s_{2}+\cdots+s_{r}} \leqslant 1 / 4 . \tag{8.3}
\end{equation*}
$$

Since $s_{1} \leqslant s_{2} \leqslant \cdots \leqslant s_{r}$, we see that

$$
\begin{aligned}
\left(1+\frac{2^{r s_{1}}-1}{2^{r}-1}\right) / 2^{s_{1}+s_{2}+\cdots+s_{r}} & \leqslant\left(1+\frac{2^{r s_{1}}-1}{2^{r}-1}\right) / 2^{r s_{1}} \\
& =\frac{1}{2^{r s_{1}}}+\frac{2^{r s_{1}}-1}{2^{r s_{1}}\left(2^{r}-1\right)} \\
& =\frac{1}{2^{r s_{1}}}+\frac{1}{2^{r-1}}-\frac{1}{2^{r s_{1}}\left(2^{r}-1\right)} \\
& =\frac{1}{2^{r}-1}+\frac{2^{r}-2}{2^{r s_{1}}\left(2^{r}-1\right)} \\
& \leqslant \frac{1}{2^{r-1}} .
\end{aligned}
$$

From this inequality, we conclude that (8.3) is valid when $r \leqslant 3$.
When $r=2$, we have $n=p_{1} p_{2}$ with $p_{1}-1=2^{s_{1}} t_{1}$ and $p_{2}-1=2^{s_{2}} t_{2}$, with $s_{1} \leqslant s_{2}$. If $s_{1}<s_{2}$, then (8.3) is again valid, since

$$
\begin{aligned}
\left(1+\frac{2^{2 s_{1}}-1}{3}\right) / 2^{s_{1}+s_{2}} & =\left(1+\frac{2^{2 s_{1}}-1}{3}\right) /\left(2^{\left.2 s_{1} \cdot 2^{s_{2}-s_{1}}\right)}\right. \\
& =\left(\frac{1}{3}+\frac{1}{3 \cdot 2^{2 s_{1}-1}}\right) / 2^{s_{2}-s_{1}} \\
& \leqslant \frac{1}{4} .
\end{aligned}
$$

When $s_{1}=s_{2}$, we have $\left(n-1, p_{1}-1\right)=2^{s} T_{1}$ and $\left(n-1, p_{2}-1\right)=2^{s} T_{2}$. Let us assume that $p_{1}>p_{2}$. Note that $T_{1} \neq t_{1}$, for if $T_{1}=t_{1}$, then
$\left(p_{1}-1\right) \mid(n-1)$, so that

$$
n=p_{1} p_{2} \equiv p_{2} \equiv 1\left(\bmod p_{1}-1\right)
$$

which implies that $p_{2}>p_{1}$, a contradiction. Since $T_{1} \neq t_{1}$, we know that $T_{1} \leqslant t_{1} / 3$. Similarly, if $p_{1}<p_{2}$ then $T_{2} \neq t_{2}$, so that $T_{2} \leqslant t_{2} / 3$. Hence, $T_{1} T_{2} \leqslant t_{1} t_{2} / 3$, and since $\left(1+\frac{2^{2 s_{1}}-1}{3}\right) / 2^{2 s_{1}} \leqslant \frac{1}{2}$, we have

$$
T_{1} T_{2}\left(1+\frac{2^{2 s_{1}}-1}{3}\right) \leqslant t_{1} t_{2} 2^{2 s_{1}} / 6=\phi(n) / 6
$$

which proves the theorem for this final case, since $\phi(n) / 6 \leqslant(n-1) / 6<(n-1) / 4$.

By analyzing the inequalities in the proof of Theorem 5.8, we can see that the probability that n is a strong pseudoprime to the randomly chosen base b, $1 \leqslant b \leqslant n-1$, is close to $1 / 4$ only for integers n with prime factorizations of the form $n=p_{1} p_{2}$ with $p_{1}=1+2 q_{1}$ and $p_{2}=1+4 q_{2}$, where q_{1} and q_{2} are odd primes, or $n=q_{1} q_{2} q_{3}$ with $p_{1}=1+2 q_{1}, p_{2}=1+2 q_{2}$, and $p_{3}=1+2 q_{3}$, where q_{1}, q_{2}, and q_{3} are distinct odd primes (see problem 16).

8.4 Problems

1. Write out a table of indices modulo 23 with respect to the primitive root 5 .
2. Find all the solutions of the congruences
a) $3 x^{5} \equiv 1(\bmod 23)$
b) $3 x^{14} \equiv 2(\bmod 23)$.
3. Find all the solutions of the congruences
a) $3^{x} \equiv 2(\bmod 23)$
b) $13^{x} \equiv 5(\bmod 23)$.
4. For which positive integers a is the congruence $a x^{4} \equiv 2(\bmod 13)$ solvable?
5. For which positive integers b is the congruence $8 x^{7} \equiv b(\bmod 29)$ solvable?
6. Find the solutions of $2^{x} \equiv x(\bmod 13)$, using indices to the base 2 modulo 13.
7. Find all the solutions of $x^{x} \equiv x(\bmod 23)$.
8. Show that if p is an odd prime and r is a primitive root of p, then $\operatorname{ind}_{r}(p-1)=$ $(p-1) / 2$.
9. Let p be an odd prime. Show that the congruence $x^{4} \equiv-1(\bmod p)$ has a solution if and only if p is of the form $8 k+1$.
10. Prove that there are infinitely many primes of the form $8 k+1$. (Hint: Assume that $p_{1}, p_{2}, \ldots, p_{n}$ are the only primes of this form. Let $Q=\left(p_{1} p_{2} \cdots p_{n}\right)^{4}+1$. Show that Q must have an odd prime factor different than $p_{1}, p_{2}, \ldots, p_{n}$, and by problem 9 , necessarily of the form $8 k+1$.)
11. From problem 9 of Section 8.3 , we know that if a is a positive integer, then there are unique integers α and β with $\alpha=0$ or 1 and $0 \leqslant \beta \leqslant 2^{k-2}-1$ such that $a \equiv(-1)^{\alpha} 5^{\beta}\left(\bmod 2^{k}\right)$. Define the index system of a modulo 2^{k} to be equal to the pair (α, β).
a) Find the index systems of 7 and 9 modulo 16 .
b) Develop rules for the index systems modulo 2^{k} of products and powers analogous to the rules for indices.
c) Use the index system modulo 32 to find all solutions of $7 x^{9} \equiv 11(\bmod 32)$ and $3^{x} \equiv 17(\bmod 32)$.
12. Let $n=2^{t} \cdot p_{1}^{t} p_{2}^{t_{2}^{2}} \cdots p_{m}^{t}$ be the prime-power factorization of n. Let a be an
 respectively, and let $\gamma_{1}=\operatorname{ind}_{r_{1}} a\left(\bmod p_{1}^{t_{1}^{\prime}}\right), \quad \gamma_{2}=\operatorname{ind}_{r_{2}} a\left(\bmod p_{2}^{t_{2}}\right)$, $\ldots, \gamma_{m}=\operatorname{ind}_{r_{-}} a\left(\bmod p_{m}^{t}\right)$. If $t_{0} \leqslant 2$, let r_{0} be a primitive root of 2^{t}, and let $\gamma_{0}=\operatorname{ind}_{r_{\cdot}} a\left(\bmod 2^{t}\right)$. If $t_{0} \geqslant 3$, let (α, β) be the index system of a modulo 2^{k}, so that $a \equiv(-1)^{\alpha} 5^{\beta}\left(\bmod 2^{k}\right)$. Define the index system of a modulo n to be $\left(\gamma_{0}, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{m}\right)$ if $t_{0} \leqslant 2$ and $\left(\alpha, \beta, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{m}\right)$ if $t_{0} \geqslant 3$.
a) Show that if n is a positive integer, then every integer has a unique index system modulo n.
b) Find the index systems of 17 and $41(\bmod 120)$ (in your computations, use 2 as a primitive root of the prime factor 5 of 120).
c) Develop rules for the index systems modulo n of products and powers analogous to those for indices.
d) Use an index system modulo 60 to find the solutions of $11 x^{7} \equiv 43(\bmod 60)$.
13. Let p be a prime, $p>3$. Show that if $p \equiv 2(\bmod 3)$ then every integer not divisible by 3 is a third-power, or cubic, residue of p, while if $p \equiv 1(\bmod 3)$, an integer a is a cubic residue of p if and only if $a^{(p-1) / 3} \equiv 1(\bmod p)$.
14. Let e be a positive integer with $e \geqslant 2$.
a) Show that if k is a positive integer, then every odd integer a is a k th power residue of 2^{e}.
b) Show that if k is even, then an integer a is a k th power residue of 2^{e} if and only if $a \equiv 1\left(\bmod \left(4 k, 2^{e}\right)\right)$.
c) Show that if k is a positive integer, then the number of incongruent k th power residues of 2^{e} is

$$
\frac{2^{e-1}}{(n, 2)\left(n, 2^{e-2}\right)}
$$

(Hint: Use problem 11.)

15. Let $N=2^{j} u$ be a positive integer with j a nonnegative integer and u an odd positive integer and let $p-1=2^{s} t$, where s and t are positive integers with t odd. Show that there are $2^{j}(t, u)$ incongruent solutions of $x^{N} \equiv-1(\bmod p)$ if $0 \leqslant j \leqslant s-1$, and no solutions otherwise.
16. a) Show that the probability that n is a strong pseudoprime for a base b randomly chosen with $1 \leqslant b \leqslant n-1$ is near $(n-1) / 4$ only when n has a prime factorization of the form $n=p_{1} p_{2}$ where $p_{1}=1+2 q_{1}$ and $p_{2}=1+4 q_{2}$ with q_{1} and q_{2} prime or $n=p_{1} p_{2} p_{3}$ where $p_{1}=1+2 q_{1}$, $p_{2}=1+2 q_{2}, p_{3}=1+2 q_{3}$ with q_{1}, q_{2}, q_{3} distinct odd primes.
b) Find the probability that $n=49939.99877$ is a strong pseudoprime to the base b randomly chosen with $1 \leqslant b \leqslant n-1$.

8.4 Computer Projects

Write programs to do the following:

1. Construct a table of indices modulo a particular primitive root of an integer.
2. Using indices, solve congruences of the form $a x^{b} \equiv c(\bmod m)$ where a, b, c, and m are integers with $c>0, m>0$, and where m has a primitive root.
3. Find k th power residues of a positive integer m having a primitive root, where k is a positive integer.
4. Find index systems modulo powers of 2 (see problem 11).
5. Find index systems modulo arbitrary positive integers (see problem 12).

8.5 Primality Tests Using Primitive Roots

From the concepts of orders of integers and primitive roots, we can produce useful primality tests. The following theorem presents such a test.

Theorem 8.17. If n is a positive integer and if an integer x exists such that

$$
x^{n-1} \equiv 1(\bmod n)
$$

$$
x^{(n-1) / q} \not \equiv 1(\bmod n)
$$

for all prime divisors q of $n-1$, then n is prime.
Proof. Since $x^{n-1} \equiv 1(\bmod n)$, Theorem 8.1 tells us that $\operatorname{ord}_{n} x \mid(n-1)$. We will show that $\operatorname{ord}_{n} x=n-1$. Suppose that $\operatorname{ord}_{n} x \neq n-1$. Since $\operatorname{ord}_{n} x \mid(n-1)$, there is an integer k with $n-1=k \cdot \operatorname{ord}_{n} x$ and since $\operatorname{ord}_{n} x \neq n-1$, we know that $k>1$. Let q be a prime divisor of k. Then

$$
x^{(n-1) / q}=x^{k / q \circ \mathrm{rd}_{n} x}=\left(x^{\operatorname{ord}_{n} x}\right)^{(k / q)} \equiv 1(\bmod n) .
$$

However, this contradicts the hypotheses of the theorem, so we must have $\operatorname{ord}_{n} x=n-1$. Now, since $\operatorname{ord}_{n} x \leqslant \phi(n)$ and $\phi(n) \leqslant n-1$, it follows that $\phi(n)=n-1$. Recalling Theorem 6.2 , we know that n must be prime.

Note that Theorem 8.17 is equivalent to the fact that if there is an integer with order modulo n equal to $n-1$, then n must be prime. We illustrate the use of Theorem 8.17 with an example.

Example. Let $n=1009$. Then $11^{1008} \equiv 1(\bmod 1009)$. The prime divisors of 1008 are 2,3 , and 7 . We see that $11^{1008 / 2}=11^{504} \equiv-1(\bmod 1009)$, $11^{1008 / 3}=11^{336} \equiv 374(\bmod 1009)$, and $11^{1008 / 7}=11^{144} \equiv 935(\bmod 1009)$. Hence, by Theorem 8.17 we know that 1009 is prime.

The following corollary of Theorem 8.17 gives a slightly more efficient primality test.

Corollary 8.4. If n is an odd positive integer and if x is a positive integer such that

$$
x^{(n-1) / 2} \equiv-1(\bmod n)
$$

and

$$
x^{(n-1) / q} \not \equiv 1(\bmod n)
$$

for all odd prime divisors q of $n-1$, then n is prime.
Proof. Since $x^{(n-1) / 2} \equiv-1(\bmod n)$, we see that

$$
x^{n-1}=\left(x^{(n-1) / 2}\right)^{2} \equiv(-1)^{2} \equiv 1(\bmod n)
$$

Since the hypotheses of Theorem 8.17 are met, we know that n is prime.
Example. Let $n=$ 2003. The odd prime divisors of $n-1=2002$ are 7, 11,
and 13. Since $5^{2002 / 2}=5^{1001} \equiv-1(\bmod 2003), \quad 5^{2002 / 7}=5^{286} \equiv 874$ $(\bmod 2003), \quad 5^{2002 / 11}=5^{183} \equiv 886(\bmod 2003), \quad$ and $\quad 5^{2002 / 13}=5^{154}$ $\equiv 633(\bmod 2003)$, we see from Corollary 8.4 that 2003 is prime.

To determine whether an integer n is prime using either Theorem 8.17 or Corollary 8.4 , it is necessary to know the prime factorization of $n-1$. As we have remarked before, finding the prime factorization of an integer is a timeconsuming process. Only when we have some a priori information about the factorization of $n-1$ are the primality tests given by these results practical. Indeed, with such information these tests can be useful. Such a situation occurs with the Fermat numbers; in Chapter 9 we give a primality test for these numbers based on the ideas of this section.

It is of interest to ask how quickly a computer can verify primality or compositeness. We answer these questions as follows.

Theorem 8.18. If n is composite, this can be proved with $O\left(\left(\log _{2} n\right)^{2}\right)$ bit operations.

Proof. If n is composite, there are integers a and b with $1<a<n$, $1<b<n$, and $n=a b$. Hence, given the two integers a and b, we multiply a and b and verify that $n=a b$. This takes $O\left(\left(\log _{2} n\right)^{2}\right)$ bit operations and proves that n is composite.

We can use Theorem 8.17 to estimate the number of bit operations needed to prove primality when the appropriate information is known.

Theorem 8.19. If n is prime, this can be proven using $O\left(\left(\log _{2} n\right)^{4}\right)$ bit operations.

Proof. We use the second principle of mathematical induction. The induction hypothesis is an estimate for $f(n)$, where $f(n)$ is the total number of multiplications and modular exponentiations needed to verify that the integer n is prime.

We demonstrate that

$$
f(n) \leqslant 3(\log n / \log 2)-2
$$

First, we note that $f(2)=1$. We assume that for all primes q, with $q<n$, the inequality

$$
f(q) \leqslant 3(\log q / \log 2)-2
$$

holds.

To prove that n is prime, we use Corollary 8.4. Once we have the numbers $2^{a}, q_{1}, \ldots, q_{t}$, and x that supposedly satisfy
(i) $n-1=2^{a} q_{1} q_{2} \cdots q_{t}$,
(ii) q_{i} is prime for $i=1,2, \ldots, t$,
(iii) $x^{(n-1) / 2} \equiv-1(\bmod n)$,
and
(iv) $x^{(n-1) / q} \equiv 1(\bmod n)$, for $i=1,2, \ldots t$,
we need to do t multiplications to check (i), $t+1$ modular exponentiations to check (iii) and (iv), and $f\left(q_{i}\right)$ multiplications and modular exponentiations to check (ii), that q_{i} is prime for $i=1,2, \ldots, t$. Hence,

$$
\begin{aligned}
f(n) & =t+(t+1)+\sum_{i=1}^{t} f\left(q_{i}\right) \\
& \leqslant 2 t+1+\sum_{i=1}^{t}\left(\left(3 \log q_{i} / \log 2\right)-2\right) \\
& =1+(3 / \log 2) \log \left(q_{1} q_{2} \cdots q_{t}\right) \\
& =(3 / \log 2) \log \left(2 q_{1} q_{2} \cdots q_{t}\right)-2 \\
& \leqslant(3 / \log 2) \log \left(2^{a} q_{1} q_{2} \cdots q_{t}\right)-2 \\
& =3(\log n / \log 2)-2
\end{aligned}
$$

Now each multiplication requires $O\left(\left(\log _{2} n\right)^{2}\right)$ bit operations and each modular exponentiation requires $O\left(\left(\log _{2} n\right)^{3}\right)$ bit operations. Since the total number of multiplications and modular exponentiations needed is $f(n)=O\left(\log _{2} n\right)$, the total number of bit operations needed is $O\left(\left(\log _{2} n\right)\left(\log _{2} n\right)^{3}\right)=O\left(\left(\log _{2} n\right)^{4}\right)$.

Theorem 8.19 was discovered by Pratt. He interpreted the result as showing that every prime has a "succinct certification of primality." It should be noted that Theorem 8.19 cannot be used to find this short proof of primality, for the factorization of $n-1$ and the primitive root x of n are required. More information on this subject may be found in Lenstra [71].

Recently, an extremely efficient primality test has been developed by Adleman, Pomerance, and Rumely. We will not describe the test here because it relies on concepts not developed in this book. We note, that to
determine whether an integer is prime using this test requires less than $\left(\log _{2} n\right)^{c \log _{2} \log _{2} \log _{2} n}$ bit operations, where c is a constant. For instance, to determine whether a 100 -digit integer is prime requires just 40 seconds and to determine whether a 200 -digit integer is prime requires just 10 minutes. Even a 1000 -digit integer may be checked for primality in a reasonable amount of time, one week. For more information about this test see [63] and [74].

8.5 Problems

1. Show that 101 is prime using Theorem 8.17 with $x=2$.
2. Show that 257 is prime using Corollary 8.4 with $x=3$.
3. Show that if an integer x exists such that

$$
x^{2^{2^{*}}} \equiv 1\left(\bmod F_{n}\right)
$$

and

$$
x^{2^{z^{*}}-1} \not \equiv 1\left(\bmod F_{n}\right),
$$

then the Fermat number $F_{n}=2^{2^{*}}+1$ is prime.
4. Let n be a positive integer. Show that if the prime-power factorization of $n-1$ is $n-1=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{t}^{a^{a}}$ and for $j=1,2, \ldots, t$, there exists an integer x_{j} such that

$$
x_{j}^{(n-1) / p_{j}} \not \equiv 1(\bmod n)
$$

and

$$
x_{j}^{n-1} \equiv 1(\bmod n)
$$

then n is prime.
5. Let n be a positive integer such that

$$
n-1=m{ }_{j=1}^{r} q_{j}^{a^{\prime}}
$$

where m is a positive integer, $a_{1}, a_{2}, \ldots, a_{r}$ are positive integers, and $q_{1}, q_{2}, \ldots, q_{r}$ are relatively prime integers greater than one. Furthermore, let $b_{1}, b_{2}, \ldots, b_{r}$ be positive integers such that there exist integers $x_{1}, x_{2}, \ldots, x_{r}$ with

$$
x_{j}^{n-1} \equiv 1(\bmod n)
$$

and

$$
\left(x_{j}^{(n-1) / q,}-1, n\right)=1
$$

for $j=1,2, \ldots, r$, where every prime factor of q_{j} is greater than or equal to b_{j} for $j=1,2, \ldots, r$, and

$$
n<\left(1+\prod_{j=1}^{r} b_{j}^{a}\right)^{2}
$$

Show that n is prime.

8.5 Computer Projects

Write programs to show that a positive integer n is prime using

1. Theorem 8.17.
2. Corollary 8.4.
3. Problem 4.
4. Problem 5.

8.6 Universal Exponents

Let n be a positive integer with prime-power factorization

$$
n=p_{1}^{t_{1}} p_{2}^{t_{2}} \cdots p_{m}^{t_{m}}
$$

If a is an integer relatively prime to n, then Euler's theorem tells us that

$$
a^{\phi\left(p^{t}\right)} \equiv 1\left(\bmod p^{t}\right)
$$

whenever p^{t} is one of the prime powers occurring in the factorization of n. As in the proof of Theorem 8.12, let

$$
U=\left[\phi\left(p_{1}^{t_{1}}\right), \phi\left(p_{2}^{t_{2}}\right), \ldots, \phi\left(p_{m}^{t_{m}}\right)\right]
$$

the least common multiple of the integers $\phi\left(p_{i}^{t_{i}}\right), i=1,2, \ldots, m$. Since

$$
\phi\left(p_{i}^{t_{i}}\right) \mid U
$$

for $i=1,2, \ldots, m$, using Theorem 8.1 we see that

$$
a^{U} \equiv 1\left(\bmod p_{i}^{t_{t}}\right)
$$

for $i=1,2, \ldots, m$. Hence, from Corollary 3.2, it follows that

$$
a^{U} \equiv 1(\bmod n)
$$

This leads to the following definition.
Definition. A universal exponent of the positive integer n is a positive integer U such that

$$
a^{U} \equiv 1(\bmod n)
$$

for all integers a relatively prime to n.
Example. Since the prime power factorization of 600 is $2^{3} \cdot 3 \cdot 5^{2}$, it follows that $U=\left[\phi\left(2^{3}\right), \phi(3), \phi\left(5^{2}\right)\right]=[2,2,20]=20$ is a universal exponent of 600.

From Euler's theorem, we know that $\phi(n)$ is a universal exponent. As we have already demonstrated, the integer $U=\left[\phi\left(p_{1}^{t_{1}}\right), \phi\left(p_{2}^{t_{2}}\right), \ldots, \phi\left(p_{m}^{t_{m}}\right)\right]$ is also a universal exponent of $n=p_{1}^{t_{1}} p_{2}^{t_{2}} \cdots p_{m}^{t_{m}}$. We are interested in finding the smallest positive universal exponent of n.

Definition. The least universal exponent of the positive integer n is called the minimal universal exponent of n, and is denoted by $\lambda(n)$.

We now find a formula for the minimal universal exponent $\lambda(n)$, based on the prime-power factorization of n.

First, note that if n has a primitive root, then $\lambda(n)=\phi(n)$. Since powers of odd primes possess primitive roots, we know that

$$
\lambda\left(p^{t}\right)=\phi\left(p^{t}\right)
$$

whenever p is an odd prime and t is a positive integer. Similarly, we have $\lambda(2)=\phi(2)=1$ and $\lambda(4)=\phi(4)=2$, since both 2 and 4 have primitive roots. On the other hand, if $t \geqslant 3$, then we know from Theorem 8.10 that

$$
a^{2^{2-2}}=1\left(\bmod 2^{t}\right)
$$

and $\operatorname{ord}_{t} a=2^{t-2}$, so that we can conclude that $\lambda\left(2^{t}\right)=2^{t-2}$ if $t \geqslant 3$.
We have found $\lambda(n)$ when n is a power of a prime. Next, we turn our attention to arbitrary positive integers n.

Theorem 8.20. Let n be a positive integer with prime-power factorization

$$
n=2^{t_{0}} p_{1}^{t_{1}} p_{2}^{t_{2}} \cdots p_{m}^{t_{m}^{\prime}} .
$$

Then $\lambda(n)$, the minimal universal exponent of n, is given by

$$
\lambda(n)=\left[\lambda\left(2^{t_{0}}\right), \phi\left(p_{1}^{t_{1}}\right), \ldots, \phi\left(p_{m}^{t^{\prime}}\right)\right],
$$

Moreover, there exists an integer a such that $\operatorname{ord}_{n} a=\lambda(n)$, the largest possible order of an integer modulo n.

Proof. Let a be an integer with $(a, n)=1$. For convenience, let

$$
M=\left[\lambda\left(2^{t_{0}}\right), \phi\left(p_{1}^{t_{1}}\right), \phi\left(p_{2}^{t_{2}}\right), \ldots, \phi\left(p_{m}^{t_{m}^{\prime}}\right)\right] .
$$

Since M is divisible by all of the integers $\lambda\left(2^{t_{0}}\right), \phi\left(p_{1}^{t_{1}}\right)=\lambda\left(p_{1}^{t_{1}}\right)$, $\phi\left(p_{2}^{t_{2}}\right)=\lambda\left(p_{2}^{t_{2}}\right), \ldots, \phi\left(p_{m}^{t_{m}}\right)=\lambda\left(p_{m}^{t^{\prime}}\right)$, and since $a^{\lambda\left(p^{t}\right)} \equiv 1\left(\bmod p^{t}\right)$ for all prime-powers in the factorization of n, we see that

$$
a^{M} \equiv 1\left(\bmod p^{t}\right),
$$

whenever p^{t} is a prime-power occurring in the factorization of n.
Consequently, from Corollary 3.2, we can conclude that

$$
a^{M} \equiv 1(\bmod n) .
$$

The last congruence establishes the fact that M is a universal exponent. We must now show that M is the least universal exponent. To do this, we find an integer a such that no positive power smaller than the M th power of a is congruent to 1 modulo n. With this in mind, let r_{i} be a primitive root of $p_{i}{ }^{t^{\prime}}$.

We consider the system of simultaneous congruences

$$
\begin{aligned}
& x \equiv 3\left(\bmod 2^{t_{0}}\right) \\
& x \equiv r_{1}\left(\bmod p_{1}^{t_{1}^{\prime}}\right) \\
& x \equiv r_{2}\left(\bmod p_{2}^{t_{2}^{2}}\right) \\
& \cdot \\
& \cdot \\
& x \equiv r_{m}\left(\bmod p_{m}^{t^{\prime}}\right) .
\end{aligned}
$$

By the Chinese remainder theorem, there is a simultaneous solution a of this system which is unique modulo $n=2^{t_{0}} p_{1}^{t_{1} p_{2}^{t}} \cdots p_{m}^{t_{m}}$; we will show that
$\operatorname{ord}_{n} a=M$. To prove this claim, assume that N is a positive integer such that

$$
a^{N} \equiv 1(\bmod n)
$$

Then, if p^{t} is a prime-power divisor of n, we have

$$
a^{N} \equiv 1\left(\bmod p^{t}\right)
$$

so that

$$
\operatorname{ord}_{p^{\prime}} a \mid N
$$

But, since a satisfies each of the $m+1$ congruences of the system, we have

$$
\operatorname{ord}_{p^{\prime}} a=\lambda\left(p^{t}\right)
$$

for each prime power in the factorization. Hence, from Theorem 8.1, we have

$$
\lambda\left(p^{t}\right) \mid N
$$

for all prime powers p^{t} in the factorization of n. Therefore, from Corollary 3.2, we know that $M=\left[\lambda\left(2^{t_{0}}\right), \lambda\left(p_{1}^{t_{1}}\right), \lambda\left(p_{2}^{t_{2}}\right), \ldots, \lambda\left(p_{m}^{t_{m}}\right)\right] \mid N$.

Since $a^{M} \equiv 1(\bmod n)$ and $M \mid N$ whenever $a^{N} \equiv 1(\bmod n)$, we can conclude that

$$
\operatorname{ord}_{n} a=M
$$

This shows that $M=\lambda(n)$ and simultaneously produces a positive integer a with $\operatorname{ord}_{n} a=\lambda(n)$.

Example. Since the prime-power factorization of 180 is $2^{2 \cdot} \cdot 3^{2} \cdot 5$, from Theorem 8.20 it follows that

$$
\lambda(180)=\left[\phi\left(2^{2}\right), \phi\left(3^{2}\right), \phi(5)\right]=[2,6,4]=12
$$

To find an integer a with $\operatorname{ord}_{180} a=12$, first we find primitive roots modulo 3^{2} and 5. For instance, we take 2 and 3 as primitive roots modulo 3^{2} and 5 , respectively. Then, using the Chinese remainder theorem, we find a solution of the system of congruences

$$
\begin{aligned}
& a \equiv 3(\bmod 4) \\
& a \equiv 2(\bmod 9) \\
& a \equiv 3(\bmod 5)
\end{aligned}
$$

obtaining $a \equiv 83(\bmod 180)$. From the proof of Theorem 8.20, we see that $\operatorname{ord}_{180} 83=12$.

Example. Let $n=2^{6} 3^{2} 5 \cdot 7 \cdot 13 \cdot 17 \cdot 19 \cdot 37 \cdot 73$. Then, we have

$$
\begin{aligned}
\lambda(n) & =\left[\lambda\left(2^{6}\right), \phi\left(3^{2}\right), \phi(5), \phi(17), \phi(19), \phi(37), \phi(73)\right] \\
& =\left[2^{4}, 2 \cdot 3,2^{2}, 2^{4}, 2 \cdot 3^{2}, 2^{2} 3^{2}, 2^{3} 3^{2}\right] \\
& =2^{4} \cdot 3^{2} \\
& =144 .
\end{aligned}
$$

Hence, whenever a is a positive integer relatively prime to $2^{6} \cdot 3^{2} \cdot 5 \cdot 17 \cdot 17 \cdot 19 \cdot 37 \cdot 73$ we know that $a^{144} \equiv 1\left(\bmod 2^{6} \cdot 3^{2} \cdot 5 \cdot 17 \cdot 19 \cdot 37 \cdot 37 \cdot 73\right)$.

We now return to the Carmichael numbers that we discussed in Section 5.2. Recall that a Carmichael number is a composite integer that satisfies $b^{n-1} \equiv 1(\bmod n)$ for all positive integers b with $(b, n)=1$. We proved that if $n=q_{1} q_{2} \cdots q_{k}$, where $q_{1}, q_{2}, \ldots, q_{k}$ are distinct primes satisfying $\left(q_{j}-1\right) \mid(n-1)$ for $j=1,2, \ldots, k$, then n is a Carmichael number. Here, we prove the converse of this result.

Theorem 8.21. If $n>2$ is a Carmichael number, then $n=q_{1} q_{2} \cdots q_{k}$, where the q_{j} 's are distinct primes such that $\left(q_{j}-1\right) \mid(n-1)$ for $j=1,2, \ldots, k$.

Proof. If n is a Carmichael number, then

$$
b^{n-1} \equiv 1(\bmod n)
$$

for all positive integers b with $(b, n)=1$. Theorem 8.20 tells us that there is an integer a with $\operatorname{ord}_{n} a=\lambda(n)$, where $\lambda(n)$ is the minimal universal exponent, and since $a^{n-1} \equiv 1(\bmod n)$, Theorem 8.1 tells us that

$$
\lambda(n) \mid(n-1) .
$$

Now n must be odd, for if n was even, then $n-1$ would be odd, but $\lambda(n)$ is even (since $n>2$), contradicting the fact that $\lambda(n) \mid(n-1)$.

We now show that n must be the product of distinct primes. Suppose n has a prime-power factor p^{t} with $t \geqslant 2$. Then

$$
\lambda\left(p^{t}\right)=\phi\left(p^{t}\right)=p^{t-1}(p-1) \mid \lambda(n)=n-1
$$

This implies that $p \mid(n-1)$, which is impossible since $p \mid n$. Consequently, n must be the product of distinct odd primes, say

$$
n=q_{1} q_{2} \cdots q_{k}
$$

We conclude the proof by noting that

$$
\lambda\left(q_{i}\right)=\phi\left(q_{i}\right)=\left(q_{j}-1\right) \mid \lambda(n)=n-1 .
$$

We can easily prove more about the prime factorizations of Carmichael numbers.

Theorem 8.22. A Carmichael number must have at least three different odd prime factors.

Proof. Let n be a Carmichael number. Then n cannot have just one prime factor, since it is composite, and is the product of distinct primes. So assume that $n=p q$, where p and q are odd primes with $p>q$. Then

$$
n-1=p q-1=(p-1) q+(q-1) \equiv q-1 \not \equiv 0(\bmod p-1)
$$

which shows that $(p-1) \backslash(n-1)$. Hence, n cannot be a Carmichael number if it has just two different prime factors.

8.6 Problems

1. Find $\lambda(n)$, the minimal universal exponent of n, for the following values of n
a) 100
b) 144
c) 222
d) 884
e) $2^{4} \cdot 3^{3} \cdot 5^{2 \cdot 7}$
f) $2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 7^{3} \cdot 11^{2} \cdot 13 \cdot 17 \cdot 19$
g) 10 !
h) $20!$.
2. Find all positive integers n such that $\lambda(n)$ is equal to
a) 1
b) 2
c) 3
d) 4
e) 5
f) 6 .
3. Find the largest integer n with $\lambda(n)=12$.
4. Find an integer with the largest possible order modulo
a) 12
b) 15
c) 20
d) 36
e) 40
f) 63 .
5. Show that if m is a positive integer, then $\lambda(m)$ divides $\phi(m)$.
6. Show that if m and n are relatively prime positive integers, then $\lambda(m n)=[\lambda(m), \lambda(n)]$.
7. Let n be the largest positive integer satisfying the equation $\lambda(n)=a$, where a is a fixed positive integer. Show that if m is another solution of $\lambda(m)=a$, then m divides n.
8. Show that if n is a positive integer, then there are exactly $\phi(\lambda(n))$ incongruent integers with maximal order modulo n.
9. Show that if a and m are relatively prime positive integers, then the solutions of the congruence $a x \equiv b(\bmod m)$ are the integers x such that $x \equiv a^{\lambda(m)-1} b(\bmod m)$.
10. Show that if c is a positive integer greater than one, then the integers $1^{c}, 2^{c}, \ldots,(m-1)^{c}$ form a complete system of residues modulo m if and only if m is square-free and $(c, \lambda(m))=1$.
11. a) Show that if c and m are positive integers then the congruence $x^{c} \equiv x(\bmod m)$ has exactly

$$
\prod_{j=1}^{r}\left(1+\left(c-1, \phi\left(p_{j}^{a}\right)\right)\right.
$$

incongruent solutions, where m has prime-power factorization $m=p_{1}^{a} p_{2}^{a_{2}} \cdots p_{r}^{a}$.
b) Show that $x^{c} \equiv x(\bmod m)$ has exactly 3^{r} solutions if and only if $(c-1, \phi(m))=2$.
12. Use problem 11 to show that there are always at least 9 plaintext messages that are not changed when enciphered using an RSA cipher.
13. Show that there are no Carmichael numbers of the form $3 p q$ where p and q are primes.
14. Find all Carmichael numbers of the form $5 p q$ where p and q are primes.
15. Show that there are only a finite number of Carmichael numbers of the form $n=p q r$, where p is a fixed prime, and q and r are also primes.
16. Show that the deciphering exponent d for an RSA cipher with enciphering key (e, n) can be taken to be an inverse of e modulo $\lambda(n)$.

8.6 Computer Projects

Write programs to do the following:

1. Find the minimal universal exponent of a positive integer.
2. Find an integer with order modulo n equal to the minimal universal exponent of n.
3. Given a positive integer M, find all positive integers n with minimal universal exponent equal to M.
4. Solve linear congruences using the method of problem 9 .

8.7 Pseudo-Random Numbers

Numbers chosen randomly are often useful in computer simulation of complicated phenomena. To perform simulations, some method for generating random numbers is needed. There are various mechanical means for generating random numbers, but these are inefficient for computer use. Instead, a systematic method using computer arithmetic is preferable. One such method, called the middle - square method, introduced by Von Neumann, works as follows. To generate four-digit random numbers, we start with an arbitrary four-digit number, say 6139. We square this number to obtain 37687321 , and we take the middle four digits 6873 as the second random number. We iterate this procedure to obtain a sequence of random numbers, always squaring and removing the middle four-digits to obtain a new random number from the preceding one. (The square of a four-digit number has eight or fewer digits. Those with fewer than eight digits are considered eight-digit numbers by adding initial digits of 0 .)

Sequences produced by the middle-square method are, in reality, not randomly chosen. When the initial four-digit number is known, the entire sequence is determined. However, the sequence of numbers produced appears to be random, and the numbers produced are useful for computer simulations. The integers in sequences that have been chosen in some methodical manner, but appear to be random, are called pseudo-random numbers.

It turns out that the middle-square method has some unfortunate weaknesses. The most undesirable feature of this method is that, for many choices of the initial integer, the method produces the same small set of numbers over and over. For instance, starting with the four-digit integer 4100 and using the middle-square method, we obtain the sequence $8100,6100,2100,4100,8100,6100,2100, \ldots$ which only gives four different numbers before repeating.

The most commonly used method for generating pseudo-random numbers is called the linear congruential method which works as follows. A set of integers m, a, c, and x_{0} is chosen so that $m>0,2 \leqslant a \leqslant m, 0 \leqslant c \leqslant m$, and $0 \leqslant x_{0} \leqslant m$. The sequence of pseudo-random numbers is defined
recursively by

$$
x_{n+1} \equiv a x_{n}+c(\bmod m), \quad 0 \leqslant x_{n+1}<m,
$$

for $n=0,1,2,3, \ldots$. We call m the modulus, a the multiplier, c the increment, and x_{0} the seed of the pseudo-random number generator. The following examples illustrate the linear congruential method.

Example. With $m=12, a=3, c=4$, and $x_{0}=5$, we obtain $x_{1} \equiv 3 \cdot 5+4 \equiv 7(\bmod 12)$, so that $x_{1}=7$. Similarly, we find that $x_{2}=1$, since $x_{2} \equiv 3 \cdot 7+4 \equiv 1(\bmod 12), x_{3}=7$, since $x_{3} \equiv 3 \cdot 1+4 \equiv 7(\bmod 12)$, and so on. Hence, the generator produces just three different integers before repeating. The sequence of pseudo-random numbers obtained is $5,7,1,7,1,7,1, \ldots$.

With $m=9, a=7, c=4$, and $x_{0}=3$, we obtain the sequence $3,7,8,6,1,2,0,4,5,3, \ldots$. This sequence contains 9 different numbers before repeating.

The following theorem tells us how to find the terms of a sequence of pseudo-random numbers generated by the linear congruential method directly from the multiplier, the increment, and the seed.

Theorem 8.24. The terms of the sequence generated by the linear congruential method previously described are given by

$$
x_{k} \equiv a^{k} x_{0}+c\left(a^{k}-1\right) /(a-1)(\bmod m), 0 \leqslant x_{k}<m .
$$

Proof. We prove this result using mathematical induction. For $k=1$, the formula is obviously true, since $x_{1} \equiv a x_{0}+c(\bmod m), 0 \leqslant x_{1}<m$. Assume that the formula is valid for the k th term, so that

$$
x_{k} \equiv a^{k} x_{0}+c\left(a^{k}-1\right) /(a-1)(\bmod m), \quad 0 \leqslant x_{k}<m .
$$

Since

$$
x_{k+1} \equiv a x_{k}+c \quad(\bmod m), \quad 0 \leqslant x_{k+1}<m,
$$

we have

$$
\begin{aligned}
x_{k+1} & \equiv a\left(a^{k} x_{0}+c\left(a^{k}-1\right) /(a-1)\right)+c \\
& \equiv a^{k+1} x_{0}+c\left(a^{k}\left(a^{k}-1\right) /(a-1)+1\right. \\
& \equiv a^{k+1} x_{0}+c\left(a^{k+1}-1\right) /(a-1)(\bmod m),
\end{aligned}
$$

which is the correct formula for the $(k+1)$ th term. This demonstrates that the formula is correct for all positive integers k.

The period length of a linear-congruential pseudo-random number generator is the maximum length of the sequence obtained without repetition. We note that the longest possible period length for a linear congruential generator is the modulus m. The following theorem tells us when this maximum length is obtained.

Theorem 8.25. The linear congruential generator produces a sequence of period length m if and only if $(c, m)=1, a \equiv 1(\bmod p)$ for all primes p dividing m, and $a \equiv 1(\bmod 4)$ if $4 \mid m$.

Because the proof of Theorem 8.25 is complicated and quite lengthy we omit it. For the proof, the reader is referred to Knuth [56].

The case of the linear congruential generator with $c=0$ is of special interest because of its simplicity. In this case, the method is called the pure multiplicative congruential method. We specify the modulus m, multiplier a, and seed x_{0}. The sequence of pseudo-random numbers is defined recursively by

$$
x_{n+1} \equiv a x_{n}(\bmod m), 0<x_{n+1}<m
$$

In general, we can express the pseudo-random numbers generated in terms of the multiplier and seed:

$$
x_{n} \equiv a^{n} x_{0}(\bmod m), 0<x_{n+1}<m
$$

If ℓ is the period length of the sequence obtained using this pure multiplicative generator, then ℓ is the smallest positive integer such that

$$
x_{0} \equiv a^{l} x_{0}(\bmod m)
$$

If $\left(x_{0}, m\right)=1$, using Corollary 3.1, we have

$$
a^{\ell} \equiv 1 \quad(\bmod m)
$$

From this congruence, we know that the largest possible period length is $\lambda(m)$, where $\lambda(m)$ is the minimal universal exponent modulo m.

For many applications, the pure multiplicative generator is used with the modulus m equal to the Mersenne prime $M_{31}=2^{31}-1$. When the modulus m is a prime, the maximum period length is $m-1$, and this is obtained when a is a primitive root of m. To find a primitive root of M_{31} that can be used with good results, we first demonstrate that 7 is a primitive root of M_{31}.

Proposition 8.1. The integer 7 is a primitive root of $M_{31}=2^{31}-1$.

Proof. To show that 7 is a primitive root of $M_{31}=2^{31}-1$, it is sufficient to show that

$$
7^{\left(M_{31}-1\right) / q} \not \equiv 1 \quad\left(\bmod M_{31}\right)
$$

for all prime divisors q of $M_{31}-1$. With this information, we can conclude that $\operatorname{ord}_{M_{31}} 7=M_{31}-1$. To find the factorization of $M_{31}-1$, we note that

$$
\begin{aligned}
M_{31}-1 & =2^{31}-2=2\left(2^{30}-1\right)=2\left(2^{15}-1\right)\left(2^{15}+1\right) \\
& =2\left(2^{5}-1\right)\left(2^{10}+2^{5}+1\right)\left(2^{5}+1\right)\left(2^{10}-2^{5}+1\right) \\
& =2 \cdot 3^{2} \cdot 7 \cdot 11 \cdot 31 \cdot 151 \cdot 331 .
\end{aligned}
$$

If we show that

$$
7^{\left(M_{31}-1\right) / q} \not \equiv 1\left(\bmod M_{31}\right)
$$

for $q=2,3,7,11,31,151$, and 331 , then we know that 7 is a primitive root of $M_{31}=2147483647$. Since

$$
\begin{aligned}
& 7_{7^{\left(M_{3}-1\right) / 2}}^{\left(M_{1}-1\right) / 3} \equiv 2147483646 \not \equiv 1\left(\bmod M_{31}\right) \\
& 7_{\left(M_{13}-1\right) / 3}^{\left(M_{2}\right) / 7} \equiv 1513477735 \not \equiv 1\left(\bmod M_{31}\right) \\
& 7_{7^{\left(M_{1}-1\right) / 7}}^{\left(M_{1}-1\right) / 11} \equiv 120536285 \not \equiv 1\left(\bmod M_{31}\right) \\
& 7_{7^{\left(M_{n}-1\right) / 11} / 31}^{\left(M_{n}-1\right)} \equiv 1969212174 \not \equiv 1\left(\bmod M_{31}\right) \\
& 7_{7^{\left(M_{1}-1\right) / 31}}^{\left.M_{n}-1\right) / 51} \equiv 1512 \not \equiv 1\left(\bmod M_{31}\right) \\
& 7_{\left(M_{13}-1\right) / 331}^{\left(M_{31}-1\right) / 51} \equiv 535044134 \not \equiv 1\left(\bmod M_{31}\right) \\
& 7^{\left(M_{31}-1\right) / 331} \equiv 1761885083 \not \equiv 1\left(\bmod M_{31}\right),
\end{aligned}
$$

we see that 7 is a primitive root of M_{31}.
In practice, we do not want to use the primitive root 7 as the generator, since the first few integers generated are small. Instead, we find a larger primitive root using Corollary 8.2. We take a power of 7 where the exponent is relatively prime to $M_{31}-1$. For instance, since $\left(5, M_{31}-1\right)=1$, Corollary 8.2 tells us that $7^{5}=16807$ is also a primitive root. Since $\left(13, M_{31}-1\right)=1$, another possibility is to use $7^{13} \equiv 252246292\left(\bmod M_{31}\right)$ as the multiplier.
We havely touched briefly on the important subject of pseudo-random numbers. For a thorough discussion of the generation and statistical properties of pseudo-random numbers see Knuth [56].

8.7 Problems

1. Find the sequence of two-digit pseudo-random numbers generated using the middle-square method, taking 69 as the seed.
2. Find the first ten terms of the sequence of pseudo-random numbers generated by the linear congruential method with $x_{0}=6$ and $x_{n+1} \equiv 5 x_{n}+2(\bmod 19)$. What is the period length of this generator?
3. Find the period length of the sequence of pseudo-random numbers generated by the linear congruential method with $x_{0}=2$ and $x_{n+1} \equiv 4 x_{n}+7(\bmod 25)$.
4. Show that if either $a=0$ or $a=1$ is used for the multiplier in the generation of pseudo-random numbers by the linear congruential method, the resulting sequence would not be a good choice for a sequence of pseudo-random numbers.
5. Using Theorem 8.25 , find those integers a which give period length m, where $(c, m)=1$, for the linear congruential generator $x_{n+1} \equiv a x_{n}+c(\bmod m)$, where
a) $m=1000$
b) $m=30030$
c) $m=10^{6}-1$
d) $m=2^{25}-1$.
6. Show that every linear congruential pseudo-random number generator can be simply expressed in terms of a linear congruential generator with increment $c=1$ and seed 0 , by showing that the terms generated by the linear congruential generator $x_{n+1} \equiv a x_{n}+c(\bmod m)$, with seed x_{0}, can be expressed as $x_{n} \equiv$ $b y_{n}+x_{0}(\bmod m)$, where $b \equiv(a-1) x_{0}+c(\bmod m), y_{0}=0$, and $y_{n+1} \equiv$ $a y_{n}+1(\bmod m)$.
7. Find the period length of the pure multiplicative pseudo-random number generator $x_{n} \equiv c x_{n-1}\left(\bmod 2^{31}-1\right)$ when the multiplier c is equal to
a) 2
b) 3
c) 4
d) 5
e) 13 .
8. Show that the maximal possible period length for a pure multiplicative generator of the form $x_{n+1} \equiv a x_{n}\left(\bmod 2^{e}\right), e \geqslant 3$, is 2^{e-2}. Show that this is obtained when $a \equiv \pm 3(\bmod 8)$.
9. Another way to generate pseudo-random numbers is to use the Fibonacci generator. Let m be a positive integer. Two initial integers x_{0} and x_{1} less than m are specified and the rest of the sequence is generated recursively by the congruence $x_{n+1} \equiv x_{n}+x_{n-1}(\bmod m), \quad 0 \leqslant x_{n+1}<m$.

Find the first eight pseudo-random numbers generated by the Fibonacci generator with modulus $m=31$ and initial values $x_{0}=1$ and $x_{1}=24$.
10. Find a good choice for the multiplier a in the pure multiplicative pseudo-random number generator $x_{n+1} \equiv a x_{n}(\bmod 101)$. (Hint: Find a primitive root of 101 that is not too small.)
11. Find a good choice for the multiplier a in the pure multiplicative pseudo-random number generator $x_{n} \equiv a x_{n-1}\left(\bmod 2^{25}-1\right)$. (Hint: Find a primitive root of
$2^{25}-1$ and then take an appropriate power of this root.)
12. Find the multiplier a and increment c of the linear congruential pseudo-random number generator $x_{n+1} \equiv a x_{n}+c(\bmod 1003), 0 \leqslant x_{n+1}<1003$, if $x_{0}=1$, $x_{2}=402$, and $x_{3}=361$.
13. Find the multiplier a of the pure multiplicative pseudo-random number generator $x_{n+1} \equiv a x_{n}(\bmod 1000), 0 \leqslant x_{n+1}<1000$, if 313 and 145 are consecutive terms generated.

8.7 Computer Projects

Write programs to generate pseudo-random numbers using the following generators:

1. The middle-sequence generator.
2. The linear congruential generator.
3. The pure multiplicative generator.
4. The Fibonacci generator (see problem 9).

8.8 An Application to the Splicing of Telephone Cables

An interesting application of the preceding material involves the splicing of telephone cables. We base our discussion on the exposition of Ore [28], who relates the contents of an original article by Lawther [70], reporting on work done for the Southwestern Bell Telephone Company.

To develop the application, we first make the following definition.
Definition. Let m be a positive integer and let a be an integer relatively prime to m. The ± 1 - exponent of a modulo m is the smallest positive integer x such that

$$
a^{x} \equiv \pm 1(\bmod m)
$$

We are interested in determining the largest possible ± 1 - exponent of an integer modulo m; we denote this by $\lambda_{0}(m)$. The following two theorems relate the value of the maximal $\pm 1-$ exponent $\lambda_{0}(m)$ to $\lambda(m)$, the minimal universal exponent modulo m.

First, we consider positive integers that possess primitive roots.
Theorem 8.26. If m is a positive integer, $m>2$, with a primitive root, then the maximal $\pm 1-$ exponent $\lambda_{0}(m)$ equals $\phi(m) / 2=\lambda(m) / 2$.

Proof. We first note that if m has a primitive root, then $\lambda(m)=\phi(m)$. From problem 5 of Section 6.1, we know that $\phi(m)$ is even, so that $\phi(m) / 2$ is an integer, if $m>2$. Euler's Theorem tells us that

$$
a^{\phi(m)}=\left(a^{\phi(m) / 2}\right)^{2} \equiv 1 \quad(\bmod m)
$$

for all integers a with $(a, m)=1$. From problem 7 of Section 8.3, we know that when m has a primitive root, the only solutions of $x^{2} \equiv 1(\bmod m)$ are $x \equiv \pm 1(\bmod m)$. Hence,

$$
a^{\phi(m) / 2} \equiv \pm 1 \quad(\bmod m)
$$

This implies that

$$
\lambda_{0}(m) \leqslant \phi(m) / 2
$$

Now let r be a primitive root of modulo m with ± 1 - exponent e. Then

$$
r^{e} \equiv \pm 1(\bmod m)
$$

so that

$$
r^{2 e} \equiv 1 \quad(\bmod m)
$$

Since $\operatorname{ord}_{m} r=\phi(m)$, Theorem 8.1 tells us that $\phi(m) \mid 2 e$, or equivalently, that $(\phi(m) / 2) \mid e$. Hence, the maximum $\pm 1-$ exponent $\lambda_{0}(m)$ is at least $\phi(m) / 2$. However, we know that $\lambda(m) \leqslant \phi(m) / 2$. Consequently, $\lambda_{0}(m)=\phi(m) / 2=\lambda(m) / 2$.

We now will find the maximal ± 1 - exponent of integers without primitive roots.

Theorem 8.27. If m is a positive integer without a primitive root, then the maximal ± 1 - exponent $\lambda_{0}(m)$ equals $\lambda(m)$, the minimal universal exponent of m.

Proof. We first show that if a is an integer of order $\lambda(m)$ modulo m with ± 1 - exponent e such that

$$
a^{\lambda(m) / 2} \not \equiv-1(\bmod m),
$$

then $e=\lambda(m)$. Consequently, once we have found such an integer a, we will have shown that $\lambda_{0}(m)=\lambda(m)$.

Assume that a is an integer of order $\lambda(m)$ modulo m with ± 1 - exponent e such that

$$
a^{\lambda(m) / 2} \not \equiv-1(\bmod m) .
$$

Since $a^{e} \equiv \pm 1(\bmod m)$, it follows that $a^{2 e} \equiv 1(\bmod m)$. From Theorem 8.1, we know that $\lambda(m) \mid 2 e$. Since $\lambda(m) \mid 2 e$ and $e \leqslant \lambda(m)$, either $e=\lambda(m) / 2$ or $e=\lambda(m)$. To see that $e \neq \lambda(m) / 2$, note that $a^{e} \equiv \pm 1(\bmod m)$, but $a^{\lambda(m) / 2} \not \equiv 1(\bmod m)$, since $\operatorname{ord}_{m} a=\lambda(m)$, and $a^{\lambda(m) / 2} \not \equiv-1(\bmod m)$, by hypothesis. Therefore, we can conclude that if $\operatorname{ord}_{m} a=\lambda(m), \quad a$ has $\pm 1-$ exponent e, and $a^{e} \equiv-1(\bmod m)$, then $\boldsymbol{e}=\lambda(m)$.

We now find an integer a with the desired properties. Let the prime-power factorization of m be $m=2^{t_{0}} p_{1}^{t_{1}} p_{2}^{t_{2}} \cdots p_{s}^{t^{t}}$. We consider several cases.

We first consider those m with at least two different odd prime factors. Among the prime-powers $p_{i}^{t_{t}}$ dividing m, let $p_{j}^{t_{j}}$ be one with the smallest power of 2 dividing $\phi\left(p_{j}^{t_{j}}\right)$. Let r_{i} be a primitive root of $p_{i}^{t_{i}}$ for $i=1,2, \ldots, s$. Let a be an integer satisfying the simultaneous congruences

$$
\begin{aligned}
& a \equiv 3\left(\bmod 2^{t_{0}}\right) \\
& a \equiv r_{i}\left(\bmod p_{i}^{t_{1}}\right) \text { for all } i \text { with } i \neq j \\
& a \equiv r_{j}^{2}\left(\bmod p_{j}^{t^{\prime}}\right)
\end{aligned}
$$

Such an integer a is guaranteed to exist by the Chinese remainder theorem. Note that

$$
\operatorname{ord}_{m} a=\left[\lambda\left(2^{t_{0}}\right), \phi\left(p_{i}^{t^{2}}\right), \ldots, \phi\left(p_{j}^{t_{j}}\right) / 2, \ldots, \phi\left(p_{s}^{t_{0}}\right)\right]
$$

and, by our choice of p_{j}^{i}, we know that this least common multiple equals $\lambda(m)$. Since $a \equiv r_{j}^{2}\left(\bmod p_{j}^{t}\right)$, we know that $a^{\phi\left(p_{j}^{t}\right) / 2} \equiv$ $r_{j}^{\phi\left(p_{j}^{t_{j}}\right.} \equiv 1\left(\bmod p_{j}^{t_{j}}\right)$. Because $\phi\left(p_{j}^{t_{j}}\right) / 2 \mid \lambda(m) / 2$, we know that

$$
a^{\lambda(m) / 2} \equiv 1 \quad\left(\bmod p_{j}^{t}\right)
$$

so that

$$
a^{\lambda(m) / 2} \not \equiv-1 \quad(\bmod m) .
$$

Consequently, the ± 1 - exponent of a is $\lambda(m)$.
The next case we consider deals with integers of the form $m=2^{t_{0}} p^{t_{1}}$, where p is an odd prime, $t_{1} \geqslant 1$ and $t_{0} \geqslant 2$, since m has no primitive roots. When $t_{0}=2$ or 3 , we have

$$
\lambda(m)=\left[2, \phi\left(p_{1}^{t_{1}}\right)\right]=\phi\left(p_{1}^{t_{1}}\right)
$$

Let a be a solution of the simultaneous congruences

$$
\begin{array}{ll}
a \equiv 1 & (\bmod 4) \\
a \equiv r & \left(\bmod p_{1}^{t_{1}}\right),
\end{array}
$$

where r is a primitive root of $p_{1}^{t_{1}}$. We see that ord ${ }_{m} a=\lambda(m)$. Because

$$
a^{\lambda(m) / 2} \equiv 1(\bmod 4)
$$

we know that

$$
a^{\lambda(m) / 2} \not \equiv \equiv-1(\bmod m)
$$

Consequently, the ± 1 - exponent of a is $\lambda(m)$.
When $t_{0} \geqslant 4$, let a be a solution of the simultaneous congruences

$$
\begin{aligned}
& a \equiv 3 \quad\left(\bmod 2^{t_{0}}\right) \\
& a \equiv r \quad\left(\bmod p_{1}^{t_{1}}\right)
\end{aligned}
$$

the Chinese remainder theorem tells us that such an integer exists. We see that ord ${ }_{m} a=\lambda(m)$. Since $4 \mid \lambda\left(2^{t_{0}}\right)$, we know that $4 \mid \lambda(m)$. Hence,

$$
a^{\lambda(m) / 2} \equiv 3^{\lambda(m) / 2} \equiv\left(3^{2}\right)^{\lambda(m) / 4} \equiv 1(\bmod 8)
$$

Thus,

$$
a^{\lambda(m) / 2} \not \equiv-1 \quad(\bmod m),
$$

so that the $\pm 1-$ exponent of a is $\lambda(m)$.
Finally, when $m=2^{t_{0}}$ with $t_{0} \geqslant 3$, from Theorem 8.11 we know that $\operatorname{ord}_{m} 5=\lambda(m)$, but

$$
5^{\lambda(m) / 2} \equiv\left(5^{2}\right)^{(\lambda(m) / 4)} \equiv 1(\bmod 8)
$$

Therefore, we see that

$$
5^{\lambda(m) / 2} \not \equiv-1(\bmod m)
$$

we conclude that the ± 1 - exponent of 5 is $\lambda(m)$.
This finishes the argument since we have dealt with all cases where m does not have a primitive root.

We now develop a system for splicing telephone cables. Telephone cables are made up of concentric layers of insulated copper wire, as illustrated in Figure 8.1, and are produced in sections of specified length.

Figure 8.1. A cross-section of one layer of a telephone cable.

Telephone lines are constructed by splicing together sections of cable. When two wires are adjacent in the same layer in multiple sections of the cable, there are often problems with interference and crosstalk. Consequently, two wires adjacent in the same layer in one section should not be adjacent in the same layer in any nearby sections. For practical purpose, the splicing system should be simple. We use the following rules to describe the system. Wires in concentric layers are spliced to wires in the corresponding layers of the next section, following identical splicing direction at each connection. In a layer with m wires, we connect the wire in position j in one section, where $1 \leqslant j \leqslant m$ to the wire in position $S(j)$ in the next section, where $S(j)$ is the least positive residue of $1+(j-1) s$ modulo m. Here, s is called the spread of the splicing system. We see that when a wire in one section is spliced to a wire in the next section, the adjacent wire in the first section is spliced to the wire in the next section in the position obtained by counting forward s modulo m from the position of the last wire spliced in this section. To have a one-toone correspondence between wires of adjacent sections, we require that the spread s be relatively prime to the number of wires m. This shows that if wires in positions j and k are sent to the same wire in the next section, then $S(j)=S(k)$ and

$$
1+(j-1) s \equiv 1+(k-1) s \quad(\bmod m)
$$

so that $j s \equiv k s(\bmod m)$. Since $(m, s)=1$, from Corollary 3.1 we see that $j \equiv k(\bmod m)$, which is impossible.

Example. Let us connect 9 wires with a spread of 2 . We have the correspondence

$$
\begin{array}{lll}
1 \rightarrow 1 & 2 \rightarrow 3 & 3 \rightarrow 5 \\
4 \rightarrow 7 & 5 \rightarrow 9 & 6 \rightarrow 2 \\
7 \rightarrow 4 & 8 \rightarrow 6 & 9 \rightarrow 8 .
\end{array}
$$

This is illustrated in figure 8.2.

Figure 8.2. Splicing of 9 wires with spread of 2.
The following proposition tells us the correspondence of wires in the first section of cable to the wires in the nth section.

Proposition 8.2. Let $S^{n}(j)$ denote the position of the wire in the nth section spliced to the j th wire of the first section. Then

$$
S^{n}(j) \equiv 1+(j-1) s^{n-1}(\bmod m)
$$

Proof. For $n=2$, by the rules for the splicing system, we have

$$
S^{2}(j) \equiv 1+(j-1) s(\bmod m)
$$

so the proposition is true for $n=2$. Now assume that

$$
S^{n}(j) \equiv 1+(j-1) s^{n-1}(\bmod m)
$$

Then, in the next section, we have the wire in position $S^{n}(j)$ spliced to the
wire in position

$$
\begin{aligned}
S^{n+1}(j) & \equiv 1+\left(S^{n}(j)-1\right) s \\
& \equiv 1+\left((j-1) s^{n-1}\right) s \\
& \equiv 1+(j-1) s^{n}(\bmod m)
\end{aligned}
$$

This shows that the proposition is true.
In a splicing system, we want to have wires adjacent in one section separated as long as possible in the following sections. After n splices, Proposition 8.2 tells us that the adjacent wires in the j th and $j+1$ th positions are connected to wires in positions $S^{n}(j) \equiv 1+(j-1) s^{n}(\bmod m)$ and $S^{n}(j+1)=1+j s^{n}(\bmod m)$, respectively. These wires are adjacent in the nth section if, and only if,

$$
S^{n}(j)-S^{n}(j+1) \equiv \pm 1(\bmod m)
$$

or equivalently,

$$
\left(1+(j-1) s^{n}\right)-\left(1+j s^{n}\right) \equiv \pm 1(\bmod m)
$$

which holds if and only if

$$
s^{n} \equiv \pm 1 \quad(\bmod m)
$$

We can now apply the material at the beginning of this section. To keep adjacent wires in the first section separated as long as possible, we should pick for the spread s an integer with maximal ± 1 - exponent $\lambda_{0}(m)$.

Example. With 100 wires, we should choose a spread s so that the ± 1 exponent of s is $\lambda_{0}(100)=\lambda(100)=20$. The appropriate computations show that $s=3$ is such a spread.

8.8 Problems

1. Find the maximal ± 1 - exponent of
a) 17
b) 22
c) 24
d) 36
e) 99
f) 100 .
2. Find an integer with maximal ± 1 - exponent modulo
a) 13
d) 25
b) 14
c) 15
e) 36
f) 60 .
3. Devise a splicing scheme for telephone cables containing
a) 50 wires
b) 76 wires
c) 125 wires.
4. Show that using any splicing system of telephone cables with m wires arranged in a concentric layer, adjacent wires in one section can be kept separated in at most $[(m-1) / 2]$ successive sections of cable. Show that when m is prime this upper limit is achieved using the system developed in this section.

8.8 Computer Projects

Write programs to do the following:

1. Find maximal ± 1 - exponents.
2. Develop a scheme for splicing telephone cables as described in this section.

9

Quadratic Residues

9.1 Quadratic Residues

Let p be an odd prime and a an integer relatively prime to p. In this chapter, we devote our attention to the question: Is a a perfect square modulo p ? We begin with a definition.

Definition. If m is a positive integer, we say that the integer a is a quadratic residue of m if $(a, m)=1$ and the congruence $x^{2} \equiv a(\bmod m)$ has a solution. If the congruence $x^{2} \equiv a(\bmod m)$ has no solution, we say that a is a quadratic nonresidue of m.

Example. To determine which integers are quadratic residues of 11 , we compute the squares of the integers $1,2,3, \ldots, 10$. We find that $1^{2} \equiv 10^{2} \equiv 1(\bmod 11), 2^{2} \equiv 9^{2} \equiv 4(\bmod 11), 3^{2} \equiv 8^{2} \equiv 9(\bmod 11)$, $4^{2} \equiv 7^{2} \equiv 5(\bmod 11)$, and $5^{2} \equiv 6^{2} \equiv 3(\bmod 11)$. Hence, the quadratic residues of 11 are $1,3,4,5$, and 9 ; the integers $2,6,7,8$, and 10 are quadratic nonresidues of 11 .

Note that the quadratic residues of the positive integer m are just the k th power residues of m with $k=2$, as defined in Section 8.4. We will show that if p is an odd prime, then there are exactly as many quadratic residues as quadratic nonresidues of p among the integers $1,2, \ldots, p-1$. To demonstrate this fact, we use the following lemma.

Lemma 9.1. Let p be an odd prime and a an integer not divisible by p. Then, the congruence

$$
x^{2} \equiv a(\bmod p)
$$

has either no solutions or exactly two incongruent solutions modulo p.
Proof. If $x^{2} \equiv a(\bmod p)$ has a solution, say $x=x_{0}$, then we can easily demonstrate that $x=-x_{0}$ is a second incongruent solution. Since $\left(-x_{0}\right)^{2}=x_{0}^{2} \equiv a(\bmod p)$, we see that $-x_{0}$ is a solution. We note that $x_{0} \not \equiv-x_{0}(\bmod p)$, for if $x_{0} \equiv-x_{0}(\bmod p)$, then we have $2 x_{0} \equiv 0(\bmod p)$. This is impossible since p is odd and $p \lambda x_{0}$ (since $x_{0}^{2} \equiv a(\bmod p)$ and $\left.p \backslash a\right)$.

To show that there are no more than two incongruent solutions, assume that $x=x_{0}$ and $x=x_{1}$ are both solutions of $x^{2} \equiv a(\bmod p)$. Then, we have $x_{0}^{2} \equiv x_{1}^{2} \equiv a(\bmod p)$, so that $x_{0}^{2}-x_{1}^{2}=\left(x_{0}+x_{1}\right)\left(x_{0}-x_{1}\right) \equiv 0(\bmod p)$. Hence, $p \mid\left(x_{0}+x_{1}\right)$ or $p \mid\left(x_{0}-x_{1}\right)$, so that $x_{1} \equiv-x_{0}(\bmod p)$ or $x_{1} \equiv x_{0}(\bmod p)$. Therefore, if there is a solution of $x^{2} \equiv a(\bmod p)$, there are exactly two incongruent solutions.

This leads us to the following theorem.
Theorem 9.1. If p is an odd prime, then there are exactly $(p-1) / 2$ quadratic residues of p and $(p-1) / 2$ quadratic nonresidues of p among the integers $1,2, \ldots, p-1$.

Proof. To find all the quadratic residues of p among the integers $1,2, \ldots, p-1$ we compute the least positive residues modulo p of the squares of the integers $1,2, \ldots, p-1$. Since there are $p-1$ squares to consider and since each congruence $x^{2} \equiv a(\bmod p)$ has either zero or two solutions, there must be exactly $(p-1) / 2$ quadratic residues of p among the integers $1,2, \ldots, p-1$. The remaining $p-1-(p-1) / 2=(p-1) / 2$ positive integers less than $p-1$ are quadratic nonresidues of p.

The special notation associated with quadratic residues is described in the following definition.

Definition. Let p be an odd prime and a an integer not divisible by p. The Legendre symbol $\left(\frac{a}{p}\right)$ is defined by

$$
\left(\frac{a}{p}\right)=\left\{\begin{array}{c}
1 \text { if } a \text { is a quadratic residue of } \mathrm{p} \\
-1 \text { if } a \text { is a quadratic nonresidue of } \mathrm{p}
\end{array}\right.
$$

Example. The previous example shows that the Legendre symbols $\left(\frac{a}{11}\right)$,
$a=1,2, \ldots, 10$, have the following values:

$$
\begin{aligned}
& \left(\frac{1}{11}\right)=\left(\frac{3}{11}\right)=\left(\frac{4}{11}\right)=\left(\frac{5}{11}\right)=\left(\frac{9}{11}\right)=1 \\
& \left(\frac{2}{11}\right)=\left(\frac{6}{11}\right)=\left(\frac{7}{11}\right)=\left(\frac{8}{11}\right)=\left(\frac{10}{11}\right)=-1
\end{aligned}
$$

We now present a criterion for deciding whether an integer is a quadratic residue of a prime. This criterion is useful in demonstrating properties of the Legendre symbol.

Euler's Criterion. Let p be an odd prime and let a be a positive integer not divisible by p. Then

$$
\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2}(\bmod p)
$$

Proof. First, assume that $\left(\frac{a}{p}\right)=1$. Then, the congruence $x^{2} \equiv a(\bmod p)$ has a solution, say $x=x_{0}$. Using Fermat's little theorem, we see that

$$
a^{(p-1) / 2}=\left(x_{0}^{2}\right)^{(p-1) / 2}=x_{0}^{p-1} \equiv 1(\bmod p)
$$

Hence, if $\left(\frac{a}{p}\right)=1$, we know that $\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2}(\bmod p)$.
Now consider the case where $\left(\frac{a}{p}\right)=-1$. Then, the congruence $x^{2} \equiv a(\bmod p)$ has no solutions. From Theorem 3.7, for each integer i such that $1 \leqslant i \leqslant p-1$, there is a unique integer j with $1 \leqslant j \leqslant p-1$, such that $i j \equiv a(\bmod p) . \quad$ Furthermore, since the congruence $x^{2} \equiv a(\bmod p)$ has no solutions, we know that $i \neq j$. Thus, we can group the integers $1,2, \ldots, p-1$ into $(p-1) / 2$ pairs each with product a. Multiplying these pairs together, we find that

$$
(p-1)!\equiv a^{(p-1) / 2}(\bmod p)
$$

Since Wilson's theorem tells us that $(p-1)!\equiv-1(\bmod p)$, we see that

$$
-1 \equiv a^{(p-1) / 2}(\bmod p)
$$

In this case, we also have $\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2}(\bmod p)$.
Example. Let $p=23$ and $a=5$. Since $5^{11} \equiv-1(\bmod 23)$, Euler's criterion tells us that $\left(\frac{5}{23}\right)=-1$. Hence, 5 is a quadratic nonresidue of 23 .

We now prove some properties of the Legendre symbol.
Theorem 9.2. Let p be an odd prime and a and b integers not divisible by p. Then

> (i) if $a \equiv b(\bmod p)$, then $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$.
> (ii) $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)$
> (iii) $\quad\left(\frac{a^{2}}{p}\right)=1$

Proof of (i). If $a \equiv b(\bmod p)$, then $x^{2} \equiv a(\bmod p)$ has a solution if and only if $x^{2} \equiv b(\bmod p)$ has a solution. Hence, $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$.
Proof of (ii). By Euler's criterion, we know that

$$
\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2}(\bmod p),\left(\frac{b}{p}\right) \equiv b^{(p-1) / 2}(\bmod p)
$$

and

$$
\left(\frac{a b}{p}\right) \equiv(a b)^{(p-1) / 2}(\bmod p)
$$

Hence,

$$
\left(\frac{a}{b}\right)\left(\frac{b}{p}\right) \equiv a^{(p-1) / 2} b^{(p-1) / 2}=(a b)^{(p-1) / 2} \equiv\left(\frac{a b}{p}\right)(\bmod p) .
$$

Since the only possible values of a Legendre symbol are ± 1, we conclude that

$$
\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)
$$

Proof of (iii). Since $\left(\frac{a}{p}\right)= \pm 1$, from part (ii) it follows that

$$
\left(\frac{a^{2}}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{a}{p}\right)=1
$$

Part (ii) of Theorem 9.2 has the following interesting consequence. The product of two quadratic residues, or of two quadratic nonresidues, of a prime is a quadratic residue of that prime, whereas the product of a quadratic residue and a quadratic nonresidue is a quadratic nonresidue.

Using Euler's criterion, we can classify those primes having -1 as a quadratic residue.

Theorem 9.3. If p is an odd prime, then

$$
\left(\frac{-1}{p}\right)=\left\{\begin{aligned}
1 & \text { if } p \equiv 1(\bmod 4) \\
-1 & \text { if } p \equiv-1(\bmod 4)
\end{aligned}\right.
$$

Proof. By Euler's criterion, we know that

$$
\left(\frac{-1}{p}\right) \equiv(-1)^{(p-1) / 2}(\bmod p)
$$

If $p \equiv 1(\bmod 4)$, then $p=4 k+1$ for some integer k. Thus,

$$
(-1)^{(p-1) / 2}=(-1)^{2 k}=1
$$

so that $\left(\frac{-1}{p}\right)=1$. If $p \equiv 3(\bmod 4)$, then $p=4 k+3$ for some integer k, Thus,

$$
(-1)^{(p-1) / 2}=(-1)^{2 k+1}=-1
$$

so that $\left(\frac{-1}{p}\right) \equiv-1$.
The following elegant result of Gauss provides another criterion to determine whether an integer a relatively prime to the prime p is a quadratic residue of p.

Gauss' Lemma. Let p be an odd prime and a an integer with (a, p) $=1$. If s is the number of least positive residues modulo p of the integers $a, 2 a, 3 a, \ldots,((p-1) / 2) a$ that are greater than $p / 2$, then the Legendre symbol $\left(\frac{a}{p}\right)=(-1)^{s}$.

Proof. Let $u_{1}, u_{2}, \ldots, u_{s}$ represent the least positive residues of the integers $a, 2 a, 3 a, \ldots,((p-1) / 2) a$ that are greater than $p / 2$, and let $v_{1}, v_{2}, \ldots, v_{t}$ be the least positive residues of these integers that are less than $p / 2$. Since $(j a, p)=1$ for all j with $1 \leqslant j \leqslant(p-1) / 2$, all of these least positive residues are in the set $1,2, \ldots, p-1$.

We will show that $p-u_{1}, p-u_{2}, \ldots, p-u_{s}, v_{1}, v_{2}, \ldots, v_{t}$ comprise the set of integers $1,2, \ldots,(p-1) / 2$, in some order. To demonstrate this, it suffices to show that no two of these integers are congruent modulo p, since there are exactly $(p-1) / 2$ numbers in the set, and all are positive integers not exceeding ($p-1$)/2.

It is clear that no two of the u_{i} 's are congruent modulo p and that no two of the v_{j} 's are congruent modulo p; if a congruence of either of these two sorts held, we would have $m a \equiv n a(\bmod p)$ where m and n are both positive integers not exceeding $(p-1) / 2$. Since $p \backslash a$, this implies that $m \equiv n(\bmod p)$ which is impossible.

In addition, one of the integers $p-u_{i}$ cannot be congruent to a v_{j}, for if such a congruence held, we would have $m a \equiv p-n a(\bmod p)$, so that $m a \equiv-n a(\bmod p)$. Since $p \nmid a$, this implies that $m \equiv-n(\bmod p)$. This is impossible because both m and n are in the set $1,2, \ldots,(p-1) / 2$.

Now that we know that $p-u_{1}, p-u_{2}, \ldots, p-u_{s}, v_{1}, v_{2}, \ldots, v_{t}$ are the integers $1,2, \ldots,(p-1) / 2$, in some order, we conclude that

$$
\left(p-u_{1}\right)\left(p-u_{2}\right) \cdots\left(p-u_{s}\right) v_{1} v_{2} \cdots v_{t} \equiv\left(\frac{p-1}{2}\right)!(\bmod p)
$$

which implies that

$$
\begin{equation*}
(-1)^{s} u_{1} u_{2} \cdots u_{s} v_{1} v_{2} \cdots v_{t} \equiv\left(\frac{p-1}{2}\right)!(\bmod p) \tag{9.1}
\end{equation*}
$$

But, since $u_{1}, u_{2}, \ldots, u_{s}, v_{1}, v_{2}, \ldots, v_{t}$ are the least positive residues of $a, 2 a, \ldots,((p-1) / 2) a$, we also know that

$$
\begin{align*}
u_{1} u_{2} \cdots u_{s} v_{1} v_{2} \cdots v_{t} & \equiv a \cdot 2 a \cdots\left(\frac{p-1}{2}\right) a \tag{9.2}\\
& =a^{\frac{p-1}{2}}\left(\frac{p-1}{2}\right)!(\bmod p)
\end{align*}
$$

Hence, from (9.1) and (9.2), we see that

$$
(-1)^{s} a^{\frac{p-1}{2}}\left(\frac{p-1}{2}\right)!\equiv\left(\frac{p-1}{2}\right)!(\bmod p)
$$

Because $(p,((p-1) / 2)!)=1$, this congruence implies that

$$
(-1)^{s} a^{\frac{p-1}{2}} \equiv 1(\bmod p)
$$

By multiplying both sides by $(-1)^{s}$, we obtain

$$
a^{\frac{p-1}{2}} \equiv(-1)^{s}(\bmod p)
$$

Since Euler's criterion tells us that $a^{\frac{p-1}{2}} \equiv\left(\frac{a}{p}\right)(\bmod p)$, it follows that

$$
\left(\frac{a}{p}\right) \equiv(-1)^{s}(\bmod p)
$$

establishing Gauss' lemma.
Example. Let $a=5$ and $p=11$. To find $\left(\frac{5}{11}\right)$ by Gauss' lemma, we compute the least positive residues of $1 \cdot 5,2 \cdot 5,3 \cdot 5,4 \cdot 5$, and $5 \cdot 5$. These are $5,10,4,9$, and 3 , respectively. Since exactly two of these are greater than $11 / 2$, Gauss' lemma tells us that $\left(\frac{5}{11}\right)=(-1)^{2}=1$.

Using Gauss' lemma, we can characterize all primes that have 2 as a quadratic residue.

Theorem 9.4. If p is an odd prime, then

$$
\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}
$$

Hence, 2 is a quadratic residue of all primes $p \equiv \pm 1(\bmod 8)$ and a quadratic nonresidue of all primes $p \equiv \pm 3(\bmod 8)$.

Proof. From Gauss' lemma, we know that if s is the number of least positive residues of the integers

$$
1 \cdot 2,2 \cdot 2,3 \cdot 2, \ldots,\left(\frac{p-1}{2}\right) \cdot 2
$$

that are greater than $p / 2$, then $\left(\frac{2}{p}\right)=(-1)^{s}$. Since all these integers are less than p, we only need to count those greater than $p / 2$ to find how many have least positive residue greater than $p / 2$.

The integer $2 j$, where $1 \leqslant j \leqslant(p-1) / 2$, is less than $p / 2$ when $j \leqslant p / 4$. Hence, there are $[p / 4$] integers in the set less than $p / 2$. Consequently, there are $s=\frac{p-1}{2}-[p / 4]$ greater than $p / 2$. Therefore, by Gauss' lemma we see that

$$
\left(\frac{2}{p}\right)=(-1)^{\frac{p-1}{2}-[p / 4]} .
$$

To prove the theorem, we must show that

$$
\frac{p-1}{2}-\left[\frac{p}{4}\right] \equiv\left(p^{2}-1\right) / 8(\bmod 2) .
$$

To establish this, we need to consider the congruence class of p modulo 8 , since, as we will see, both sides of the above congruence depend only on the congruence class of p modulo 8 .

We first consider $\left(p^{2}-1\right) / 8$. If $p \equiv \pm 1(\bmod 8)$, then $p=8 k \pm 1$ where k is an integer, so that

$$
\left(p^{2}-1\right) / 8=\left((8 k \pm 1)^{2}-1\right) / 8=\left(64 k^{2} \pm 16 k\right) / 8=8 k^{2} \pm 2 k \equiv 0(\bmod 2)
$$

If $p \equiv \pm 3(\bmod 8)$, then $p=8 k \pm 3$ where k is an integer, so that

$$
\begin{aligned}
\left(p^{2}-1\right) / 8 & =\left((8 k \pm 3)^{2}-1\right) / 8=\left(64 k^{2} \pm 48 k+8\right) / 8=8 k^{2}+6 k+1 \\
& \equiv 1(\bmod 2) .
\end{aligned}
$$

Now consider $\frac{p-1}{2}-[p / 4]$. If $p \equiv 1(\bmod 8)$, then $p=8 k+1$ for some integer k and

$$
\frac{p-1}{2}-[p / 4]=4 k-[2 k+1 / 4]=2 k \equiv 0(\bmod 2) ;
$$

if $p \equiv 3(\bmod 8)$, then $p=8 k+3$ for some integer k, and

$$
\frac{p-1}{2}-[p / 4]=4 k+1-[2 k+3 / 4]=2 k+1 \equiv 1(\bmod 2) ;
$$

if $p \equiv 5(\bmod 8)$, then $p=8 k+5$ for some integer k, and

$$
\frac{p-1}{2}-[p / 4]=4 k+2-[2 k+5 / 4]=2 k+1 \equiv 1(\bmod 2) ;
$$

if $p \equiv 7(\bmod 8)$, then $p=8 k+7$ for some integer k, and

$$
\frac{p-1}{2}-[p / 4]=4 k+3-[2 k+7 / 4]=2 k+2 \equiv 0(\bmod 2) .
$$

Comparing the congruence classes modulo 2 of $\frac{p-1}{2}-[p / 4]$ and $\left(p^{2}-1\right) / 8$ for the four possible congruence classes of the odd prime p modulo 8 , we see that we always have $\frac{p-1}{2}-[p / 4] \equiv\left(p^{2}-1\right) / 8(\bmod 2)$.

Hence, $\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}$.
From the computations of the congruence class of $\left(p^{2}-1\right) / 8(\bmod 2)$, we see that $\quad\left(\frac{2}{p}\right)=1 \quad$ if $\quad p \equiv \pm 1(\bmod 8), \quad$ while $\quad\left(\frac{2}{p}\right)=-1 \quad$ if $p \equiv \pm 3(\bmod 8)$.

Example. From Theorem 9.4, we see that

$$
\left(\frac{2}{7}\right)=\left(\frac{2}{17}\right)=\left(\frac{2}{23}\right)=\left(\frac{2}{31}\right)=1,
$$

while

$$
\left(\frac{2}{3}\right)=\left(\frac{2}{5}\right)=\left(\frac{2}{11}\right)=\left(\frac{2}{13}\right)=\left(\frac{2}{19}\right)=\left(\frac{2}{29}\right)=-1 .
$$

We now present an example to show how to evaluate Legendre symbols.
Example. To evaluate $\left(\frac{317}{11}\right)$, we use part (i) of Theorem 9.2 to obtain
$\left(\frac{317}{11}\right)=\left(\frac{9}{11}\right)=\left(\frac{3}{11}\right)^{2}=1$, since $317 \equiv 9(\bmod 11)$.
To evaluate $\left(\frac{89}{13}\right)$, since $89 \equiv-2(\bmod 13)$, we have $\left(\frac{89}{13}\right)=\left(\frac{-2}{13}\right)=\left(\frac{-1}{13}\right)\left(\frac{2}{13}\right) . \quad$ Because $13 \equiv 1(\bmod 4)$, Theorem 9.3 tells us that $\left(\frac{-1}{13}\right)=1$. Since $13 \equiv-3(\bmod 8)$, we see from Theorem 9.4 that $\left(\frac{2}{13}\right)=-1$. Consequently, $\left(\frac{89}{13}\right)=-1$.

In the next section, we state and prove a theorem of fundamental importance for the evaluation of Legendre symbols. This theorem is called the law of quadratic reciprocity.

The difference in the length of time needed to find primes and to factor is the basis of the RSA cipher discussed in Chapter 7. This difference is also the basis of a method to "flip coins" electronically that was invented by Blum [82]. Results about quadratic residues are used to develop this method.

Suppose that $n=p q$, where p and q are distinct odd primes and suppose that the congruence $x^{2} \equiv a(\bmod n), \quad 0<a<n$, has a solution $x=x_{0}$. We show that there are exactly four incongruent solutions modulo n. To see this, let $x_{0} \equiv x_{1}(\bmod p), \quad 0<x_{1}<p, \quad$ and let $x_{0} \equiv x_{2}(\bmod q)$, $0<x_{2}<q$. Then the congruence $x^{2} \equiv a(\bmod p)$ has exactly two incongruent solutions, namely $x \equiv x_{1}(\bmod p)$ and $x \equiv p-x_{1}(\bmod p)$. Similarly the congruence $x^{2}=a(\bmod q)$ has exactly two incongruent solutions, namely $x \equiv x_{2}(\bmod q)$ and $x \equiv q-x_{2}(\bmod q)$.

From the Chinese remainder theorem, there are exactly four incongruent solutions of the congruence $x^{2} \equiv a(\bmod n)$; these four incongruent solutions are the unique solutions modulo $p q$ of the four sets of simultaneous congruences

$$
\begin{array}{lll}
\text { (i) } & x \equiv x_{1}(\bmod p) & \text { (iii) } \\
& x \equiv x_{2}(\bmod q) & \\
& x \equiv x_{2}(\bmod q) \\
\text { (ii) } & x \equiv x_{1}(\bmod p) & \text { (iv) } \\
& x \equiv q \equiv p-x_{1}(\bmod p) \\
& x-x_{2}(\bmod q) & \\
x \equiv q-x_{2}(\bmod q)
\end{array}
$$

We denote solutions of (i) and (ii) by x and y, respectively. Solutions of (iii) and (iv) are easily seen to be $n-y$ and $n-x$, respectively.

We also note that when $p \equiv q \equiv 3(\bmod 4)$, the solutions of $x^{2} \equiv a(\bmod p)$ and of $x^{2} \equiv a(\bmod q)$ are $x \equiv \pm a^{(p+1) / 4}(\bmod p)$ and $x \equiv \pm a^{(q+1) / 4}(\bmod q)$, respectively. By Euler's criterion, we know that $a^{(p-1) / 2} \equiv\left(\frac{a}{p}\right)=1(\bmod p)$ and $a^{(q-1) / 2} \equiv\left(\frac{a}{q}\right)=1(\bmod q)$ (recall that we are assuming that $x^{2} \equiv a(\bmod p q)$ has a solution, so that a is a quadratic residue of both p and q). Hence,

$$
\left(a^{(p+1) / 4}\right)^{2}=a^{(p+1) / 2}=a^{(p-1) / 2} \cdot a \equiv a(\bmod p)
$$

and

$$
\left(a^{(q+1) / 4}\right)^{2}=a^{(q+1) / 2}=a^{(q-1) / 2} \cdot a \equiv a(\bmod q)
$$

Using the Chinese remainder theorem, together with the explicit solutions just constructed, we can easily find the four incongruent solutions of $x^{2} \equiv a(\bmod n)$. The following example illustrates this procedure.

Example. Suppose we know a priori that the congruence

$$
x^{2} \equiv 860(\bmod 11021)
$$

has a solution. Since $11021=103 \cdot 107$, to find the four incongruent solutions we solve the congruences

$$
x^{2} \equiv 860 \equiv 36(\bmod 103)
$$

and

$$
x^{2} \equiv 860 \equiv 4(\bmod 107)
$$

The solutions of these congruences are

$$
x \equiv \pm 36^{(103+1) / 4} \equiv \pm 36^{26} \equiv \pm 6(\bmod 103)
$$

and

$$
x \equiv \pm 4^{(107+1) / 4} \equiv \pm 4^{27} \equiv \pm 2(\bmod 107)
$$

respectively. Using the Chinese remainder theorem, we obtain $x \equiv \pm 212$, $\pm 109(\bmod 11021)$ as the solutions of the four systems of congruences described by the four possible choices of signs in the system of congruences $x \equiv \pm 6(\bmod 103), x \equiv \pm 2(\bmod 107)$.

We can now describe a method for electronically flipping coins. Suppose that Bob and Alice are communicating electronically. Alice picks two distinct
large primes p and q, with $p \equiv q \equiv 3(\bmod 4)$. Alice sends Bob the integer $n=p q$. Bob picks, at random, a positive integer x less than n and sends to Alice the integer a with $x^{2} \equiv a(\bmod n), 0<a<n$. Alice finds the four solutions of $x^{2} \equiv a(\bmod n)$, namely $x, y, n-x$, and $n-y$. Alice picks one of these four solutions and sends it to Bob. Note that since $x+y \equiv 2 x_{1} \not \equiv$ $0(\bmod p)$ and $x+y \equiv 0(\bmod q)$, we have $(x+y, n)=q$, and similarly $(x+(n-y), n)=p$. Thus, if Bob receives either y or $n-y$, he can rapidly factor n by using the Euclidean algorithm to find one of the two prime factors of n. On the other hand, if Bob receives either x or $n-x$, he has no way to factor n in a reasonable length of time.

Consequently, Bob wins the coin flip if he can factor n, whereas Alice wins if Bob cannot factor n. From previous comments, we know that there is an equal chance for Bob to receive a solution of $x^{2} \equiv a(\bmod n)$ that helps him rapidly factor n, or a solution of $x^{2} \equiv a(\bmod n)$ that does not help him factor n. Hence, the coin flip is fair.

9.1 Problems

1. Find all the quadratic residues of
a) 3
b) 5
c) 13
d) 19 .
2. Find the value of the Legendre symbols $\left(\frac{j}{7}\right)$, for $j=1,2,3,4,5$, and 6 .
3. Evaluate the Legendre symbol $\left(\frac{7}{11}\right)$
a) using Euler's criterion.
b) using Gauss' lemma.
4. Let a and b be integers not divisible by the prime p. Show that there is either one or three quadratic residues among the integers a, b, and $a b$.
5. Show that if p is an odd prime, then

$$
\left(\frac{-2}{p}\right)=\left\{\begin{aligned}
1 & \text { if } p \equiv 1 \text { or } 3(\bmod 8) \\
-1 & \text { if } p \equiv-1 \text { or }-3(\bmod 8)
\end{aligned}\right.
$$

6. Show that if the prime-power factorization of n is

$$
n=p_{1}^{2 t_{1}+1} p_{2}^{2 t_{2}+1} \cdots p_{k}^{2 t_{k}+1} p_{k+1}^{2 t_{+1}} \cdots p_{n}^{2 t .}
$$

and q is a prime not dividing n, then

$$
\left(\frac{n}{q}\right)=\left(\frac{p_{1}}{q}\right)\left(\frac{p_{2}}{q}\right) \ldots\left(\frac{p_{k}}{q}\right) .
$$

7. Show that if p is prime and $p=3(\bmod 4)$, then $[(p-1) / 2]!\equiv(-1)^{t}(\bmod p)$, where t is the number of positive integers less than $p / 2$ that are quadratic residues of p.
8. Show that if b is a positive integer not divisible by the prime p, then

$$
\left(\frac{b}{p}\right)+\left(\frac{2 b}{p}\right)+\left(\frac{3 b}{p}\right)+\cdots+\left(\frac{(p-1) b}{p}\right)=0
$$

9. Let p be prime and a a quadratic residue of p. Show that if $p \equiv 1(\bmod 4)$, then $-a$ is also a quadratic residue of p, while if $p \equiv 3(\bmod 4)$, then $-a$ is a quadratic nonresidue of p.
10. Consider the quadratic congruence $a x^{2}+b x+c \equiv 0(\bmod p)$, where p is prime and a, b, and c are integers with $p \backslash a$.
a) Let $p=2$. Determine which quadratic congruences $(\bmod 2)$ have solutions.
b) Let p be an odd prime and let $d=b^{2}-4 a c$. Show that the congruence $a x^{2}+b x+c \equiv 0(\bmod p) \quad$ is equivalent to the congruence $y^{2} \equiv d(\bmod p)$, where $y=2 a x+b$. Conclude that if $d \equiv 0(\bmod p)$, then there is exactly one solution x modulo p, if d is a quadratic residue of p, then there are two incongruent solutions, while if d is a quadratic nonresidue of p, then there are no solutions.
11. Find all solutions of the quadratic congruences
a) $x^{2}+x+1 \equiv 0(\bmod 7)$
b) $x^{2}+5 x+1 \equiv 0(\bmod 7)$
c) $x^{2}+3 x+1 \equiv 0(\bmod 7)$.
12. Show that if p is prime and $p \geqslant 7$, then
a) there are always two consecutive quadratic residues of p. (Hint: First show that at least one of 2,5 , and 10 is a quadratic residue of p.)
b) there are always two quadratic residues of p that differ by 2 .
c) there are always two quadratic residues of p that differ by 3 .
13. Show that if a is a quadratic residue of the prime p, then the solutions of $x^{2} \equiv a(\bmod p)$ are
a) $x \equiv \pm a^{n+1}(\bmod p)$, if $p=4 n+3$.
b) $x \equiv \pm 2^{2 n+1} a^{n+1}(\bmod p)$, if $p=8 n+5$.
14. Show that if p is a prime and $p=8 n+1$, and r is a primitive root modulo p, then the solutions of $x^{2} \equiv \pm 2(\bmod p)$ are given by

$$
x \equiv \pm\left(r^{7 n} \pm r^{n}\right)(\bmod p)
$$

where the \pm sign in the first congruence corresponds to the \pm sign inside the parentheses in the second congruence.
15. Find all solutions of the congruence $x^{2} \equiv 1(\bmod 15)$.
16. Let p be an odd prime, e a positive integer, and a an integer relatively prime to p.
a) Show that the congruence $x^{2} \equiv a\left(\bmod p^{e}\right)$, has either no solutions or exactly two incongruent solutions modulo p^{e}.
b) Show that there is a solution to the congruence $x^{2} \equiv a\left(\bmod p^{e+1}\right)$ if and only if there is a solution to the congruence $x^{2} \equiv a\left(\bmod p^{e}\right)$. Conclude that the congruence $x^{2} \equiv a\left(\bmod p^{e}\right)$ has no solutions if a is a quadratic nonresidue of p, and exactly two incongruent solutions modulo p if a is a quadratic residue of p.
c) Let n be an odd integer. Find the number of incongruent solutions modulo n of the congruence $x^{2} \equiv a(\bmod n)$, where n has prime-power factorization $n=p_{1}^{t_{1}} p_{2}^{t_{2}} \cdots p_{m}^{t}$, in terms of the Legendre symbols $\left(\frac{a}{p_{1}}\right), \cdots,\left(\frac{a}{p_{m}}\right)$.
17. Find the number of incongruent solutions of
a) $x^{2} \equiv 31 \quad(\bmod 75)$
b) $x^{2} \equiv 16 \quad(\bmod 105)$
c) $x^{2} \equiv 46 \quad(\bmod 231)$
d) $\quad x^{2} \equiv 1156\left(\bmod 3^{2} 5^{3} 7^{5} 11^{6}\right)$.
18. Show that the congruence $x^{2} \equiv a\left(\bmod 2^{e}\right)$, where e is an integer, $e \geqslant 3$, has either no solutions or exactly four incongruent solutions. (Hint: Use the fact that $\left.(\pm x)^{2} \equiv\left(2^{e-1} \pm x\right)^{2}\left(\bmod 2^{e}\right).\right)$
19. Show that there are infinitely many primes of the form $4 k+1$. (Hint: Assume that $p_{1}, p_{2}, \ldots, p_{n}$ are the only such primes. Form $N=4\left(p_{1} p_{2} \cdots p_{n}\right)^{2}+1$, and show, using Theorem 9.3, that N has a prime factor of the form $4 k+1$ that is not one of $p_{1}, p_{2}, \ldots, p_{n}$.)
20. Show that there are infinitely many primes of the form
a) $8 k-1$
b) $8 k+3$
c) $8 k+5$.
(Hint: For each part, assume that there are only finitely many primes $p_{1}, p_{2}, \ldots, p_{n}$ of the particular form. For part (a) look at $\left(4 p_{1} p_{2} \cdots p_{n}\right)^{2}-2$, for part (b), look at $\left(p_{1} p_{2} \cdots p_{n}\right)^{2}+2$, and for part (c), look at $\left(p_{1} p_{2} \cdots p_{n}\right)^{2}+4$. In each
part, show that there is a prime factor of this integer of the required form not among the primes $p_{1}, p_{2}, \ldots, p_{n}$. Use Theorems 9.3 and 9.4.)
21. Show that if p is an odd prime, then the congruence $x^{2} \equiv a\left(\bmod p^{n}\right)$ has a solution for all positive integers n if and only if a is a quadratic residue of p.
22. Show that if p is an odd prime with primitive root r, and a is a positive integer not divisible by p, then a is a quadratic residue of p if and only if ind a is even.
23. Show that every primitive root of an odd prime p is a quadratic nonresidue of p.
24. Let p be an odd prime. Show that there are $(p-1) / 2-\phi(p-1)$ quadratic nonresidues of p that are not primitive roots of p.
25. Let p and $q=2 p+1$ both be odd primes. Show that the $p-1$ primitive roots of q are the quadratic residues of q, other than the nonresidue $2 p$ of q.
26. Show that if p and $q=4 p+1$ are both primes and if a is a quadratic nonresidue of q with $\operatorname{ord}_{q} a \neq 4$, then a is a primitive root of q.
27. Show that a prime p is a Fermat prime if and only if every quadratic nonresidue of p is also a primitive root of p.
28. Show that a prime divisor p of the Fermat number $F_{n}=2^{2^{*}}+1$ must be of the form $2^{2^{n+2} k+1}$. (Hint: Show that $\operatorname{ord}_{p} 2=2^{n+1}$. Then show that $2^{(p-1) / 2} \equiv 1(\bmod p)$ using Theorem 9.4. Conclude that $2^{n+1} \mid(p-1) / 2$.)
29. a) Show that if p is a prime of the form $4 k+3$ and $q=2 p+1$ is prime, then q divides the Mersenne number $M_{p}=2^{p}-1$. (Hint: Consider the Legendre symbol $\left(\frac{2}{q}\right)$.)
b) From part (a), show that $23\left|M_{11}, 47\right| M_{23}$, and $503 \mid M_{25}$.
30. Show that if n is a positive integer and $2 n+1$ is prime, and if $n \equiv 0$ or $3(\bmod 4)$, then $2 n+1$ divides the Mersenne number $M_{n}=2^{n}-1$, while if $n \equiv 1$ or $2(\bmod 4)$, then $2 n+1$ divides $M_{n}+2=2^{n}+1$. (Hint: Consider the Legendre symbol $\left(\frac{2}{2 n+1}\right)$ and use Theorem 9.4.)
31. Show that if p is an odd prime, then

$$
\sum_{j=1}^{p-2}\left(\frac{j(j+1)}{p}\right)=-1
$$

(Hint: First show that $\left(\frac{j(j+1)}{p}\right)=\left(\frac{\tilde{j}+1}{p}\right)$ where \bar{j} is an inverse of j modulo
p.
32. Let p be an odd prime. Among pairs of consecutive positive integers less than p, let (RR), (RN), (NR), and (NN) denote the number of pairs of two quadratic
residues, of a quadratic residue followed by a quadratic nonresidue, of a quadratic nonresidue followed by a quadratic residue, and of two quadratic nonresidues, respectively.
a) Show that

$$
\begin{aligned}
& \mathbf{(R R)}+\mathbf{(R N})=\frac{1}{2}\left(p-2-(-1)^{(p-1) / 2}\right) \\
& \mathbf{(N R})+(\mathbf{N N})=\frac{1}{2}\left(p-2+(-1)^{(p-1) / 2}\right) \\
& \mathbf{(R R)}+\mathbf{(N R)}=\frac{1}{2}(p-1)-1 \\
& \mathbf{(R N)}+\mathbf{(N N})=\frac{1}{2}(p-1)
\end{aligned}
$$

b) Using problem 30 , show that

$$
\sum_{j=1}^{p-2}\left(\frac{j(j+1)}{p}\right)=(\mathbf{R R})+(\mathbf{N N})-(\mathbf{R N})-(\mathbf{N R})=-1 .
$$

c) From parts (a) and (b), find (RR), (RN), (NR), and (NN).
33. Use Theorem 8.15 to prove Theorem 9.1.
34. Let p and q be odd primes. Show that
a) 2 is a primitive root of q, if $q=4 p+1$.
b) 2 is a primitive root of q, if p is of the form $4 k+1$ and $q=2 p+1$.
c) -2 is a primitive root of q, if p is of the form $4 k-1$ and $q=2 p+1$.
d) -4 is a primitive root of q, if $q=2 p+1$.
35. Find the solutions of $x^{2} \equiv 482(\bmod 2773)($ note that $2773=47 \cdot 59)$.
36. In this problem, we develop a method for deciphering messages enciphered using a Rabin cipher. Recall that the relationship between a ciphertext block C and the corresponding plaintext block P in a Rabin cipher is $C \equiv P(P+b)(\bmod n)$, where $n=p q, p$ and q are distinct odd primes, and b is a positive integer less than n.
a) Show that $C+a \equiv(P+b)^{2}(\bmod n)$, where $a \equiv(\overline{2} b)^{2}(\bmod n)$, and $\overline{2}$ is an inverse of 2 modulo n.
b) Using the algorithm in the text for solving congruences of the type $x^{2} \equiv a(\bmod n)$, together with part (a), show how to find a plaintext block P from the corresponding ciphertext block C. Explain why there are four possible plaintext messages. (This ambiguity is a disadvantage of Rabin ciphers.)
c) Using problem 35, decipher the ciphertext message 181904590803 that was enciphered using the Rabin cipher with $b=3$ and $n=47 \cdot 59=2773$.
37. Let p be an odd prime and let C be the ciphertext obtained by modular exponentiation, with exponent e and modulus p, from the plaintext P, i.e., $C \equiv P^{e}(\bmod p), 0<C<n$, where $(e, p-1)=1$. Show that C is a quadratic residue of p if and only if P is a quadratic residue of p.
38. a) Show that the second player in a game of electronic poker (see Section 7.3) can obtain an advantage by noting which cards have numerical equivalents that are quadratic residues modulo p. (Hint: Use problem 37.)
b) Show that the advantage of the second player noted in part (a) can be eliminated if the numerical equivalents of cards that are quadratic nonresidues are all multiplied by a fixed quadratic nonresidue.
39. Show that if the probing sequence for resolving collisions in a hashing scheme is $h_{j}(K) \equiv h(K)+a j+b j^{2}(\bmod m)$, where $h(K)$ is a hashing function, m is a positive integer, and a and b are integers with $(b, m)=1$, then only half the possible file locations are probed. This is called the quadratic search.

9.1 Computer Projects

Write programs to do the following:

1. Evaluate Legendre symbols using Euler's criterion.
2. Evaluate Legendre symbols using Gauss' lemma.
3. Flip coins electronically using the procedure described in this section.
4. Decipher messages that were enciphered using a Rabin cipher (see problem 35).

9.2 The Law of Quadratic Reciprocity

$\left(\frac{p}{q}\right)^{\text {An elegant }}$ and $\left(\frac{q}{p}\right)$, where p and q are both odd primes. This theorem, called the law of quadratic reciprocity, tells us whether the congruence $x^{2} \equiv p(\bmod q)$ has solutions, once we know whether there are solutions of the congruence $x^{2} \equiv p(\bmod q)$, where the roles of p and q are switched.

We now state this famous theorem.
The Law of Quadratic Reciprocity. Let p and q be odd primes. Then

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} .
$$

Before we prove this result, we will discuss its consequences and its use. We first note that the quantity $(p-1) / 2$ is even when $p \equiv 1(\bmod 4)$ and odd when $p \equiv 3(\bmod 4)$. Consequently, we see that $\frac{p-1}{2} \cdot \frac{q-1}{2}$ is even if $p \equiv 1(\bmod 4) \quad$ or $\quad q \equiv 1(\bmod 4), \quad$ while $\quad \frac{p-1}{2} \cdot \frac{q-1}{2}$ is odd if $p \equiv q \equiv 3(\bmod 4)$. Hence, we have

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=\left\{\begin{aligned}
1 & \text { if } p \equiv 1(\bmod 4) \text { or } q \equiv 1(\bmod 4) \quad \text { (or both) } \\
-1 & \text { if } p \equiv q \equiv 3(\bmod 4)
\end{aligned}\right.
$$

Since the only possible values of $\left(\frac{p}{q}\right)$ and $\left(\frac{q}{p}\right)$ are ± 1, we see that

$$
\left(\frac{p}{q}\right)=\left\{\begin{array}{l}
\left(\frac{q}{p}\right) \quad \text { if } p \equiv 1(\bmod 4) \text { or } q \equiv 1(\bmod 4)(\text { or both }) \\
-\left(\frac{q}{p}\right) \quad \text { if } p \equiv q \equiv 3(\bmod 4)
\end{array}\right.
$$

This means that if p and q are odd primes, then $\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right)$ unless both p and q are congruent to 3 modulo 4 , and in that case, $\left(\frac{p}{q}\right)=-\left(\frac{q}{p}\right)$.

Example. Let $p=13$ and $q=17$. Since $p \equiv q \equiv 1(\bmod 4)$, the law of quadratic reciprocity tells us that $\left(\frac{13}{17}\right)=\left(\frac{17}{13}\right)$. From part (i) of Theorem 9.2, we know that $\left(\frac{17}{13}\right)=\left(\frac{4}{13}\right)$, and from part (iii) of Theorem 9.2, it follows that $\left(\frac{4}{13}\right)=\left(\frac{2^{2}}{13}\right)=1$. Combining these equalities, we conclude that $\left(\frac{13}{17}\right)=1$.

Example. Let $p=7$ and $q=19$. Since $p \equiv q \equiv 3(\bmod 4)$, from the law of quadratic reciprocity, we know that $\left(\frac{7}{19}\right)=-\left(\frac{19}{7}\right)$. From part (i) of Theorem 9.2, we see that $\left(\frac{19}{7}\right)=\left(\frac{5}{7}\right)$. Again, using the law of quadratic
reciprocity, since $5 \equiv 1(\bmod 4)$ and $7 \equiv 3(\bmod 4)$, we have $\left(\frac{5}{7}\right)=\left(\frac{7}{5}\right)$. From part (i) of Theorem 9.2 and Theorem 9.4, we know that $\left(\frac{7}{5}\right)=\left(\frac{2}{5}\right)^{\text {From }}=-1$. Hence $\left(\frac{7}{19}\right)^{\text {part }}=1$.

We can use the law of quadratic reciprocity and Theorems 9.2 and 9.4 to evaluate Legendre symbols. Unfortunately, prime factorizations must be computed to evaluate Legendre symbols in this way.

Example. We will calculate $\left(\frac{713}{1009}\right)$ (note that 1009 is prime). We factor $713=23 \cdot 31$, so that from part (ii) of Theorem 9.2, we have

$$
\left(\frac{713}{1009}\right)=\left(\frac{23 \cdot 31}{1009}\right)=\left(\frac{23}{1009}\right)\left(\frac{31}{1009}\right) .
$$

To evaluate the two Legendre symbols on the right side of this equality, we use the law of quadratic reciprocity. Since $1009 \equiv 1(\bmod 4)$, we see that

$$
\left(\frac{23}{1009}\right)=\left(\frac{1009}{23}\right),\left(\frac{31}{1009}\right)=\left(\frac{1009}{31}\right)
$$

Using Theorem 9.2, part (i), we have

$$
\left(\frac{1009}{23}\right)=\left(\frac{20}{23}\right),\left(\frac{1009}{31}\right)=\left(\frac{17}{31}\right) .
$$

By parts (ii) and (iii) of Theorem 9.2, it follows that

$$
\left(\frac{20}{23}\right)=\left(\frac{2^{2} 5}{23}\right)=\left(\frac{2^{2}}{23}\right)\left(\frac{5}{23}\right)=\left(\frac{5}{23}\right) .
$$

The law of quadratic reciprocity, part (i) of Theorem 9.2, and Theorem 9.4 tell us that

$$
\left(\frac{5}{23}\right)=\left(\frac{23}{5}\right)=\left(\frac{3}{5}\right)=\left(\frac{5}{3}\right)=\left(\frac{2}{3}\right)=-1 .
$$

Thus, $\left(\frac{23}{1009}\right)=-1$.

Likewise, using the law of quadratic reciprocity, Theorem 9.2, and Theorem 9.4, we find that

$$
\begin{aligned}
\left(\frac{17}{31}\right) & =\left(\frac{31}{17}\right)=\left(\frac{14}{17}\right)=\left(\frac{2}{17}\right)\left(\frac{7}{17}\right)=\left(\frac{7}{17}\right)=\left(\frac{17}{7}\right)=\left(\frac{3}{7}\right) \\
& =-\left(\frac{7}{3}\right)=-\left(\frac{4}{3}\right)=-\left(\frac{2^{2}}{3}\right)=-1 .
\end{aligned}
$$

Consequently, $\left(\frac{31}{1009}\right)=-1$.
Therefore, $\left(\frac{713}{1009}\right)=(-1)(-1)=1$.
We now present one of the many possible approaches for proving the law of quadratic reciprocity. Gauss, who first proved this result, found eight different proofs, and an article published a few years ago offered what was facetiously called the 152 nd proof of the law of quadratic reciprocity. Before presenting the proof, we give a somewhat technical lemma, which we use in the proof of this important law.

Lemma 9.2. If p is an odd prime and a is an odd integer not divisible by p, then

$$
\left(\frac{a}{p}\right)=(-1)^{T(a, p)}
$$

where

$$
T(a, p)=\sum_{j=1}^{(p-1) / 2}[j a / p]
$$

Proof. Consider the least positive residues of the integers $a, 2 a, \ldots,((p-1) / 2) a$; let $u_{1}, u_{2}, \ldots, u_{s}$ be those greater than $p / 2$ and let $v_{1}, v_{2}, \ldots, v_{t}$ be those less than $p / 2$. The division algorithm tells us that

$$
j a=p[j a / p]+\text { remainder },
$$

where the remainder is one of the u_{j} 's or v_{j} 's. By adding the $(p-1) / 2$ equations of this sort, we obtain

$$
\begin{equation*}
\sum_{j=1}^{(p-1) / 2} j a=\sum_{j=1}^{(p-1) / 2} p[j a / p]+\sum_{j=1}^{s} u_{j}+\sum_{j=1}^{t} v_{j} \tag{9.3}
\end{equation*}
$$

As we showed in the proof of Gauss' lemma, the integers $p-u_{1}, \ldots, p-u_{s}$, v_{1}, \ldots, v_{t} are precisely the integers $1,2, \ldots,(p-1) / 2$, in some order. Hence, summing all these integers, we obtain

$$
\begin{equation*}
\sum_{j=1}^{(p-1) / 2} j=\sum_{j=1}^{s}\left(p-u_{j}\right)+\sum_{j=1}^{t} v_{j}=p s-\sum_{j=1}^{s} u_{j}+\sum_{j=1}^{t} v_{j} . \tag{9.4}
\end{equation*}
$$

Subtracting (9.4) from (9.3), we find that

$$
\sum_{j=1}^{(p-1) / 2} j a-\sum_{j=1}^{(p-1) / 2} j=\sum_{j=1}^{(p-1) / 2} p[j a / p]-p s+2 \sum_{j=1}^{s} u_{j}
$$

or equivalently, since $T(a, p)=\sum_{j=1}^{(p-1) / 2}[j a / p]$,

$$
(a-1) \sum_{j=1}^{(p-1) / 2} j=p T(a, p)-p s+2 \sum_{j=1}^{s} u_{j} .
$$

Reducing this last equation modulo 2 , since a and p are odd, yields

$$
0 \equiv T(a, p)-s(\bmod 2)
$$

Hence,

$$
T(a, p) \equiv s(\bmod 2) .
$$

To finish the proof, we note that from Gauss' lemma

$$
\left(\frac{a}{p}\right)=(-1)^{s} .
$$

Consequently, since $(-1)^{s}=(-1)^{T(a, p)}$, it follows that

$$
\left(\frac{a}{p}\right)=(-1)^{T(a, p)} .
$$

Although Lemma 9.2 is used primarily as a tool in the proof of the law of quadratic reciprocity, it can also be used to evaluate Legendre symbols.

Example. To find $\left(\frac{7}{11}\right)$, using Lemma 9.2, we evaluate the sum

$$
\begin{aligned}
\sum_{j=1}^{5}\left[7_{j} / 11\right] & =[7 / 11]+[14 / 11]+[21 / 11]+[28 / 11]+[35 / 11] \\
& =0+1+1+2+3=7
\end{aligned}
$$

Hence, $\left(\frac{7}{11}\right)=(-1)^{7}=-1$.
Likewise, to find $\left(\frac{11}{7}\right)$, we note that

$$
\sum_{j=1}^{3}[11 j / 7]=[11 / 7]+[22 / 7]+[33 / 7]=1+3+4=8
$$

so that $\left(\frac{11}{7}\right)=(-1)^{8}=1$.
Before we present a proof of the law of quadratic reciprocity, we use an example to illustrate the method of proof.

Let $p=7$ and $q=11$. We consider pairs of integers (x, y) with $1 \leqslant x \leqslant \frac{7-1}{2}=3$ and $1 \leqslant y \leqslant \frac{11-1}{2}=5$. There are 15 such pairs. We note that none of these pairs satisfy $11 x=7 y$, since the equality $11 x=7 y$ implies that $11 \mid 7 y$, so that either $11 \mid 7$, which is absurd, or $11 \mid y$, which is impossible because $1 \leqslant y \leqslant 5$.

We divide these 15 pairs into two groups, depending on the relative sizes of $11 x$ and $7 y$.

The pairs of integers (x, y) with $1 \leqslant x \leqslant 3,1 \leqslant y \leqslant 5$, and $11 x>7 y$ are precisely those pairs satisfying $1 \leqslant x \leqslant 3$ and $1 \leqslant y \leqslant 11 x / 7$. For a fixed integer x with $1 \leqslant x \leqslant 3$, there are [11x/7] allowable values of y. Hence, the total number of pairs satisfying $1 \leqslant x \leqslant 3,1 \leqslant y \leqslant 5$, and $11 x>7 y$ is

$$
\sum_{j=1}^{3}[11 / 7]=[11 / 7]+[22 / 7]+[33 / 7]=1+3+4=8
$$

these eight pairs are $(1,1),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)$ and $(3,4)$.
The pairs of integers (x, y) with $1 \leqslant x \leqslant 3,1 \leqslant y \leqslant 5$, and $11 x<7 y$ are precisely those pairs satisfying $1 \leqslant y \leqslant 5$ and $1 \leqslant x \leqslant 7 y / 11$. For a fixed integer y with $1 \leqslant y \leqslant 5$, there are [7y/11] allowable values of x. Hence, the total number of pairs satisfying $1 \leqslant x \leqslant 3,1 \leqslant y \leqslant 5$, and $11 x<7 y$ is

$$
\begin{aligned}
\sum_{j=1}^{5}[7 j / 11] & =[7 / 11]+[14 / 11]+[21 / 11]+[28 / 11]+[35 / 11] \\
& =0+1+1+2+3=7
\end{aligned}
$$

These seven pairs are $(1,2),(1,3),(1,4),(1,5),(2,4),(2,5)$, and $(3,5)$.
Consequently, we see that

$$
\frac{11-1}{2} \cdot \frac{7-1}{2}=5 \cdot 3=15=\sum_{j=1}^{3}[11 j / 7]+\sum_{j=1}^{5}[7 j / 11]=8+7
$$

Hence,

$$
\begin{aligned}
(-1)^{\frac{11-1}{2} \cdot \frac{7-1}{2}} & =(-1)^{\sum^{\sum_{j+1}^{3}[11 j / 7]+\sum_{j=1}^{5}[7 j / 11]}} \\
& =(-1)^{\sum_{j-1}^{3}[11 j / 7]}(-1)^{\sum_{j=1}^{5}[7 j / 11]} .
\end{aligned}
$$

Since Lemma 9.2 tells us that $\left(\frac{11}{7}\right)=(-1)^{\sum_{j-1}^{3}[11 j / 7]}$ and $\left(\frac{7}{11}\right)=(-1)^{\sum_{j=1}^{5}[7 j / 11]}$, we see that $\left(\frac{7}{11}\right)\left(\frac{11}{7}\right)=(-1)^{\frac{7-1}{2} \cdot \frac{11-1}{2}}$.

This establishes the special case of the law of quadratic reciprocity when $p=7$ and $q=11$.

We now prove the law of quadratic reciprocity, using the idea illustrated in the example.

Proof. We consider pairs of integers (x, y) with $1 \leqslant x \leqslant(p-1) / 2$ and $1 \leqslant y \leqslant(q-1) / 2$. There are $\frac{p-1}{2} \frac{q-1}{2}$ such pairs. We divide these pairs into two groups, depending on the relative sizes of $q x$ and $p y$.

First, we note that $q x \neq p y$ for all of these pairs. For if $q x=p y$, then $q \mid p y$, which implies that $q \mid p$ or $q \mid y$. However, since q and p are distinct primes, we know that $q \lambda p$, and since $1 \leqslant y \leqslant(q-1) / 2$, we know that $q \lambda y$.

To enumerate the pairs of integers (x, y) with $1 \leqslant x \leqslant(p-1) / 2$, $1 \leqslant y \leqslant(q-1) / 2$, and $q x>p y$, we note that these pairs are precisely those where $1 \leqslant x \leqslant(p-1) / 2$ and $1 \leqslant y \leqslant q x / p$. For each fixed value of the integer x, with $1 \leqslant x \leqslant(p-1) / 2$, there are $[q x / p]$ integers satisfying $1 \leqslant y \leqslant q x / p$. Consequently, the total number of pairs of integers (x, y)
with $1 \leqslant x \leqslant(p-1) / 2,1 \leqslant y \leqslant(q-1) / 2$, and $q x>p y$ is $\sum_{j=1}^{(p-1) / 2}[q j / p]$.
We now consider the pairs of integers (x, y) with $1 \leqslant x \leqslant(p-1) / 2$, $1 \leqslant y \leqslant(q-1) / 2$, and $q x<p y$. These pairs are precisely the pairs of integers (x, y) with $1 \leqslant y \leqslant(q-1) / 2$ and $1 \leqslant x \leqslant p y / q$. Hence, for each fixed value of the integer y, where $1 \leqslant y \leqslant(q-1) / 2$, there are exactly [py/q] integers x satisfying $1 \leqslant x \leqslant p y / q$. This shows that the total number of pairs of integers (x, y) with $1 \leqslant x \leqslant(p-1) / 2,1 \leqslant y \leqslant(q-1) / 2$, and $q x<p y$ is $\sum_{j=1}^{(q-1) / 2}[p j / q]$.

Adding the numbers of pairs in these classes, and recalling that the total number of such pairs is $\frac{p-1}{2} \cdot \frac{q-1}{2}$, we see that

$$
\sum_{j=1}^{(p-1) / 2}[q j / p]+\sum_{j=1}^{(q-1) / 2}[p j / q]=\frac{p-1}{2} \cdot \frac{q-1}{2}
$$

or using the notation of Lemma 9.2,

$$
T(q, p)+T(p, q)=\frac{p-1}{2} \cdot \frac{q-1}{2} .
$$

Hence,

$$
(-1)^{T(q, p)+T(p, q)}=(-1)^{T(q, p)}(-1)^{T(p, q)}=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} .
$$

Lemma 9.2 tells us that $(-1)^{T(q, p)}=\left(\frac{q}{p}\right)$ and $(-1)^{T(p, q)}=\left(\frac{p}{q}\right)$. Hence

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}} .
$$

This concludes the proof of the law of quadratic reciprocity.
The law of quadratic reciprocity has many applications. One use is to prove the validity of the following primality test for Fermat numbers.

Pepin's Test. The Fermat number $F_{m}=2^{2^{m}}+1$ is prime if and only if

$$
3^{\left(F_{m}-1\right) / 2} \equiv-1\left(\bmod F_{m}\right)
$$

Proof. We will first show that F_{m} is prime if the congruence in the statement of the theorem holds. Assume that

$$
3^{\left(F_{m}-1\right) / 2} \equiv-1\left(\bmod F_{m}\right)
$$

Then, by squaring both sides, we obtain

$$
3^{F_{m}-1} \equiv 1\left(\bmod F_{m}\right)
$$

From this congruence, we see that if p is a prime dividing F_{m}, then

$$
3^{F_{m}-1} \equiv 1(\bmod p)
$$

and hence,

$$
\operatorname{ord}_{p} 3 \mid\left(F_{m}-1\right)=2^{2^{m}}
$$

Consequently, $\operatorname{ord}_{p} 3$ must be a power of 2 . However,

$$
\operatorname{ord}_{p} 3 \backslash 2^{2^{m-1}}=\left(F_{m}-1\right) / 2
$$

since $3^{\left(F_{m}-1\right) / 2} \equiv-1\left(\bmod F_{m}\right)$. Hence, the only possibility is that $\operatorname{ord}_{p} 3=2^{2^{m}}=F_{m}-1$. Since $\operatorname{ord}_{p} 3=F_{m}-1 \leqslant p-1$ and $p \mid F_{m}$, we see that $p=F_{m}$, and consequently, F_{m} must be prime.

Conversely, if $F_{m}=2^{2^{m}}+1$ is prime for $m \geqslant 1$, then the law of quadratic reciprocity tells us that

$$
\begin{equation*}
\left(\frac{3}{F_{m}}\right)=\left(\frac{F_{m}}{3}\right)=\left(\frac{2}{3}\right)=-1 \tag{9.5}
\end{equation*}
$$

since $F_{m} \equiv 1(\bmod 4)$ and $F_{m} \equiv 2(\bmod 3)$.
Now, using Euler's criterion, we know that

$$
\begin{equation*}
\left(\frac{3}{F_{m}}\right) \equiv 3^{\left(F_{m}-1\right) / 2}\left(\bmod F_{m}\right) \tag{9.6}
\end{equation*}
$$

From the two equations involving $\left(\frac{3}{F_{m}}\right)$, (9.5) and (9.6), we conclude that

$$
3^{\left(F_{m}-1\right) / 2} \equiv-1\left(\bmod F_{m}\right) .
$$

This finishes the proof.
Example. Let $m=2$. Then $F_{2}=2^{2^{2}}+1=17$ and

$$
3^{\left(F_{2}-1\right) / 2}=3^{8} \equiv-1(\bmod 17)
$$

By Pepin's test, we see that $F_{2}=17$ is prime.
Let $m=5$. Then $F_{5}=2^{2^{5}}+1=2^{32}+1=4294967297$. We note that $3^{\left(F_{5}-1\right) / 2}=3^{2^{31}}=3^{2147483648} \equiv 10324303 \neq-1(\bmod 4294967297)$.

Hence, by Pepin's test, we see that F_{5} is composite.

9.2 Problems

1. Evaluate the following Legendre symbols
a) $\left(\frac{3}{53}\right)$
b) $\left(\frac{7}{79}\right)$
c) $\left(\frac{15}{101}\right)$
d) $\left(\frac{31}{641}\right)$
e) $\left.\frac{111}{991}\right)$
f) $\left(\frac{105}{1009}\right)$.
2. Using the law of quadratic reciprocity, show that if p is an odd prime, then

$$
\left(\frac{3}{p}\right)=\left\{\begin{aligned}
1 & \text { if } p \equiv \pm 1(\bmod 12) \\
-1 & \text { if } p \equiv \pm 5(\bmod 12)
\end{aligned}\right.
$$

3. Show that if p is an odd prime, then

$$
\left(\frac{-3}{p}\right)=\left\{\begin{aligned}
1 & \text { if } p \equiv 1(\bmod 6) \\
-1 & \text { if } p \equiv-1(\bmod 6)
\end{aligned}\right.
$$

4. Find a congruence describing all primes for which 5 is a quadratic residue.
5. Find a congruence describing all primes for which 7 is a quadratic residue.
6. Show that there are infinitely many primes of the form $5 k+4$. (Hint: Let n be a positive integer and form $Q=5(n!)^{2}+4$. Show that Q has a prime divisor of the form $5 k+4$ greater than n. To do this, use the law of quadratic reciprocity to show that if a prime p divides Q, then $\binom{p}{5}=1$.)
7. Use Pepin's test to show that the following Fermat numbers are primes
a) $\quad F_{1}=5$
b) $\quad F_{3}=257$
c) $\quad F_{4}=65537$.
8. From Pepin's test, conclude that 3 is a primitive root of every Fermat prime.
9. In this problem, we give another proof of the law of quadratic reciprocity. Let p and q be distinct odd primes. Let \mathbf{R} be the interior of the rectangle with vertices $\mathbf{O}=(0,0), \mathbf{A}=(p / 2,0), \mathbf{B}=(q / 2,0)$, and $\mathbf{C}=(p / 2, q / 2)$.
a) Show that the number of lattice points (points with integer coordinates) in \mathbf{R} is $\frac{p-1}{2} \cdot \frac{q-1}{2}$.
b) Show that there are no lattice points on the diagonal connecting \mathbf{O} and \mathbf{C}.
c) Show that the number of lattice points in the triangle with vertices $\mathbf{O}, \mathbf{A}, \mathbf{C}$ is $\sum_{j=1}^{(p-1) / 2}[j q i p]$.
d) Show that the number of lattice points in the triangle with vertices \mathbf{O}, \mathbf{B}, and \mathbf{C} is $\sum_{j=1}^{(q-1) / 2}[j p / q]$.
e) Conclude from parts (a), (b), (c), and (d) that

$$
\sum_{j=1}^{(p-1) / 2}[j q / p]+\sum_{j=1}^{(q-1) / 2}[j p / q]=\frac{p-1}{2} \cdot \frac{q-1}{2} .
$$

Derive the law of quadratic reciprocity using this equation and Lemma 9.2.

9.2 Computer Projects

Write programs to do the following:

1. Evaluate Legendre symbols, using the law of quadratic reciprocity.
2. Determine whether Fermat numbers are prime using Pepin's test.

9.3 The Jacobi symbol

In this section, we define the Jacobi symbol. This symbol is a generalization of the Legendre symbol studied in the previous two sections. Jacobi symbols are useful in the evaluation of Legendre symbols and in the definition of a type of pseudoprime.

Definition. Let n be a positive integer with prime factorization $n=p_{1}^{t_{1}} p_{2}^{t_{2}^{2}} \cdots p_{m}^{t_{m}^{m}}$ and let a be a positive integer relatively prime to n. Then,
the Jacobi symbol $\left(\frac{a}{n}\right)$ is defined by

$$
\left(\frac{a}{n}\right)=\left(\frac{a}{p_{1}^{t_{1}} p_{2}^{t_{2}} \cdots p_{m}^{t_{m}}}\right)=\left(\frac{a}{p_{1}}\right)^{t_{1}}\left(\frac{a}{p_{2}}\right)^{t_{2}} \cdots\left(\frac{a}{p_{m}}\right)^{t_{m}},
$$

where the symbols on the right-hand side of the equality are Legendre symbols.

Example. From the definition of the Jacobi symbol, we see that

$$
\left(\frac{2}{45}\right)=\left(\frac{2}{3^{2} \cdot 5}\right)=\left(\frac{2}{3}\right)^{2}\left(\frac{2}{5}\right)=(-1)^{2}(-1)=-1
$$

and

$$
\begin{aligned}
\left(\frac{109}{385}\right) & =\left(\frac{109}{5 \cdot 7 \cdot 11}\right)=\left(\frac{109}{5}\right)\left(\frac{109}{7}\right)\left(\frac{109}{11}\right)=\left(\frac{4}{5}\right)\left(\frac{4}{7}\right)\left(\frac{10}{11}\right) \\
& =\left(\frac{2}{5}\right)^{2}\left(\frac{2}{7}\right)^{2}\left(\frac{-1}{11}\right)=(-1)^{2} 1^{2}(-1)=-1 .
\end{aligned}
$$

When n is prime, the Jacobi symbol is the same as the Legendre symbol. However, when n is composite, the value of the Jacobi symbol $\left(\frac{a}{n}\right)$ does not tell us whether the congruence $x^{2} \equiv a(\bmod n)$ has solutions. We do know that if the congruence $x^{2} \equiv a(\bmod n)$ has solutions, then $\left(\frac{a}{n}\right)=1$. To see this, note that if p is a prime divisor of n and if $x^{2} \equiv a(\bmod n)$ has solutions, then the congruence $x^{2} \equiv a(\bmod p)$ also has solutions. Thus, $\left(\frac{a}{p}\right)=1$. Consequently, $\left(\frac{a}{n}\right)=\prod_{j=1}^{m}\left(\frac{a}{p_{j}}\right)^{t_{j}}=1$. To see that it is possible that $\left(\frac{a}{n}\right)=1$ when there are no solutions to $x^{2} \equiv a(\bmod n)$, let $a=2$ and $n=15$. Note that $\left(\frac{2}{15}\right)=\left(\frac{2}{3}\right)\left(\frac{2}{5}\right)=(-1)(-1)=1$. However, there are no solutions to $x^{2} \equiv 2(\bmod 15)$, since the congruences $x^{2} \equiv 2(\bmod 3)$ and $x^{2} \equiv 2(\bmod 5)$ have no solutions.

We now show that the Jacobi symbol enjoys some properties similar to those of the Legendre symbol.

Theorem 9.5. Let n be an odd positive integer and let a and b be integers relatively prime to n. Then

$$
\begin{aligned}
& \text { (i) if } a \equiv b(\bmod n), \text { then }\left(\frac{a}{n}\right)=\left(\frac{b}{n}\right) \\
& \text { (ii) }\left(\frac{a b}{n}\right)=\left(\frac{a}{n}\right)\left(\frac{b}{n}\right) \\
& \text { (iii) } \quad\left(\frac{-1}{n}\right)=(-1)^{(n-1) / 2} \\
& \text { (iv) } \quad\left(\frac{2}{n}\right)=(-1)^{\left(n^{2}-1\right) / 8}
\end{aligned}
$$

Proof. In the proof of all four parts of this theorem we use the prime factorization $n=p_{1}^{t_{1}} p_{2}^{t_{2}} \cdots p_{m}^{t_{m}}$.

Proof of (i). We know that if p is a prime dividing n, then $a \equiv b(\bmod p)$. Hence, from Theorem 9.2 (i), we have $\left(\frac{a}{b}\right)=\left(\frac{b}{p}\right)$. Consequently, we see that

$$
\left(\frac{a}{n}\right)=\left(\frac{a}{p_{1}}\right)^{t_{1}}\left(\frac{a}{p_{2}}\right)^{t_{2}} \cdots\left(\frac{a}{p_{m}}\right)^{t_{m}}=\left(\frac{b}{p_{1}}\right)^{t_{1}}\left(\frac{b}{p_{2}}\right)^{t_{2}} \cdots\left(\frac{b}{p_{m}}\right)^{t_{m}}=\left(\frac{b}{n}\right) .
$$

Proof of (ii). From Theorem 9.2 (ii), we know that $\left(\frac{a b}{p_{i}}\right)=\left(\frac{a}{p_{i}}\right)\left(\frac{b}{p_{i}}\right)$. Hence,

$$
\begin{aligned}
\left(\frac{a b}{n}\right) & =\left(\frac{a b}{p_{1}}\right)^{t_{1}}\left(\frac{a b}{p_{2}}\right)^{t_{2}} \cdots\left(\frac{a b}{p_{m}}\right)^{t_{m}} \\
& =\left(\frac{a}{p_{1}}\right)^{t_{1}}\left(\frac{b}{p_{1}}\right)^{t_{1}}\left(\frac{a}{p_{2}}\right)^{t_{2}}\left(\frac{b}{p_{2}}\right)^{t_{2}} \cdots\left(\frac{a}{p_{m}}\right)^{t_{m}}\left(\frac{b}{p_{m}}\right)^{t_{m}} \\
& =\left(\frac{a}{n}\right)\left(\frac{b}{n}\right)
\end{aligned}
$$

Proof of (iii). Theorem 9.3 tells us that if p is prime, then $\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2}$. Consequently,

$$
\begin{aligned}
\left(\frac{-1}{n}\right) & =\left(\frac{-1}{p_{1}}\right)^{t_{1}}\left(\frac{-1}{p_{2}}\right)^{t_{2}} \cdots\left(\frac{-1}{p_{m}}\right)^{t_{m}} \\
& =(-1)^{t_{1}\left(p_{1}-1\right) / 2+t_{2}\left(p_{2}-1\right) / 2+\cdots+t_{m}\left(p_{m}-1\right) / 2}
\end{aligned}
$$

From the prime factorization of n, we have

$$
n=\left(1+\left(p_{1}-1\right)\right)^{t_{1}}\left(1+\left(p_{2}-1\right)\right)^{t_{2}} \cdots\left(1+\left(p_{m}-1\right)\right)^{t_{m}}
$$

Since $\left(p_{i}-1\right)$ is even, it follows that

$$
\left(1+\left(p_{i}-1\right)\right)^{t_{i}} \equiv 1+t_{i}\left(p_{i}-1\right)(\bmod 4)
$$

and

$$
\left(1+t_{i}\left(p_{i}-1\right)\right)\left(1+t_{j}\left(p_{j}-1\right)\right) \equiv 1+t_{i}\left(p_{j}-1\right)+t_{j}\left(p_{j}-1\right)(\bmod 4)
$$

Therefore,

$$
n \equiv 1+t_{1}\left(p_{1}-1\right)+t_{2}\left(p_{2}-1\right)+\cdots+t_{m}\left(p_{m}-1\right)(\bmod 4)
$$

This implies that

$$
(n-1) / 2 \equiv t_{1}\left(p_{1}-1\right) / 2+t_{2}\left(p_{2}-1\right) / 2+\cdots+t_{m}\left(p_{m}-1\right) / 2(\bmod 2)
$$

Combining this congruence for $(n-1) / 2$ with the expression for $\left(\frac{-1}{n}\right)$ shows that $\left(\frac{-1}{n}\right)=(-1)^{\frac{n-1}{2}}$.
Proof of $(i v)$. If p is prime, then $\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}$. Hence,
$\left(\frac{2}{n}\right)=\left(\frac{2}{p_{1}}\right)^{t_{1}}\left(\frac{2}{p_{2}}\right)^{t_{2}} \cdots\left(\frac{2}{p_{m}}\right)^{t_{m}}=(-1)^{t_{1}\left(p_{1}^{2}-1\right) / 8+t_{2}\left(p_{2}^{2}-1\right) / 8+\cdots+t_{m}\left(p_{m}^{2}-1\right) / 8}$.
As in the proof of (iii), we note that

$$
n^{2}=\left(1+\left(p_{1}^{2}-1\right)^{t_{1}}\left(1+\left(p_{2}^{2}-1\right)\right)^{t_{2}} \cdots\left(1+\left(p_{m}^{2}-1\right)\right)^{t_{m}}\right.
$$

Since $p_{j}^{2}-1 \equiv 0(\bmod 8)$, we see that

$$
\left(1+\left(p_{i}^{2}-1\right)\right)^{t_{i}} \equiv 1+t_{i}\left(p_{i}^{2}-1\right)(\bmod 64)
$$

and

$$
\left(1+t_{i}\left(p_{i}^{2}-1\right)\right)\left(1+t_{j}\left(p_{j}^{2}-1\right)\right) \equiv 1+t_{i}\left(p_{i}^{2}-1\right)+t_{j}\left(p_{j}^{2}-1\right)(\bmod 64) .
$$

Hence,

$$
n^{2} \equiv 1+t_{1}\left(p_{1}^{2}-1\right)+t_{2}\left(p_{2}^{2}-1\right)+\cdots+t_{m}\left(p_{m}^{2}-1\right)(\bmod 64) .
$$

This implies that

$$
\left(n^{2}-1\right) / 8 \equiv t_{1}\left(p_{1}^{2}-1\right) / 8+t_{2}\left(p_{2}^{2}-1\right) / 8+\cdots+t_{m}\left(p_{m}^{2}-1\right) / 8(\bmod 8) .
$$

Combining this congruence for $\left(n^{2}-1\right) / 8$ with the expression for $\left(\frac{2}{n}\right)$ tells us that $\left(\frac{2}{n}\right)=(-1)^{\left(n^{2}-1\right) / 8}$.

We now demonstrate that the reciprocity law holds for the Jacobi symbol as well as the Legendre symbol.

Theorem 9.6. Let n and m be relatively prime odd positive integers. Then

$$
\left(\frac{n}{m}\right)\left(\frac{m}{n}\right)=(-1)^{\frac{m-1}{2} \frac{n-1}{2}}
$$

Proof. Let the prime factorizations of m and n be $m=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{s}^{a}$ and $n=q_{1}^{b_{1}} q_{2}^{b_{2}} \cdots q_{r}^{b}$. We see that

$$
\left(\frac{m}{n}\right)=\prod_{i=1}^{r}\left(\frac{m}{q_{i}}\right)^{b_{i}}=\prod_{i=1}^{r} \prod_{j=1}^{s}\left(\frac{p_{j}}{q_{j}}\right)^{b_{i} a_{j}}
$$

and

$$
\left(\frac{n}{m}\right)=\prod_{j=1}^{s}\left(\frac{n}{p_{j}}\right)^{a_{j}}=\prod_{j=1}^{s} \prod_{i=1}^{r}\left(\frac{q_{i}}{p_{j}}\right)^{a_{j} b_{i}} .
$$

Thus,

$$
\left(\frac{m}{n}\right)\left(\frac{n}{m}\right)=\prod_{i=1}^{r} \prod_{j=1}^{s}\left[\left(\frac{p_{j}}{q_{i}}\right)\left(\frac{q_{i}}{p_{j}}\right)\right]^{a_{j} b_{t}}
$$

From the law of quadratic reciprocity, we know that

$$
\left(\frac{p_{j}}{q_{i}}\right)\left(\frac{q_{i}}{p_{j}}\right)=(-1)^{\left(\frac{p_{j-1}}{2}\right)\left(\frac{q_{i-1}}{2}\right)}
$$

Hence,

$$
\left(\frac{m}{n}\right)\left(\frac{n}{m}\right)=\prod_{i=1}^{r} \prod_{j=1}^{s}(-1)^{a_{j}\left(\frac{p_{j}-1}{2}\right) b_{i}\left(\frac{q_{t}-1}{2}\right)}=(-1)^{\sum_{i=1}^{r} \sum_{j=1}^{s} a_{j}\left(\frac{p_{j}-1}{2}\right) b_{i}\left(\frac{q_{i}-1}{2}\right)} .
$$

We note that

$$
\sum_{i=1}^{r} \sum_{j=1}^{s} a_{j}\left(\frac{p_{j}-1}{2}\right) b_{i}\left(\frac{q_{i}-1}{2}\right)=\sum_{j=1}^{s} a_{j}\left(\frac{p_{j}-1}{2}\right) \sum_{i=1}^{r} b_{i}\left(\frac{q_{i}-1}{2}\right)
$$

As we demonstrated in the proof of Theorem 9.5 (iii),

$$
\sum_{j=1}^{s} a_{j}\left(\frac{p_{j}-1}{2}\right) \equiv \frac{m-1}{2} \quad(\bmod 2)
$$

and

$$
\sum_{i=1}^{r} b_{i}\left(\frac{q_{i}-1}{2}\right) \equiv \frac{n-1}{2} \quad(\bmod 2)
$$

Thus,

$$
\begin{equation*}
\sum_{i=1}^{r} \sum_{j=1}^{s} a_{j}\left(\frac{p_{j}-1}{2}\right) b_{i}\left(\frac{q_{i}-1}{2}\right) \equiv \frac{m-1}{2} \cdot \frac{n-1}{2}(\bmod 2) \tag{9.8}
\end{equation*}
$$

Therefore, from (9.7) and (9.8), we can conclude that

$$
\left(\frac{m}{n}\right)\left(\frac{n}{m}\right)=(-1)^{\frac{m-1}{2} \cdot \frac{n-1}{2}}
$$

We now develop an efficient algorithm for evaluating Jacobi symbols. Let a and b be relatively prime positive integers with $a<b$. Let $R_{0}=a$ and $R_{1}=b$. Using the division algorithm and factoring out the highest power of two dividing the remainder, we obtain

$$
R_{0}=R_{1} q_{1}+2^{s_{1}} R_{2}
$$

where s_{1} is a nonnegative integer and R_{2} is an odd positive integer less than R_{1}. When we successively use the division algorithm, and factor out the highest power of two dividing remainders, we obtain

$$
\begin{aligned}
R_{1} & =R_{2} q_{2}+2^{s_{2}} R_{3} \\
R_{2} & =R_{3} q_{3}+2^{s_{3}} R_{4} \\
& \cdot \\
& \cdot \\
& \cdot \\
R_{n-3} & =R_{n-2} q_{n-2}+2^{s_{n-2}} R_{n-1} \\
R_{n-2} & =R_{n-1} a_{n-1}+2^{s_{n-1}} \cdot .
\end{aligned}
$$

where s_{j} is a nonnegative integer and R_{j} is an odd positive integer less than R_{j-1} for $j=2,3, \ldots, n-1$. Note that the number of divisions required to reach the final equation does not exceed the number of divisions required to find the greatest common divisor of a and b using the Euclidean algorithm.

We illustrate this sequence of equations with the following example.
Example. Let $a=401$ and $b=111$. Then

$$
\begin{aligned}
401 & =111 \cdot 3+2^{2} \cdot 17 \\
111 & =17 \cdot 6+2^{0} \cdot 9 \\
17 & =9 \cdot 1+2^{3} \cdot 1 .
\end{aligned}
$$

Using the sequence of equations we have described, together with the properties of the Jacobi symbol, we prove the following theorem, which gives an algorithm for evaluating Jacobi symbols.

Theorem 9.7. Let a and b be positive integers with $a>b$. Then

$$
\left(\frac{a}{b}\right)=(-1)^{s_{1} \frac{R_{1}^{2}-1}{8}+\cdots+s_{n-1} \frac{R_{n-1}^{2}-1}{8}+\frac{R_{1}-1}{2} \cdot \frac{R_{2}-1}{2}+\cdots+\frac{R_{n-2}-1}{2} \cdot \frac{R_{n-1}-1}{2}},
$$

where the integers R_{j} and $s_{j}, j=1,2, \ldots, n-1$, are as previously described.
Proof. From the first equation and (i), (ii) and (iv) of Theorem 9.5, we have

$$
\left(\frac{a}{b}\right)=\left(\frac{R_{0}}{R_{1}}\right)=\left(\frac{2^{s_{1}} R_{2}}{R_{1}}\right)=\left(\frac{2}{R_{1}}\right)^{s_{1}}\left(\frac{R_{2}}{R_{1}}\right)=(-1)^{s_{1} \frac{R_{1}^{2}-1}{8}}\left(\frac{R_{2}}{R_{1}}\right)
$$

Using Theorem 9.6, the reciprocity law for Jacobi symbols, we have

$$
\left(\frac{R_{2}}{R_{1}}\right)=(-1)^{\frac{R_{1}-1}{2} \cdot \frac{R_{2}-1}{2}}\left(\frac{R_{1}}{R_{2}}\right)
$$

so that

$$
\left(\frac{a}{b}\right)=(-1)^{\frac{R_{1}-1}{2} \cdot \frac{R_{2}-1}{2}+s_{1} \frac{R_{1}^{2}-1}{8}}\left(\frac{R_{1}}{R_{2}}\right)
$$

Similarly, using the subsequent divisions, we find that

$$
\left(\frac{R_{j-1}}{R_{j}}\right)=(-1)^{\frac{R_{j}-1}{2} \cdot \frac{R_{j+1}-1}{2}+s_{j} \cdot \frac{R_{j}^{2}-1}{8}}\left(\frac{R_{j}}{R_{j+1}}\right)
$$

for $j=2,3, \ldots, n-1$. When we combine all the equalities, we obtain the desired expression for $\left(\frac{a}{b}\right)$.

The following example illustrates the use of Theorem 9.7.
Example. To evaluate $\left(\frac{401}{111}\right)$, we use the sequence of divisions in the previous example and Theorem 9.7. This tells us that

$$
\left(\frac{401}{111}\right)=(-1)^{2 \cdot \frac{111^{2}-1}{8}+0 \cdot \frac{17^{2}-1}{8}+3 \cdot \frac{9^{2}-1}{8}+\frac{111-1}{2} \cdot \frac{17-1}{2}+\frac{17-1}{2} \cdot \frac{9-1}{2}}=1 .
$$

The following corollary describes the computational complexity of the algorithm for evaluating Jacobi symbols given in Theorem 9.7.

Corollary 9.1. Let a and b be relatively prime positive integers with $a>b$. Then the Jacobi symbol $\left(\frac{a}{b}\right)$ can be evaluated using $O\left(\left(\log _{2} b\right)^{3}\right)$ bit operations.

Proof. To find $\left(\frac{a}{b}\right)$ using Theorem 9.7, we perform a sequence of $O\left(\log _{2} b\right)$ divisions. To see this, note that the number of divisions does not exceed the number of divisions needed to find (a, b) using the Euclidean algorithm. Thus, by Lamé's theorem we know that $O\left(\log _{2} b\right)$ divisions are needed. Each
division can be done using $O\left(\left(\log _{2} b\right)^{2}\right)$ bit operations. Each pair of integers R_{j} and s_{j} can be found using $O\left(\log _{2} b\right)$ bit operations once the appropriate division has been carried out.

Consequently, $O\left(\left(\log _{2} b\right)^{3}\right)$ bit operations are required to find the integers $R_{j}, s_{j}, j=1,2, \ldots, n-1$ from a and b. Finally, to evaluate the exponent of -1 in the expression for $\left(\frac{a}{b}\right)$ in Theorem 9.7, we use the last three bits in the binary expansions of $R_{j}, j=1,2, \ldots, n-1$ and the last bit in the binary expansions of $s_{j}, j=1,2, \ldots, n-1$. Therefore, we use $O\left(\log _{2} b\right)$ additional bit operations to find $\left(\frac{a}{b}\right)$. Since $O\left(\left(\log _{2} b\right)^{3}\right)+O\left(\log _{2} b\right)=O\left(\left(\log _{2} b\right)^{2}\right)$, the corollary holds.

9.3 Problems

1. Evaluate the following Jacobi symbols
a) $\left(\frac{5}{21}\right)$
b) $\left(\frac{1009}{2307}\right)$
b) $\quad\left(\frac{27}{101}\right)$
c) $\left(\frac{2663}{3299}\right)$
c) $\left(\frac{111}{1001}\right)$
f) $\left(\frac{10001}{20003}\right)$.
2. For which positive integers n that are relatively prime to 15 does the Jacobi symbol $\left(\frac{15}{n}\right)$ equal 1?
3. For which positive integers n that are relatively prime to 30 does the Jacobi symbol $\left(\frac{30}{n}\right)$ equal 1 ?
4. Let a and b be relatively prime integers such that b is odd and positive and $a=(-1)^{s} 2^{t} q$ where q is odd. Show that

$$
\left(\frac{a}{b}\right)=(-1)^{\frac{b-1}{2} \cdot s+\frac{b^{2}-1}{8} \cdot t}\left(\frac{q}{b}\right) .
$$

5. Let n be an odd square-free positive integer. Show that there is an integer a such that $(a, n)=1$ and $\left(\frac{a}{n}\right)=-1$.
6. Let n be an odd square-free positive integer.
a) Show that $\Sigma\left(\frac{k}{n}\right)=0$, where the sum is taken over all k in a reduced set of residues modulo n. (Hint: Use problem 5.)
b) From part (a), show that the number of integers in a reduced set of residues modulo n such that $\left(\frac{k}{n}\right)=1$ is equal to the number with $\left(\frac{k}{n}\right)=-1$.
7. Let a and $b=r_{0}$ be relatively prime odd positive integers such that

$$
\begin{aligned}
a & =r_{0} q_{1}+\epsilon_{1} r_{1} \\
r_{0} & =r_{1} q_{2}+\epsilon_{2} r_{2} \\
\cdot & \\
\cdot & \\
r_{n-1} & =r_{n-1} q_{n-1}+\epsilon_{n} r_{n}
\end{aligned}
$$

where q_{i} is a nonnegative even integer, $\epsilon_{i}= \pm 1, r_{i}$ is a positive integer with $r_{i}<r_{i-1}$, for $i=1,2, \ldots, n_{j}$, and $r_{n}=1$. These equations are obtained by successively using the modified division algorithm given in problem 10 of Section 1.2.
a) Show that the Jacobi symbol $\left(\frac{a}{b}\right)$ is given by

$$
\left(\frac{a}{b}\right)=(-1)^{\left(\frac{r_{0}-1}{2} \frac{\epsilon r_{1}-1}{2}+\frac{r_{1}-1}{2} \frac{\epsilon r_{2}-1}{2}+\cdots+\frac{r_{n-1}-1}{2} \cdot \frac{\epsilon_{t}-1}{2}\right)} .
$$

b) Show that the Jacobi symbol $\left(\frac{a}{b}\right)$ is given by

$$
\left(\frac{a}{b}\right)=(-1)^{T},
$$

where T is the number of integers $i, 1 \leqslant i \leqslant n$, with $r_{i-1} \equiv \epsilon_{i} r_{i} \equiv 3$ $(\bmod 4)$.
8. Show that if a and b are odd integers and $(a, b)=1$, then the following reciprocity law holds for the Jacobi symbol:

$$
\left(\frac{a}{|b|}\right)\left(\frac{b}{|a|}\right)= \begin{cases}-(-1)^{\frac{a-1}{2} \frac{b-1}{2}} & \text { if } a<0 \text { and } b<0 \\ (-1)^{\frac{a-1}{2} \frac{b-1}{2}} & \text { otherwise. }\end{cases}
$$

In problems $9-15$ we deal with the Kronecker symbol which is defined as follows. Let a be a positive integer that is not a perfect square such that $a \equiv 0 \operatorname{or} 1(\bmod 4)$. We define

$$
\begin{aligned}
& \left(\frac{a}{2}\right)=\left\{\begin{array}{l}
1 \quad \text { if } a \equiv 1(\bmod 8) \\
-1 \text { if } a \equiv 5(\bmod 8) .
\end{array}\right. \\
& \left(\frac{a}{p}\right)=\text { the Legendre symbol }\left(\frac{a}{p}\right) \text { if } p \text { is an odd prime such that } p k a . \\
& \left(\frac{a}{n}\right)=\prod_{j=1}^{r}\left(\frac{a}{p_{j}}\right)^{t} \text { if }(a, n)=1 \text { and } n=\prod_{j=1}^{r} p_{j}^{t} \text { is the prime factorization of } n .
\end{aligned}
$$

9. Evaluate the following Kronecker symbols
a) $\left(\frac{5}{12}\right)$
b) $\left(\frac{13}{20}\right)$
c) $\left(\frac{101}{200}\right)$.

For problems $10-15$ let a be a positive integer that is not a perfect square such that $a \equiv 0$ or $1(\bmod 4)$.
10. Show that $\left(\frac{a}{2}\right)=\left(\frac{2}{|a|}\right)$ if $2 \nless a$, where the symbol on the right is a Jacobi symbol.
11. Show that if n_{1} and n_{2} are positive integers and if $\left(a_{1} n_{1} n_{2}\right)=1$, then $\left(\frac{a}{n_{1} n_{2}}\right)=$ $\left(\frac{a}{n_{1}}\right) \cdot\left(\frac{a}{n_{2}}\right)$.
12. Show that if n is a positive integer relatively prime to a and if a is odd, then $\left(\frac{a}{n}\right)=\left(\frac{n}{|a|}\right)$, while if a is even, and $a=2^{s} t$ where t is odd, then

$$
\left(\frac{a}{n}\right)=\left(\frac{2}{n}\right)^{s}(-1)^{\frac{t-1}{2} \cdot \frac{n-1}{2}}\left(\frac{n}{|t|}\right)
$$

13. Show that if n_{1} and n_{2} are positive integers relatively prime to a and $n_{1} \equiv n_{2}(\bmod |a|)$, then $\left(\frac{a}{n_{1}}\right)=\left(\frac{a}{n_{2}}\right)$.
14. Show that if $a \neq 0$, then there exists a positive integer n with $\left(\frac{a}{n}\right)=-1$.

9.3 Computer Projects

Write programs to do the following:

1. Evaluate Jacobi symbols using the method of Theorem 9.7.
2. Evaluate Jacobi symbols using problems 4 and 7.
3. Evaluate Kronecker symbels (defined in the problem set).

9.4 Euler Pseudoprimes

Let p be an odd prime number and let b be an integer not divisible by p. By Euler's criterion, we know that

$$
b^{(p-1) / 2} \equiv\left(\frac{b}{p}\right)(\bmod p)
$$

Hence, if we wish to test the positive integer n for primality, we can take an integer b, with $(b, n)=1$, and determine whether

$$
b^{(n-1) / 2} \equiv\left(\frac{b}{n}\right)(\bmod n)
$$

where the symbol on the right-hand side of the congruence is the Jacobi symbol. If we find that this congruence fails, then n is composite.

Example. Let $n=341$ and $b=2$. We calculate that $2^{170} \equiv 1(\bmod 341)$. Since $341 \equiv-3(\bmod 8)$, using Theorem 9.5 (iv), we see that $\left(\frac{2}{341}\right)=-1$. Consequently, $2^{170} \not \equiv\left(\frac{2}{341}\right)(\bmod 341)$. This demonstrates that 341 is not prime.

Thus, we can define a type of pseudoprime based on Euler's criterion.
Definition. An odd, composite, positive integer n that satisfies the congruence

$$
b^{(n-1) / 2} \equiv\left(\frac{b}{n}\right)(\bmod n)
$$

where b is a positive integer is called an Euler pseudoprime to the base b.
An Euler pseudoprime to the base b is a composite integer that masquerades as a prime by satisfying the congruence given in the definition.

Example. Let $n=1105$ and $b=2$. We calculate that $2^{552} \equiv 1(\bmod 1105)$.
Since $-1105 \equiv 1(\bmod 8)$, we see that $\quad\left(\frac{2}{1105}\right)=1 . \quad$ Hence, $2^{552} \equiv\left(\frac{2}{1105}\right)(\bmod 1105)$. Because 1105 is composite, it is an Euler pseudoprime to the base 2 .

The following proposition shows that every Euler pseudoprime to the base b is a pseudoprime to this base.

Proposition 9.1. If n is an Euler pseudoprime to the base b, then n is a pseudoprime to the base b.

Proof. If n is an Euler pseudoprime to the base b, then

$$
b^{(n-1) / 2} \equiv\left(\frac{b}{n}\right)(\bmod n)
$$

Hence, by squaring both sides of this congruence, we find that

$$
\left(b^{(n-1) / 2}\right)^{2} \equiv\left(\frac{b}{n}\right)^{2}(\bmod n)
$$

Since $\left(\frac{b}{n}\right)= \pm 1$, we see that $b^{n-1} \equiv 1(\bmod n)$. This means that n is a pseudoprime to the base b.

Not every pseudoprime is an Euler pseudoprime. For example, the integer 341 is not an Euler pseudoprime to the base 2, as we have shown, but is a pseudoprime to this base.

We know that every Euler pseudoprime is a pseudoprime. Next, we show that the converse is true, namely that every strong pseudoprime is an Euler pseudoprime.

Theorem 9.8. If n is a strong pseudoprime to the base b, then n is an Euler pseudoprime to this base .

Proof. Let n be a strong pseudoprime to the base b. Then if $n-1=2^{s} t$, where t is odd, either $b^{t} \equiv 1(\bmod n) \quad$ or $b^{2^{\prime} t} \equiv-1(\bmod n)$ where $0 \leqslant r \leqslant s-1$. Let $n=\prod_{i=1} p_{i}^{a_{i}}$ be the prime-power factorization of n.

First, consider the case where $b^{t} \equiv 1(\bmod n)$. Let p be a prime divisor of n. Since $b^{t} \equiv 1(\bmod p)$, we know that $\operatorname{ord}_{p} b \mid t$. Because t is odd, we see that $\operatorname{ord}_{p} b$ is also odd. Hence, $\operatorname{ord}_{p} b \mid(p-1) / 2$, since $\operatorname{ord}_{p} b$ is an odd divisor of the even integer $\phi(p)=p-1$. Therefore,

$$
b^{(p-1) / 2} \equiv 1(\bmod p)
$$

Consequently, by Euler's criterion, we have $\left(\frac{b}{p}\right)=1$.
To compute the Jacobi symbol $\left(\frac{b}{n}\right)$, we note that $\left(\frac{b}{p}\right)=1$ for all primes p dividing n. Hence,

$$
\left(\frac{b}{n}\right)=\left(\frac{b}{\prod_{i=1}^{m} p_{i}^{a_{i}}}\right)=\prod_{i=1}^{m}\left(\frac{b}{p_{i}}\right)^{a_{i}}=1
$$

Since $b^{t} \equiv 1(\bmod n)$, we know that $b^{n-1}=\left(b^{t}\right)^{2^{t}} \equiv 1(\bmod n)$. Therefore, we have

$$
b^{n-1} \equiv\left(\frac{b}{n}\right) \equiv 1(\bmod n)
$$

We conclude that n is an Euler pseudoprime to the base b.
Next, consider the case where

$$
b^{2^{\prime} t} \equiv-1(\bmod n)
$$

for some r with $0 \leqslant r \leqslant s-1$. If p is a prime divisor of n, then

$$
b^{2^{\prime} t} \equiv-1(\bmod p)
$$

Squaring both sides of this congruence, we obtain

$$
b^{2^{2+1} t} \equiv 1(\bmod p)
$$

This implies that $\operatorname{ord}_{p} b \mid 2^{r+1} t$, but that $\operatorname{ord}_{p} b \backslash 2^{r} t$. Hence,

$$
\operatorname{ord}_{p} b=2^{r+1} c
$$

where c is an odd integer. Since $\operatorname{ord}_{p} b \mid(p-1)$ and $2^{r+1} \mid \operatorname{ord}_{p} b$, it follows that $2^{r+1} \mid(p-1)$.

Therefore, we have $p=2^{r+1} d+1$, where d is an integer. Since

$$
b^{(\operatorname{ord}, b) / 2} \equiv-1(\bmod p)
$$

we have

$$
\begin{aligned}
\left(\frac{b}{p}\right) & \equiv b^{(p-1) / 2}=b^{(\operatorname{ord}, b / 2)((p-1) / \operatorname{ord} p)} \\
& \equiv(-1)^{(p-1) / \operatorname{ord}, b}=(-1)^{(p-1) / 2^{+1+} c}(\bmod p)
\end{aligned}
$$

Because c is odd, we know that $(-1)^{c}=-1$. Hence,

$$
\begin{equation*}
\left(\frac{b}{p}\right)=(-1)^{(p-1) / 2^{r+1}}=(-1)^{d}, \tag{9.9}
\end{equation*}
$$

recalling that $d=(p-1) / 2^{r+1}$. Since each prime p_{i} dividing n is of the form $p_{i}=2^{r+1} d_{i}+1$, it follows that

$$
\begin{aligned}
n & =\prod_{i=1}^{m} p_{j}^{a_{j}} \\
& =\prod_{i=1}^{m}\left(2^{r+1} d_{i}+1\right)^{a_{i}} \\
& \equiv \prod_{i=1}^{m}\left(1+2^{r+1} a_{i} d_{i}\right) \\
& \equiv 1+2^{r+1} \sum_{i=1}^{m} a_{i} d_{i}\left(\bmod 2^{2 r+2}\right)
\end{aligned}
$$

Therefore,

$$
t 2^{s-1}=(n-1) / 2 \equiv 2^{r} \sum_{i=1}^{m} a_{i} d_{i}\left(\bmod 2^{r+1}\right)
$$

This congruence implies that

$$
t 2^{s-1-r} \equiv \sum_{i=1}^{m} a_{i} d_{i}(\bmod 2)
$$

and

$$
\begin{equation*}
b^{(n-1) / 2}=\left(b^{2^{t} t}\right)^{2^{2-1-r}} \equiv(-1)^{2^{--1-r}}=(-1)^{\sum_{i=1}^{m} a_{t} d_{t}}(\bmod n) \tag{9.10}
\end{equation*}
$$

On the other hand, from (9.9), we have

$$
\left(\frac{b}{n}\right)=\prod_{i=1}^{m}\left(\frac{b}{p_{i}}\right)^{a_{i}}=\prod_{i=1}^{m}\left((-1)^{d_{i}}\right)^{a_{i}}=\prod_{i=1}^{m}(-1)^{a_{j} d_{j}}=(-1)^{\sum_{i=1}^{m} a_{t} d_{i}} .
$$

Therefore, combining the previous equation with (9.10), we see that

$$
b^{(n-1) / 2} \equiv\left(\frac{b}{n}\right)(\bmod n)
$$

Consequently, n is an Euler pseudoprime to the base b.
Although every strong pseudoprime to the base b is an Euler pseudoprime to this base, note that not every Euler pseudoprime to the base b is a strong pseudoprime to the base b, as the following example shows.

Example. We have previously shown that the integer 1105 is an Euler pseudoprime to the base 2. However, 1105 is not a strong pseudoprime to the base 2 since

$$
2^{(1105-1) / 2}=2^{552} \equiv 1(\bmod 1105)
$$

while

$$
2^{(1105-1) / 2^{2}}=2^{276} \equiv 781 \not \equiv \pm 1(\bmod 1105)
$$

Although an Euler pseudoprime to the base b is not always a strong pseudoprime to this base, when certain extra conditions are met, an Euler pseudoprime to the base b is, in fact, a strong pseudoprime to this base. The following two theorems give results of this kind.

Theorem 9.9. If $n \equiv 3(\bmod 4)$ and n is an Euler pseudoprime to the base b, then n is a strong pseudoprime to the base b.

Proof. From the congruence $n \equiv 3(\bmod 4)$, we know that $n-1=2^{2} \cdot t$ where $t=(n-1) / 2$ is odd. Since n is an Euler pseudoprime to the base b, it follows that

$$
b^{t}=b^{(n-1) / 2} \equiv\left(\frac{b}{n}\right)(\bmod n)
$$

Since $\left(\frac{b}{n}\right)= \pm 1$, we know that either $b^{t} \equiv 1(\bmod n)$ or $b^{t} \equiv-1(\bmod n)$. Hence, one of the congruences in the definition of a strong pseudoprime to the base b must hold. Consequently, n is a strong pseudoprime to the base b.

Theorem 9.10. If n is an Euler pseudoprime to the base b and $\left(\frac{b}{n}\right)=-1$, then n is a strong pseudoprime to the base b.

Proof. We write $n-1=2^{s} t$, where t is odd and s is a positive integer. Since n is an Euler pseudoprime to the base b, we have

$$
b^{2^{\beta-1} t}=b^{(n-1) / 2} \equiv\left(\frac{b}{n}\right)(\bmod n)
$$

But since $\left(\frac{b}{n}\right)=-1$, we see that

$$
b^{t 2^{-1}} \equiv-1(\bmod n)
$$

This is one of the congruences in the definition of a strong pseudoprime to the base b. Since n is composite, it is a strong pseudoprime to the base b.

Using the concept of Euler pseudoprimality, we will develop a probabilistic primality test. This test was first suggested by Solovay and Strassen [78].

Before presenting the test, we give some helpful lemmata.
Lemma 9.3. If n is an odd positive integer that is not a perfect square, then there is at least one integer b with $1<b<n,(b, n)=1$, and $\left(\frac{b}{n}\right)=-1$, where $\left(\frac{b}{n}\right)$ is the Jacobi symbol.

Proof. If n is prime, the existence of such an integer b is guaranteed by Theorem 9.1. If n is composite, since n is not a perfect square, we can write $n=r s$ where $(r, s)=1$ and $r=p^{e}$, with p an odd prime and e an odd positive integer.

Now let t be a quadratic nonresidue of the prime p; such a t exists by Theorem 9.1. We use the Chinese remainder theorem to find an integer b with $1<b<n,(b, n)=1$, and such that b satisfies the two congruences

$$
\begin{aligned}
& b \equiv t(\bmod r) \\
& b \equiv 1(\bmod s)
\end{aligned}
$$

Then,

$$
\left(\frac{b}{r}\right)=\left(\frac{b}{p^{e}}\right)=\left(\frac{b}{p}\right)^{e}=(-1)^{e}=-1
$$

and $\left(\frac{b}{s}\right)=1$. Since $\left(\frac{b}{n}\right)=\left(\frac{b}{r}\right)\left(\frac{b}{s}\right)$, it follows that $\left(\frac{b}{n}\right)=-1$.
Lemma 9.4. Let n be an odd composite integer. Then there is at least one integer b with $1<b<n,(b, n)=1$, and

$$
b^{(n-1) / 2} \not \equiv\left(\frac{b}{n}\right)(\bmod n)
$$

Proof. Assume that for all positive integers not exceeding n and relatively prime to n, that

$$
\begin{equation*}
b^{(n-1) / 2} \equiv\left(\frac{b}{n}\right)(\bmod n) \tag{9.11}
\end{equation*}
$$

Squaring both sides of this congruence tells us that

$$
b^{n-1} \equiv\left(\frac{b}{n}\right)^{2} \equiv(\pm 1)^{2}=1(\bmod n)
$$

if $(b, n)=1$. Hence, n must be a Carmichael number. Therefore, from Theorem 8.21, we know that $n=q_{1} q_{2} \cdots q_{r}$, where $q_{1}, q_{2}, \ldots, q_{r}$ are distinct odd primes.

We will now show that

$$
b^{(n-1) / 2} \equiv 1(\bmod n)
$$

for all integers b with $1 \leqslant b \leqslant n$ and $(b, n)=1$. Suppose that b is an integer such that

$$
b^{(n-1) / 2} \equiv-1(\bmod n)
$$

We use the Chinese remainder theorem to find an integer a with $1<a<n,(a, n)=1$, and

$$
\begin{aligned}
& a \equiv b\left(\bmod q_{1}\right) \\
& a \equiv 1\left(\bmod q_{2} q_{3} \cdots q_{r}\right)
\end{aligned}
$$

Then, we observe that

$$
\begin{equation*}
a^{(n-1) / 2} \equiv b^{(n-1) / 2} \equiv-1\left(\bmod q_{1}\right) \tag{9.12}
\end{equation*}
$$

while

$$
\begin{equation*}
a^{(n-1) / 2} \equiv 1\left(\bmod q_{2} q_{3} \cdots q_{r}\right) \tag{9.13}
\end{equation*}
$$

From congruences (9.12) and (9.13), we see that

$$
a^{(n-1) / 2} \not \equiv \pm 1(\bmod n),
$$

contradicting congruence (9.11). Hence, we must have

$$
b^{(n-1) / 2} \equiv 1(\bmod n)
$$

for all b with $1 \leqslant b \leqslant n$ and $(b, n)=1$. Consequently, from the definition of an Euler pseudoprime, we know that

$$
b^{(n-1) / 2} \equiv\left(\frac{b}{n}\right)=1(\bmod n)
$$

for all b with $1 \leqslant b \leqslant n$ and $(b, n)=1$. However, Lemma 9.3 tells us that this is impossible. Hence, the original assumption is false. There must be at least one integer b with $1<b<n,(b, n)=1$, and

$$
b^{(n-1) / 2} \not \equiv\left(\frac{b}{n}\right)(\bmod n)
$$

We can now state and prove the theorem that is the basis of the probabilistic primality test.

Theorem 9.11. Let n be an odd composite integer. Then, the number of positive integers less then n, relatively prime to n, that are bases to which n is an Euler pseudoprime, is less than $\phi(n) / 2$.

Proof. From Lemma 9.4, we know that there is an integer b with $1<b<n,(b, n)=1$, and

$$
\begin{equation*}
b^{(n-1) / 2} \not \equiv\left(\frac{b}{n}\right)(\bmod n) \tag{9.14}
\end{equation*}
$$

Now, let $a_{1}, a_{2}, \ldots, a_{m}$ denote the positive integers less than n satisfying $1 \leqslant a_{j} \leqslant n,\left(a_{j}, n\right)=1$, and

$$
\begin{equation*}
a_{j}^{(n-1) / 2} \equiv\left(\frac{a_{j}}{n}\right)(\bmod n) \tag{9.15}
\end{equation*}
$$

for $j=1,2, \ldots, m$.
Let $r_{1}, r_{2}, \ldots, r_{m}$ be the least positive residues of the integers $b a_{1}, b a_{2}, \ldots, b a_{m}$ modulo n. We note that the integers r_{j} are distinct and $\left(r_{j}, n\right)=1$ for $j=1,2, \ldots, m$. Furthermore,

$$
\begin{equation*}
r_{j}^{(n-1) / 2} \not \equiv\left(\frac{r_{j}}{n}\right)(\bmod n) . \tag{9.16}
\end{equation*}
$$

For, if it were true that

$$
r_{j}^{(n-1) / 2} \equiv\left(\frac{r_{j}}{n}\right)(\bmod n)
$$

then we would have

$$
\left(b a_{j}\right)^{(n-1) / 2} \equiv\left(\frac{b a_{j}}{n}\right)(\bmod n)
$$

This would imply that,

$$
b^{(n-1) / 2} a_{j}^{(n-1) / 2} \equiv\left(\frac{b}{n}\right)\left(\frac{a_{j}}{n}\right)(\bmod n)
$$

and since (9.14) holds, we would have

$$
b^{(n-1) / 2} \equiv\left(\frac{b}{n}\right)
$$

contradicting (9.14).
Since $a_{j}, j=1,2, \ldots, m$, satisfies the congruence (9.15) while $r_{j,} j=1,2, \ldots, m$, does not, as (9.16) shows, we know these two sets of integers share no common elements. Hence, looking at the two sets together, we have a total of $2 m$ distinct positive integers less than n and relatively prime to n. Since there are $\phi(n)$ integers less than n that are relatively prime to n, we can conclude that $2 m<\phi(n)$, so that $m<\phi(n) / 2$. This proves the theorem.

From Theorem 9.11, we see that if n is an odd composite integer, when an integer b is selected at random from the integers $1,2, \ldots, n-1$, the probability that n is an Euler pseudoprime to the base b is less than $1 / 2$. This leads to the following probabilistic primality test.

The Solovay-Strassen Probabilistic Primality Test. Let n be a positive integer. Select, at random, k integers $b_{1}, b_{2}, \ldots, b_{k}$ from the integers $1,2, \ldots, n-1$. For each of these integers $b_{j}, j=1,2, \ldots, k$, determine whether

$$
b_{j}^{(n-1) / 2} \equiv\left(\frac{b_{j}}{n}\right)(\bmod n)
$$

If any of these congruences fails, then n is composite. If n is prime then all these congruences hold. If n is composite, the probability that all k congruences hold is less than $1 / 2^{k}$. Therefore, if n passes this test n is "almost certainly prime."

Since every strong pseudoprime to the base b is an Euler pseudoprime to this base, more composite integers pass the Solovay-Strassen probabilistic primality test than the Rabin probabilistic primality test, although both require $O\left(k\left(\log _{2} n\right)^{3}\right)$ bit operations.

9.4 Problems

1. Show that the integer 561 is an Euler pseudoprime to the base 2.
2. Show that the integer 15841 is an Euler pseudoprime to the base 2, a strong pseudoprime to the base 2 and a Carmichael number.
3. Show that if n is an Euler pseudoprime to the bases a and b, then n is an Euler pseudoprime to the base $a b$.
4. Show that if n is an Euler pseudoprime to the base b, then n is also an Euler pseudoprime to the base $n-b$.
5. Show that if $n \equiv 5(\bmod 8)$ and n is an Euler pseudoprime to the base 2, then n is a strong pseudoprime to the base 2 .
6. Show that if $n \equiv 5(\bmod 12)$ and n is an Euler pseudoprime to the base 3, then n is a strong pseudoprime to the base 3 .
7. Find a congruence condition that guarantees that an Euler pseudoprime to the base 5 satisfying this congruence condition is a strong pseudoprime to the base 5 .
8. Let the composite positive integer n have prime-power factorization $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{m}^{a}$, where $\quad p_{j}=1+2_{j}^{k} q_{j} \quad$ for $\quad j=1,2, \ldots, m$, where $k_{1} \leqslant k_{2} \leqslant \cdots \leqslant k_{m}$, and where $n=1+2^{k} q$. Show that n is an Euler pseudoprime to exactly

$$
\delta_{n} \prod_{j=1}^{m}\left((n-1) / 2, p_{j}-1\right)
$$

different bases b with $1 \leqslant b<n$, where

$$
\delta_{n}= \begin{cases}2 & \text { if } k_{1}=k \\ 1 / 2 & \text { if } k_{j}<k \text { and } a_{j} \text { is odd for some } j \\ 1 & \text { otherwise } .\end{cases}
$$

9.4 Computer Projects

Write programs to do the following:

1. Determine if an integer passes the test for Euler pseudoprimes to the base b.
2. Perform the Solovay-Strassen probabilistic primality test.

10

Decimal Fractions and Continued Fractions

10.1 Decimal Fractions

In this chapter, we will discuss rational and irrational numbers and their representations as decimal fractions and continued fractions. We begin with definitions.

Definition. The real number α is called rational if $\alpha=a / b$, where a and b are integers with $b \neq 0$. If α is not rational, then we say that α is irrational.

If α is a rational number then we may write α as the quotient of two integers in infinitely many ways, for if $\alpha=a / b$, where a and b are integers with $b \neq 0$, then $\alpha=k a / k b$ whenever k is a nonzero integer. It is easy to see that a positive rational number may be written uniquely as the quotient of two relatively prime positive integers; when this is done we say that the rational number is in lowest terms.

Example. We note that the rational number $11 / 21$ is in lowest terms. We also see that

$$
\cdots=-33 /-63=-22 /-42=-11 /-21=11 / 21=22 / 42=33 / 63=\cdots
$$

The following theorem tells us that the sum, difference, product, and quotient (when the divisor is not zero) of two rational number is again rational.

Theorem 10.1. Let α and β be rational numbers. Then $\alpha+\beta, \alpha-\beta, \alpha \beta$, and α / β (when $\beta \neq 0$) are rational.

Proof. Since α and β are rational, it follows that $\alpha=a / b$ and $\beta=c / d$, where a, b, c, and d are integers with $b \neq 0$ and $d \neq 0$. Then, each of the numbers

$$
\begin{aligned}
\alpha+\beta & =a / b+c / d=(a d+b c) / b d \\
\alpha-\beta & =a / b-c / d=(a d-b c) / b d \\
\alpha \beta & =(a / b) \cdot(c / d)=a c / b d, \\
\alpha / \beta & =(a / b) /(c / d)=a d / b c \quad(\beta \neq 0),
\end{aligned}
$$

is rational, since it is the quotient of two integers with denominator different from zero.

The next two results show that certain numbers are irrational. We start by considering $\sqrt{2}$.

Proposition 10.1. The number $\sqrt{2}$ is irrational.
Proof. Suppose that $\sqrt{2}=a / b$, where a and b are relatively prime integers with $b \neq 0$. Then, we have

$$
2=a^{2} / b^{2}
$$

so that

$$
2 b^{2}=a^{2}
$$

Since $2 \mid a^{2}$, problem 31 of Section 2.3 tells us that $2 \mid a$. Let $a=2 c$, so that

$$
b^{2}=2 c^{2}
$$

Hence, $2 \mid b^{2}$, and by problem 31 of Section 2.3, 2 also divides b. However, since $(a, b)=1$, we know that 2 cannot divide both a and b. This contradiction shows that $\sqrt{2}$ is irrational.

We can also use the following more general result to show that $\sqrt{2}$ is irrational.

Theorem 10.2. Let α be a root of the polynomial $x^{n}+c_{n-1} x^{n-1}+$ $\cdots+c_{1} x+c_{0}$ where the coefficients $c_{0}, c_{1}, \ldots, c_{n-1}$, are integers with $c_{0} \neq 0$. Then α is either an integer or an irrational number.

Proof. Suppose that α is rational. Then we can write $\alpha=a / b$ where a and b
are relatively prime integers with $b \neq 0$. Since α is a root of $x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0}$, we have

$$
(a / b)^{n}+c_{n-1}(a / b)^{n-1}+\cdots+c_{1}(a / b)+c_{0}=0
$$

Multiplying by b^{n}, we find that

$$
a^{n}+c_{n-1} a^{n-1} b+\cdots+c_{1} a b^{n-1}+c_{0} b^{n}=0
$$

Since

$$
a^{n}=b\left(-c_{n-1} a^{n-1}-\cdots-c_{1} a b^{n-2}-c_{0} b^{n-1}\right)
$$

we see that $b \mid a^{n}$. Assume that $b \neq \pm 1$. Then, b has a prime divisor p. Since $p \mid b$ and $b \mid a^{n}$, we know that $p \mid a^{n}$. Hence, by problem 31 of Section 2.3, we see that $p \mid a$. However, since $(a, b)=1$, this is a contradiction which shows that $b= \pm 1$. Consequently, if α is rational then $\alpha= \pm a$, so that α must be an integer.

We illustrate the use of Theorem 10.2 with the following example.
Example. Let a be a positive integer that is not the m th power of an integer, so that $\sqrt[m]{a}$ is not an integer. Then $\sqrt[m]{a}$ is irrational by Theorem 10.1 , since $\sqrt[m]{a}$ is a root of $x^{m}-a$. Consequently, such numbers as $\sqrt{2}, \sqrt[3]{5}, \sqrt[10]{17}$, etc are irrational.

The numbers π and e are both irrational. We will not prove that either of these numbers are irrational here; the reader can find proofs in [18].

We now consider base b expansions of real numbers, where b is a positive integer, $b>1$. Let α be a real number, and let $a=[\alpha]$ be the integer part of α, so that $\gamma=\alpha-[\alpha]$ is the fractional part of α and $\alpha=a+\gamma$ with $0 \leqslant \gamma<1$. From Theorem 1.3, the integer a has a unique base b expansion. We now show that the fractional part γ also has a unique base b expansion.

Theorem 10.3. Let γ be a real number with $0 \leqslant \gamma<1$, and let b be a positive integer, $b>1$. Then γ can be uniquely written as

$$
\gamma=\sum_{j=1}^{\infty} c_{j} / b^{j}
$$

where the coefficients c_{j} are integers with $0 \leqslant c_{j} \leqslant b-1$ for $j=1,2, \ldots$, with the restriction that for every positive integer N there is an integer n with $n \geqslant N$ and $c_{n} \neq b-1$.

In the proof of Theorem 10.3, we deal with infinite series. We will use the following formula for the sum of the terms of an infinite geometric series.

Theorem 10.4. Let a and r be real numbers with $|r|<1$. Then

$$
\sum_{j=0}^{\infty} a r^{j}=a /(1-r)
$$

For a proof of Theorem 10.4, see [62]. (Most calculus books contain a proof.)
We can now prove Theorem 10.3.
Proof. We first let

$$
c_{1}=[b \gamma]
$$

so that $0 \leqslant c_{1} \leqslant b-1$, since $0 \leqslant b \gamma<b$. In addition, let

$$
\gamma_{1}=b \gamma-c_{1}=b \gamma-[b \gamma]
$$

so that $0 \leqslant \gamma_{1}<1$ and

$$
\gamma=\frac{c_{1}}{b}+\frac{\gamma_{1}}{b}
$$

We recursively define c_{k} and γ_{k} for $k=2,3, \ldots$, by

$$
c_{k}=\left[b \gamma_{k-1}\right]
$$

and

$$
\gamma_{k-1}=\frac{c_{k}}{b}+\frac{\gamma_{k}}{b}
$$

so that $0 \leqslant c_{k} \leqslant b-1$, since $0 \leqslant b \gamma_{k-1}<b$, and $0 \leqslant \gamma_{k}<1$. Then, it follows that

$$
\gamma=\frac{c_{1}}{b}+\frac{c_{2}}{b^{2}}+\cdots+\frac{c_{n}}{b^{n}}+\frac{\gamma_{n}}{b^{n}}
$$

Since $0 \leqslant \gamma_{n}<1$, we see that $0 \leqslant \gamma_{n} / b^{n}<1 / b^{n}$. Consequently,

$$
\lim _{n \rightarrow \infty} \gamma_{n} / b^{n}=0
$$

Therefore, we can conclude that

$$
\begin{aligned}
\gamma & =\lim _{n \rightarrow \infty}\left(\frac{c_{1}}{b}+\frac{c_{2}}{b^{2}}+\cdots+\frac{c_{n}}{b^{n}}\right) \\
& =\sum_{j=1}^{\infty} c_{j} / b^{j}
\end{aligned}
$$

To show that this expansion is unique, assume that

$$
\gamma=\sum_{j=1}^{\infty} c_{j} / b^{j}=\sum_{j=1}^{\infty} d_{j} / b^{j}
$$

where $0 \leqslant c_{j} \leqslant b-1$ and $0 \leqslant d_{j} \leqslant b-1$, and, for every positive integer N, there are integers n and m with $c_{n} \neq b-1$ and $d_{m} \neq b-1$. Assume that k is the smallest index for which $c_{k} \neq d_{k}$, and assume that $c_{k}>d_{k}$ (the case $c_{k}<d_{k}$ is handled by switching the roles of the two expansions). Then

$$
0=\sum_{j=1}^{\infty}\left(c_{j}-d_{j}\right) / b^{j}=\left(c_{k}-d_{k}\right) / b^{k}+\sum_{j=k+1}^{\infty}\left(c_{j}-d_{j}\right) / b^{j}
$$

so that

$$
\begin{equation*}
\left(c_{k}-d_{k}\right) / b^{k}=\sum_{j=k+1}^{\infty}\left(d_{j}-c_{j}\right) / b^{j} \tag{10.1}
\end{equation*}
$$

Since $c_{k}>d_{k}$, we have

$$
\begin{equation*}
\left(c_{k}-d_{k}\right) / b^{k} \geqslant 1 / b^{k} \tag{10.2}
\end{equation*}
$$

while

$$
\begin{align*}
\sum_{j=k+1}^{\infty}\left(d_{j}-c_{j}\right) / b^{j} & \leqslant \sum_{j=k+1}^{\infty}(b-1) / b^{j} \tag{10.3}\\
& =(b-1) \frac{1 / b^{k+1}}{1-1 / b} \\
& =1 / b^{k}
\end{align*}
$$

where we have used Theorem 10.4 to evaluate the sum on the right-hand side of the inequality. Note that equality holds in (10.3) if and only if $d_{j}-c_{j}=b-1$ for all j with $j \geqslant k+1$, and this occurs if and only if $d_{j}=b-1$ and $c_{j}=0$ for $j \geqslant k+1$. However, such an instance is excluded by the hypotheses of the theorem. Hence, the inequality in (10.3) is strict, and therefore, (10.2) and (10.3) contradict (10.1). This shows that the base b expansion of α is unique.

The unique expansion of a real number in the form $\sum_{j=1}^{\infty} c_{j} / b^{j}$ is called the base b expansion of this number and is denoted by $\left(. c_{1} c_{2} c_{3} \ldots\right)_{b}$.

To find the base b expansion $\left(. c_{1} c_{2} c_{3} \ldots\right)_{b}$ of a real number γ, we can use the recursive formula for the digits given in the proof of Theorem 10.3, namely

$$
c_{k}=\left[b \gamma_{k-1}\right], \quad \gamma_{k}=b \gamma_{k-1}-\left[b \gamma_{k-1}\right]
$$

where $\gamma_{0}=\gamma$, for $k=1,2,3, \ldots$.
Example. Let $\left(. c_{1} c_{2} c_{3} \ldots\right)_{b}$ be the base 8 expansion of $1 / 6$. Then

$$
\begin{array}{lc}
c_{1}=\left[8 \cdot \frac{1}{6}\right]=1, & \gamma_{1}=8 \cdot \frac{1}{6}-1=\frac{1}{3} \\
c_{2}=\left[8 \cdot \frac{1}{3}\right]=2, & \gamma_{2}=8 \cdot \frac{1}{3}-2=\frac{2}{3} \\
c_{3}=\left[8 \cdot \frac{2}{3}\right]=5, & \gamma_{3}=8 \cdot \frac{2}{3}-5=\frac{1}{3} \\
c_{4}=\left[8 \cdot \frac{1}{3}\right]=2, & \gamma_{4}=8 \cdot \frac{1}{3}-2=\frac{2}{3} \\
c_{5}=\left[8 \cdot \frac{2}{3}\right]=5, & \gamma_{5}=8 \cdot \frac{2}{3}-5=\frac{1}{3}
\end{array}
$$

and so on. We see that the expansion repeats and hence,

$$
1 / 6=(.1252525 \ldots)_{8}
$$

We will now discuss base b expansions of rational numbers. We will show that a number is rational if and only if its base b expansion is periodic or terminates.

Definition. A base b expansion $\left(. c_{1} c_{2} c_{3} \ldots\right)_{b}$ is said to terminate if there is a positive integer n such that $c_{n}=c_{n+1}=c_{n+2}=\cdots=0$.

Example. The decimal expansion of $1 / 8,(.125000 \ldots)_{10}=(.125)_{10}$, terminates. Also, the base 6 expansion of $4 / 9,(.24000 \ldots)_{6}=(.24)_{6}$, terminates.

To describe those real numbers with terminating base b expansion, we prove the following theorem.

Theorem 10.5. The real number $\alpha, 0 \leqslant \alpha<1$, has a terminating base b expansion if and only if α is rational and $\alpha=r / s$, where $0 \leqslant r<s$ and every prime factor of s also divides b.

Proof. First, suppose that α has a terminating base b expansion,

$$
\alpha=\left(. c_{1} c_{2} \ldots c_{n}\right)_{b}
$$

Then

$$
\begin{aligned}
\alpha & =\frac{c_{1}}{b}+\frac{c_{2}}{b^{2}}+\cdots+\frac{c_{n}}{b^{n}} \\
& =\frac{c_{1} b^{n-1}+c_{2} b^{n-2}+\cdots+c_{n}}{b^{n}}
\end{aligned}
$$

so that α is rational, and can be written with a denominator divisible only by primes dividing b.

Conversely, suppose that $0 \leqslant \alpha<1$, and

$$
\alpha=r / s
$$

where each prime dividing s also divides b. Hence, there is a power of b, say b^{N}, that is divisible by s (for instance, take N to be the largest exponent in the prime-power factorization of s). Then

$$
b^{N} \alpha=b^{N} r / s=a r
$$

where $s a=b^{N}$, and a is a positive integer since $s \mid b^{n}$. Now let $\left(a_{m} a_{m-1 \ldots} a_{1} a_{0}\right)_{b}$ be the base b expansion of $a r$. Then

$$
\begin{aligned}
\alpha & =a r / b^{N}=\frac{a_{m} b^{m}+a_{m-1} b^{m-1}+\cdots+a_{1} b+a_{0}}{b^{N}} \\
& =a_{m} b^{m-N}+a_{m-1} b^{m-1-N}+\cdots+a_{1} b^{1-N}+a_{0} b^{-N} \\
& =\left(.00 \ldots a_{m} a_{m-1} \ldots a_{1} a_{0}\right)_{b}
\end{aligned}
$$

Hence, α has a terminating base b expansion.
Note that every terminating base b expansion can be written as a nonterminating base b expansion with a tail-end consisting entirely of the digit $b-1$, since $\left(. c_{1} c_{2} \cdots c_{m}\right)_{b}=\left(. c_{1} c_{2} \cdots c_{m}-1 b-1 b-1 \ldots\right)_{b}$. For instance, $(.12)_{10}=(.11999 \ldots)_{10}$. This is why we require in Theorem 10.3 that for every integer N there is an integer n, such that $n>N$ and
$c_{n} \neq b-1$; without this restriction base b expansions would not be unique.
A base b expansion that does not terminate may be periodic, for instance

$$
\begin{aligned}
& 1 / 3=(.333 \ldots)_{10} \\
& 1 / 6=(.1666 \ldots)_{10}
\end{aligned}
$$

and

$$
1 / 7=(.142857142857142857 \ldots)_{10}
$$

Definition. A base b expansion $\left(. c_{1} c_{2} c_{3} \ldots\right)_{b}$ is called periodic if there are positive integers N and k such that $c_{n+k}=c_{n}$ for $n \geqslant N$.

We denote by $\left(. c_{1} c_{2} \ldots c_{N-1} \bar{c}_{N \ldots} \ldots c_{N+k-1}\right)_{b}$ the periodic base b expansion $\left(. c_{1} c_{2} \ldots c_{N-1} c_{N} \ldots c_{N+k-1} c_{N \ldots} \ldots c_{N+k-1} c_{N} \ldots\right)_{b}$. For instance, we have

$$
\begin{aligned}
& 1 / 3=(. \overline{3})_{10} \\
& 1 / 6=(.16)_{10}
\end{aligned}
$$

and

$$
1 / 7=(. \overline{142857})_{10}
$$

Note that the periodic parts of the decimal expansions of $1 / 3$ and $1 / 7$ begin immediately, while in the decimal expansion of $1 / 6$ the digit 1 proceeds the periodic part of the expansion. We call the part of a periodic base b expansion preceding the periodic part the pre-period, and the periodic part the period, where we take the period to have minimal possible length.

Example. The base 3 expansion of $2 / 45$ is $(.001 \overline{0121})_{3}$. The pre-period is $(001)_{3}$ and the period is $(0121)_{3}$.

The next theorem tells us that the rational numbers are those real numbers with periodic or terminating base b expansions. Moreover, the theorem gives the lengths of the pre-period and periods of base b expansions of rational numbers.

Theorem 10.6. Let b be a positive integer. Then a periodic base b expansion represents a rational number. Conversely, the base b expansion of a rational number either terminates or is periodic. Further, if $0<\alpha<1, \alpha=r / s$, where r and s are relatively prime positive integers, and $s=T U$ where every prime factor of T divides b and $(U, b)=1$, then the period length of the base b expansion of α is $\operatorname{ord}_{U} b$, and the pre-period length is N, where N is the smallest positive integer such that $T \mid b^{N}$.

Proof. First, suppose that the base b expansion of α is periodic, so that

$$
\begin{aligned}
\alpha & =\left(. c_{1} c_{2} \ldots c_{N}{\overline{c_{N+1}} \ldots c_{N+k}}^{)_{b}}\right. \\
& =\frac{c_{1}}{b}+\frac{c_{2}}{b^{2}}+\cdots+\frac{c_{N}}{b^{N}}+\left(\sum_{j=0}^{\infty} \frac{1}{b^{j k}}\right)\left(\frac{c_{N+1}}{b^{N+1}}+\cdots+\frac{c_{N+k}}{b^{N+k}}\right) \\
& =\frac{c_{1}}{b}+\frac{c_{2}}{b^{2}}+\cdots+\frac{c_{N}}{b^{N}}+\left(\frac{b^{k}}{b^{k}-1}\right)\left(\frac{c_{N+1}}{b^{N+1}}+\cdots+\frac{c_{N+k}}{b^{N+k}}\right),
\end{aligned}
$$

where we have used Theorem 10.4 to see that

$$
\sum_{j=0}^{\infty} \frac{1}{b^{j k}}=\frac{1}{1-\frac{1}{b^{k}}}=\frac{b^{k}}{b^{k}-1}
$$

Since α is the sum of rational numbers, Theorem 10.1 tells us that α is rational.

Conversely, suppose that $0<\alpha<1, \alpha=r / s$, where r and s are relatively prime positive integers, $s=T U$, where every prime factor of T divides b, $(U, b)=1$, and N is the smallest integer such that $T \mid b^{N}$.

Since $T \mid b^{N}$, we have $a T=b^{N}$, where a is a positive integer. Hence

$$
\begin{equation*}
b^{N} \alpha=b^{N} \frac{r}{T U}=\frac{a r}{U} . \tag{10.4}
\end{equation*}
$$

Furthermore, we can write

$$
\begin{equation*}
\frac{a r}{U}=A+\frac{C}{U} \tag{10.5}
\end{equation*}
$$

where A and C are integers with

$$
0 \leqslant A<b^{N}, \quad 0<C<U
$$

and $(C, U)=1$. (The inequality for A follows since $0<b^{N} \alpha=\frac{a r}{U}<b^{N}$, which results from the inequality $0<\alpha<1$ when both sides are multiplied by b^{N}). The fact that $(C, U)=1$ follows easily from the condition $(r, s)=1$. From Theorem 1.3, A has a base b expansion $A=\left(a_{n} a_{n-1} \ldots a_{1} a_{0}\right)_{b}$.

If $U=1$, then the base b expansion of α terminates as shown above. Otherwise, let $v=\operatorname{ord}_{U} b$. Then,

$$
\begin{equation*}
b^{v} \frac{C}{U}=\frac{(t U+1) C}{U}=t+\frac{C}{U} \tag{10.6}
\end{equation*}
$$

where t is an integer, since $b^{\nu} \equiv 1(\bmod U)$. However, we also have

$$
\begin{equation*}
b^{\nu} \frac{C}{U}=b^{v}\left(\frac{c_{1}}{b}+\frac{c_{2}}{b^{2}}+\cdots+\frac{c_{v}}{b^{v}}+\frac{\gamma_{v}}{b^{v}}\right) \tag{10.7}
\end{equation*}
$$

where $\left(. c_{1} c_{2} c_{3} \ldots\right)_{b}$ is the base b expansion of $\frac{C}{U}$, so that

$$
c_{k}=\left[b \gamma_{k-1}\right], \quad \gamma_{k}=b \gamma_{k-1}-\left[b \gamma_{k-1}\right]
$$

where $\gamma_{0}=\frac{C}{U}$, for $k=1,2,3, \ldots$. From (10.7) we see that

$$
\begin{equation*}
b^{v} \frac{C}{U}=\left(c_{1} b^{\nu-1}+c_{2} b^{\nu-2}+\cdots+c_{v}\right)+\gamma_{v} \tag{10.8}
\end{equation*}
$$

Equating the fractional parts of (10.6) and (10.8), noting that $0 \leqslant \gamma_{\nu}<1$, we find that

$$
\gamma_{v}=\frac{C}{U}
$$

Consequently, we see that

$$
\gamma_{v}=\gamma_{0}=\frac{C}{U}
$$

so that from the recursive definition of c_{1}, c_{2}, \ldots we can conclude that $c_{k+v}=c_{k}$ for $k=1,2,3, \ldots$. Hence $\frac{C}{U}$ has a periodic base b expansion

$$
\frac{C}{U}=\left(\overline{c_{1} c_{2} \ldots c_{v}}\right)
$$

Combining (10.4) and (10.5), and inserting the base b expansions of A and $\frac{C}{U}$, we have

$$
\begin{equation*}
b^{N} \alpha=\left(a_{n} a_{n-1} \ldots a_{1} a_{0} \cdot \overline{c_{1} c_{2} \ldots c_{v}}\right)_{b} \tag{10.9}
\end{equation*}
$$

Dividing both sides of (10.9) by b^{N}, we obtain

$$
\alpha=\left(.00 \ldots a_{n} a_{n-1} \ldots a_{1} a_{0} \overline{c_{1} c_{2} \ldots c_{v}}\right)_{b},
$$

(where we have shifted the decimal point in the base b expansion of $b^{N} \alpha N$
spaces to the left to obtain the base b expansion of α). In this base b expansion of α, the pre-period (.00 ... $\left.a_{n} a_{n-1} \ldots a_{1} a_{0}\right)_{b}$ is of length N, beginning with $N-(n+1)$ zeros, and the period length is v.

We have shown that there is a base b expansion of α with a pre-period of length N and a period of length v. To finish the proof, we must show that we cannot regroup the base b expansion of α, so that either the pre-period has length less than N, or the period has length less than v. To do this, suppose that

$$
\begin{aligned}
\alpha & =\left(. c_{1} c_{2} \ldots c_{M}{\overline{c_{M+1} \cdots c_{M+k}}}_{b}\right. \\
& =\frac{c_{1}}{b}+\frac{c_{2}}{b_{2}}+\cdots+\frac{c_{M}}{b^{M}}+\left(\frac{b^{k}}{b^{k}-1}\right)\left(\frac{c_{M+1}}{b^{M+1}}+\cdots+\frac{c_{M+k}}{b^{M+k}}\right) \\
& =\frac{\left(c_{1} b^{M-1}+c_{2} b^{M-2}+\cdots+c_{M}\right)\left(b^{k}-1\right)+\left(c_{M+1} b^{k-1}+\cdots+c_{M+k}\right)}{b^{M}\left(b^{k}-1\right)} .
\end{aligned}
$$

Since $\alpha=r / s$, with $(r, s)=1$, we see that $s \mid b^{M}\left(b^{k}-1\right)$. Consequently, $T \mid b^{M}$ and $U \mid\left(b^{k}-1\right)$. Hence, $M \geqslant N$, and $v \mid k$ (from Theorem 8.1, since $b^{k} \equiv 1(\bmod U)$ and $\left.v=\operatorname{ord}_{U} b\right)$. Therefore, the pre-period length cannot be less than N and the period length cannot be less than v.

We can use Theorem 10.6 to determine the lengths of the pre-period and period of decimal expansions. Let $\alpha=r / s, 0<\alpha<1$, and $s=2^{s_{1}} 5^{s_{2}} t$, where $(t, 10)=1$. Then, from Theorem 10.6 the pre-period has length $\max \left(s_{1}, s_{2}\right)$ and the period has length $\operatorname{ord}_{t} 10$.

Example. Let $\alpha=5 / 28$. Since $28=2^{2} \cdot 7$, Theorem 10.6 tells us that the preperiod has length 2 and the period has length $\operatorname{ord}_{7} 10=6$. Since $5 / 28=(.17857142)$, we see that these lengths are correct.

Note that the pre-period and period lengths of a rational number r / s, in lowest terms, depends only on the denominator s, and not on the numerator r.

We observe that from Theorem 10.6, a base b expansion that is not terminating and is not periodic represents an irrational number.

Example. The number with decimal expansion

$$
\alpha=.10100100010000 \ldots,
$$

consisting of a one followed by a zero, a one followed by two zeros, a one followed by three zeroes, and so on, is irrational because this decimal expansion does not terminate, and is not periodic.

The number α in the above example is concocted so that its decimal expansion is clearly not periodic. To show that naturally occurring numbers such as e and π are irrational, we cannot use Theorem 10.6, because we do not have explicit formulae for the decimal digits of these numbers. No matter how many decimal digits of their expansions we compute, we still cannot conclude that they are irrational from this evidence, because the period could be longer than the number of digits we have computed.

10.1 Problems

1. Show that $\sqrt[3]{5}$ is irrational
a) by an argument similar to that given in Proposition 10.1.
b) using Theorem 10.2.
2. Show that $\sqrt{2}+\sqrt{3}$ is irrational.
3. Show that
a) $\log _{2} 3$ is irrational.
b) $\log _{p} b$ is irrational, where p is a prime and b is a positive integer which is not a power of p.
4. Show that the sum of two irrational numbers can be either rational or irrational.
5. Show that the product of two irrational numbers can be either rational or irrational.
6. Find the decimal expansions of the following numbers
a) $2 / 5$
b) $5 / 12$
c) $12 / 13$
d) $8 / 15$
e) $1 / 111$
f) $1 / 1001$.
7. Find the base 8 expansions of the following numbers
a) $1 / 3$
b) $1 / 4$
c) $1 / 5$
d) $1 / 6$
e) $1 / 12$
f) $1 / 22$.
8. Find the fraction, in lowest terms, represented by the following expansions
a) .12
b) $.1 \overline{2}$
c) $\overline{12}$.
9. Find the fraction, in lowest terms, represented by the following expansions
a) $(.123)_{7}$
b) $(.0 \overline{13})_{6}$
c) $(. \overline{17})_{11}$
d) $(. \overline{A B C})_{16}$.
10. For which positive integers b does the base b expansion of $11 / 210$ terminate?
11. Find the pre-period and period lengths of the decimal expansions of the following rational numbers
a) $7 / 12$
b) $11 / 30$
c) $1 / 75$
d) $10 / 23$
e) $13 / 56$
f) $1 / 61$.
12. Find the pre-period and period lengths of the base 12 expansions of the following rational numbers
a) $1 / 4$
b) $1 / 8$
c) $7 / 10$
d) $5 / 24$
e) $17 / 132$
f) $7 / 360$.
13. Let b be a positive integer. Show that the period length of the base b expansion of $1 / m$ is $m-1$ if and only if m is prime and b is a primitive root of m.
14. For which primes p does the decimal expansion of $1 / p$ have period length of
a) 1
b) 2
c) 3
d) 4
e) 5
f) 6 ?
15. Find the base b expansions of
a) $1 /(b-1)$
b) $1 /(b+1)$.
16. Show that the base b expansion of $1 /(b-1)^{2}$ is $(. \overline{0123 \ldots b-3 b-1})_{b}$.
17. Show that the real number with base b expansion

$$
(.0123 \ldots b-1 \quad 101112 \ldots)_{b},
$$

constructed by successively listing the base b expansions of the integers, is irrational.
18. Show that

$$
\frac{1}{b}+\frac{1}{b^{4}}+\frac{1}{b^{9}}+\frac{1}{b^{16}}+\frac{1}{b^{25}}+\cdots
$$

is irrational, whenever b is a positive integer larger than one.
19. Let $b_{1}, b_{2}, b_{3}, \ldots$ be an infinite sequence of positive integers greater than one. Show that every real number can be represented as

$$
c_{0}+\frac{c_{1}}{b_{1}}+\frac{c_{2}}{b_{1} b_{2}}+\frac{c_{3}}{b_{1} b_{2} b_{3}}+\cdots,
$$

where $c_{0}, c_{1}, c_{2}, c_{3}, \ldots$ are integers such that $0 \leqslant c_{k}<b_{k}$ for $k=1,2,3, \ldots$.
20. a) Show that every real number has an expansion

$$
c_{0}+\frac{c_{1}}{1!}+\frac{c_{2}}{2!}+\frac{c_{3}}{3!}+\cdots
$$

where $c_{0}, c_{1}, c_{2}, c_{3}, \ldots$ are integers and $0 \leqslant c_{k}<k$ for $k=1,2,3, \ldots$.
b) Show that every rational number has a terminating expansion of the type described in part (a).
21. Suppose that p is a prime and the base b expansion of $1 / p$ is $\left(\overline{c_{1} c_{2} \ldots c_{p-1}}\right)_{b}$, so that the period length of the base b expansion of $1 / p$ is $p-1$. Show that if m is a positive integer with $1 \leqslant m<p$, then

$$
m / p=\left(. \bar{c}_{k+1} \ldots c_{p-1} c_{1} c_{2} \ldots c_{k-1} c_{k}\right)_{b},
$$

where $k=\operatorname{ind}_{b} m$ modulo p.
22. Show that if p is prime and $1 / p=\left(. \overline{c_{1} c_{2} \ldots c_{k}}\right)_{b}$ has an even period length, $k=2 t$, then $c_{j}+c_{j+t}=b-1$ for $j=1,2, \ldots, t$.
23. The Farey series F_{n} of order n is the set of fractions h / k where h and k are integers, $0 \leqslant h \leqslant k \leqslant n$, and (h, k) = 1 , in ascending order. Here, we include 0 and 1 in the forms $\frac{0}{1}$ and $\frac{1}{1}$ respectively. For instance, the Farey series of order 4 is

$$
\frac{0}{1}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{1}{1} .
$$

a) Find the Farey series of order 7.
b) Show that if a / b and c / d are successive terms of a Farey series, then $b d-a c=1$.
c) Show that if $a / b, c / d$, and e / f are successive terms of a Farey series, then

$$
\frac{c}{d}=\frac{a+e}{b+f} .
$$

d) Show that if a / b and c / d are successive terms of the Farey series of order n, then $b+d>n$.
24. Let n be a positive integer, $n>1$. Show that $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ is not an integer.

10.1 Computer Projects

Write computer programs to do the following:

1. Find the base b expansion of a rational number, where b is a positive integer.
2. Find the numerator and denominator of a rational number in lowest terms from its base b expansion.
3. Find the pre-period and period lengths of the base b expansion of a rational number, where b is a positive integer.
4. List the terms of the Farey series of order n where n is a positive integer (see problem 23).

10.2 Finite Continued Fractions

Using the Euclidean algorithm we can express rational numbers as continued fractions. For instance, the Euclidean algorithm produces the following sequence of equations:

$$
\begin{aligned}
62 & =2 \cdot 23+16 \\
23 & =1 \cdot 16+7 \\
16 & =2 \cdot 7+2 \\
7 & =3 \cdot 2+1 .
\end{aligned}
$$

When we divide both sides of each equation by the divisor of that equation, we obtain

$$
\begin{aligned}
\frac{62}{23} & =2+\frac{16}{23}=2+\frac{1}{23 / 16} \\
\frac{23}{16} & =1+\frac{7}{16}=1+\frac{1}{16 / 7} \\
\frac{16}{7} & =2+\frac{2}{7}=2+\frac{1}{7 / 2} \\
\frac{7}{2} & =3+\frac{1}{2}
\end{aligned}
$$

By combining these equations, we find that

$$
\begin{aligned}
\frac{62}{23} & =2+\frac{1}{23 / 16} \\
& =2+\frac{1}{1+\frac{1}{16 / 7}} \\
& =2+\frac{1}{1+\frac{1}{2+7 / 2}} \\
& =2+\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{2}}}}
\end{aligned}
$$

The final expression in the above string of equations is a continued fraction expansion of $62 / 23$.

We now define continued functions.
Definition. A finite continued fraction is an expression of the form

$$
\begin{aligned}
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+}} & \\
\cdot & \\
& \cdot \\
& +\frac{1}{a_{n-1}+\frac{1}{a_{n}}}
\end{aligned}
$$

where $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ are real numbers with $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ positive. The real numbers $a_{1}, a_{2}, \ldots, a_{n}$ are called the partial quotients of the continued fraction. The continued fraction is called simple if the real numbers $a_{0}, a_{1}, \ldots, a_{n}$ are all integers.

Because it is cumbersome to fully write out continued fractions, we use the notation $\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{n}\right]$ to represent the continued fraction in the above definition.

We will now show that every finite simple continued fraction represents a rational number. Later we will demonstrate that every rational number can be expressed as a finite simple continued fraction.

Theorem 10.7. Every finite simple continued fraction represents a rational number.

Proof. We will prove the theorem using mathematical induction. For $n=1$
we have

$$
\left[a_{o} ; a_{1}\right]=a_{0}+\frac{1}{a_{1}}=\frac{a_{0} a_{1}+1}{a_{0}}
$$

which is rational. Now assume that for the positive integer k the simple continued fraction $\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}\right.$] is rational whenever $a_{0}, a_{1}, \ldots, a_{k}$ are integers with a_{1}, \ldots, a_{k} positive. Let $a_{0}, a_{1}, \ldots, a_{k+1}$ be integers with a_{1}, \ldots, a_{k+1} positive. Note that

$$
\left[a_{0} ; a_{1}, \ldots, a_{k+1}\right]=a_{0}+\frac{1}{\left[a_{1} ; a_{2, \ldots,}, a_{k}, a_{k+1}\right]}
$$

By the induction hypothesis, $\left[a_{1} ; a_{2}, \ldots, a_{k}, a_{k+1}\right]$ is rational; hence, there are integers r and s, with $s \neq 0$, such that this continued fraction equals r / s. Then

$$
\left[a_{o} ; a_{1}, \ldots, a_{k}, a_{k+1}\right]=a_{0}+\frac{1}{r / s}=\frac{a_{0} r+s}{r}
$$

which is again a rational number.
We now show, using the Euclidean algorithm, that every rational number can be written as a finite simple continued fraction.

Theorem 10.8. Every rational number can be expressed by a finite simple continued fraction.

Proof. Let $x=a / b$ where a and b are integers with $b>0$. Let $r_{0}=a$ and $r_{1}=b$. Then the Euclidean algorithm produces the following sequence of equations:

$$
\begin{array}{rlrl}
r_{0} & =r_{1} q_{1}+r_{2} & 0<r_{2}<r_{1} \\
r_{1} & =r_{2} q_{2}+r_{3} & 0<r_{3}<r_{2} \\
r_{2} & =r_{3} q_{3}+r_{4} & 0<r_{4}<r_{3} \\
& \cdot & \\
\cdot & & \\
& \cdot & 0<r_{n-1}<r_{n-2} \\
r_{n-3} & =r_{n-2} q_{n-2}+r_{n-1} & & 0<r_{n}<r_{n-1} \\
r_{n-2} & =r_{n-1} q_{n-1}+r_{n} &
\end{array}
$$

In the above equations $q_{2}, q_{3}, \ldots, q_{n}$ are positive integers. Writing these equations in fractional form we have

$$
\begin{aligned}
\frac{a}{b}=\frac{r_{0}}{r_{1}} & =q_{1}+\frac{r_{2}}{r_{1}}=q_{1}+\frac{1}{r_{1} / r_{2}} \\
\frac{r_{1}}{r_{2}} & =q_{2}+\frac{r_{3}}{r_{2}}=q_{2}+\frac{1}{r_{2} / r_{3}} \\
\frac{r_{2}}{r_{3}} & =q_{3}+\frac{r_{4}}{r_{3}}=q_{3}+\frac{1}{r_{3} / r_{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{r_{n-3}}{r_{n-2}}=\frac{r_{n-1}}{r_{n-2}}=q_{n-2}+\frac{1}{r_{n-2} / r_{n-1}} \\
& \frac{r_{n-2}}{r_{n-1}}=q_{n-1}+\frac{r_{n}}{r_{n-1}}=q_{n-1}+\frac{1}{r_{n-1} / r_{n}} \\
& \frac{r_{n-1}}{r_{n}}=q_{n}
\end{aligned}
$$

Substituting the value of r_{1} / r_{2} from the second equation into the first equation, we obtain

$$
\begin{equation*}
\frac{a}{b}=q_{1}+\frac{1}{q_{2}+\frac{1}{r_{2} / r_{3}}} \tag{10.10}
\end{equation*}
$$

Similarly, substituting the value of r_{2} / r_{3} from the third equation into (10.10) we obtain

$$
\frac{c}{b}=q_{1}+\frac{1}{q_{2}+\frac{1}{q_{3}+\frac{1}{r_{3} / r_{4}}}} .
$$

Continuing in this manner, we find that

$$
\begin{aligned}
\frac{a}{b}=q_{1}+\frac{1}{q_{2}+\frac{1}{q_{3}+}} \begin{array}{l}
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array} & \\
& +q_{n-1}+\frac{1}{q_{n}}
\end{aligned}
$$

Hence $\frac{a}{b}=\left[q_{1} ; q_{2}, \ldots, q_{n}\right]$. This shows that every rational number can be written as a finite simple continued fraction.

We note that continued fractions for rational numbers are not unique. From the identity

$$
a_{n}=\left(a_{n}-1\right)+\frac{1}{1},
$$

we see that

$$
\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}\right]=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}-1,1\right]
$$

whenever $a_{n}>1$.
Example. We have

$$
\frac{7}{11}=[0 ; 1,1,1,3]=[0 ; 1,1,1,2,1] .
$$

In fact, it can be shown that every rational number can be written as a finite simple continued fraction in exactly two ways, one with an odd number of terms, the other with an even number (see problem 8 at the end of this section).

Next, we will discuss the numbers obtained from a finite continued fraction by cutting off the expression at various stages.

Definition. The continued fractions $\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}\right]$, where k is a nonnegative integer less than n, is called the $k t h$ convergent of the continued fraction
$\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{n}\right]$. The k th convergent is denoted by C_{k}.
In our subsequent work, we will need some properties of the convergents of a continued fraction. We now develop these properties, starting with a formula for the convergents.

Theorem 10.9. Let $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ be real numbers, with $a_{1}, a_{2}, \ldots, a_{n}$ positive. Let the sequences $p_{0}, p_{1}, \ldots, p_{n}$ and $q_{0}, q_{1}, \ldots, q_{n}$ be defined recursively by

$$
\begin{array}{ll}
p_{0}=a_{0} & q_{0}=1 \\
p_{1}=a_{0} a_{1}+1 & q_{1}=a_{1}
\end{array}
$$

and

$$
p_{k}=a_{k} p_{k-1}+p_{k-2} \quad q_{k}=a_{k} q_{k-1}+q_{k-2}
$$

for $k=2,3, \ldots, n$. Then the k th convergent $C_{k}=\left[a_{o} ; a_{1}, \ldots, a_{k}\right]$ is given by

$$
C_{k}=p_{k} / q_{k}
$$

Proof. We will prove this theorem using mathematical induction. For $k=0$ we have

$$
C_{0}=\left[a_{0}\right]=a_{0} / 1=p_{0} / q_{0}
$$

For $k=1$, we see that

$$
C_{1}=\left[a_{0} ; a_{1}\right]=a_{0}+\frac{1}{a_{1}}=\frac{a_{0} a_{1}+1}{a_{1}}=\frac{p_{1}}{q_{1}}
$$

Hence, the theorem is valid for $k=0$ and $k=1$.
Now assume that the theorem is true for the positive integer k where $2 \leqslant k<n$. This means that

$$
\begin{equation*}
C_{k}=\left[a_{o} ; a_{1}, \ldots, a_{k}\right]=\frac{p_{k}}{q_{k}}=\frac{a_{k} p_{k-1}+p_{k-2}}{a_{k} q_{k-1}+q_{k-2}} \tag{10.11}
\end{equation*}
$$

Because of the way in which the p_{j} 's and q_{j} 's are defined, we see that the real numbers $p_{k-1}, p_{k-2}, q_{k-1}$, and q_{k-2} depend only on the partial quotients $a_{0}, a_{1}, \ldots, a_{k-1}$. Consequently, we can replace the real number a_{k} by $a_{k}+1 / a_{k+1}$ in (10.11), to obtain

$$
\begin{aligned}
C_{k+1}=\left[a_{0} ; a_{1}, \ldots, a_{k}, a_{k+1}\right] & =\left[a_{0} ; a_{1}, \ldots, a_{k-1}, a_{k}+\frac{1}{a_{k}}\right] \\
& =\frac{\left(a_{k}+\frac{1}{a_{k+1}}\right) p_{k-1}+p_{k-2}}{\left(a_{k}+\frac{1}{a_{k+1}}\right) q_{k-1}+q_{k-2}} \\
& =\frac{a_{k+1}\left(a_{k} p_{k-1}+p_{k-2}\right)+p_{k-1}}{a_{k+1}\left(a_{k} q_{k-1}+q_{k-1}\right)+q_{k-1}} \\
& =\frac{a_{k+1} p_{k}+p_{k-1}}{a_{k+1} q_{k}+q_{k-1}} \\
& =\frac{p_{k+1}}{q_{k+1}} .
\end{aligned}
$$

This finishes the proof by induction.
We illustrate how to use Theorem 10.9 with the following example.
Example. We have $173 / 55=[3 ; 6,1,7]$. We compute the sequences p_{j} and q_{j} for $j=0,1,2,3$, by

$$
\begin{array}{ll}
p_{0}=3 & q_{0}=1 \\
p_{1}=3 \cdot 6+1=19 & q_{1}=6 \\
p_{2}=1 \cdot 19+3=22 & q_{2}=1 \cdot 6+1=7 \\
p_{3}=7 \cdot 22+19=173 & q_{3}=7 \cdot 7+6=55 .
\end{array}
$$

Hence, the convergents of the above continued fraction are

$$
\begin{aligned}
& C_{0}=p_{0} / q_{0}=3 / 1=3 \\
& C_{1}=p_{1} / q_{1}=19 / 6 \\
& C_{2}=p_{2} / q_{2}=22 / 7 \\
& C_{3}=p_{3} / q_{3}=173 / 55 .
\end{aligned}
$$

We now state and prove another important property of the convergents of a continued fraction.

Theorem 10.10. Let k be a positive integer, $k \geqslant 1$. Let the k th convergent of the continued fraction $\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$ be $C_{k}=p_{k} / q_{k}$, where p_{k} and q_{k} are as
defined in Theorem 10.9. Then

$$
p_{k} q_{k-1}-p_{k-1} q_{k}=(-1)^{k-1}
$$

Proof. We use mathematical induction to prove the theorem. For $k=1$ we have

$$
p_{1} q_{0}-p_{0} q_{1}=\left(a_{0} a_{1}+1\right) \cdot 1-a_{0} a_{1}=1
$$

Assume the theorem is true for an integer k where $1 \leqslant k<n$, so that

$$
p_{k} q_{k-1}-p_{k-1} q_{k}=(-1)^{k-1}
$$

Then, we have

$$
\begin{aligned}
p_{k+1} q_{k}-p_{k} q_{k+1} & =\left(a_{k+1} p_{k}+p_{k-1}\right) q_{k}-p_{k}\left(a_{k+1} q_{k}+q_{k-1}\right) \\
& =p_{k-1} q_{k}-p_{k} q_{k-1}=-(-1)^{k-1}=(-1)^{k}
\end{aligned}
$$

so that the theorem is true for $k+1$. This finishes the proof by induction.
We illustrate this theorem with the example we used to illustrate Theorem 10.9.

Example. For the continued fraction [3;6,1,7] we have

$$
\begin{aligned}
& p_{0} q_{1}-p_{1} q_{0}=3 \cdot 6-19 \cdot 1=-1 \\
& p_{1} q_{2}-p_{2} q_{1}=19 \cdot 7-22 \cdot 6=1 \\
& p_{2} q_{3}-p_{3} q_{2}=22 \cdot 55-173 \cdot 7=-1 .
\end{aligned}
$$

As a consequence of Theorem 10.10 , we see that the convergents p_{k} / q_{k} for $k=1,2, \ldots$ are in lowest terms. Corollary 10.1 demonstrates this.

Corollary 10.1. Let $C_{k}=p_{k} / q_{k}$ be the k th convergent of the simple continued fraction $\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$, where the integers p_{k} and q_{k} are as defined in Theorem 10.9. Then the integers p_{k} and q_{k} are relatively prime.

Proof. Let $d=\left(p_{k}, q_{k}\right)$. From Theorem 10.10, we know that

$$
p_{k} q_{k-1}-q_{k} p_{k-1}=(-1)^{k-1}
$$

Hence, from Proposition 1.2 we have

$$
d \mid(-1)^{k-1}
$$

Therefore, $d=1$.

We also have the following useful corollary of Theorem 10.10.
Corollary 10.2. Let $C_{k}=p_{k} / q_{k}$ be the k th convergent of the simple continued fraction $\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}\right]$. Then

$$
C_{k}-C_{k-1}=\frac{(-1)^{k-1}}{q_{k} q_{k-1}}
$$

for all integers k with $1 \leqslant k \leqslant n$. Also,

$$
C_{k}-C_{k-2}=\frac{a_{k}(-1)^{k}}{q_{k} q_{k-2}}
$$

for all integers k with $2 \leqslant k \leqslant n$.
Proof. From Theorem 10.10 we know that $p_{k} q_{k-1}-q_{k} p_{k-1}=(-1)^{k-1}$.
We obtain the first identity,

$$
C_{k}-C_{k-1}=\frac{p_{k}}{q_{k}}-\frac{p_{k-1}}{q_{k-1}}=\frac{(-1)^{k-1}}{q_{k} q_{k-1}}
$$

by dividing both sides by $q_{k} q_{k-1}$.
To obtain the second identity, note that

$$
C_{k}-C_{k-2}=\frac{p_{k}}{q_{k}}-\frac{p_{k-2}}{q_{k-2}}=\frac{p_{k} q_{k-2}-p_{k-2} q_{k}}{q_{k} q_{k-2}}
$$

Since $p_{k}=a_{k} p_{k-1}+p_{k-2}$ and $q_{k}=a_{k} q_{k-1}+q_{k-2}$, we see that the numerator of the fraction on the right is

$$
\begin{aligned}
p_{k} q_{k-2}-p_{k-2} q_{k} & =\left(a_{k} p_{k-1}+p_{k-2}\right) q_{k-2}-p_{k-2}\left(a_{k} q_{k-1}+q_{k-2}\right) \\
& =a_{k}\left(p_{k-1} q_{k-2}-p_{k-2} q_{k-1}\right) \\
& =a_{k}(-1)^{k-2},
\end{aligned}
$$

where we have used Theorem 10.10 to see that $p_{k-1} q_{k-2}-p_{k-2} q_{k-1}=(-1)^{k-2}$.

Therefore, we find that

$$
C_{k}-C_{k-2}=\frac{a_{k}(-1)^{k}}{q_{k} q_{k-2}}
$$

This is the second identity of the corollary.

Using Corollary 10.2 we can prove the following theorem which is useful when developing infinite continued fractions.

Theorem 10.11. Let C_{k} be the k th convergent of the finite simple continued fraction $\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{n}\right]$. Then

$$
\begin{aligned}
& C_{1}>C_{3}>C_{5}>\cdots, \\
& C_{0}<C_{2}<C_{4}<\cdots
\end{aligned}
$$

and every odd-numbered convergent $C_{2 j+1}, j=0,1,2, \ldots$ is greater than every even numbered convergent $C_{2 j}, j=0,1,2, \ldots$

Proof. Since Corollary 10.2 tells us that, for $k=2,3, \ldots, n$,

$$
C_{k}-C_{k-2}=\frac{a_{k}(-1)^{k}}{q_{k} q_{k-2}}
$$

we know that

$$
C_{k}<C_{k-2}
$$

when k is odd, and

$$
C_{k}>C_{k-2}
$$

when k is even. Hence

$$
C_{1}>C_{3}>C_{5}>\cdots
$$

and

$$
C_{0}<C_{2}<C_{4}<\cdots
$$

To show that every odd-numbered convergent is greater than every evennumbered convergent, note that from Corollary 10.2 we have

$$
C_{2 m}-C_{2 m-1}=\frac{(-1)^{2 m-1}}{q_{2 m} q_{2 m-1}}<0
$$

so that $C_{2 m-1}>C_{2 m}$. To compare $C_{2 k}$ and $C_{2 j-1}$, we see that

$$
C_{2 j-1}>C_{2 j+2 k-1}>C_{2 j+2 k}>C_{2 k}
$$

so that every odd-numbered convergent is greater than every even-numbered convergent.

Example. Consider the finite simple continued fraction [2;3,1,1,2,4]. Then the convergents are

$$
\begin{aligned}
& C_{0}=2 / 1=2 \\
& C_{1}=7 / 3=2.3333 \ldots \\
& C_{2}=9 / 4=2.25 \\
& C_{3}=16 / 7=2.2857 \ldots \\
& C_{4}=41 / 18=2.2777 \ldots \\
& C_{5}=180 / 79=2.2784 \ldots
\end{aligned}
$$

We see that

$$
\begin{aligned}
& C_{0}=2<C_{2}=2.25<C_{4}=2.2777 \ldots \\
& <C_{5}=2.2784 \ldots<C_{3}=2.2857 \ldots<C_{1}=2.3333 \ldots
\end{aligned}
$$

10.2 Problems

1. Find the rational number, expressed in lowest terms, represented by each of the following simple continued fractions
a) $[2 ; 7]$
b) $[1 ; 2,3]$
c) $[0 ; 5,6]$
d) $[3 ; 7,15,1]$
e) $[1 ; 1]$
f) $[1 ; 1,1]$
g) $[1 ; 1,1,1]$
h) $[1,1,1,1,1]$.
2. Find the simple continued fraction expansion not terminating with the partial quotient one, of each of the following rational numbers
a) $6 / 5$
b) $22 / 7$
c) $19 / 29$
d) $5 / 999$
e) $-43 / 1001$
f) $873 / 4867$.
3. Find the convergents of each of the continued fractions found in problem 2.
4. Let u_{k} denote the k th Fibonaccci number. Find the simple continued fraction, terminating with the partial quotient of one, of u_{k+1} / u_{k}, where k is a positive integer.
5. Show that if the simple continued fraction expression of the rational number $\alpha, \alpha>1$, is $\left[a_{0} ; a_{1}, \ldots, a_{k}\right]$, then the simple continued fraction expression of $1 / \alpha$ is $\left[0 ; a_{0}, a_{1}, \ldots, a_{k}\right]$.
6. Show that if $a_{0} \neq 0$, then

$$
p_{k} / p_{k-1}=\left[a_{k} ; a_{k-1}, \ldots, a_{1}, a_{0}\right]
$$

and

$$
q_{k} / q_{k-1}=\left[a_{k} ; a_{k}-1, \ldots, a_{2}, a_{1}\right]
$$

where $C_{k-1}=p_{k-1} / q_{k-1}$ and $C_{k}=p_{k} / q_{k}, k \geqslant 1$, are successive convergents of the continued fraction $\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$. (Hint: Use the relation $p_{k}=a_{k} p_{k-1}+p_{k-2}$ to show that $p_{k} / p_{k-1}=a_{k}+1 /\left(p_{k-1} / p_{k-2}\right)$.
7. Show that $q_{k} \geqslant u_{k}$ for $k=1,2, \ldots$ where $C_{k}=p_{k} / q_{k}$ is the k th convergent of the simple continued fraction $\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$ and u_{k} denotes the k th Fibonacci number.
8. Show that every rational number has exactly two finite simple continued fraction expansions.
9. Let $\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{n}\right]$ be the simple continued fraction expansion of r / s where $(r, s)=1$ and $r \geqslant 1$. Show that this continued fraction is symmetric, i.e. $a_{0}=a_{n}, a_{1}=a_{n-1}, a_{2}=a_{n-2}, \ldots$, if and only if $s \mid\left(r^{2}+1\right)$ if n is odd and $s \mid\left(r^{2}-1\right)$ if n is even. (Hint: Use problem 6 and Theorem 10.10).
10. Explain how finite continued fractions for rational numbers, with both plus and minus signs allowed, can be generated from the division algorithm given in problem 14 of section 1.2.
11. Let $a_{0}, a_{1}, a_{2}, \ldots, a_{k}$ be real numbers with a_{1}, a_{2}, \ldots positive and let x be a positive real number. Show that $\left[a_{0} ; a_{1}, \ldots, a_{k}\right]<\left[a_{0} ; a_{1}, \ldots, a_{k}+x\right]$ if k is odd and $\left[a_{0} ; a_{1}, \ldots, a_{k}\right]>\left[a_{0} ; a_{1}, \ldots, a_{k}+x\right]$ if k is even.

10.2 Computer Projects

Write programs to do the following:

1. Find the simple continued fraction expansion of a rational number
2. Find the convergents of a finite simple continued fraction.

10.3 Infinite Continued Fractions

Suppose that we have an infinite sequence of positive integers $a_{0}, a_{1}, a_{2}, \ldots$. How can we define the infinite continued fraction [$a_{0}, a_{1}, a_{2}, \ldots$]. To make sense of infinite continued fractions, we need a result from mathematical analysis. We state the result below, and refer the reader to a mathematical analysis book, such as Rudin [62], for a proof.

Theorem 10.12. Let $x_{0}, x_{1}, x_{2}, \ldots$ be a sequence of real numbers such that $x_{0} \leqslant x_{1} \leqslant x_{2} \leqslant \ldots$ and $x_{k} \leqslant U$ for $k=0,1,2, \ldots$ for some real number U, or $x_{0} \geqslant x_{1} \geqslant x_{2} \geqslant \ldots$ and $x_{k} \geqslant L$ for $k=0,1,2, \ldots$ for some real number L.

Then the terms of the sequence $x_{0}, x_{1}, x_{2}, \ldots$ tend to a limit x, i.e. there exists a real number x such that

$$
\lim _{k \rightarrow \infty} x_{k}=x
$$

Theorem 10.12 tells us that the terms of an infinite sequence tend to a limit in two special situations, when the terms of the sequence are increasing and all less than an upper bound, and when the terms of the sequence are decreasing and all are greater than a lower bound.

We can now define infinite continued fractions as limits of finite continued fractions, as the following theorem shows.

Theorem 10.13. Let $a_{0}, a_{1}, a_{2}, \ldots$ be an infinite sequence of integers with a_{1}, a_{2}, \ldots positive, and let $C_{k}=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}\right]$. Then the convergents C_{k} tend to a limit α, i.e

$$
\lim _{k \rightarrow \infty} C_{k}=\alpha
$$

Before proving Theorem 10.13 we note that the limit α described in the statement of the theorem is called the value of the infinite simple continued fraction $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$.

To prove Theorem 10.13, we will show that the infinite sequence of evennumbered convergents is increasing and has an upper bound and that the infinite sequence of odd-numbered convergents is decreasing and has a lower bound. We then show that the limits of these two sequences, guaranteed to exist by Theorem 10.12, are in fact equal.

We now will prove Theorem 10.13.
Proof. Let m be an even positive integer. From Theorem 10.11, we see that

$$
\begin{aligned}
& C_{1}>C_{3}>C_{5}>\cdots>C_{m-1} \\
& C_{0}<C_{2}<C_{4}<\cdots<C_{m}
\end{aligned}
$$

and $C_{2 j}>C_{2 k+1}$ whenever $2 j \leqslant m$ and $2 k+1<m$. By considering all possible values of m, we see that

$$
\begin{aligned}
& C_{1}>C_{3}>C_{5}>\cdots>C_{2 n-1}>C_{2 n+1}>\cdots, \\
& C_{0}<C_{2}<C_{4}<\cdots<C_{2 n-2}<C_{2 n}<\cdots
\end{aligned}
$$

and $C_{2 j}>C_{2 k+1}$ for all positive integers j and k. We see that the hypotheses of Theorem 10.12 are satisfied for each of the two sequences $C_{1}, C_{3}, C_{2}, \ldots$ and $C_{0}, C_{2}, C_{4}, \ldots$. Hence, the sequence $C_{1}, C_{3}, C_{5}, \ldots$ tends to a
limit α_{1} and the sequence $C_{0}, C_{2}, C_{4}, \ldots$ tends to a limit α_{2}, i.e.

$$
\lim _{n \rightarrow \infty} C_{2 n+1}=\alpha_{1}
$$

and

$$
\lim _{n \rightarrow \infty} C_{2 n}=\alpha_{2}
$$

Our goal is to show that these two limits α_{1} and α_{2} are equal. Using Corollary 10.2 we have

$$
C_{2 n+1}-C_{2 n}=\frac{p_{2 n+1}}{q_{2 n+1}}-\frac{p_{2 n}}{q_{2 n}}=\frac{(-1)^{(2 n+1)-1}}{q_{2 n+1} q_{2 n}}=\frac{1}{q_{2 n+1} q_{2 n}}
$$

Since $q_{k} \geqslant k$ for all positive integers k (see problem 7 of Section 10.2), we know that

$$
\frac{1}{q_{2 n+1} q_{2 n}}<\frac{1}{(2 n+1)(2 n)}
$$

and hence

$$
C_{2 n+1}-C_{2 n}=\frac{1}{q_{2 n+1} q_{2 n}}
$$

tends to zero, i.e.

$$
\lim _{n \rightarrow \infty}\left(C_{2 n+1}-C_{2 n}\right)=0
$$

Hence, the sequences $C_{1}, C_{3}, C_{5}, \ldots$ and $C_{0}, C_{2}, C_{4}, \ldots$ have the same limit, since

$$
\lim _{n \rightarrow \infty}\left(C_{2 n+1}-C_{2 n}\right)=\lim _{n \rightarrow \infty} C_{2 n+1}-\lim _{n \rightarrow \infty} C_{2 n}=0
$$

Therefore $\alpha_{1}=\alpha_{2}$, and we conclude that all the convergents tend to the limit $\alpha=\alpha_{1}=\alpha_{2}$. This finishes the proof of the theorem.

Previously, we showed that rational numbers have finite simple continued fractions. Next, we will show that the value of any infinite simple continued fraction is irrational.

Theorem 10.14. Let $a_{0}, a_{1}, a_{2}, \ldots$ be integers with a_{1}, a_{2}, \ldots positive. Then $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ is irrational.

Proof. Let $\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ and let

$$
C_{k}=p_{k} / q_{k}=\left[a_{0} ; a_{1}, \ldots, a_{k}\right]
$$

denote the k th convergent of α. When n is a positive integer, Theorem 10.11 shows that $C_{2 n}<\alpha<C_{2 n+1}$, so that

$$
0<\alpha-C_{2 n}<C_{2 n+1}-C_{2 n} .
$$

However, from Corollary 10.2, we know that

$$
C_{2 n+1}-C_{2 n}=\frac{1}{q_{2 n+1} q_{2 n}}
$$

this means that

$$
0<\alpha-C_{2 n}=\alpha-\frac{p_{2 n}}{q_{2 n}}<\frac{1}{q_{2 n+1} q_{2 n}} .
$$

and therefore, we have

$$
0<\alpha q_{2 n}-p_{2 n}<1 / q_{2 n+1}
$$

Assume that α is rational, so that $\alpha=a / b$ where a and b are integers with $b \neq 0$. Then

$$
0<\frac{a q_{2 n}}{b}-p_{2 n}<\frac{1}{q_{2 n+1}}
$$

and by multiplying this inequality by b we see that

$$
0<a q_{2 n}-b p_{2 n}<\frac{b}{q_{2 n+1}}
$$

Note that $a q_{2 n}-b p_{2 n}$ is an integer for all positive integers n. However, since $q_{2 n+1}>2 n+1$, there is an integer n such that $q_{2 n+1}>b$, so that $b / q_{2 n+1}<1$. This is a contradiction, since the integer $a q_{2 n}-b p_{2 n}$ cannot be between 0 and 1. We conclude that α is irrational.

We have demonstrated that every infinite simple continued fraction represents an irrational number. We will now show that every irrational number can be uniquely expressed by an infinite simple continued fraction, by first constructing such a continued fraction, and then by showing that it is unique.

Theorem 10.15. Let $\alpha=\alpha_{0}$ be an irrational number and define the sequence $a_{0}, a_{1}, a_{2}, \ldots$ recursively by

$$
a_{k}=\left[\alpha_{k}\right], \alpha_{k+1}=1 /\left(\alpha_{k}-a_{k}\right)
$$

for $k=0,1,2, \ldots$. Then α is the value of the infinite, simple continued fraction $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$.

Proof. From the recursive definition given above, we see that a_{k} is an integer for every k. Further, we can easily show using mathematical induction that α_{k} is irrational for every k. We first note that $\alpha_{0}=\alpha$ is irrational. Next, if we assume that α_{k} is irrational, then we can easily see that α_{k+1} is also irrational, since the relation

$$
\alpha_{k+1}=1 /\left(\alpha_{k}-a_{k}\right)
$$

implies that

$$
\begin{equation*}
\alpha_{k}=a_{k}+\frac{1}{\alpha_{k+1}} \tag{10.12}
\end{equation*}
$$

and if α_{k+1} were rational, then by Theorem $10.1, \alpha_{k}$ would also be rational. Now, since α_{k} is irrational and a_{k} is an integer, we know that $\alpha_{k} \neq a_{k}$, and

$$
a_{k}<\alpha_{k}<a_{k}+1
$$

so that

$$
0<\alpha_{k}-a_{k}<1
$$

Hence,

$$
\alpha_{k+1}=1 /\left(\alpha_{k}-a_{k}\right)>1,
$$

and consequently,

$$
a_{k+1}=\left[\alpha_{k+1}\right] \geqslant 1
$$

for $k=0,1,2, \ldots$. This means that all the integers a_{1}, a_{2}, \ldots are positive.
Note that by repeatedly using (10.12) we see that

$$
\begin{aligned}
\alpha=\alpha_{0} & =a_{0}+\frac{1}{\alpha_{1}}=\left[a_{0} ; \alpha_{1}\right] \\
& =a_{0}+\frac{1}{a_{1}+\frac{1}{\alpha_{2}}}=\left[a_{0} ; a_{1}, \alpha_{2}\right] \\
& \cdot \\
& \cdot \\
& =a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+}}=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}, \alpha_{k+1}\right] \\
& +\quad . a_{k}+\frac{1}{\alpha_{k+1}}
\end{aligned}
$$

What we must now show is that the value of $\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}, \alpha_{k+1}\right]$ tends to α as k tends to infinity, i.e., as k grows without bound. From Theorem 10.9, we see that

$$
\alpha=\left[a_{0} ; a_{1}, \ldots, a_{k}, \alpha_{k+1}\right]=\frac{\alpha_{k+1} p_{k}+p_{k+1}}{\alpha_{k+1} q_{k}+q_{k-1}},
$$

where $C_{j}=p_{j} / q_{j}$ is the j th convergent of $\left[a_{0} ; a_{1} a_{2}, \ldots\right]$. Hence

$$
\begin{aligned}
\alpha-C_{k} & =\frac{\alpha_{k+1} p_{k}+p_{k-1}}{\alpha_{k+1} q_{k}+q_{k-1}}-\frac{p_{k}}{q_{k}} \\
& =\frac{-\left(p_{k} q_{k-1}-p_{k-1} q_{k}\right)}{\left(\alpha_{k+1} q_{k}+q_{k-1}\right) q_{k}} \\
& =\frac{(-1)^{k}}{\left(\alpha_{k+1} q_{k}+q_{k-1}\right) q_{k}}
\end{aligned}
$$

where we have used Theorem 10.10 to simplify the numerator on the righthand side of the second equality. Since

$$
\alpha_{k+1} q_{k}+q_{k-1}>a_{k+1} q_{k}+q_{k-1}=q_{k+1}
$$

we see that

$$
\left|\alpha-C_{k}\right|<\frac{1}{q_{k} q_{k+1}} .
$$

Since $q_{k}>k$ (from problem 7 of Section 10.2), we note that $1 / q_{k} q_{k+1}$ tends to zero as k tends to infinity. Hence, C_{k} tends to α as k tends to infinity, or phrased differently, the value of the infinite simple continued fraction [$\left.a_{0} ; a_{1}, a_{2}, \ldots\right]$ is α.

To show that the infinite simple continued fraction that represents an irrational number is unique, we prove the following theorem.

Theorem 10.16. If the two infinite simple continued fractions [$a_{0} ; a_{1}, a_{2}, \ldots$] and $\left[b_{0} ; b_{1}, b_{2}, \ldots\right]$ represents the same irrational number, then $a_{k}=b_{k}$ for $k=0,1,2, \ldots$.

Proof. Suppose that $\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$. Then, since $C_{0}=a_{0}$ and $C_{1}=a_{0}+1 / a_{1}$, Theorem 10.11 tells us that

$$
a_{0}<\alpha<a_{0}+1 / a_{1},
$$

so that $a_{0}=[\alpha]$. Further, we note that

$$
\left[a_{0} ; a_{1}, a_{2}, \ldots\right]=a_{0}+\frac{1}{\left[a_{1} ; a_{2}, a_{3}, \ldots\right]},
$$

since

$$
\begin{aligned}
\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots\right] & =\lim _{k \rightarrow \infty}\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}\right] \\
& =\lim _{k \rightarrow \infty}\left(a_{0}+\frac{1}{\left[a_{1} ; a_{2}, a_{3}, \ldots, a_{k}\right]}\right) \\
& =a_{0}+\frac{1}{\lim _{k \rightarrow \infty}\left[a_{1} ; a_{2}, \ldots, a_{k}\right]} \\
& =a_{0}+\frac{1}{\left[a_{1} ; a_{2}, a_{3}, \ldots\right]} .
\end{aligned}
$$

Suppose that

$$
\left[a_{0} ; a_{1}, a_{2}, \ldots\right]=\left[b_{0} ; b_{1}, b_{2}, \ldots\right] .
$$

Our remarks show that

$$
a_{0}=b_{0}=[\alpha]
$$

and that

$$
a_{0}+\frac{1}{\left[a_{1} ; a_{2}, \ldots\right]}=b_{0}+\frac{1}{\left[b_{1} ; b_{2}, \ldots\right]},
$$

so that

$$
\left[a_{1} ; a_{2}, \ldots\right]=\left[b_{1} ; b_{2}, \ldots\right] .
$$

Now assume that $a_{k}=b_{k}$, and that $\left[a_{k+1} ; a_{k+2}, \ldots\right]=\left[b_{k+1} ; b_{k+2}, \ldots\right]$. Using the same argument, we see that $a_{k+1}=b_{k+1}$, and

$$
a_{k+1}+\frac{1}{\left[a_{k+2} ; a_{k+3}, \ldots\right]}=b_{k+1}+\frac{1}{\left[b_{k+1} ; b_{k+3}, . .\right]}
$$

which implies that

$$
\left[a_{k+2} ; a_{k+3}, \ldots\right]=\left[b_{k+2} ; b_{k+3}, \ldots\right]
$$

Hence, by mathematical induction we see that $a_{k}=b_{k}$ for $k=0,1,2, \ldots$.
To find the simple continued fraction expansion of a real number, we use the algorithm given in Theorem 10.15 . We illustrate this procedure with the following example.

Example. Let $\alpha=\sqrt{6}$. We find that

$$
\begin{aligned}
& a_{0}=[\sqrt{6}]=2, \quad \alpha_{1}=\frac{1}{\sqrt{6}-2}=\frac{\sqrt{6}+2}{2}, \\
& a_{1}=\left[\frac{\sqrt{6}+2}{2}\right]=2, \quad \alpha_{2}=\frac{1}{\left(\frac{\sqrt{6}+2}{2}\right)-2}=\sqrt{6}+2, \\
& a_{2}=[\sqrt{6}+2]=4, \quad \alpha_{3}=\frac{1}{(\sqrt{6}+2)-4}=\frac{\sqrt{6}+2}{2}=\alpha_{1} .
\end{aligned}
$$

Since $\alpha_{3}=\alpha_{1}$, we see that $a_{3}=a_{1}, a_{4}=a_{2}, \ldots$, and so on. Hence

$$
\sqrt{6}=[2 ; 2,4,2,4,2,4, \ldots]
$$

The simple continued fraction of $\sqrt{6}$ is periodic. We will discuss periodic simple continued fractions in the next section.

The convergents of the infinite simple continued fraction of an irrational number are good approximations to α. In fact, if p_{k} / q_{k} is the j th convergent of this continued fraction, then, from the proof of Theorem 10.15 , we know that

$$
\left|\alpha-p_{k} / q_{k}\right|<1 / q_{k} q_{k+1},
$$

so that

$$
\left|\alpha-p_{k} / q_{k}\right|<1 / q_{k}^{2},
$$

since $q_{k}<q_{k+1}$.
The next theorem and corollary show that the convergents of the simple continued fraction of α are the best rational approximations to α, in the sense that p_{k} / q_{k} is closer to α than any other rational number with a denominator less than q_{k}.

Theorem 10.17. Let α be an irrational number and let $p_{j} / q_{j}, j=1,2, \ldots$, be the convergents of the infinite simple continued fraction of α. If r and s are integers with $s>0$ such that

$$
|s \alpha-r|<\left|q_{k} \alpha-p_{k}\right|
$$

then $s \geqslant q_{k+1}$.
Proof. Assume that $|s \alpha-r|<\left|q_{k} \alpha-p_{k}\right|$, but that $1 \leqslant s<q_{k+1}$. We consider the simultaneous equations

$$
\begin{aligned}
p_{k} x+p_{k+1} y & =r \\
q_{k} x+q_{k+1} y & =s .
\end{aligned}
$$

By multiplying the first equation by q_{k} and the second by p_{k}, and then subtracting the second from the first, we find that

$$
\left(p_{k+1} q_{k}-p_{k} q_{k+1}\right) y=r q_{k}-s p_{k} .
$$

From Theorem 10.10, we know that $p_{k+1} q_{k}-p_{k} q_{k+1}=(-1)^{k}$, so that

$$
y=(-1)^{k}\left(r q_{k}-s p_{k}\right)
$$

Similarly, multiplying the first equation by q_{k+1} and the second by p_{k+1} and then subtracting the first from the second, we find that

$$
x=(-1)^{k}\left(s p_{k+1}-r q_{k+1}\right)
$$

We note that $x \neq 0$ and $y \neq 0$. If $x=0$ then $s p_{k+1}=r q_{k+1}$. Since $\left(p_{k+1}, q_{k+1}\right)=1$, Lemma 2.3 tells us that $q_{k+1} \mid s$, which implies that $q_{k+1} \geqslant s$, contrary to our assumption. If $y=0$, then $r=p_{k} x$ and $s=q_{k} x$, so that

$$
|s \alpha-r|=|x|\left|q_{k} \alpha-p_{k}\right| \geqslant\left|q_{k} \alpha-p_{k}\right|,
$$

since $|x| \geqslant 1$, contrary to our assumption.
We will now show that x and y have opposite signs. First, suppose that $y<0$. Since $q_{k} x=s-q_{k+1} y$, we know that $x>0$, because $q_{k} x>0$ and $q_{k}>0$. When $y>0$, since $q_{k+1} y \geqslant q_{k+1}>s$, we see that $q_{k} x=s-q_{k+1} y<0$, so that $x<0$.
From Theorem 10.11, we know that either $p_{k} / q_{k}<\alpha<p_{k+1} / q_{k+1}$ or that $p_{k+1} / q_{k+1}<\alpha<p_{k} / q_{k}$. In either case, we easily see that $q_{k} \alpha-p_{k}$ and $q_{k+1} \alpha-p_{k+1}$ have opposite signs.
From the simultaneous equations we started with, we see that

$$
\begin{aligned}
|s \alpha-r| & =\left|\left(q_{k} x+q_{k+1} y\right) \alpha-\left(p_{k} x+p_{k+1} y\right)\right| \\
& =\left|x\left(q_{k} \alpha-p_{k}\right)+y\left(q_{k+1} \alpha-p_{k+1}\right)\right| .
\end{aligned}
$$

Combining the conclusions of the previous two paragraphs, we see that $x\left(q_{k} \alpha-p_{k}\right)$ and $y\left(q_{k+1} \alpha-p_{k+1}\right)$ have the same sign, so that

$$
\begin{aligned}
|s \alpha-r| & =|x|\left|q_{k} \alpha-p_{k}\right|+|y|\left|q_{k+1} \alpha-p_{k+1}\right| \\
& \geqslant|x|\left|q_{k} \alpha-p_{k}\right| \\
& \geqslant\left|q_{k} \alpha-p_{k}\right|,
\end{aligned}
$$

since $|x| \geqslant 1$. This contradicts our assumption.
We have shown that our assumption is false, and consequently, the proof is complete.

Corollary 10.3. Let α be an irrational number and let $p_{j} / q_{j}, j=1,2 \ldots$ be the convergents of the infinite simple continued fraction of α. If r / s is a rational number, where r and s are integers with $s>0$, such that

$$
|\alpha-r / s|<\left|\alpha-p_{k} / q_{k}\right|,
$$

then $s>q_{k}$.
Proof. Suppose that $s \leqslant q_{k}$ and that

$$
|\alpha-r / s|<\left|\alpha-p_{k} / q_{k}\right| .
$$

By multiplying these two inequalities, we find that

$$
s|\alpha-r / s|<q_{k}\left|\alpha-p_{k} / q_{k}\right|
$$

so that

$$
|s \alpha-r|<\left|q_{k} \alpha-p_{k}\right|
$$

violating the conclusion of Theorem 10.17.
Example. The simple continued fraction of π is $\pi=[3 ; 7,15,1,292,1,1,1,2,1,3, \ldots]$. Note that there is no discernible pattern in the sequence of partial quotients. The convergents of this continued fraction are the best rational approximations to π. The first five are $3,22 / 7,333 / 106$, $335 / 113$, and $103993 / 33102$. We conclude from Corollary 10.3 that $22 / 7$ is the best rational approximation of π with denominator less than 106, that $335 / 113$ is the best rational approximation of π with denominator less than 33102 , and so on.

Finally, we conclude this section with a result that shows that any sufficiently close rational approximation to an irrational number must be a convergent of the infinite simple continued fraction expansion of this number.

Theorem 10.18. If α is an irrational number and if r / s is a rational number in lowest terms, where r and s are integers with $s>0$, such that

$$
|\alpha-r / s|<1 / 2 s^{2}
$$

then r / s is a convergent of the simple continued fraction expansion of α.
Proof. Assume that r / s is not a convergent of the simple continued fraction expansion of α. Then, there are successive convergents p_{k} / q_{k} and p_{k+1} / q_{k+1} such that $q_{k} \leqslant s<q_{k+1}$. From Theorem 10.17, we see that

$$
\left|q_{k} \alpha-p_{k}\right| \leqslant|s \alpha-r|=s|\alpha-r / s|<1 / 2 s .
$$

Dividing by q_{k} we obtain

$$
\left|\alpha-p_{k} / q_{k}\right|<1 / 2 s q_{k}
$$

Since we know that $\left|s p_{k}-r q_{k}\right| \geqslant 1$ (we know that $s p_{k}-r q_{k}$ is a nonzero integer since $\left.r / s \neq p_{k} / q_{k}\right)$, it follows that

$$
\begin{aligned}
\frac{1}{s q_{k}} & \leqslant \frac{\left|s p_{k}-r q_{k}\right|}{s q_{k}} \\
& =\left|\frac{p_{k}}{q_{k}}-\frac{r}{s}\right| \\
& \leqslant\left|\alpha-\frac{p_{k}}{q_{k}}\right|+\left|\alpha-\frac{r}{s}\right| \\
& <\frac{1}{2 s q_{k}}+\frac{1}{2 s^{2}}
\end{aligned}
$$

(where we have used the triangle inequality to obtain the second inequality above). Hence, we see that

$$
1 / 2 s q_{k}<1 / 2 s^{2}
$$

Consequently,

$$
2 s q_{k}>2 s^{2}
$$

which implies that $q_{k}>s$, contradicting the assumption.

10.3 Problems

1. Find the simple continued fractions of the following real numbers
a) $\sqrt{2}$
b) $\sqrt{3}$
c) $\sqrt{5}$
d) $\frac{1+\sqrt{5}}{2}$.
2. Find the first five partial quotients of the simple continued fractions of the following real numbers
a) $\sqrt[3]{2}$
b) 2π
c) $(\mathrm{e}-1) /(\mathrm{e}+1)$
d) $\left(e^{2}-1\right) /\left(e^{2}+1\right)$.
3. Find the best rational approximation to π with a denominator less than 10000 .
4. The infinite simple continued fraction expansion of the number e is

$$
e=[2 ; 1,2,1,1,4,1,1,6,1,1,8, \ldots] .
$$

a) Find the first eight convergents of the continued fraction of e.
b) Find the best rational approximation to e having a denominator less than 100.
5. Let α be an irrational number with simple continued fraction expansion $\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$. Show that the simple continued fraction of $-\alpha$ is $\left[-a_{0}-1 ; 1, a,-1, a_{2}, a_{3}, \ldots\right]$ if $a_{1}>1$ and $\left[-a_{0}-1 ; a_{2}+1, a_{3}, \ldots\right]$ if $a_{1}=1$.
6. Show that if p_{k} / q_{k} and p_{k+1} / q_{k+1} are consecutive convergents of the simple continued fraction of an irrational number α, then

$$
\left|\alpha-p_{k} / q_{k}\right|<1 / 2 q_{k}^{2}
$$

or

$$
\left|\alpha-p_{k+1} / q_{k+1}\right|<1 / 2 q_{k+1}^{2} .
$$

(Hint: First show that $\left|\alpha-p_{k+1} / q_{k+1}\right|+\left|\alpha-p_{k} / q_{k}\right|=\left|p_{k+1} / q_{k+1}-p_{k} / q_{k}\right|=$ $1 / q_{k} q_{k+1}$ using Corollary 10.2.)
7. Let α be an irrational number, $\alpha>1$. Show that the k th convergent of the simple continued fraction of $1 / \alpha$ is the reciprocal of the $(k-1)$ th convergent of the simple continued fraction of α.
8. Let α be an irrational number, and let p_{j} / q_{j} denote the j th convergent of the simple continued fraction expansion of α. Show that at least one of any three consecutive convergents satisfies the inequality

$$
\left|\alpha-p_{j} / q_{j}\right|<1 /\left(\sqrt{5} q_{j}^{2}\right) .
$$

Conclude that there are infinitely many rational numbers p / q, where p and q are integers with $q \neq 0$, such that

$$
|\alpha-p / q|<1 /\left(\sqrt{5} q^{2}\right) .
$$

9. Show that if $\alpha=(1+\sqrt{5}) / 2$, then there are only a finite number of rational numbers p / q, where p and q are integers, $q \neq 0$, such that

$$
|\alpha-p / q|<1 /\left(\sqrt{5} q^{2}\right) .
$$

(Hint: Consider the convergents of the simple continued fraction expansion of $\sqrt{5}$.)
10. If α and β are two real numbers, we say that β is equivalent to α if there are integers a, b, c, and d, such that $a d-b c= \pm 1$ and $\beta=\frac{a \alpha+b}{c \alpha+d}$.
a) Show that a real number α is equivalent to itself.
b) Show that if α and β are real numbers with β equivalent to α, then α is equivalent to β. Hence, we can say that two numbers α and β are equivalent.
c) Show that if α, β, and λ are real numbers such that α and β are equivalent and β and λ are equivalent, then α and λ are equivalent.
d) Show that any two rational numbers are equivalent.
e) Show that two irrational numbers α and β are equivalent if and only if the tails of their simple continued fractions agree, i.e. $\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{j}, c_{1}, c_{2}, c_{3}, \ldots\right]$ and $\beta=\left[b_{0} ; b_{1}, b_{2}, \ldots, b_{k}, c_{1}, c_{2}, c_{3}, \ldots\right]$. where $a_{i}, i=0,1,2, \ldots, j, b_{i}, i=0,1,2, \ldots, k$ and $c_{i}, i=1,2,3, \ldots$ are integers, all positive except perhaps a_{0} and b_{0}.
11. Let α be an irrational number, and let the simple continued fraction expansion of α be $\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$. Let p_{k} / q_{k} denote, as usual, the k th convergent of this continued fraction. We define the pseudoconvergnts of this continued fraction to be

$$
p_{k, t} / q_{k, t}=\left(t p_{k-1}+p_{k-2}\right) /\left(t q_{k-1}+q_{k-2}\right)
$$

where k is a positive integer, $k \geqslant 2$, and t is an integer with $0<t<a_{k}$.
a) Show that each pseudoconvergent is in lowest terms
b) Show that the sequence of rational numbers $p_{k, 2} / q_{k, 2}, \ldots, p_{k, a_{k-1}} / q_{k, a_{t-1}}, p_{k} / q_{k}$ is increasing if k is even, and decreasing if k is odd.
c) Show that if r and s are integers with $s>0$ such that

$$
|\alpha-r / s| \leqslant\left|\alpha-p_{k, t} / q_{k, t}\right|
$$

where k is a positive integer and $0<t<a_{k}$, then $s>q_{k, t}$ or $r / s=p_{k-1} / q_{k-1}$.
d) Find the pseudoconvergents of the simple continued fraction of π for $k=2$.

10.3 Computer Projects

Write programs to do the following:

1. Find the simple continued fraction of a real number.
2. Find the best rational approximations to an irrational number.

10.4 Periodic Continued Fractions

We call the infinite simple continued fraction [$\left.a_{0} ; a_{1}, a_{2}, \ldots\right]$ periodic if there are positive integers N and k such that $a_{n}=a_{n+k}$ for all positive integers n with $n \geqslant N$. We use the notation

$$
\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{N-1}, \overline{a_{N}, a_{N+1}, \ldots, a_{N+k-1}}\right]
$$

to express the periodic infinite simple continued fraction

$$
\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{N-1}, a_{N}, a_{N+1}, \ldots, a_{N+k-1}, a_{N}, a_{N+1}, \ldots\right]
$$

For instance, $[1 ; 2, \overline{3,4}]$ denotes the infinite simple continued fraction [1;2,3,4,3,4,3,4, ..].

In Section 10.1, we showed that the base b expansion of a number is periodic if and only if the number is rational. To characterize those irrational numbers with periodic infinite simple continued fractions, we need the following definition.

Definition. The real number α is said to be a quadratic irrational if α is irrational and if α is a root of a quadratic polynomial with integer coefficients, i.e.

$$
A \alpha^{2}+B \alpha+C=0
$$

where A, B, and C are integers.
Example. Let $\alpha=2+\sqrt{3}$. Then α is irrational, for if α were rational, then by Theorem $10.1, \alpha-2=\sqrt{3}$ would be rational, contradicting Theorem 10.2. Next, note that

$$
\alpha^{2}-4 \alpha+1=(7+4 \sqrt{3})-4(2+\sqrt{3})+1=0
$$

Hence α is a quadratic irrational.
We will show that the infinite simple continued fraction of an irrational number is periodic if and only if this number is a quadratic irrational. Before we do this, we first develop some useful results about quadratic irrationals.

Lemma 10.1. The real number α is a quadratic irrational if and only if there are integers a, b, and c with $b>0$ and $c \neq 0$, such that b is not a perfect square and

$$
\alpha=(a+\sqrt{b}) / c .
$$

Proof. If α is a quadratic irrational, then α is irrational, and there are integers A, B, and C such that $A \alpha^{2}+B \alpha+C=0$. From the quadratic formula, we know that

$$
\alpha=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A} .
$$

Since α is a real number, we have $B^{2}-4 A C>0$, and since α is irrational, $B^{2}-4 A C$ is not a perfect square and $A \neq 0$. By either taking $a=-B, b=B^{2}-4 A C, c=2 A$ or $a=b, b=B^{2}-4 A C, c=-2 A$, we have our desired representation of α.

Conversely, if

$$
\alpha=(a+\sqrt{b}) / c,
$$

where a, b, and c are integers with $b>0, c \neq 0$, and b not a perfect square, then by Theorems 10.1 and 10.2 , we can easily see that α is irrational. Further, we note that

$$
c \alpha^{2}-2 a c \alpha+\left(a^{2}-b^{2}\right)=0
$$

so that c is a quadratic irrational.
The following lemma will be used when we show that periodic simple continued fractions represent quadratic irrationals.

Lemma 10.2. If α is a quadratic irrational and if r, s, t, and u are integers, then $(r \alpha+s) /(t \alpha+u)$ is either rational or a quadratic irrational.

Proof. From Lemma 10.1, there are integers a, b, and c with $b>0, c \neq 0$, and b not a perfect square such that

$$
\alpha=(a+\sqrt{b}) / c .
$$

Thus

$$
\begin{aligned}
\frac{r \alpha+s}{t \alpha+u} & =\left[\frac{r(a+\sqrt{b})}{c}+s\right] /\left[\frac{t(a+\sqrt{b})}{c}+u\right] \\
& =\frac{(a r+c s)+r \sqrt{b}}{(a t+c u)+t \sqrt{b}} \\
& =\frac{[(a r+c s)+r \sqrt{b}][(a t+c u)-t \sqrt{b}]}{[(a t+c u)+t \sqrt{b}][(a t+c u)-t \sqrt{b}]} \\
& =\frac{[(a r+c s)(a t+c u)-r t b]+[r(a t+c u)-t(a r+c s)] \sqrt{b}}{(a t+c u)^{2}-t^{2} b}
\end{aligned}
$$

Hence, from Lemma $10.1(r \alpha+s) /(t \alpha+u)$ is a quadratic irrational, unless the coefficient of \sqrt{b} is zero, which would imply that this number is rational.

In our subsequent discussions of simple continued fractions of quadratic irrationals we will use the notion of the conjugate of a quadratic irrational.

Definition. Let $\alpha=(a+\sqrt{b}) / c$ be a quadratic irrational. Then the conjugate of α, denoted by α^{\prime}, is defined by $\alpha^{\prime}=(a-\sqrt{b}) / c$.

Lemma 10.3. If the quadratic irrational α is a root of the polynomial $A x^{2}+B x+C=0$, then the other root of this polynomial is α^{\prime}, the conjugate of α.

Proof. From the quadratic formula, we see that the two roots of $A x^{2}+B x+C=0$ are

$$
\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}
$$

If α is one of these roots, then α^{\prime} is the other root, because the sign of $\sqrt{B^{2}-4 A C}$ is reversed to obtain α^{\prime} from α.

The following lemma tells us how to find the conjugates of arithmetic expressions involving quadratic irrationals.

Lemma 10.4. If $\alpha_{1}=\left(a_{1}+b_{1} \sqrt{d}\right) / c_{1}$ and $\alpha_{2}=\left(a_{2}+b_{2} \sqrt{d}\right) / c_{2}$ are quadratic irrationals, then
(i) $\left(\alpha_{1}+\alpha_{2}\right)^{\prime}=\alpha_{1}^{\prime}+\alpha_{2}^{\prime}$
(ii) $\left(\alpha_{1}-\alpha_{2}\right)^{\prime}=\alpha_{1}^{\prime}-\alpha_{2}^{\prime}$
(iii) $\left(\alpha_{1} \alpha_{2}\right)^{\prime}=\alpha_{1}^{\prime} \alpha_{2}^{\prime}$
(iv) $\left(\alpha_{1} / \alpha_{2}\right)^{\prime}=\alpha_{1}^{\prime} / \alpha_{2}^{\prime}$.

The proof of (iv) will be given here; the proofs of the other parts are easier. These appear at the end of this section as problems for the reader.

Proof of (iv). Note that

$$
\begin{aligned}
\alpha_{1} / \alpha_{2} & =\frac{\left(a_{1}+b_{1} \sqrt{d}\right) / c_{1}}{\left(a_{2}+b_{2} \sqrt{d}\right) / c_{2}} \\
& =\frac{c_{2}\left(a_{1}+b_{1} \sqrt{d}\right)\left(a_{2}-b_{2} \sqrt{d}\right)}{c_{1}\left(a_{2}+b_{2} \sqrt{d}\right)\left(a_{2}-b_{2} \sqrt{d}\right)} \\
& =\frac{\left(c_{2} a_{1} a_{2}-c_{2} b_{1} b_{2} d\right)+\left(c_{2} a_{2} b_{1}-c_{2} a_{1} b_{2}\right) \sqrt{d}}{c_{1}\left(a_{2}^{2}-b_{2}^{2} d\right)} .
\end{aligned}
$$

While

$$
\begin{aligned}
\alpha_{1}^{\prime} / \alpha_{2}^{\prime} & =\frac{\left(a_{1}-b_{1} \sqrt{d}\right) / c_{2}}{\left(a_{2}-b_{2} \sqrt{d}\right) / c_{2}} \\
& =\frac{c_{2}\left(a_{1}-b_{1} \sqrt{d}\right)\left(a_{2}+b_{2} \sqrt{d}\right)}{c_{1}\left(a_{2}-b_{2} \sqrt{d}\right)\left(a_{2}+b_{2} \sqrt{d}\right)} \\
& =\frac{\left(c_{2} a_{1} a_{2}-c_{2} b_{1} b_{2} d\right)-\left(c_{2} a_{2} b_{1}-c_{2} a_{1} b_{2}\right) \sqrt{d}}{c_{1}\left(a_{2}^{2}-b_{2}^{2} d\right)} .
\end{aligned}
$$

Hence $\left(\alpha_{1} / \alpha_{2}\right)^{\prime}=\alpha^{\prime} / \alpha^{\prime}{ }_{2}$.
The fundamental result about periodic simple continued fractions is Lagrange's Theorem. (Note that this theorem is different than Lagrange's theorem on polynomial congrunces discussed in Chapter 8. In this chapter we do not refer to that result.)

Lagrange's Theorem. The infinite simple continued fraction of an irrational number is periodic if and only if this number is a quadratic irrational.

We first prove that a periodic continued fraction represents a quadratic irrational. The converse, that the simple continued fraction of a quadratic irrational is periodic, will be proved after a special algorithm for obtaining the continued fraction of a quadratic irrational is developed.

Proof. Let the simple continued fraction of α be periodic, so that

$$
\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{N-1}, \overline{a_{N}, a_{N+1}, \ldots, a_{N+k}}\right]
$$

Now let

$$
\beta=\left[\overline{a_{N} ; a_{N+1}, \ldots, a_{N+k}}\right] .
$$

Then

$$
\beta=\left[a_{N} ; a_{N+1}, \ldots, a_{N+k}, \beta\right]
$$

and from Theorem 10.9, it follows that

$$
\begin{equation*}
\beta=\frac{\beta p_{k}+p_{k-1}}{\beta q_{k}+q_{k-1}} \tag{10.13}
\end{equation*}
$$

where p_{k} / q_{k} and p_{k-1} / q_{k-1} are convergents of $\left[a_{N} ; a_{N+1}, \ldots, a_{N+k}\right]$. Since the simple continued fraction of β is infinite, β is irrational, and from (10.13) we have

$$
q_{k} \beta^{2}+\left(q_{k-1}-p_{k}\right) \beta-p_{k-1}=0
$$

so that β is a quadratic irrational. Now note that

$$
\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{N-1}, \beta\right]
$$

so that from Theorem 10.9 we have

$$
\alpha=\frac{\beta p_{N-1}+p_{N-2}}{\beta q_{N-1}+q_{N-2}},
$$

where p_{N-1} / q_{N-1} and p_{N-2} / q_{N-2} are convergents of $\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{N-1}\right]$. Since β is a quadratic irrational, Lemma 10.2 tells us that α is also a quadratic irrational (we know that α is irrational because it has an infinite simple continued fraction expansion).

To develop an algorithm for finding the simple continued fraction of a quadratic irrational, we need the following lemma.

Lemma 10.5. If α is a quadratic irrational, then α can be written as

$$
\alpha=(P+\sqrt{d}) / Q
$$

where P, Q, and d are integers, $Q \neq 0, d>0, d$ is not a perfect square, and $Q \mid\left(d-P^{2}\right)$.

Proof. Since α is a quadratic irrational, Lemma 10.1 tells us that

$$
\alpha=(a+\sqrt{b}) / c,
$$

where a, b, and c are integers, $b>0$, and $c \neq 0$. We multiply both the numerator and denominator of this expression for α by $|c|$ to obtain

$$
\alpha=\frac{a|c|+\sqrt{b c^{2}}}{c|c|}
$$

(where we have used the fact that $|c|=\sqrt{c^{2}}$). Now let $P=a|c|, Q=c|c|$, and $d=b c^{2}$. Then P, Q, and d are integers, $Q \neq 0$ since $c \neq 0, d>0$ (since $b>0$), d is not a perfect square since b is not a perfect square, and finally $Q \mid\left(d-P^{2}\right)$ since $d-P^{2}=b c^{2}-a^{2} c^{2}=c^{2}\left(b-a^{2}\right)= \pm Q\left(b-a^{2}\right)$.
We now present an algorithm for finding the sample continued fractions of quadratic irrationals.

Theorem 10.19. Let α be a quadratic irrational, so that by Lemma 10.5 there are integers P_{0}, Q_{0}, and d such that

$$
\alpha=\left(P_{0}+\sqrt{d}\right) / Q_{0},
$$

where $Q_{0} \neq 0, d>0, d$ is not a perfect square, and $Q_{0} \mid\left(d-P_{0}^{2}\right)$. Recursively define

$$
\begin{aligned}
& \alpha_{k}=\left(P_{k}+\sqrt{d}\right) / Q_{k}, \\
& a_{k}=\left[\alpha_{k}\right], \\
& P_{k+1}=a_{k} Q_{k}-P_{k}, \\
& Q_{k+1}=\left(d-P_{k+1}^{2}\right) / Q_{k},
\end{aligned}
$$

for $k=0,1,2, \ldots$. Then $\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$.
Proof. Using mathematical induction, we will show that P_{k} and Q_{k} are integers with $Q_{k} \neq 0$ and $Q_{k} \mid\left(d-P_{k}^{2}\right)$, for $k=0,1,2, \ldots$. First, note that this assertion is true for $k=0$ from the hypotheses of the theorem. Now assume that P_{k} and Q_{k} are integers with $Q_{k} \neq 0$ and $Q_{k} \mid\left(d-P_{k}^{2}\right)$. Then

$$
P_{k+1}=a_{k} Q_{k}-P_{k}
$$

is also an integer. Further,

$$
\begin{aligned}
Q_{k+1} & =\left(d-P_{k+1}^{2}\right) / Q_{k} \\
& =\left[d-\left(a_{k} Q_{k}-P_{k}\right)^{2}\right] / Q_{k} \\
& =\left(d-P_{k}^{2}\right) / Q_{k}+\left(2 a_{k} P_{k}-a_{k}^{2} Q_{k}\right) .
\end{aligned}
$$

Since $Q_{k} \mid\left(d-P_{k}^{2}\right)$, by the induction hypothesis, we see that Q_{k+1} is an integer, and since d is not a perfect square, we see that $d \neq P_{k}^{2}$, so that $Q_{k+1}=\left(d-P_{k+1}^{2}\right) / Q_{k} \neq 0$. Since

$$
Q_{k}=\left(d-P_{k+1}^{2}\right) / Q_{k+1},
$$

we can conclude that $Q_{k+1} \mid\left(d-P_{k+1}^{2}\right)$. This finishes the inductive argument.
To demonstrate that the integers $a_{0}, a_{1}, a_{2}, \ldots$ are the partial quotients of the simple continued fraction of α, we use Theorem 10.15. If we can show that

$$
\alpha_{k+1}=1 /\left(\alpha_{k}-a_{k}\right)
$$

for $k=0,1,2, \ldots$, then we know that $\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$. Note that

$$
\begin{aligned}
\alpha_{k}-a_{k} & =\frac{P_{k}+\sqrt{d}}{Q_{k}}-a_{k} \\
& =\left[\sqrt{d}-\left(a_{k} Q_{k}-P_{k}\right)\right] / Q_{k} \\
& =\left(\sqrt{d}-P_{k+1}\right) / Q_{k} \\
& =\left(\sqrt{d}-P_{k+1}\right)\left(\sqrt{d}+P_{k+1}\right) / Q_{k}\left(\sqrt{d}+P_{k+1}\right) \\
& =\left(d-P_{k+1}^{2}\right) / Q_{k}\left(\sqrt{d}+P_{k+1}\right) \\
& =Q_{k} Q_{k+1} / Q_{k}\left(\sqrt{d}+P_{k+1}\right) \\
& =Q_{k+1} /\left(\sqrt{d}+P_{k+1}\right) \\
& =1 / \alpha_{k+1}
\end{aligned}
$$

where we have used the defining relation for Q_{k+1} to replace $d-P_{k+1}^{2}$ with $Q_{k} Q_{k+1}$. Hence, we can conclude that $\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$.

We illustrate the use of the algorithm given in Theorem 10.19 with the following example.

Example. Let $\alpha=(3+\sqrt{7}) / 2$. Using Lemma 10.5, we write

$$
\alpha=(6+\sqrt{28}) / 4
$$

where we set $P_{0}=6, Q_{0}=4$, and $d=28$. Hence $a_{0}=[\alpha]=2$, and

$P_{1}=2 \cdot 4-6=2$,	$\alpha_{1}=(2+\sqrt{28}) / 6$,	
$Q_{1}=\left(28-2^{2}\right) / 4=6$,	$a_{1}=[(2+\sqrt{28}) / 6]=1$,	
$P_{2}=1 \cdot 6-2=4$,	$\alpha_{2}=(4+\sqrt{28}) / 2$,	
$Q_{2}=\left(28-4^{2}\right) / 6=2$,	$a_{2}=[(4+\sqrt{28}) / 2]=4$,	

$$
\begin{array}{lll}
P_{3}=4 \cdot 2-4=4, & \alpha_{3}=(4+\sqrt{28}) / 6 \\
Q_{3}=\left(28-4^{2}\right) / 2=6 & a_{3}=[(4+\sqrt{28}) / 6]=1, \\
& & \alpha_{4}=(2+\sqrt{28}) / 4, \\
P_{4}=1 \cdot 6-4=2, & a_{4}=[(2+\sqrt{28}) / 4]=1, \\
Q_{4}=\left(28-2^{2}\right) / 6=4, & \\
P_{5}=1 \cdot 4-2=2, & \alpha_{5}=(2+\sqrt{28}) / 6, \\
Q_{5}=\left(28-2^{2}\right) / 4=6, & a_{5}=[(2+\sqrt{28}) / 6]=1,
\end{array}
$$

and so, with repetition, since $P_{1}=P_{5}$ and $Q_{1}=Q_{5}$. Hence, we see that

$$
\begin{aligned}
(3+\sqrt{7}) / 2 & =[2 ; 1,4,1,1,1,4,1,1, \ldots] \\
& =[2 ; 1,4,1,1] .
\end{aligned}
$$

We now finish the proof of Lagrange's Theorem by showing that the simple continued fraction expansion of a quadratic irrational is periodic.

Proof (continued). Let α be a quadratic irrational, so that by Lemma 10.5 we can write α as

$$
\alpha=\left(P_{0}+\sqrt{d}\right) / Q_{0}
$$

Furthermore, by Theorem 10.19 we have $\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ where

$$
\begin{aligned}
\alpha_{k} & =\left(P_{k}+\sqrt{d}\right) / Q_{k} \\
a_{k} & =\left[\alpha_{k}\right] \\
P_{k+1} & =a_{k} Q_{k}-P_{k+1} \\
Q_{k+1} & =\left(d-P_{k+1}^{2}\right) / Q_{k+1}
\end{aligned}
$$

for $k=0,1,2, \ldots$.
Since $\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots, \alpha_{k}\right]$, Theorem 10.9 tells us that

$$
\alpha=\left(p_{k-1} \alpha_{k}+p_{k-2}\right) /\left(q_{k-1} \alpha_{k}+q_{k-2}\right)
$$

Taking conjugates of both sides of this equation, and using Lemma 10.4, we see that

$$
\begin{equation*}
\alpha^{\prime}=\left(p_{k-1} \alpha_{k}^{\prime}+p_{k-2}\right) /\left(q_{k-1} \alpha_{k}^{\prime}+q_{k-2}\right) \tag{10.14}
\end{equation*}
$$

When we solve (10.14) for α_{k}^{\prime}, we find that

$$
\alpha_{k}^{\prime}=\frac{-q_{k-2}}{q_{k-1}}\left(\frac{\alpha^{\prime}-\frac{p_{k-2}}{q_{k-2}}}{\alpha^{\prime}-\frac{p_{k-1}}{q_{k-1}}}\right) .
$$

Note that the convergents p_{k-2} / q_{k-2} and p_{k-1} / q_{k-1} tend to α as k tends to infinity, so that

$$
\left(\alpha^{\prime}-\frac{p_{k-2}}{q_{k-2}}\right) /\left(\alpha^{\prime}-\frac{p_{k-1}}{q_{k-1}}\right)
$$

tends to 1 . Hence, there is an integer N such that $\alpha_{k}^{\prime}<0$ for $k \geqslant N$. Since $\alpha_{k}>0$ for $k \geqslant 1$, we have

$$
\alpha_{k}-\alpha_{k}^{\prime}=\frac{P_{k}+\sqrt{d}}{Q_{k}}-\frac{P_{k}-\sqrt{d}}{Q_{k}}=\frac{2 \sqrt{d}}{Q_{k}}>0
$$

so that $Q_{k}>0$ for $k \geqslant N$.
Since $Q_{k} Q_{k+1}=d-P_{k+1}^{2}$, we see that for $k \geqslant N$,

$$
Q_{k} \leqslant Q_{k} Q_{k+1}=d-P_{k+1}^{2} \leqslant d
$$

Also for $k \geqslant N$, we have

$$
P_{k+1}^{2} \leqslant d=P_{k+1}^{2}-Q_{k} Q_{k+1}
$$

so that

$$
-\sqrt{d}<P_{k+1}<\sqrt{d}
$$

From the inequalities $0 \leqslant Q_{k} \leqslant d$ and $-\sqrt{d}<P_{k+1}<\sqrt{d}$, that hold for $k \geqslant N$, we see that there are only a finite number of possible values for the pair of integers P_{k}, Q_{k} for $k>N$. Since there are infinitely many integers k with $k \geqslant N$, there are two integers i and j such that $P_{i}=P_{j}$ and $Q_{i}=Q_{j}$ with $i<j$. Hence, from the defining relation for α_{k}, we see that $\alpha_{i}=\alpha_{j}$. Consequently, we can see that $a_{i}=a_{j}, a_{i+1}=a_{j+1}, a_{i+2}=a_{j+2}, \ldots$. Hence

$$
\begin{aligned}
\alpha & =\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{i-1}, a_{i}, a_{i+1}, \ldots, a_{j-1}, a_{i}, a_{i+1}, \ldots, a_{j-1}, \ldots\right] \\
& =\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{i-1}, \overline{a_{j}, a_{i+1}, \ldots, a_{j-1}}\right]
\end{aligned}
$$

This shows that α has a periodic simple continued fraction.

Next, we investigate those periodic simple continued fractions that are purely periodic, i.e. those without a pre-period.

Definition. The continued fraction $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ is called purely periodic if there is an integer n such that $a_{k}=a_{n+k}$, for $k=0,1,2, \ldots$, so that

$$
\left[a_{0} ; a_{1}, a_{2}, \ldots\right]=\left[\overline{a_{0} ; a_{1}, a_{2}, a_{3}, \ldots, a_{n-1}}\right]
$$

Example. The continued fraction $[\overline{2 ; 3}]=(1+\sqrt{3}) / 2$ is purely periodic while $[2 ; \overline{2,4}]=\sqrt{6}$ is not.

The next definition and theorem describe those quadratic irrationals with purely periodic simple continued fractions.

Definition. A quadratic irrational α if called reduced if $\alpha>1$ and $-1<\alpha^{\prime}<0$, where α^{\prime} is the conjugate of α.

Theorem 10.20. The simple continued fraction of the quadratic irrational α is purely periodic if and only if α is reduced. Further, if α is reduced and $\alpha=\left[\overline{a_{0} ; a_{1}, a_{2}, \ldots, a_{n}}\right]$ then the continued fraction of $-1 / \alpha^{\prime}$ is $\left[\overline{a_{n} ; a_{n-1}, \ldots, a_{0}}\right]$.

Proof. First, assume that α is a reduced quadratic irrational. Recall from Theorem 10.15 that the partial fractions of the simple continued fraction of α are given by

$$
a_{k}=\left[\alpha_{k}\right], \alpha_{k+1}=1 /\left(\alpha_{k}-a_{k}\right)
$$

for $k=0,1,2, \ldots$, where $\alpha_{0}=\alpha$. We see that

$$
1 / \alpha_{k+1}=\alpha_{k}-a_{k}
$$

and taking conjugates, using Lemma 10.4 , we see that

$$
\begin{equation*}
1 / \alpha_{k+1}^{\prime}=\alpha_{k}^{\prime}-a_{k} . \tag{10.15}
\end{equation*}
$$

We can prove, by mathematical induction, that $-1<\alpha_{k}^{\prime}<0$ for $k=0,1,2, \ldots$. First, note that since $\alpha_{0}=\alpha$ is reduced, $-1<\alpha_{0}^{\prime}<0$. Now assume that $-1<\alpha_{k}<0$. Then, since $a_{k} \geqslant 1$ for $k=0,1,2, \ldots$ (note that $a_{0} \geqslant 1$ since $\alpha>1$), we see from (10.15) that

$$
1 / \alpha_{k+1}^{\prime}<-1
$$

so that $-1<\alpha_{k+1}^{\prime}<0$. Hence, $-1<\alpha_{k}^{\prime}<0$ for $k=0,1,2, \ldots$.

Next, note that from (10.15) we have

$$
\alpha_{k}^{\prime}=a_{k}+1 / \alpha_{k+1}^{\prime},
$$

and since $-1<\alpha_{k}^{\prime}<0$, it follows that

$$
-1<a_{k}+1 / \alpha_{k+1}^{\prime}<0
$$

Consequently,

$$
-1-1 / \alpha_{k+1}^{\prime}<a_{k}<-1 / \alpha_{k+1}^{\prime}
$$

so that

$$
a_{k}=\left[-1 / \alpha_{k+1}^{\prime}\right]
$$

Since α is a quadratic irrational, the proof of Lagrange's Theorem shows that there are nonnegative integers i and $j, i<j$, such that $\alpha_{i}=\alpha_{j}$, and hence with $-1 / \alpha_{i}^{\prime}=-1 / \alpha_{j}^{\prime}$. Since $a_{i-1}=\left[-1 / \alpha_{i}^{\prime}\right]$ and $a_{j-1}=\left[-1 / \alpha_{j}^{\prime}\right]$, we see that $a_{i-1}=a_{j-1}$. Furthermore, since $\alpha_{i-1}=a_{i-1}+1 / \alpha_{i}$ and, $\alpha_{j-1}=a_{j-1}+1 / \alpha_{j}$ we also see that $\alpha_{i-1}=\alpha_{j-1}$. Continuing this argument, we see that $\alpha_{i-2}=\alpha_{j-2}, \alpha_{i-3}=\alpha_{j-3}, \ldots$, and finally, that $\alpha_{0}=\alpha_{j-i}$. Since

$$
\begin{aligned}
\alpha_{0}=\alpha & =\left[a_{0} ; a_{1}, \ldots, a_{j-i-1}, \alpha_{j-i}\right] \\
& =\left[a_{o} ; a_{1}, \ldots, a_{j-i-1}, \alpha_{0}\right] \\
& =\left[\widehat{a_{0} ; a_{1}, \ldots, a_{j-i-1}}\right],
\end{aligned}
$$

we see that the simple continued fraction of α is purely periodic.
To prove the converse, assume that α is a quadratic irrational with a purely periodic continued fraction $\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}\right]$. Since $\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}, \alpha\right]$, Theorem 10.9 tells that

$$
\begin{equation*}
\alpha=\frac{\alpha p_{k}+p_{k-1}}{\alpha q_{k}+q_{k-1}} \tag{10.16}
\end{equation*}
$$

where p_{k-1} / q_{k-1} and p_{k} / q_{k} are the $(k-1)$ th and k th convergents of the continued fraction expansion of α. From (10.16), we see that

$$
\begin{equation*}
q_{k} \alpha^{2}+\left(q_{k-1}-p_{k}\right) \alpha-p_{k-1}=0 \tag{10.17}
\end{equation*}
$$

Now, let β be the quadratic irrational such that $\beta=\left[\overline{a_{k} ; a_{k-1}, \ldots, a_{1}, a_{0}}\right]$, i.e. with the period of the simple continued fraction for α reversed. Then $\beta=\left[a_{k} ; a_{k-1}, \ldots, a_{1}, a_{0}, \beta\right]$, so that by Theorem 10.9 , it follows that

$$
\begin{equation*}
\beta=\frac{\beta p_{k}^{\prime}+p_{k-1}^{\prime}}{\beta q_{k}^{\prime}+q_{k-1}^{\prime}}, \tag{10.18}
\end{equation*}
$$

where $p_{k-1}^{\prime} / q_{k-1}^{\prime}$ and $p_{k}^{\prime} / q_{k}^{\prime}$ are the $(k-1)$ th and k th convergents of the continued fraction expansion of β. Note, however, from problem 6 of Section 10.2, that

$$
p_{k} / p_{k-1}=\left[a_{n} ; a_{n-1}, \ldots, a_{1}, a_{0}\right]=p_{k}^{\prime} / q_{k}^{\prime}
$$

and

$$
q_{k} / q_{k-1}=\left[a_{n} ; a_{n-1}, \ldots, a_{2}, a_{1}\right]=p_{k-1}^{\prime} / q_{k-1}^{\prime} .
$$

Since $p_{k-1}^{\prime} / q_{k-1}^{\prime}$ and $p_{k}^{\prime} / q_{k}^{\prime}$ are convergents, we know that they are in lowest terms. Also, p_{k} / p_{k-1} and q_{k} / q_{k-1} are in lowest terms, since Theorem 10.10 tells us that $p_{k} q_{k-1}-p_{k-1} q_{k}=(-1)^{k-1}$. Hence,

$$
p_{k}^{\prime}=p_{k}, q_{k}^{\prime}=p_{k-1}
$$

and

$$
p_{k-1}^{\prime}=q_{k}, q_{k-1}^{\prime}=q_{k-1} .
$$

Inserting these values into (10.18), we see that

$$
\beta=\frac{\beta p_{k}+q_{k}}{\beta p_{k-1}+q_{k-1}} .
$$

Therefore, we know that

$$
p_{k-1} \beta^{2}+\left(q_{k-1}-p_{k}\right) \beta-q_{k}=0
$$

This implies that

$$
\begin{equation*}
q_{k}(-1 / \beta)^{2}+\left(q_{k-1}-p_{k}\right)(-1 / \beta)-p_{k-1}=0 \tag{10.19}
\end{equation*}
$$

From (10.17) and (10.19), we see that the two roots of the quadratic equation

$$
q_{k} x^{2}+\left(q_{k-1}-p_{k}\right) x-p_{k-1}=0
$$

are α and $-1 / \beta$, so that by the quadratic equation, we have $\alpha^{\prime}=-1 / \beta$. Since $\beta=\left[a_{n} ; a_{n-1}, \ldots, a_{1}, a_{0}\right]$, we see that $\beta>1$, so that $-1<\alpha^{\prime}=-1 / \beta<0$. Hence, α is a reduced quadratic irrational.

Furthermore, note that since $\beta=-1 / \alpha^{\prime}$, it follows that

$$
\left.-1 / \alpha^{\prime}=\overline{\left[a_{n} ; a_{n-1}, \ldots, a_{1}, a_{0}\right.}\right] .
$$

We now find the form of the periodic simple continued fraction of \sqrt{D}, where D is a positive integer that is not a perfect square. Although \sqrt{D} is not reduced, since its conjugate $-\sqrt{D}$ is not between -1 and 0 , the quadratic irrational $[\sqrt{D}]+\sqrt{D}$ is reduced, since its conjugate, $[\sqrt{D}]-\sqrt{D}$, does lie between -1 and 0 . Therefore, from Theorem 10.20 , we know that the continued fraction of $[\sqrt{D}]+\sqrt{D}$ is purely periodic. Since the initial partial quotient of the simple continued fraction of $[\sqrt{D}]+\sqrt{D}$ is $[[\sqrt{D}]+\sqrt{D}]=2[\sqrt{D}]=2 a_{0}$, where $a_{0}=[\sqrt{D}]$, we can write

$$
\left.\begin{array}{rl}
{[\sqrt{D}]+\sqrt{D}} & =\left[\overline{2 a_{0} ; a_{1}, a_{2}, \ldots, a_{n}}\right] \\
& =\left[2 a_{0} ; a_{1}, a_{2}, \ldots, a_{n}, 2 a_{0}, a_{1}, \ldots, a_{n}\right.
\end{array}\right] .
$$

Subtracting $a_{0}=\sqrt{D}$ from both sides of this equality, we find that

$$
\begin{aligned}
\sqrt{D} & =\left[a_{0} ; a_{1}, a_{2}, \ldots, 2 a_{0}, a_{1}, a_{2}, \ldots 2 a_{0}, \ldots\right] \\
& =\left[a_{0} ;, \overline{\left.a_{1}, a_{2}, \ldots, a_{n}, 2 a_{0}\right]}\right]
\end{aligned}
$$

To obtain even more information about the partial quotients of the continued fraction of \sqrt{D}, we note that from Theorem 10.20, the simple continued fraction expansion of $-1 /([\sqrt{D}]-\sqrt{D})$ can be obtained from that for $[\sqrt{D}]+\sqrt{D}$, by reversing the period, so that

$$
1 /(\sqrt{D}-[\sqrt{D}])=\left[\overline{a_{n} ; a_{n-1}, \ldots, a_{1}, 2 a_{0}}\right] .
$$

But also note that

$$
\sqrt{D}-[\sqrt{D}]=\left[0 ; \overline{a_{1}, a_{2}, \ldots, a_{n} 2 a_{0}}\right]
$$

so that by taking reciprocals, we find that

$$
1 /(\sqrt{D}-[\sqrt{D}])=\left[\overline{a_{1} ; a_{2}, \ldots, a_{n}, 2 a_{0}}\right] .
$$

Therefore, when we equate these two expressions for the simple continued fraction of $1 /(\sqrt{D}-[\sqrt{D}])$, we obtain

$$
a_{1}=a_{n}, a_{2}=a_{n-1}, \ldots, a_{n}=a_{1},
$$

so that the periodic part of the continued fraction for \sqrt{D} is symmetric from the first to the penultimate term.

In conclusion, we see that the simple continued fraction of \sqrt{D} has the form

$$
\sqrt{D}=\left[a_{0} ; \overline{a_{1}, a_{2}, \ldots, a_{2}, a_{1}, 2 a_{0}}\right]
$$

We illustrate this with some examples.
Example. Note that

$$
\begin{aligned}
\sqrt{23} & =[4 ; \overline{1,3,1,8}] \\
\sqrt{31} & {[5, \overline{1,1,3,5,3,1,1,10}] } \\
\sqrt{46} & =[6 ; \overline{1,2,1,1,2,6,2,1,1,2,1,12}] \\
\sqrt{76} & =[8 ; 1,2,1,1,5,4,5,1,1,2,1,16
\end{aligned}
$$

and

$$
\sqrt{97}=[9 ; \overline{1,5,1,1,1,1,1,1,5,1,18}]
$$

where each continued fraction has a pre-period of length 1 and a period ending with twice the first partial quotient which is symmetric from the first to the next to the last term.

The simple continued fraction expansions of \sqrt{d} for positive integers d such that d is not a perfect square and $d<100$ can be found in Table 5 of the Appendix.

10.4 Problems

1. Find the simple continued fractions of
a) $\sqrt{7}$
b) $\sqrt{11}$
c) $\sqrt{23}$
d) $\sqrt{47}$
e) $\sqrt{59}$
f) $\sqrt{94}$.
2. Find the simple continued fractions of
a) $(1+\sqrt{3}) / 2$
b) $(14+\sqrt{37}) / 3$
c) $(13-\sqrt{2}) 7$.
3. Find the quadratic irrational with simple continued fraction expansion
a) $[2 ; 1, \overline{5}]$
b) $[2 ; \overline{1,5}]$
c) $[\overline{2 ; 1,5]}$.
4. a) Let d be a positive integer. Show that the simple continued fraction of $\sqrt{d^{2}+1}$ is $[d ; 2 d]$.
b) Use part (a) to find the simple continued fractions of $\sqrt{101}, \sqrt{290}$, and $\sqrt{2210}$.
5. Let d be a integer, $d \geqslant 2$.
a) Show that the simple continued fraction of $\sqrt{d^{2}-1}$ is $[d-1 ; \overline{1,2 d-2}]$.
b) Show that the simple continued fraction of $\sqrt{d^{2}-d}$ is $[d-1 ; \overline{2,2 d-2}]$.
c) Use parts (a) and (b) to find the simple continued fractions of $\sqrt{99}, \sqrt{110}$, $\sqrt{272}$, and $\sqrt{600}$.
6. a) Show that if d is an integer, $d \geqslant 3$, then the simple continued fraction of $\sqrt{d^{2}-2}$ is $[d-1 ; \overline{1, d-2,1,2 d-2}]$.
b) Show that if d is a positive integer, then the simple continued fraction of $\sqrt{d^{2}+2}$ is $[d ; \overline{d, 2 d}]$.
c) Find the simple continued fraction expansions of $\sqrt{47}, \sqrt{51}$, and $\sqrt{187}$.
7. Let d be an odd positive integer.
a) Show that the simple continued fraction of $\sqrt{d^{2}+4}$ is $[d ;(d-1) / 2,1,1,(d-1) / 2,2 d]$, if $d>1$.
b) Show that the simple continued fraction of $\sqrt{d^{2}-4}$ is $[d-1 ; \overline{1,(d-3) / 2,2,(d-3) / 2,1,2 d-2}]$, if $d>3$.
8. Show that the simple continued fraction of \sqrt{d}, where d is a positive integer, has period length one if and only if $d=a^{2}+1$ where a is a nonnegative integer.
9. Show that the simple continued fraction of \sqrt{d}, where d is a positive integer, has period length two if and only if $d=a^{2}+b$ where a and b are integers, $b>1$, and $b \mid 2 a$.
10. Prove that if $\alpha_{1}=\left(a_{1}+b_{1} \sqrt{d}\right) / c_{1}$ and $\alpha_{2}=\left(a_{2}+b_{2} \sqrt{d}\right) / c_{2}$ are quadratic irrationals, then
a) $\left(\alpha_{1}+\alpha_{2}\right)^{\prime}=\alpha_{1}^{\prime}+\alpha_{2}^{\prime}$
b) $\left(\alpha_{1}-\alpha_{2}\right)^{\prime}=\alpha_{1}^{\prime}-\alpha_{2}^{\prime}$
c) $\left(\alpha_{1} \alpha_{2}\right)^{\prime}=\alpha_{1}^{\prime} \cdot \alpha_{2}^{\prime}$.
11. Which of the following quadratic irrationals have purely periodic continued fractions
a) $1+\sqrt{5}$
b) $2+\sqrt{8}$
c) $\quad(11-\sqrt{10}) / 9$
c) $4+\sqrt{17}$
d) $\quad(3+\sqrt{23}) / 2$
e) $(17+\sqrt{188}) / 3$?
12. Suppose that $\alpha=(a+\sqrt{b}) / c$, where a, b, and c are integers, $b>0$, and b is not a perfect square. Show that is a reduced quadratic irrational if and only if $0<a<\sqrt{b}$ and $\sqrt{b}-a<c<\sqrt{b}+a<2 \sqrt{b}$.
13. Show that if α is a reduced quadratic irrational, then $-1 / \alpha^{\prime}$ is also a reduced quadratic irrational.
14. Let k be a positive integer. Show that there are infinitely many positive integers D, such that the simple continued fraction expansion of \sqrt{D} has a period of length k. (Hint: Let $a_{1}=2, a_{2}=5$, and for $k \geqslant 3$ let $a_{k}=2 a_{k-1}+a_{k-2}$. Show that if $D=\left(t a_{k}+1\right)^{2}+2 a_{k-1}+1$, where t is a nonnegative integer, then \sqrt{D} has a period of length $k+1$.)
15. Let k be a positive integer. Let $D_{k}=\left(3^{k}+1\right)^{2}+3$. Show that the simple continued fraction of $\sqrt{D_{k}}$ has a period of length $6 k$.

10.4 Computer Projects

Write computer programs to do the following:

1. Find the quadratic irrational that is the value of a periodic simple continued fraction.
2. Find the periodic simple continued fraction expansion of a quadratic irrational.

11

Some Nonlinear Diophantine Equations

11.1 Pythagorean Triples

The Pythagorean theorem tells us that the sum of the squares of the lengths of the legs of a right triangle equals the square of the length of the hypotheneuse. Conversely, any triangle for which the sum of the squares of the lengths of the two shortest sides equals the square of the third side is a right triangle. Consequently, to find all right triangles with integral side lengths, we need to find all triples of positive integers x, y, z satisfying the diophantine equation

$$
\begin{equation*}
x^{2}+y^{2}=z^{2} \tag{11.1}
\end{equation*}
$$

Triples of positive integers satisfying this equation are called Pythagorean triples.

Example. The triples $3,4,5 ; 6,8,10$; and $5,12,13$ are Pythagorean triples because $3^{2}+4^{2}=5^{2}, 6^{2}+8^{2}=10^{2}$, and $5^{2}+12^{2}=13^{2}$.

Unlike most nonlinear diophantine equations, it is possible to explicitly describe all the integral solutions of (11.1). Before developing the result describing all Pythagorean triples, we need a definition.

Definition. A Pythagorean triple x, y, z is called primitive if $(x, y, z)=1$.
Example. The Pythagorean triples $3,4,5$ and $5,12,13$ are primitive, whereas
the Pythagorean triple $6,8,10$ is not.
Let x, y, z be a Pythagorean triple with $(x, y, z)=d$. Then, there are integers $\quad x_{1}, y_{1}, z_{1}$ with $x=d x_{1}, y=d y_{1}, z=d z_{1} \quad$ and $\quad\left(x_{1}, y_{1}, z_{1}\right)=1$. Furthermore, because

$$
x^{2}+y^{2}=z^{2}
$$

we have

$$
(x / d)^{2}+(y / d)^{2}=(z / d)^{2}
$$

so that

$$
x_{1}^{2}+y_{1}^{2}=z_{1}^{2}
$$

Hence, x_{1}, y_{1}, z_{1} is a primitive Pythagorean triple, and the original triple x, y, z is simply an integral multiple of this primitive Pytgagorean triple.

Also, note that any integral multiple of a primitive (or for that matter any) Pythagorean triple is again a Pythagorean triple. If x_{1}, y_{1}, z_{1} is a primitive Pythagorean triple, then we have

$$
x_{1}^{2}+y_{1}^{2}=z_{1}^{2}
$$

and hence,

$$
\left(d x_{1}\right)^{2}+\left(d y_{1}\right)^{2}=\left(d z_{1}\right)^{2}
$$

so that $d x_{1}, d y_{1}, d z_{1}$ is a Pythagorean triple.
Consequently, all Pythagorean triples can be found by forming integral multiples of primitive Pythagorean triples. To find all primitive Pythagorean triples, we need some lemmata. The first lemma tells us that any two integers of a primitive Pythagorean triple are relatively prime.

Lemma 11.1. If x, y, z is a primitive Pythagorean triple, then $(x, y)=(x, z)=(y, z)=1$.

Proof. Suppose x, y, z is a primitive Pythagorean triple and $(x, y)>1$. Then, there is a prime p such that $p \mid(x, y)$, so that $p \mid x$ and $p \mid y$. Since $p \mid x$ and $p \mid y$, we know that $p \mid\left(x^{2}+y^{2}\right)=z^{2}$. Because $p \mid z^{2}$, we can conclude that $p \mid z$ (using problem 32 of Section 3.2). This is a contradiction since $(x, y, z)=1$. Therefore, $(x, y)=1$. In a similar manner we can easily show that $(x, z)=(y, z)=1$.

Next, we establish a lemma about the parity of the integers of a primitive Pythagorean triple.

Lemma 11.2. If x, y, z is a primitive Pythagorean triple, then x is even and y is odd or x is odd and y is even.

Proof. Let x, y, z be a primitive Pythagorean triple. By Lemma 11.1, we know that $(x, y)=1$, so that x and y cannot both be even. Also x and y cannot both be odd. If x and y were both odd, then (from problem 2 of Section 2.1) we would have

$$
x^{2} \equiv y^{2} \equiv 1(\bmod 4)
$$

so that

$$
z^{2}=x^{2}+y^{2} \equiv 2(\bmod 4)
$$

This is impossible (again from problem 2 of Section 2.1). Therefore, x is even and y is odd, or vice versa.

The final lemma that we need is a consequence of the fundamental theorem of arithmetic. It tells us that two relatively prime integers that multiply together to give a square must both be squares.

Lemma 11.3. If r, s, and t are positive integers such that $(r, s)=1$ and $r s=t^{2}$, then there are integers m and n such that $r=m^{2}$ and $s=n^{2}$.

Proof. If $r=1$ or $s=1$, then the lemma is obviously true, so we may suppose that $r>1$ and $s>1$. Let the prime-power factorizations of r, s, and t be

$$
\begin{aligned}
& r=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{u}^{a_{u}}, \\
& s=p_{u+1}^{a_{u+1}} p_{u+2}^{a_{u+2}} \cdots p_{v}^{a_{v}},
\end{aligned}
$$

and

$$
t=q_{1}^{b_{1}} q_{2}^{b_{2}} \cdots q_{k}^{b_{k}}
$$

Since $(r, s)=1$, the primes occurring in the factorizations of r and s are distinct. Since $r s=t^{2}$, we have

$$
p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{u}^{a_{u}} p_{u+1}^{a_{u+1}} p_{u+2}^{a_{u+2}} \cdots p_{v}^{a_{v}}=q_{1}^{2 b_{1}} q_{2}^{2 b_{2}} \cdots q_{k}^{2 b_{k}} .
$$

From the fundamental theorem of arithmetic, the prime-powers occurring on
the two sides of the above equation are the same. Hence, each p_{i} must be equal to q_{j} for some j with matching exponents, so that $a_{i}=2 b_{j}$. Consequently, every exponent a_{i} is even, and therefore $a_{i} / 2$ is an integer. We see that $r=m^{2}$ and $s=n^{2}$, where m and n are the integers

$$
m=p_{1}^{a_{1} / 2} p_{2}^{a_{2}^{a_{2}}} \cdots p_{u}^{a_{u} / 2}
$$

and

$$
n=p_{u+1}^{a_{u+1} / 2} p_{u+2}^{a_{u+1} / 2} \cdots p_{v}^{a_{v} / 2}
$$

We can now prove the desired result that describes all primitive Pythagorean triples.

Theorem 11.1. The positive integers x, y, z form a primitive Pythagorean triple, with y even, if and only if there are relatively prime positive integers m and $n, m>n$, with m odd and n even or m even and n odd, such that

$$
\begin{aligned}
& x=m^{2}-n^{2} \\
& y=2 m n \\
& z=m^{2}+n^{2} .
\end{aligned}
$$

Proof. Let x, y, z be a primitive Pythagorean triple. Lemma 11.2 tells us that x is odd and y is even, or vice versa. Since we have assumed that y is even, x and z are both odd. Hence, $z+x$ and $z-x$ are both even, so that there are positive integers r and s with $r=(z+x) / 2$ and $s=(z-x) / 2$.

Since $x^{2}+y^{2}=z^{2}$, we have $y^{2}=z^{2}-x^{2}=(z+x)(z-x)$. Hence,

$$
\left(\frac{y}{2}\right)^{2}=\left(\frac{z+x}{2}\right)\left(\frac{z-x}{2}\right)=r s
$$

We note that $(r, s)=1$. To see this, let $(r, s)=d$. Since $d \mid r$ and $d \mid s$, $d \mid(r+s)=z$ and $d \mid(r-s)=x$. This means that $d \mid(x, z)=1$, so that $d=1$.

Using Lemma 11.3, we see that there are integers m and n such that $r=m^{2}$ and $s=n^{2}$. Writing x, y, and z in terms of m and n, we have

$$
\begin{aligned}
& x=r-s=m^{2}-n^{2}, \\
& y=\sqrt{4 r s}=\sqrt{4 m^{2} n^{2}}=2 m n,
\end{aligned}
$$

and

$$
z=r+s=m^{2}+n^{2}
$$

We see also that $(m, n)=1$, since any common divisor of m and n must also divide $x=m^{2}-n^{2}, y=2 m n$, and $z=m^{2}+n^{2}$, and we know that $(x, y, z)=1$. We also note that m and n cannot both be odd, for if they were, then x, y, and z would all be even, contradicting the condition $(x, y, z)=1$. Since $(m, n)=1$ and m and n cannot both be odd, we see m is even and n is odd, or vice versa. This shows that every primitive Pythagorean triple has the appropriate form.

To see that every triple

$$
\begin{aligned}
& x=m^{2}-n^{2} \\
& y=2 m n \\
& z \equiv m^{2}+n^{2}
\end{aligned}
$$

where m and n are positive integers, $m>n, \quad(m, n)=1$, and $m \not \equiv n(\bmod 2)$, forms a primitive Pythagorean triple, first note that

$$
\begin{aligned}
x^{2}+y^{2} & =\left(m^{2}-n^{2}\right)^{2}+(2 m n)^{2} \\
& =\left(m^{4}-2 m^{2} n^{2}+n^{4}\right)+4 m^{2} n^{2} \\
& =m^{4}+2 m^{2} n^{2}+n^{4} \\
& =\left(m^{2}+n^{2}\right)^{2} \\
& =z^{2} .
\end{aligned}
$$

To see that these values of x, y, and z are mutually relatively prime, assume that $(x, y, z)=d>1$. Then, there is a prime p such that $p \mid(x, y, z)$. We note that $p \neq 2$, since x is odd (because $x=m^{2}-n^{2}$ where m^{2} and n^{2} have opposite parity). Also, note that because $p \mid x$ and $p|z, p|(z+x)=2 m^{2}$ and $p \mid(z-x)=2 n^{2}$. Hence $p \mid m$ and $p \mid n$, contradicting the fact that $(m, n)=1$. Therefore, $(x, y, z)=1$, and x, y, z is a primitive Pythagorean triple. This concludes the proof.

The following example illustrates the use of Theorem 11.1 to produce Pythagorean triples.

Example. Let $m=5$ and $n=2$, so that $(m, n)=1, m \not \equiv n(\bmod 2)$, and $m>n$. Hence, Theorem 11.1 tells us that

$$
\begin{aligned}
& x=m^{2}-n^{2}=5^{2}-2^{2}=21 \\
& y=2 m n=2 \cdot 5 \cdot 2=20 \\
& z=m^{2}+n^{2}=5^{2}+2^{2}=29
\end{aligned}
$$

is a primitive Pythagorean triple.

We list the primitive Pythagorean triples generated using Theorem 11.1 with $m \leqslant 6$ in Table 11.1.

m	n	$x=m^{2}-n^{2}$	$y=2 m n$	$z=m^{2}+n^{2}$
2	1	3	4	5
3	2	5	12	13
4	1	15	8	17
4	3	7	24	25
5	2	21	20	29
5	4	9	40	41
6	1	35	12	37
6	5	11	60	61

Table 11.1. Some Primitive Pythagorean Triples.

11.1 Problems

1. Find all
a) primitive Pythagorean triples x, y, z with $z \leqslant 40$.
b) Pythagorean triples x, y, z with $z \leqslant 40$.
2. Show that if x, y, z is a primitive Pythagorean triple, then either x or y is divisible by 3 .
3. Show that if x, y, z is a Pythagorean triple, then exactly one of x, y, and z is divisible by 5 .
4. Show that if x, y, z is a Pythagorean triple, then at least one of x, y, and z is divisible by 4 .
5. Show that every positive integer greater than three is part of at least one Pythagorean triple.
6. Let $x_{1}=3, y_{1}=4, z_{1}=5$, and let x_{n}, y_{n}, z_{n}, for $n=2,3,4, \ldots$, be defined recursively by

$$
\begin{aligned}
& x_{n+1}=3 x_{n}+2 z_{n}+1 \\
& y_{n+1}=3 x_{n}+2 z_{n}+2 \\
& z_{n+1}=4 x_{n}+3 z_{n}+2 .
\end{aligned}
$$

Show that $x_{n} y_{n}, z_{n}$ is a Pythagorean triple.
7. Show that if x, y, z is a Pythagorean triple with $y=x+1$, then x, y, z is one of the Pythagorean triples given in problem 6.
8. Find all solutions in positive integers of the diophantine equation $x^{2}+2 y^{2}=z^{2}$.
9. Find all solutions in positive integers of the diophantine equation $x^{2}+3 y^{2}=z^{2}$.
10. Find all solutions in positive integers of the diophantine equation $w^{2}+x^{2}+y^{2}=z^{2}$.
11. Find all Pythagorean triples containing the integer 12.
12. Find formulae for the integers of all Pythagorean triples x, y, z with $z=y+1$.
13. Find formulae for the integers of all Pythagorean triples x, y, z with $z=y+2$.
14. Show that the number of Pythagorean triples x, y, z (with $x^{2}+y^{2}=z^{2}$) with a fixed integer x is $\left(\tau\left(x^{2}\right)-1\right) / 2$ if x is odd, and $\left(\tau\left(x^{2} / 4\right)-1\right) / 2$ if x is even.
15. Find all solutions in positive integers of the diophantine equation $x^{2}+p y^{2}=z^{2}$, where p is a prime.

11.1 Computer Projects

Write programs to do the following:

1. Find all Pythagorean triples x, y, z with x, y, and z less than a given bound.
2. Find all Pythagorean triples containing a given integer.

11.2 Fermat's Last Theorem

In the previous section, we showed that the diophantine equation $x^{2}+y^{2}=z^{2}$ has infinitely many solutions in nonzero integers x, y, z. What happens when we replace the exponent two in this equation with an integer greater than two? Next to the discussion of the equation $x^{2}+y^{2}=z^{2}$ in his copy of the works of Diophantus, Fermat wrote in the margin:
"However, it is impossible to write a cube as the sum of two cubes, a fourth power as the sum of two fourth powers and in general any power the sum of two similar powers. For this I have discovered a truly wonderful proof, but the margin is too small to contain it."

Since Fermat made this statement many people have searched for a proof of this assertion without success. Even though no correct proof has yet been discovered, the following conjecture is known as Fermat's last theorem.

Fermat's Last Theorem. The diophantine equation

$$
x^{n}+y^{n}=z^{n}
$$

has no solutions in nonzero integers x, y, z when n is an integer with $n \geqslant 3$.
Currently, we know that Fermat's last theorem is true for all positive integers n with $3 \leqslant n \leqslant 125000$. In this section, we will show that the special case of Fermat's last theorem with $n=4$ is true. That is, we will show that the diophantine equation

$$
x^{4}+y^{4}=z^{4}
$$

has no solutions in nonzero integers x, y, z. Note that if we could also show that the diophantine equations

$$
x^{p}+y^{p}=z^{p}
$$

has no solutions in nonzero integers x, y, z whenever p is an odd prime, then we would know that Fermat's last theorem is true (see problem 2 at the end of this section).

The proof we will give of the special case of $n=4$ uses the method of infinite descent devised by Fermat. This method is an offshoot of the well-ordering property, and shows that a diophantine equation has no solutions by showing that for every solution there is a "smaller" solution, contradicting the well-ordering property.

Using the method of infinite descent we will show that the diophantine equation $x^{4}+y^{4}=z^{2}$. has no solutions in nonzero integers x, y, and z. This is stronger than showing that Fermat's last theorem is true for $n=4$, because any solution of $x^{4}+y^{4}=z^{4}=\left(z^{2}\right)^{2}$ gives a solution of $x^{4}+y^{4}=z^{2}$.

Theorem 11.2. The diophantine equation

$$
x^{4}+y^{4}=z^{2}
$$

has no solutions in nonzero integers x, y, z.
Proof. Assume that the above equation has a solution in nonzero integers x, y, z. Since we may replace any number of the variables with their negatives
without changing the validity of the equation, we may assume that x, y, z are positive integers.

We may also suppose that $(x, y)=1$. To see this, let $(x, y)=d$. Then $x=d x_{1}$ and $y=d y_{1}$, with $\left(x_{1}, y_{1}\right)=1$, where x_{1} and y_{1} are positive integers. Since $x^{4}+y^{4}=z^{2}$, we have

$$
\left(d x_{1}\right)^{4}+\left(d y_{1}\right)^{4}=z^{2}
$$

so that

$$
d^{4}\left(x_{1}^{4}+y_{1}^{4}\right)=z^{2}
$$

Hence $d^{4} \mid z^{2}$, and, by problem 32 of Section 2.2 , we know that $d^{2} \mid z$. Therefore, $z=d^{2} z_{1}$, where z_{1} is a positive integer. Thus,

$$
d^{4}\left(x_{1}^{4}+y_{1}^{4}\right)=\left(d^{2} z_{1}\right)^{2}=d^{4} z_{1}^{2}
$$

so that

$$
x_{1}^{4}+y_{1}^{4}=z_{1}^{2} .
$$

This gives a solution of $x^{4}+y^{4}=z^{2}$ in positive integers $x=x_{1}, y=y_{1}, z=z_{1}$ with $\left(x_{1}, y_{1}\right)=1$.

So, suppose that $x=x_{0}, y=y_{0}, z=z_{0}$ is a solution of $x^{4}+y^{4}=z^{2}$, where x_{0}, y_{0}, and z_{0} are positive integers with $\left(x_{0}, y_{0}\right)=1$. We will show that there is another solution in positive integers $x=x_{1}, y=y_{1}, z=z_{1}$ with $\left(x_{1}, y_{1}\right)=1$, such that $z_{1}<z_{0}$.

Since $x_{0}^{4}+y_{0}^{4}=z_{0}^{2}$, we have

$$
\left(x_{0}^{2}\right)^{2}+\left(y_{0}^{2}\right)^{2}=z_{0}^{2}
$$

so that $x_{0}^{2}, y_{0}^{2}, z_{0}$ is a Pythagorean triple. Furthermore, we have $\left(x_{0}^{2}, y_{0}^{2}\right)=1$, for if p is a prime such that $p \mid x_{0}^{2}$ and $p \mid y_{0}^{2}$, then $p \mid x_{0}$ and $p \mid y_{0}$, contradicting the fact that $\left(x_{0}, y_{0}\right)=1$. Hence, $x_{0}^{2}, y_{0}^{2}, z_{0}$ is a primitive Pythagorean triple, and by Theorem 11.1, we know that there are positive integers m and n with $(m, n), m \not \equiv n(\bmod 2)$, and

$$
\begin{aligned}
x_{0}^{2} & =m^{2}-n^{2} \\
y_{0}^{2} & =2 m n \\
z_{0} & =m^{2}+n^{2},
\end{aligned}
$$

where we have interchanged x_{0}^{2} and y_{0}^{2}, if necessary, to make y_{0}^{2} the even integer of this pair.

From the equation for x_{0}^{2}, we see that

$$
x_{0}^{2}+n^{2}=m^{2} .
$$

Since $(m, n)=1$, it follows that x_{0}, n, m is a primitive Pythagorean triple. Again using Theorem 11.1, we see that there are positive integers r and s with $(r, s)=1, r \not \equiv s(\bmod 2)$, and

$$
\begin{aligned}
x_{0} & =r^{2}-s^{2} \\
n & =2 r s \\
m & =r^{2}+s^{2} .
\end{aligned}
$$

Since m is odd and $(m, n)=1$, we know that $(m, 2 n)=1$. We note that because $y_{0}^{2}=(2 n) m$, Lemma 11.3 tells us that there are positive integers z_{1} and w with $m=z_{1}^{2}$ and $2 n=w^{2}$. Since w is even, $w=2 v$ where v is a positive integer, so that

$$
v^{2}=n / 2=r s
$$

Since $(r, s)=1$, Lemma 11.3 tells us that there are positive integers x_{1} and y_{1} such that $r=x_{1}^{2}$ and $s=y_{1}^{2}$. Note that since $(r, s)=1$, it easily follows that $\left(x_{1}, y_{1}\right)=1$. Hence,

$$
x_{1}^{4}+y_{1}^{4}=z_{1}^{2}
$$

where x_{1}, y_{1}, z_{1} are positive integers with $\left(x_{1}, y_{1}\right)=1$. Moreover, we have $z_{1}<z_{0}$, because

$$
z_{1} \leqslant z_{1}^{4}=m^{2}<m^{2}+n^{2}=z_{0} .
$$

To complete the proof, assume that $x^{4}+y^{4}=z^{2}$ has at least one integral solution. By the well-ordering property, we know that among the solutions in positive integers, there is a solution with the smallest value z_{0} of the variable z. However, we have shown that from this solution we can find another solution with a smaller value of the variable z, leading to a contradiction. This completes the proof by the method of infinite descent.

Readers interested in the history of Fermat's last theorem and how investigations relating to this conjecture led to the genesis of the theory of algebraic numbers are encouraged to consult the books of Edwards [14] and Ribenboim [31]. A great deal of research relating to Fermat's last theorem is underway. Recently, the German mathematician Faltings established a result that shows that for a fixed positive integer $n, n \geqslant 3$, the diophantine equation $x^{n}+y^{n}=z^{n}$ has at most a finite number of solutions where x, y, and z are integers and $(x, y)=1$.

11.2 Problems

1. Show that if x, y, z is a Pythagorean triple and n is an integer $n>2$, then $x^{n}+y^{n} \neq z^{n}$.
2. Show that Fermat's last theorem is a consequence of Theorem 11.2, and the assertion that $x^{p}+y^{p}=z^{p}$ has no solutions in nonzero integers when p is an odd prime.
3. Using Fermat's little theorem, show that if p is prime and
a) if $x^{p-1}+y^{p-1}=z^{p-1}$, then $p \mid x y z$.
b) if $x^{p}+y^{p}=z^{p}$, then $p \mid(x+y-z)$.
4. Show that the diophantine equation $x^{4}-y^{4}=z^{2}$ has no solutions in nonzero integers using the method of infinite descent.
5. Using problem 4, show that the area of a right triangle with integer sides is never a perfect square.
6. Show that the diophantine equation $x^{4}+4 y^{4}=z^{2}$ has no solutions in nonzero integers.
7. Show that the diophantine equation $x^{t}-8 y^{4}=z^{2}$ has no solutions in nonzero integers.
8. Show that the diophantine equation $x^{4}+3 y^{4}=z^{4}$ has infinitely many solutions.
9. Show that in a Pythagorean triple there is at most one perfect square.
10. Show that the diophantine equation $x^{2}+y^{2}=z^{3}$ has infinitely many integer solutions by showing that for each positive integer k the integers $x=3 k^{2}-1, y=k\left(k^{2}-3\right), z=k^{2}+1$ form a solution.

11.2 Computer Projects

1. Write a computer program to search for solutions of diophantine equations such as $x^{n}+y^{n}=z^{n}$.

11.3 Pell's Equation

In this section, we study diophantine equations of the form

$$
\begin{equation*}
x^{2}-d y^{2}=n \tag{11.2}
\end{equation*}
$$

where d and n are fixed integers. When $d<0$ and $n<0$, there are no solutions of (11.2). When $d<0$ and $n>0$, there can be at most a finite
number of solutions, since the equation $x^{2}-d y^{2}=n$ implies that $|x| \leqslant \sqrt{n}$ and $|y| \leqslant \sqrt{n /|d|}$. Also, note that when d is a perfect square, say $d=D^{2}$, then

$$
x^{2}-d y^{2}=x^{2}-D^{2} y=(x+D y)(x-D y)=n
$$

Hence, any solution of (11.2), when d is a perfect square, corresponds to a simultaneous solution of the equations

$$
\begin{aligned}
& x+D y=a \\
& x-D y=b
\end{aligned}
$$

where a and b are integers such that $n=a b$. In this case, there are only a finite number of solutions, since there is at most one solution in integers of these two equations for each factorization $n=a b$.

For the rest of this section, we are interested in the diophantine equation $x^{2}-d y^{2}=n$, where d and n are integers and d is a positive integer which is not a perfect square. As the following theorem shows, the simple continued fraction of \sqrt{d} is very useful for the study of this equation.

Theorem 11.3. Let d and n be integers such that $d>0, d$ is not a perfect square, and $|n|<\sqrt{d}$. If $x^{2}-d y^{2}=n$, then x / y is a convergent of the simple continued fraction of \sqrt{d}.

Proof. First consider the case where $n>0$. Since $x^{2}-d y^{2}=n$, we see that

$$
\begin{equation*}
(x+y \sqrt{d})(x-y \sqrt{d})=n \tag{11.3}
\end{equation*}
$$

From (11.3), we see that $x-y \sqrt{d}>0$, so that $x>y \sqrt{d}$. Consequently,

$$
\frac{x}{y}-\sqrt{d}>0
$$

and since $0<n<\sqrt{d}$, we see that

$$
\begin{aligned}
\frac{x}{y}-\sqrt{d} & =\frac{(x-\sqrt{d} y)}{y} \\
& =\frac{x^{2}-d y^{2}}{y(x+y \sqrt{d})}
\end{aligned}
$$

$$
\begin{aligned}
& <\frac{n}{y(2 y \sqrt{d})} \\
& <\frac{\sqrt{d}}{2 y^{2} \sqrt{d}} \\
& =\frac{1}{2 y^{2}} .
\end{aligned}
$$

Since $0<\frac{x}{y}-\sqrt{d}<\frac{1}{2 y^{2}}$, Theorem 10.18 tells us that x / y must be a convergent of the simple continued fraction of \sqrt{d}.

When $n<0$, we divide both sides of $x^{2}-d y^{2}=n$ by $-d$, to obtain

$$
y^{2}-\left(\frac{1}{d}\right) x^{2}=-\frac{n}{d}
$$

By a similar argument to that given when $n>0$, we see that y / x is a convergent of the simple continued fraction expansion of $1 / \sqrt{d}$. Therefore, from problem 7 of Section 10.3, we know that $x / y=1 /(y / x)$ must be a convergent of the simple continued fraction of $\sqrt{d}=1 /(1 / \sqrt{d})$.

We have shown that solutions of the diophantine equation $x^{2}-d y^{2}=n$, where $|n|<\sqrt{d}$, are given by the convergents of the simple continued fraction expansion of \sqrt{d}. The next theorem will help us use these convergents to find solutions of this diophantine equation.

Theorem 11.4. Let d be a positive integer that is not a perfect square. Define $\quad \alpha_{k}=\left(P_{k}+\sqrt{d}\right) / Q_{k}, \quad a_{k}=\left[\alpha_{k}\right], \quad P_{k+1}=a_{k} Q_{k}-P_{k}, \quad$ and $Q_{k+1}=\left(d-P_{k+1}^{2}\right) / Q_{k}$, for $k=0,1,2, \ldots$ where $\alpha_{0}=\sqrt{d}$. Furthermore, let p_{k} / q_{k} denote the k th convergent of the simple continued fraction expansion of \sqrt{d}. Then

$$
p_{k}^{2}-d q_{k}^{2}=(-1)^{k-1} Q_{k+1}
$$

Before we prove Theorem 11.4, we prove a useful lemma.
Lemma 11.4. Let $r+s \sqrt{d}=t+u \sqrt{d}$ where r, s, t, and u are rational numbers and d is a positive integer that is not a perfect square. Then $r=t$ and $s=u$.

Proof. Since $r+s \sqrt{d}=t+u \sqrt{d}$, we see that if $s \neq u$ then

$$
\sqrt{d}=\frac{r-t}{u-s} .
$$

By Theorem 10.1, $(r-t) /(u-s)$ is rational, and by Theorem $10.2 \sqrt{d}$ is irrational. Hence, $s=u$, and consequently $r=t$.

We can now prove Theorem 11.4.
Proof. Since $\sqrt{d}=\alpha_{0}=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}, \alpha_{k+1}\right]$, Theorem 10.9 tells us that

$$
\sqrt{d}=\frac{\alpha_{k+1} p_{k}+p_{k-1}}{\alpha_{k+1} q_{k}+q_{k-1}} .
$$

Since $\alpha_{k+1}=\left(P_{k+1}+\sqrt{d}\right) / Q_{k+1}$ we have

$$
\sqrt{d}=\frac{\left(P_{k+1}+\sqrt{d}\right) p_{k}+Q_{k+1} p_{k-1}}{\left(P_{k+1}+\sqrt{d}\right) q_{k}+Q_{k+1} q_{k-1}}
$$

Therefore, we see that

$$
d q_{k}+\left(p_{k+1} q_{k}+Q_{k+1} q_{k-1}\right) \sqrt{d}=\left(P_{k+1} p_{k}+Q_{k+1} p_{k-1}\right)+p_{k} \sqrt{d} .
$$

From Lemma 11.4, we find that $d q_{k}=P_{k+1} p_{k}+Q_{k+1} p_{k-1}$ and $P_{k+1} q_{k}+Q_{k+1} q_{k-1}=p_{k}$. When we multiply the first of these two equations by q_{k} and the second by p_{k}, subtract the first from the second, and then simplify, we obtain

$$
p_{k}^{2}-d q_{k}^{2}=\left(p_{k} q_{k-1}-p_{k-1} q_{k}\right) Q_{k+1}=(-1)^{k-1} Q_{k+1}
$$

where we have used Theorem 10.10 to complete the proof.
The special case of the diophantine equation $x^{2}-d y^{2}=n$ with $n=1$ is called Pell's equation. We will use Theorems 11.3 and 11.4 to find all solutions of Pell's equation and the related equation $x^{2}-d y^{2}=-1$.

Theorem 11.5. Let d be a positive integer that is not a perfect square. Let p_{k} / q_{k} denote the k th convergent of the simple continued fraction of \sqrt{d}, $k=1,2,3, \ldots$ and let n be the period length of this continued fraction. Then, when n is even, the positive solutions of the diophantine equation $x^{2}-d y^{2}=1$ are $x=p_{j n-1}, y=q_{j n-1}, j=1,2,3, \ldots$, and the diophantine equation $x^{2}-d y^{2}=-1$ has no solutions. When n is odd, the positive solutions of $x^{2}-d y^{2}=1$ are $x=p_{2 j n-1}, y=q_{2 j n-1}, j=1,2,3, \ldots$ and the solutions of $x^{2}-d y^{2}=-1$ are $x=p_{(2 j-1) n-1}, y=q_{(2 j-1) n-1}, j=1,2,3, \ldots$.

Proof. Theorem 11.3 tells us that if x_{0}, y_{0} is a positive solution of $x^{2}-d y^{2}= \pm 1$, then $x_{0}=p_{k}, y_{0}=q_{k}$ where p_{k} / q_{k} is a convergent of the simple continued fraction of \sqrt{d}. On the other hand, from Theorem 11.4 we know that

11.3 Pell's Equation

$$
p_{k}^{2}-d q_{k}^{2}=(-1)^{k-1} Q_{k+1}
$$

where Q_{k+1} is as defined in the statement of Theorem 11.4.
Because the period of the continued expansion of \sqrt{d} is n, we know that $Q_{j n}=Q_{0}=1$ for $j=1,2,3, \ldots,\left(\right.$ since $\left.\sqrt{d}=\frac{P_{0}+\sqrt{d}}{Q_{0}}\right)$. Hence,

$$
p_{j n-1}^{2}-d q_{j n-1}^{2}=(-1)^{j n} Q_{n j}=(-1)^{j n}
$$

This equation shows that when n is even $p_{j n-1}, q_{j n-1}$ is a solution of $x^{2}-d y^{2}=1$ for $j=1,2,3, \ldots$, and when n is odd, $p_{2 j n-1}, q_{2 j n-1}$ is a solution of $x^{2}-d y^{2}=1$ and $p_{2(j-1) n-1}, q_{2(j-1) n-1}$ is a solution of $x^{2}-d y^{2}=-1$ for $j=1,2,3, \ldots$.

To show that the diophantine equations $x^{2}-d y^{2}=1$ and $x^{2}-d y^{2}=-1$ have no solutions other than those already found, we will show that $Q_{k+1}=1$ implies that $n \mid k$ and that $Q_{j} \neq-1$ for $j=1,2,3 \ldots$.

We first note that if $Q_{k+1}=1$, then

$$
\alpha_{k+1}=P_{k+1}+\sqrt{d}
$$

Since $\alpha_{k+1}=\left[a_{k+1} ; a_{k+2}, \ldots\right]$, the continued fraction expansion of α_{k+1} is purely periodic. Hence, Theorem 10.20 tells us that $-1<\alpha_{k+1}=P_{k+1}-\sqrt{d}<0$. This implies that $P_{k+1}=[\sqrt{d}]$, so that $\alpha_{k}=\alpha_{0}$, and $n \mid k$.

To see that $Q_{j} \neq-1$ for $j=1,2,3, \ldots$, note that $Q_{j}=-1$ implies that $\alpha_{j}=-P_{j}-\sqrt{d}$. Since α_{j} has a purely periodic simple continued fraction expansion, we know that

$$
-1<\alpha_{j}^{\prime}=-P_{j}+\sqrt{d}<0
$$

and

$$
\alpha_{j}=-P_{j}-\sqrt{d}>1
$$

From the first of these inequalities, we see that $P_{j}>-\sqrt{d}$ and, from the second, we see that $P_{j}<-1-\sqrt{d}$. Since these two inequalities for p_{j} are contradictory, we see that $Q_{j} \neq-1$.

Since we have found all solutions of $x^{2}-d y^{2}=1$ and $x^{2}-d y^{2}=-1$, where x and y are positive integers, we have completed the proof.

We illustrate the use of Theorem 11.5 with the following examples.
Example. Since the simple continued fraction of $\sqrt{13}$ is $[3 ; \overline{1,1,1,1,6}]$ the
positive solutions of the diophantine equation $x^{2}-13 y^{2}=1$ are $p_{10 j-1}, q_{10 j-1}$, $j=1,2,3, \ldots$ where $p_{10 j-1} / q_{10 j-1}$ is the $(10 j-1)$ th convergent of the simple continued fraction expansion of $\sqrt{13}$. The least positive solution is $p_{9}=649, q_{9}=180$. The positive solutions of the diophantine equation $x^{2}-13 y^{2}=-1$ are $p_{10 j-6}, q_{10 j-6}, j=1,2,3, \ldots$; the least positive solution is $p_{4}=18, q_{4}=5$.

Example. Since the continued fraction of $\sqrt{14}$ is $[3 ; \overline{1,2,1,6}]$, the positive solutions of $x^{2}-14 y^{2}=1$ are $p_{4 j-1}, q_{4 j-1}, j=1,2,3, \ldots$ where $p_{4 j-1} / q_{4 j-1}$ is the j th convergent of the simple continued fraction expansion of $\sqrt{14}$. The least positive soletion is $p_{3}=15, q_{3}=4$. The diophantine equation $x^{2}-14 y^{2}=-1$ has no solutions, since the period length of the simple continued fraction expansion of $\sqrt{14}$ is even.

We conclude this section with the following theorem that shows how to find all the positive solutions of Pell's equation $x^{2}-d y^{2}=1$ from the least positive solution, without finding subsequent convergents of the continued fraction expansion of \sqrt{d}.

Theorem 11.6. Let x_{1}, y_{1} be the least positive solution of the diophantine equation $x^{2}-d y^{2}=1$, where d is a positive integer that is not a perfect square. Then all positive solutions x_{k}, y_{k} are given by

$$
x_{k}+y_{k} \sqrt{d}=\left(x_{1}+y_{1} \sqrt{d}\right)^{k}
$$

for $k=1,2,3, \ldots$. (Note that x_{k} and y_{k} are determined by the use of Lemma 11.4).

Proof. We need to show that x_{k}, y_{k} is a solution for $k=1,2,3, \ldots$ and that every solution is of this form.

To show that x_{k}, y_{k} is a solution, first note that by taking conjugates, it follows that $x_{k}-y_{k} \sqrt{d}=\left(x_{1}-y_{1} \sqrt{d}\right)^{k}$, because from Lemma 10.4, the conjugate of a power is the power of the conjugate. Now, note that

$$
\begin{aligned}
x_{k}^{2}-d y_{k}^{2} & =\left(x_{k}+y_{k} \sqrt{d}\right)\left(x_{k}-y_{k} \sqrt{d}\right) \\
& =\left(x_{1}+y_{1} \sqrt{d}\right)^{k}\left(x_{1}-y_{1} \sqrt{d}\right)^{k} \\
& =\left(x_{1}^{2}-d y_{1}^{2}\right)^{k} \\
& =1 .
\end{aligned}
$$

Hence x_{k}, y_{k} is a solution for $k=1,2,3, \ldots$.
To show that every positive solution is equal to x_{k}, y_{k} for some positive integer k, assume that X, Y is a positive solution different from x_{k}, y_{k} for $k=1,2,3, \ldots$. Then there is an integer n such that

$$
\left(x_{1}+y_{1} \sqrt{d}\right)^{n}<X+Y \sqrt{d}<\left(x_{1}+y_{1} \sqrt{d}\right)^{n+1}
$$

When we multiply this inequality by $\left(x_{1}+y_{1} \sqrt{d}\right)^{-n}$, we obtain

$$
1<\left(x_{1}-y_{1} \sqrt{d}\right)^{n}(X+Y \sqrt{d})<x_{1}+y_{1} \sqrt{d}
$$

since $x_{1}^{2}-d y_{1}^{2}=1$ implies that $x_{1}-y_{1} \sqrt{d}=\left(x_{1}+y_{1} \sqrt{d}\right)^{-1}$.
Now let

$$
s+t \sqrt{d}=\left(x_{1}-y_{1} \sqrt{d}\right)^{n}(X+Y \sqrt{d})
$$

and note that

$$
\begin{aligned}
s^{2}-d t^{2} & =(s-t \sqrt{d})(s+t \sqrt{d)} \\
& =\left(x_{1}+y_{1} \sqrt{d}\right)^{n}(X-Y \sqrt{d})\left(x_{1}-y_{1} \sqrt{d}\right)^{n}(X+Y \sqrt{d}) \\
& =\left(x_{1}^{2}-d y_{1}^{2}\right)^{n}\left(X^{2}-d Y^{2}\right) \\
& =1
\end{aligned}
$$

We see that s, t is a solution of $x^{2}-d y^{2}=1$, and furthermore, we know that $1<s+t \sqrt{d}<x_{1}+y_{1} \sqrt{d}$. Moreover, since we know that $s+t \sqrt{d}>1$, we see that $0<(s+t \sqrt{d})^{-1}<1$. Hence

$$
s=\frac{1}{2}[(s+t \sqrt{d})+(s-t \sqrt{d})]>0
$$

and

$$
t=\frac{1}{2 \sqrt{d}}[(s+t \sqrt{d})-(s-t \sqrt{d})]>0
$$

This means that s, t is a positive solution, so that $s \geqslant x_{1}$, and $t \geqslant y_{1}$, by the choice of x_{1}, y_{1} as the smallest positive solution. But this contradicts the inequality $s+t \sqrt{d}<x_{1}+y_{1} \sqrt{d}$. Therefore X, Y must be x_{k}, y_{k} for some choice of k.

To illustrate the use of Theorem 11.6, we have the following example.
Example. From a previous example we know that the least positive solution of the diophantine equation $x^{2}-13 y^{2}=1$ is $x_{1}=649, y_{1}=180$. Hence, all positive solutions are given by x_{k}, y_{k} where

$$
x_{k}+y_{k} \sqrt{13}=(649+180 \sqrt{13})^{k}
$$

For instance, we have

$$
x_{2}+y_{2} \sqrt{13}=842361+233640 \sqrt{13}
$$

Hence $x_{2}=842361, y_{2}=233640$ is the least positive solution of $x^{2}-13 y^{2}=1$, other than $x_{1}=649, y_{1}=180$.

11.3 Problems

1. Find all the solutions of each of the following diophantine equations
a) $x^{2}+3 y^{2}=4$
b) $x^{2}+5 y^{2}=7$
c) $2 x^{2}+7 y^{2}=30$.
2. Find all the solutions of each of the following diophantine equations
a) $x^{2}-y^{2}=8$
b) $x^{2}-4 y^{2}=40$
c) $4 x^{2}-9 y^{2}=100$.
3. For which of the following values of n does the diophantine equation $x^{2}-31 y^{2}=n$ have a solution
a) 1
b) -1
c) 2
d) -3
e) 4
f) -5 ?
4. Find the least positive solution of the diophantine equations
a) $x^{2}-29 y^{2}=-1$
b) $x^{2}-29 y^{2}=1$.
5. Find the three smallest positive solutions of the diophantine equation
$x^{2}-37 y^{2}=1$.
6. For each of the following values of d determine whether the diophantine equation $x^{2}-d y^{2}=-1$ has solutions
a) 2
b) 3
c) 6
d) 13
e) 17
f) 31
g) 41
h) 50 .
7. The least positive solution of the diophantine equation $x^{2}-61 y^{2}=1$ is $x_{1}=1766319049, y_{1}=226153980$. Find the least positive solution other than x_{1}, y_{1}.
8. Show that if p_{k} / q_{k} is a convergent of the simple continued fraction expansion of \sqrt{d} then $\left|p_{k}^{2}-d q_{k}^{2}\right|<1+2 \sqrt{d}$.
9. Show that if d is a positive integer divisible by a prime of the form $4 k+3$, then the diophantine equation $x^{2}-d y^{2}=-1$ has no solutions.
10. Let d and n be positive integers.
a) Show that if r, s is a solution of the diophantine equation $x^{2}-d y^{2}=1$ and X, Y is a solution of the diophantine equation $x^{2}-d y^{2}=n$ then $X r \pm d Y s, X s \pm Y r$ is also a solution of $x^{2}-d y^{2}=n$.
b) Show that the diophantine equation $x^{2}-d y^{2}=n$ either has no solutions, or infinitely many solutions.
11. Find those right triangles having legs with lengths that are consecutive integers. (Hint: use Theorem 11.1 to write the lengths of the legs as $x=s^{2}-t^{2}$ and $y=2 s t$, where s and t are positive integers such that $(s, t)=1, s>t$ and s and t have opposite parity. Then $x-y= \pm 1$ implies that $\left.(s-t)^{2}-2 t^{2}= \pm 1.\right)$
12. Show that each of the following diophantine equations has no solutions
a) $x^{4}-2 y^{4}=1$
b) $\quad x^{4}-2 y^{2}=-1$.

11.3 Computer Projects

Write programs to do the following:

1. Find those integers n with $|n|<\sqrt{d}$ such that the diophantine equation $x^{2}-d y^{2}=n$ has no solutions.
2. Find the least positive solutions of the diophantine equations $x^{2}-d y^{2}=1$ and $x^{2}-d y^{2}=-1$.
3. Find the solutions of Pell's equation from the least positive solution (see Theorem 11.6).

Appendix

Table 1. Factor Table.

The least prime factor of each odd positive integer less than 10000 and not divisible by five is given in the table. The initial digits of the integer are listed to the side and the last digit is at the top of the column. Primes are indicated with a dash.

	1379		$1 \begin{array}{llll}1 & 7 & 7\end{array}$		1379		1379
0	- 3	40	- 1311 -	80	3113 -	120	- 3173
1	- - - -	41	$373-$	81	- 3193	121	$7--23$
2	3-3-	42	- 373	82	- 19	122	3-3-
3	- 3-3	43	--19-	83	378 -	123	- 3-3
4	---7	44	3-3-	84	29 3	124	171129 -
5	$3-3-$	45	$113-3$	85	$23--$	125	$\begin{array}{rr}7 & 7 \\ 3 & 3-\end{array}$
6	- 3-3	46	- - 7	86	3-311	126	$\begin{array}{lllll}13 & 3 & 7 & 3\end{array}$
7	- 7 -	47	$3113-$	87	13 3-3	127	3119 - -
8	$3-3-3$	48	$\begin{array}{ccc}13 & 3 & - \\ -17\end{array}$	88	-7	128	3-3-
10	$73-3$	49 50	17 $3-3-$	89	319329	129	3-3
11	$3-37$	50 51	$\begin{array}{lllll}3 & - & 3 & - \\ 7 & 3 & 11 & 3\end{array}$	90	$173-3$ $-117-$	130	7
12	$113-3$	52	7173 --1723	91	-117-	131	$\begin{array}{r} 313 \quad 3- \\ -3-3 \end{array}$
13	7 - -	53	$\begin{array}{llll}3 & 13 & 3 & 7\end{array}$	93	$73-3$	133	
14	$3113-$	54	- 3-3	94	$-23-13$	134	317319
15	- 3-3	55	19 7-13	95	$\begin{array}{lllll}3 & 8 & 3 & 7\end{array}$	135	7 7 2233
16	$7--13$	56	3-3-	96	$313-3$	136	- $29-37$
17	$3-3-$	57	- 3-3	97	-7-11	137	3-37
18	- 3113	58	711-19	98	$3-323$	138	-3193
19	37311	59	$3-3-$	99	- 3-3	139	13711 -
20	$\begin{array}{lllll}3 & 7 & 3 & 11\end{array}$	60	-3-3	100	71719 -	140	323 3-
22	- 373	61	13---	101	$3-3-$	141	$17 \quad 3133$
23	13--	62 63	37317 $-\quad 373$	102	- 3133	142	7 - - -
24	-3133	64	-	103	- 3 $7 \begin{array}{lll}17 & 3-\end{array}$	143	$3-3-$
25	$-11-7$	65	3-3-	105	- 373	145	1 $-3-31-3$
26	$3-3-$	66	-3233	106	--11-	146	- 7 71
27	$-3-3$	67	$11-7$	107	329313	147	- 373
28	--717	68	$3-313$	108	23 3-3	148	
29	$3-313$	69	- 3173	109	$---7$	149	$3-3-$
30	$73-3$	70	-19 7-	110	3-3-	150	193113
31	---11	71	323 3-	111	$113-3$	151	-1737 7
32	$\begin{array}{rrrr}317 & 3 & 7 \\ & 3 & & \end{array}$	72	$73-3$	112	19-7-	152	$3-311$
33	- $3-3$	73	17-11-	113	311317	153	- 3293
34	117 7-	74	$3-37$	114	$\begin{array}{llll}7 & 331\end{array}$	154	23-7-
35	3-3-	75	$-3-3$	115	--1319	155	3-3-

Table 1. (Continued).

	1379		1379		1379		1379
36	$193-3$	76	- 713	116	3-3	156	73 -
37	$7-13-$	77	3-319	117	-3113	157	- 1119 -
38	$3-3-$	78	$113-3$	118	- 7-29	158	3-37
39	17 3-3	79	713-17	119	3-311	159	37 3-3
160	-7--	200	3-37	240	73293	280	--753
161	3-3-	201	- 3-3	241	- 19-41	281	$3293-$
162	- 3-3	202	43 7- -	242	3-37	282	731113
163	723-11	203	3193 -	243	$113-3$	283	$19--17$
164	331317	204	$13 \quad 3233$	244	- 7-31	284	$3-37$
165	13 3-3	205	$7-1129$	245	3113 -	285	- 3-
166	11 -	206	3-3-	246	23 3-3	286	- 74719
167	$3 \begin{array}{llll}3 & 7 & 3\end{array}$	207	193313	247	$7-$ - 37	287	3133 -
168	$41 \begin{array}{llll}41 & 7\end{array}$	208		248	$313 \quad 319$	288	43 3-3
169	19 - -	209	378 -	249	$47 \begin{array}{lllll}47 & 311\end{array}$	289	$711-13$
170	313 3-	210	$\begin{array}{lllll}11 & 3 & 7 & 3\end{array}$	250	$41-2313$	290	3-3-
171	293173	211	--29 13	251	$\begin{array}{llll}3 & 7 & 311\end{array}$	291	$413-3$
172	$--117$	212	$3113-$	252	-373	292	$2337-29$
173	$3-337$	213	- 3-3	253	- $1743-$	293	378 -
174	3-3	214	--197	254	3-3-	294	$\begin{array}{lllll}17 & 3 & 7 & 3\end{array}$
175	17-7-	215	$3-317$	255	$-3-3$	295	$13--11$
176	341329	216	- 3113	256	$131117 \quad 7$	296	3-3-
177	$73-3$	217	13417 -	257	3313 -	297	-3133
178	13-- -	218	337311	258	293133	298	1119297
179	31137	219	73133	259	--723	299	3413 -
180	- 3133	220	$31-47$	260	319 3-	300	- 3313
181	-72317	221	$3-37$	261	$73-3$	301	-23 7-
182	$3-331$	222	- 3173	262	-43 3711	302	$3-313$
183	- 3113	223	237 - -	263	3-37	303	$73-3$
184	$719-43$	224	3-313	264	$193-3$	304	- $1711-$
185	317311	225	- 3373	265	117 - -	305	34337
186	- 3-3	226	$731-$	266	3-317	306	- 3-3
187	- - - -	227	3-343	267	- 3-3	307	$37717-$
188	3783	228	- 3-3	268	7 - - -	308	3-3-
189	$\begin{array}{lllll}31 & 3 & 7 & 3\end{array}$	229	29--11	269	3-3-	309	$\begin{array}{lllll}11 & 319 & 3\end{array}$
190	- $11-23$	230	$\begin{array}{llll}3 & 7 & 3\end{array}$	270	37 3-3	310	$72913-$
191	3-319	231	- 373	271	--11-	31	3113 -

Table 1. (Continued).

	$\begin{array}{lllll}1 & 3 & 7 & 9\end{array}$		$\begin{array}{lllll}1 & 3 & 7 & 9\end{array}$		$\begin{array}{llll}1 & 3 & 7\end{array}$		1379
192	$\begin{array}{llll}17 & 341 & 3\end{array}$	232	11231317	272	73	312	
193	- 137	233	3-3-	273	- 373	313	$3113-43$
194	3293 -	234	- 3-3	274	-1341-	314	$\begin{array}{rrrrr}31 & 13 & -43 \\ 3 & 7 & 3\end{array}$
195	- 371931	235	$-13-7$	275	$3-331$	315	$\begin{array}{lllll}23 & 3 & 7 & 3\end{array}$
196	$\begin{array}{llll}37 & 13 & 711\end{array}$	236	317323	276	$113-3$	316	29
197	3-3-	237	3-3	277	$1747-7$	317	319311
199	73 -	238	-	278	$3113-$	318	- 3-3
320	3-3-	360	$\frac{3-3-3}{13-3}$	279	- 3-3	319.	-31237
321	13 3-3	361	$23--7$	401	3-3-	440	$\begin{array}{rrrrr}3 & 7 & 3 & - \\ 11 & 3 & 7 & 3\end{array}$
322	- 117 -	362	3-319	402	- 3-3	442	$\begin{array}{rrrr} 11 & 3 & 7 & 3 \\ - & -19 & 43 \end{array}$
323	3531341	363	- 3-3	403	2937117	443	-311
324	$\begin{array}{lllll}7 & 317\end{array}$	364	11-741	404	313 3-	444	- 3-3
325	----	365	313 3-	405	- 3-3	445	-61-7
326	$\begin{array}{llll}313 & 3 & 7\end{array}$	366	$\begin{array}{llll}7 & 319\end{array}$	406	$\begin{array}{llll}31 & 17 & 713\end{array}$	446	3-341
327	- 3293	367	$---13$	407	3-3-	447	$\begin{array}{lllll}17 & 311 & 3\end{array}$
328 329	$\begin{array}{llll}17 & 7 & 1911\end{array}$	368	32937	408	$7 \begin{array}{lll}7 & 361\end{array}$	448	--767
329	3373 -	369	- 3-3	409	--17-	449	$3-311$
330 331	- 3-3	370	711 -	410	$\begin{array}{llll}311 & 3\end{array}$	450	$73-3$
	- 31-	371	3473 -	411	- 3233	451	$13-$
	3	372	$613-3$	412	13 7--	452	3-37
334	$\begin{array}{lllr}-3 & 47 & 3 \\ 13-17\end{array}$	373	7-37-	413	3-3-	453	$\begin{array}{llll}23 & 313\end{array}$
335	$\begin{array}{rrrr}13 & 7 & 3\end{array}$	374 375	$\begin{array}{rrrrr} \\ 319 & 3 & 23 \\ 11 & 313 & 3\end{array}$	414 415	413113	454	19 7--
336	- 373	376	- $53-$	416	323311	456	$\begin{array}{r} 329347 \\ -\quad 3-\quad 3 \end{array}$
337	--1131	377	378 -	417	$\begin{array}{ll}43 & 3-3\end{array}$	457	7172319
338	$3173-$	378	$\begin{array}{lllll}19 & 3 & 7 & 3\end{array}$	418	37475359	458	$3-313$
339	-3433	379	$17--29$	419	$\begin{array}{llll}3 & 7 & 313\end{array}$	459	-3-3
340	$1941-7$	380	$3-331$	420	- 373	460	$43-1711$
341	$3-313$	381	$\begin{array}{lllll}37 & 311 & 3\end{array}$	421	- 11 -	461	$\begin{array}{lllll}3 & 7 & 3 & 31\end{array}$
342 343	$\begin{array}{rrrrr}11 & 3 & 23 & 3 \\ 47 & -7 & 19\end{array}$	382	--43 7	422	3413 -	462	- 373
343	$47-719$	383	$3-311$	423	- 3193	463	1141 - -
344	$3113-$	384	23 3-3	424	--317	464	3-3-
345 346	$73-3$	385	--717	425	3-3-	465	- 3-3
346	--- -	386	$3-353$	426	- 3173	466	59-13 7
347	32337	387	$73-3$	427	--711	467	3-3-

Table 1. (Continued).

	$\begin{array}{lllll}1 & 3 & 7\end{array}$		$\begin{array}{lllll}1 & 3 & 7\end{array}$		$1 \begin{array}{llll}1 & 3 & 7 & 9\end{array}$		$\begin{array}{lllll}1 & 3 & 7\end{array}$
348	593113	388	-1113-	428	$3-3-3$	468	$\begin{array}{lllll}31 & 3 & 43 & 3\end{array}$
349	-713-	389	$\begin{array}{rrrr}317 & 3\end{array}$	429	$\begin{array}{ccccr}7 & 3 & - & 3 \\ 11 & 13 & 59 & 31\end{array}$	469 470	- $\begin{aligned} & 13 \\ & -717\end{aligned}$
350	331311	390	47 3-3	430	11135931	471	$\begin{array}{lllll}3 & - & 53\end{array}$
351	- 3-3	391	-7-3-	432	3193 29	472	--29-
352	713 - -	392 393	$3-3-$ -313	432	$\begin{array}{ll}29 & 3 \\ 61 & 7\end{array}$	473	3-37
353 354	3-3-3-	393 394 3	-7-3111	434	6143 3-	474	113473
354 355	-53 $11-$	395	$\begin{array}{llll}3 & 59 & 3 & 37\end{array}$	435	$193-3$	475	-767-
356	$\begin{array}{llll}3 & 7 & 3\end{array}$	396	17 3-3	436	$7-1117$	476	$\begin{array}{llllll}3 & 11 & 319\end{array}$
357	- 373	397	11294123	437	$3-329$	477	$\begin{array}{lllll}13 & 3 & 17 & 3\end{array}$
358	--1737	398	$3783-$	438	$\begin{array}{lllll}13 & 3 & 41 & 3\end{array}$	478	$\begin{aligned} & 7-3 \\ & 3-3 \end{aligned}$
359	3-359	399	$\begin{array}{lllll}13 & 3 & 7 & 3\end{array}$	439	- $23-53$	479 600	$173-3-$
480	-311 3	520	$\begin{array}{llllll}7 & 11 & 41 & - \\ 3 & 13 & 3 & 17\end{array}$	560 561	$\begin{array}{rrrr}313 & 371 \\ 31 & 341 & 3\end{array}$	600	$\begin{array}{lll} 17 & 3 & 3 \\ - & 711 & 13 \end{array}$
481 482	$\begin{array}{rrrrr}17 & - & -61 \\ 3 & 7 & 3 & 11\end{array}$	521 522	$\begin{array}{rrrrr}3 & 13 & 3 & 17 \\ 23 & 3 & -\quad 3\end{array}$	561 562	$\begin{array}{r}31 \\ 7-17 \\ \hline\end{array}$	602	$3193-$
482	$\begin{array}{r}3 \\ \hline\end{array}$	522	$\begin{array}{rrrr}23 & 3 & - \\ - & -13\end{array}$	562 563	343 3-	603	37 3-3
484	-47 293713	524	$\begin{array}{llll}3 & 7 & 3 & 29\end{array}$	564	- 3-3	604	$7--23$
485	323	525	$\begin{array}{lllll}59 & 3 & 7 & 3\end{array}$	565	----	605	$3-373$
486	- 3313	526	-192311	566	373 -	606	$113-3$
487	$-11-7$	527	3-3-	567	$\begin{array}{lllll}53 & 3 & 7 & 3\end{array}$	607	13-59-
488	3193 -	528	- 3173	568	$13-11-$	608	$73-$
489	$67 \quad 3593$	529	$1167-7$	569	$3-341$	609	- 373
490	13-7-	530	3-3-	570	- 3133	610	-173141
491	3173 -	531	$47 \quad 313$4	571	- $29-7$	611	$3-329$ -3113
492	$\begin{array}{lllll}7 & 3 & 13 & 3\end{array}$	532	$17-773$ $3-319$	572 573	359 11	612 613	- - $-\quad 177$
493	--311	533 534	$3-319$ 7 7	572 574	$\begin{array}{cccc}11 & 3 & -7 \\ - & -7 & \end{array}$	613	--1711
494 495	$3-37$ $-3-3$	534 535	$\begin{array}{rrrr}7 & 3 & 3 \\ -531123\end{array}$	574 575	- $\begin{array}{r}11 \\ 7\end{array}$	615	- 3473
496	-11 7 -	536	$\begin{array}{r}3 \\ \hline\end{array} 1317$	576	73733	616	$61-731$
497	3-313	537	$41 \quad 3193$	577	$292353-$	617	$3-337$
498	$173-3$	538	7-17	578	3-37	618	7323
499	7-19-	539	$3-3-$	579	-3113	619	4111
500	3-3-	540	$113-3$	580	-7-37	620	
501	3293	541	$7--$	581	$\begin{array}{r} 3-311 \\ -3-3 \end{array}$	621 622	$\begin{aligned} & -3- \\ & -713 \end{aligned}$
502	--1147	542 543	311361 $-\quad 3-3$	582 583	- 719 - $13-$	622	- 323317

Table 1. (Continued).

	$1 \begin{array}{llll}1 & 3 & 7\end{array}$		1379		$1 \begin{array}{llll}13 & 7\end{array}$		13
04	$\begin{array}{lllll}71 & 3 & 7 & 3\end{array}$	544	13-	584			
505	-3113-	545	$\begin{array}{lllll}3 & 7 & 3 & 53\end{array}$	588	$-3-3-3$	624	$\begin{array}{r} 793-3 \\ 713-11 \end{array}$
506	361 11	546	$\begin{array}{lllll}43 & 3 & 7 & 3\end{array}$	586	- 11 -	626	3-3-11
507 508	$113-3$ $-13-7$	547	-13--	587	$3783-$	627	-3-3
508	$\begin{array}{r}-13-7 \\ 3 \\ \hline 11\end{array}$	548	3-311	888	- 373	628	1161-19
510	$3113-$ $-3-3$	549 550	$\begin{array}{llll}17 & 3 & 23 & 3 \\ - & - & 7\end{array}$	589 590	4371-17	629	$373-$
511	$19-7-$	551	- 3 - 3 - 7	590 591	3-319	630	- 373
512	347323	552	3 $-3-3$	591	$31-$ - 7	31	-71
513	$\begin{array}{lllll}7 & 311\end{array}$	553	-11729	593	$\begin{array}{rrrrr}31-7 & -7 \\ 317 & 3 & -\end{array}$	632	$\begin{array}{r} 3-3- \\ 13-3-3 \end{array}$
514	$5337-19$	554	323331	594	$\begin{array}{lllll}13 & 3 & 19 & 3\end{array}$	633 634	$\begin{aligned} & 13-3-3 \\ & 17-11 \end{aligned}$
516	$3-37$	555	$73-3$	595	$11-759$	635	$3-3-$
516	13 3-3	556	$67-19-$	596	$367 \quad 347$	636	- 3-3
518	371	557 558	3-37	597	$7 \begin{aligned} & 7 \\ & 3\end{aligned} 43$	637	23-7-
519	29 3-3	559	3 37 7 3	598	$-31-53$	638	313 3-
640	37194313	680	- $\begin{array}{r}72911 \\ -\quad 311\end{array}$	599 720	$\begin{array}{lllll}3 & 13 & 3 & 7 \\ 9 & 3 & - & 3\end{array}$	639	$73-3$
641	$\begin{array}{lll}311 & 3 & 7\end{array}$	681	7 3 17	720	$3-$	760	$11-7$
642	3-3	682	$19--$	722	3313 -		323319 $-\quad 329$
643	$\begin{array}{llll}59 & 74147\end{array}$	683	3-37	723	$73-3$	762	- 3293
644	3173 -	684	- 3413	724	$13-11$	764	$3-3-$
645	- 3113	685	13 7-19	725	$3-37$	765	$\begin{array}{llll} 3 & - & 3 & - \\ 7 & 3 & 13 & 3 \end{array}$
646	72329 -	686	3-3-	726	$\begin{array}{llll}53 & 313\end{array}$	766	$\begin{array}{r} 7313 \\ 477911-3 \end{array}$
647	$3-311$	687	- 3133	727	$\begin{array}{ll}11 & 71929\end{array}$	767	3-37
648	- -4313 -4367	688	$7-7183$	728	$3-337$	768	- 3-3
650	-437367 $-7 \quad 3 \quad 3$	689	$361-3-$ 673	729	23 3-3	769	- 743 -
651	$\begin{array}{lllll}17 & 3 & 7 & 3\end{array}$	691	$673-3$ $-31-11$	731	$767-$ 371	770	3-313
652	-1161-	692	$\begin{array}{r}3 \\ \hline\end{array}$	731 732	371313 $-\quad 3173$	771 772	$113-3$ $7-59$
653	347313	693	$2937 \begin{array}{lll} \\ 29 & 7\end{array}$	733	--1141	773	7 -59 311 3
654	$313-3$	694	$1153-$	734	378 -	774	711371 -3613
655	--79 7	695	317 3-	735	-373	775	$23--$
65	3-3-3	696	- 3-3	736	$173753-$	776	$\begin{array}{llll}3 & 7 & 3 & 17\end{array}$
657	- 3 - ${ }^{3}$ -2911	697 698	-19-7	737	$\begin{array}{r}3 \\ \hline\end{array} 73$	777	$\begin{array}{lllll}19 & 3 & 7 & 3\end{array}$
659		698 699	$3-329$	738	$11 \begin{array}{llll}11 & 383\end{array}$	778	$314313-$
659	3193 -	699	- 3-3	739	19-13 7	779	$3-311$

Table 1. (Continued).

	$\begin{array}{lllll}1 & 3 & 7 & 9\end{array}$		$\begin{array}{lllll}1 & 3 & 7\end{array}$		$\begin{array}{lllll}1 & 3 & 7\end{array}$		137
660	3-3	700	-47 743	740	$\begin{array}{ll}311 & 331\end{array}$	780	29
661	111713 -	701	3-3-	741	- 3-3	1	7313
662	13 177	702	$73-3$	742	4113717	782	-
663	19 3-3	703	791331 -	743	$3-343$	783	$\begin{array}{lllll}41 & 3 & 17 & 3 \\ & 11 & 7\end{array}$
664	2971761	704	$3-37$	744	7311	784	-11747
665	3-3-	705	$11 \begin{array}{ll}11 & -3\end{array}$	745	-29--	785	3-329
666	- 3593	706	23737 -	746	3173	786	$73-3$
667	$7-11$ -	707	3113 -	747	313 -	787	17 -
668	3413 -	708	$\begin{array}{lllll}73 & 3 & 19 & 3\end{array}$	748	-7--	788	37
669	- 3373	709	7414731	749	$3593-$	789	533
670	-19	710	$3-3-$	750	$\begin{array}{rrr}13 & 3-3 \\ 711-73\end{array}$	790	
671	$\begin{array}{rrrrr}3 & 7 & 3 & - \\ 11 & 3 & 7 & 3\end{array}$	711	13 -1711	751 752	$711-73$ $3-3-$	$\begin{aligned} & 791 \\ & 792 \end{aligned}$	$\begin{array}{r} 3413- \\ 893-3 \end{array}$
672 673	$\begin{array}{ccccc}11 & 3 & 7 & 3 \\ 53 & - & - & 23\end{array}$	712	-1717 - 7 3 11	752 753	17-3-3	792	$\begin{array}{r} 89 \\ 7-17 \end{array}$
673 674	$\begin{array}{r}53 \\ \hline 1 \\ \hline 11\end{array}$	713	$\begin{array}{rrrrr}3 & 7 & 3 & 11 \\ 37 & 3 & 7 & 3\end{array}$	754	173-3	794	313 3-
675	$43 \quad 3293$	715	-2317-	755	$373-$	795	- 3733
676	--67 7	716	313367	756	-373	796	19-3113
677	313 3-	717	$713-3$	757	$67--11$	797	79
678	3113	718	$4311-7$	758	3	798	$\begin{array}{lllll}23 & 3 & 7 & 3\end{array}$
679	--713	719	$3-323$	759	- 371	799	$61-1119$
800	353 3-	840	$\begin{array}{llll}31 & 3 & 7 & 3\end{array}$	880	$13--23$	920	$3-3-$
80	- 3-3	841	134719 -	881	$373-$	921	$\begin{array}{lllll}61 & 3 & 13 & 3\end{array}$
802	1371237	842	3-3-	882	-37	922	11
803	3293 -	843	-3113	883	- 11 - -	923	
804	$\begin{array}{llll}11 & 313\end{array}$	844	$23--7$	884	3373	924	- 37
805	$83-$	845	379311	885	$\begin{array}{llll}53 & 317\end{array}$	925	$1119-47$
806	3113 -	846	- 3-3	886	-	926	$\begin{array}{rrrr}3 & 59 & 313\end{array}$
807	73413	847	4337761	887	319313	927	73 3-3
808	- $59-$	848	$\begin{array}{lllll}3 & 17 & 3 & 13\end{array}$	888	83 3-3	928	- 377 $-\quad 317$
809	$3-37$	849	7 3 29 3 11 47 67	889	$\begin{array}{r}17-711 \\ 329 \\ \hline\end{array}$	929	
810	- 3113	850	114767 $3-37$	890 891	$\begin{array}{llll}3 & 29 & 3 & 59 \\ 7 & 3 & 37 & 3\end{array}$	930	$\begin{aligned} & 713413 \\ & -677- \end{aligned}$
811	- $7-23$	851 852	$3-37$ $-3-3$	891 892	$\begin{array}{r}7337 \\ 11-79 \\ \hline\end{array}$	931 932	$\begin{array}{ll} -67 & 7- \\ 3-319 \end{array}$
812 813	$\begin{array}{rrrrr}3-311 \\ 47 & 3 & 79 & 3\end{array}$	852 853	- ${ }_{19} 7-3$	892 893	$11-79$ $3-37$	932 933	$73-3$
814	$717-29$	854	$3-383$	894	- 3233	934	-
815	331341	855	$17 \quad 3433$	895	71317	935	347

Table 1. (Continued).

	1379		$\begin{array}{lllll}1 & 3 & 7 & 9\end{array}$		1379		1379
816	-3-3	856	$7-1311$	896	3-3-	936	113173
817 818	- $1113-$	857	$3-323$	897	-3473	936 937	11317 $-7-83$
818	$\begin{array}{lllll}3 & 7 & 3 & 19\end{array}$	858	- 3313	898	7131189	938	311
819	- 373	859	1113 - -	899	$3173-$	939	- 3-3
820	591329 -	860	$\begin{array}{lll}3 & 7 & 3\end{array}$	900	- 3-3	940	$7-2397$
821 822	$34313-$ $-\quad 3193$	861	$\begin{array}{lllll}79 & 3 & 7 & 3\end{array}$	901	--7129	941	3-3-
822 823	- 3193	862	$37-$ - -	902	378 -	942	- 3113
824	- $3-373$	863	389353	903	$\begin{array}{lllll}11 & 3 & 7 & 3\end{array}$	943	
825	$\begin{array}{rrrrr}3 & -\quad 3 & 73 \\ 37 & 3 & 23 & 3\end{array}$	864 865	-4117-3-7	904 905	- $11138-$	944	$\begin{array}{rrrrr}3 & 7 & 3 & 11 \\ 13 & 3 & 7 & 3\end{array}$
826	$11-7$ -	866	3-3-	906	13 3-3	946	$\begin{array}{cccc}13 & 3 & 7 & 3 \\ - & - & -17\end{array}$
827	$3-317$	867	13 3-3	907	4743297	947	3-3-
828	$73-3$	868	-19 7-	908	331361	948	193533
829	---43	869	3-3-	909	-3113	949	$-11-7$
830 831	$\begin{array}{llll}319 & 3 & 7\end{array}$	870	7 3-3	910	19-7-	950	313337
831 832	- 3-3	871	$31-23-$	911	331311	951	- 3313
832 833	$53 \quad 7111-$	872	31137	912	$73-3$	952	-89 713
834	$\begin{array}{rrrrr}3 & 13 & 3 & 31 \\ 19 & 3 & 17 & 3\end{array}$	873	- 3-3	913	$23-13$	953	3-3-
835	7-61 13	875	$3-319$	914	34137 $-\quad 3-3$	954 955	$\begin{array}{llll}7 & 3 & 3 \\ -419 & \end{array}$
836	3-3-	876	- 3113	916	- 78953	956	41 19 11 373 3 7
837	$113-3$	877	73167 -	917	3-367	957	1733 17 17
838	$1783-$	878	3-311	918	- 3-3	958	$117-43$
839	$\begin{array}{llll}3 & 7 & 3 & 37\end{array}$	879	$\begin{array}{llll}59 & 319 & 3\end{array}$	919	72917 -	959	$\begin{array}{lll}353 & 329\end{array}$
960	- 3133	970	8931187	980	$3-317$	990	- 3-3
961 962	$7-59-$	971	3113 -	981	- 3-3	991	1123477
962	3-3-	972	- 3713	982	$71131-$	992	3-3-
963		973	37-7-	983	3-3-	993	- 3193
965	$\begin{array}{rrrrr}31 & -11 & - \\ 3 & 7 & 3 & 13\end{array}$	974 975	$\begin{array}{lllll}3 & - & 3 & - \\ 7 & 3 & 11 & 3\end{array}$	984	$13 \quad 3433$	994	-61 7 -
966	-373	976	$4313-$	985	- $597-7$	995	$\begin{array}{llll}337 & 3 & 23\end{array}$
967	1917 - -	977	32937	987	- 373	997	$\begin{array}{rrrr}7 & 3 & 3 \\ 13 & -11 & 17\end{array}$
968	323 3-	978	- 3-3	988	$41-11$	998	$\begin{array}{llll}367 & 3 & 7\end{array}$
969	$113-3$	979	- 79741	989	313319	999	$97 \quad 3133$

Reprinted with permission from U. Dudley, Elementary Number Theory, Second Edition, Copyright ${ }^{\odot} 1969$ and 1978 by W. H. Freeman and Company. All rights reserved.

Table 2. Values of Some Arithmetic Functions.

n	$\phi(n)$	$\tau(n)$	$\sigma(n)$
1	1	1	1
2	1	2	3
3	2	2	4
4	2	3	7
5	4	2	6
6	2	4	12
7	6	2	8
8	4	4	15
9	6	3	13
10	4	4	18
11	10	2	12
12	4	6	28
13	12	2	14
14	6	4	24
15	8	4	24
16	8	5	31
17	16	2	18
18	6	6	39
19	18	2	20
20	8	6	42
21	12	4	32
22	10	4	36
23	22	2	24
24	8	8	60
25	20	3	31
26	12	4	42
27	18	4	40
28	12		56
29	28	2	30
30	8	8	72
31	30	2	32
32	16	6	63
33	20	4	48
34	16	4	54
35	24	4	48
36	12	9	91
37	36	2	38
38	18	4	60
39	24	4	56
40	16	8	90
41	40	2	42
42	12	8	96
43	42	2	44
44	20	6	84
45	24	6	78
46	22	4	72
47	46	2	48
48	16	10	124
49	42		57

Table 2. (Continued).

n	$\phi(n)$	$\tau(n)$	$\sigma(n)$
50	20	6	93
51	32	4	72
52	24	6	98
53	52	2	54
54	18	8	120
55	40	4	72
56	24	8	120
57	36	4	80
58	28	4	90
59	58	2	60
60	16	12	168
61	60	2	62
62	30	4	96
63	36	6	104
64	32	7	127
65	48	4	84
66	20	8	144
67	66	2	68
68	32	6	126
69	44	4	96
70	24	8	144
71	70	2	72
72	24	12	195
73	72	2	74
74	36	4	114
75	40	6	124
76	36	6	140
77	60	4	96
78	24	8	168
79	78	2	80
80	32	10	186
81	54	5	121
82	40	4	126
83	82	2	84
84	24	12	224
85	64	4	108
86	42	4	132
87 88	56	4	120
88	40	8	180
89	88	2	90
90	24	12	234
91	72	4	112
92	44	6	168
93	60	4	128
94	46	4	144
95	72	4	120
96	32	12	252
97	96	2	98
98	42	6	171
99 100	60	6	156
100	40	9	217

Table 3. Primitive Roots Modulo Primes
The least primitive root r modulo p for each prime $p, p<1000$ is given in the table.

p	r	p	r	p	r	p	r
	1	191	19	439	15	709	2
3	2	193	5	443	2	719	11
5	2	197	2	449	3	727	5
7	3	199	3	457	13	733	6
11	2	211	2	461	2	739	3
13	2	223	3	463	3	743	5
17	3	227	2	467	2	751	3
19	2	229	6	479	13	757	2
23	5	233	3	487	3	761	6
29	2	239	7	491	2	769	11
31	3	241	7	499	7	773	2
37	2	251	6	503	5	787	2
41	6	257	3	509	2	797	2
43	3	263	5	521	3	809	3
47	5	269	2	523	2	821	2
53	2	271	6	547	2	823	3
59	2	277	3	557	2	827	2
61	2	283	3	563	2	829	2
71	7	293	2	569	3	839	11
73	5	307	5	571	3	853	2
79	3	311	17	577	5	857	3
83	2	313	10	587	2	859	5
89	3	317	2	593	3 7	877	2
97	5	331	3 10	601	7	881	3
101	2 5	347	2	607	3	883	2
103 107	2	349	2	613	2	887	5
109	6	353	3	617	3	907	2
113	3	359	7	619	2	911	17
127	3	367	6	631	3	919	7
131	2	373	2	641	3	929	3
137	3	379	2	643	11	941	2
139	2	383 389	5	653	2	947	2
149 151	6	397	5	659	2	953	3
157	5	401	3	601	2	967	5
163	2	409	21	673	5	971	6
167	5	419	2	677	2	977	3
173	2	421	2	683	5	983	5
179	2	431	7	691	3	991	6
181	2	433	5	701	2	997	

Table 4. Indices

Reprinted with permission from J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill Book Company. Copyright (c) 1939.

Table 4. (Continued).

p	Numbers																
	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	
37	8	19	18														
41	19	21	2	32	35	6	20				ndice						
43	23	18	14	7	4	33	22	6	21								
47	34	33	30	42	17	31	9	15	24	13	43	41	23				
53	11	9	36	30	38	41	50	45	32	22	8	29	40	44	21	23	
59	41	24	44	55	39	37	9	14	11	33	27	48	16	23	54	36	
61	48	11	14	39	27	46	25	54	56	43	17	34	58	20	10	38	
67	65	38	14	22	11	58	18	53	63	9	61	27	29	50	43	46	
71	55	29	64	20	22	65	46	25	33	48	43	10	21	9	50	2	
78	29	34	28	64	70	65	25	4	47	51	71	13	54	31	38	66	
79	25	37	10	19	36	35	74	75	58	49	76	64	30	59	17	28	
83	57	35	64	20	48	67	30	40	81	71	26	7	61	23	76	16	
89	22	63	34	11	51	24	30	21	10	29	28	72	73	54	65	74	
97	27	32	16	91	19	95	7	85	39	4	58	45	15	84	14	62	
p	Numbers																
	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	
53	43	27	26										dices				
59	13	32	47	22	35	31	21	30	29								
61	45	53	42	33	19	37	52	32	36	31	30						
67	31	37	21	57	52	8	26	49	45	36	56	7	48	35	6	34	
71	62	5	51	23	14	59	19	42	4	3	66	69	17	53	36	67	
73	10	27	3	53	26	56	57	68	43	5	23	58	19	45	48	60	0
79	50	22	42	77	7	52	65	33	15	31	71	45	60	55	24	18	
83	55	46	79	59	53	51	11	37	13	34	19	66	39	70	6	22	2
89	68	7	55	78	19	66	41	36	75	43	15	69	47	83	8		5
97	36	63	93	10	52	87	37	55	47	67	43	64	80	75	12	26	
p	Numbers																
	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	81
67	33																
71	63	47	61	41	35									dices			
78	69	50	37	52	42	44	36										
79	73	48	29	27	41	51	14	44	23	47	40	43	39				
83	15	45	58	50	36	33	65	69	21	44	49	32	68	43	31		42
89	13	56	38	58	79	62	50	20	27	53	67	77	40	42	46		4
97	94	57	61	51	66	11	50	28	29	72	53	21	33	30	41		88
p	Numbers																
	82	83	84	85		86	87	88	89	90	91	92	93	94	95		96
	41													dices			
89	37	61	26	76		45	60	44			56	49	20	22	82		48
97	23	17	73	90		38	83		54	79							

Table 4. (Continued).

p		Indices																		
		1		2	3	4	5		6	7	8	9	10	11	12	13	14	15		6
	3	2		1																
	5	2		4	3	1														
	7	3		2	6	4	5		1						Numb					
1	1	2		4	8	5	10		9	7.										
1	3	2		4	8	3	6		12	11	9	5	10	7						
1	7	3		9	10	13	5		15	11	16	14	8	7	4					
19	9	2		4	8	16	13		7	14	9	18		15	4	12	2	6		1
23		5		2	10	4	20		8	17	16	11	17 9	15	11	3	6	12		5
29		2		4	8	16	3		6	12	24	19	9	18	18	21	13	19		3
31		3		9	7	19	26		6	17	20	19	9 2	18	7	14	28	27	2	
37		2	4	4	8	16	32		27	17	34	31	25	13	8	24	10	30	28	
41		6	36	6	1	25	27		39	29	10	19	32	13	26	15	30	23		
43		3	9	92	7	38	28	4	1	37	25		32	28	4	24	21	3	18	
47		5	25	5	1	14	23	2	1	11	25	32	10	30	4	12	36	22	23	
53		2	4	4	8	16	32		1	12	8	40	12	13	18	43	27	41	17	
59		2	4	4	8	16	32		5	10	4	35	17	34	15	30	7	14	28	
61		2	4	4	8	16	32		3	10	20	40	21	42	25	50	41	23	46	
67		2	4	4	8	16	32	6	4	61	12	24	48	35	9	18	36	11	22	
71		7	49	5		58	51		2	14	55	43	19	38	9	18	36	5	10	
73		5	25	5		41	59		3	15	2	47	45	31	4	28	54	23	19	
79		3	9	27		2	6	18		54	4	12	50	31	9	45	6	30	4	
83		2	4	8	8	16	32	6		45	7	14	36	29	8	24	72	58	16	
89		3	9	27		81	65	17		51	64	14	42	56	29	58	33	66	49	
97		5	25	28		43	21	8	8	40	6	30	53	71	64	29	20	$\begin{aligned} & 60 \\ & 46 \end{aligned}$	2 36	
p	Indices																			
	17		18	19	20	2		22	23	24	25	26	27	28	29	30	31	32	33	
19	10		1																	
23	15		6	7	12	1		1						umb						
29	21		13	26	23	1		5	10	20	11	22	15	1						
31	22		4	12	5	15		14	11	2	6	18	23	7	21	1				
37	18		36	35	33	29		21	5	10	20	3	6	12	24	11	22	7		
41	26		33	34	40	3		5	30	16	14	2	12	31	22	9	13	37	17	
43	26		35	19	14	42		40	34	16	5	15	2	6	18	11	33	13	39	
47	38		2	10	3	15		28	46	42	22	16	33	24	26	36	39	13	35	
53	3		6	12	24	48		43	33	13	26	52	51	49	45	37	21	42	31	
59	33		7	14	28	56		53	47	35	11	22	44	29	58	57	55	51	43	
61	44		27	54	47	33		5	10	20	40	19	38	15	30	60	59	57	53	
67	20		40	13	26	52		7	7	14	28	56	45	23	46	25	50	33	66	
71	62		8	56	37	46		8	53	16	41	3	21		35	32	11	6	42	
73	20		27	62	18	17		2	60	8	40	54	51	36	34	24	47	16	7	
79	48		65	37	32	17	5	1	74	64	34	23	69	49	68	46	59	19	57	
83	15		30	60	37	74	6	5	47	11	22	44	5	10	20	40	80	77	71	
89	6		18	54	73	41	3	4	13	39	28	84	74	44	43	40	31	4	12	
97	83		27	38	93	77	94	4	82	22	13	65	34	73	74	79	7	35	78	

Table 4. (Continued).

	Indices																
${ }^{p} 3$	34	35	36	37	38	39	40	41	42		43	44	45	46	47	48	49
372	28	19	1														
412	20	38	23	15	8	7	1						mber				
4331	31	7	21	20	17	8	24	29	1								
473	34	29	4	20	6	30	9	45	37		44	32	19				
53	9	18	36	19	38	23	46	39	25		50	47	41	29	5		
59	27	54	49	39	19	38	17	34	9		18	36	13	26	52	45	31
61	45	29	58	55	49	37	13	26	52		43	25	50	39	17	34	7
67	65	63	59	51	35	3	6	12	24		48	29	58	49	31	62	7 17
71	10	70	64	22	12	13	20	69	57		44	24	26	40	67	43	17
73	35	29	72	68	48	21	32	14	70		58	71	63	23	42	64	28 43
79	13	39	38	35	26	78	76	70	52		77	73	61	25	75	67	43
83	59	35	70	57	31	62	41	82	81		79	75	67	51	19	38	76
89	36	19	57	82	68	26	78	56	79		59	88	86	80	62	8	24
97	2	10	50	56	86	42	16	80	12		60	9	45	31	58	96	92
p	Indices																
	50	51	52	53	54	55	56	57		58	59	60	61	62	63	64	65
53	40	27	1														
59	3	6	12	24	48	37	15	30		1				umbe			
61	14	28	56	51	41	21	42	23		46	31	22					
67	47	27	54	41	15	30	60	53			11	22	44	21			
71	48	52	9	63	15	34	25	33		18	55	30	68	50	66	36	39 39
73	67	43	69	53	46	11	55	56		61	13	65	33	19	22	37	39 56
79	50	71	55	7	21	63	31	14		42	47	62	28	9	15	45	56
83	69	55	27	54	25	50	17	34		68	53	23	46	9	18	36	72
89	72	38	25	75	47	52	67	23		69	29	87	83	71	35	16	48
97	72	69	54	76	89	57	91	67		44	26	33	68	49	51	61	14
p	Indices																
	66	67	68	69	70	, 71	72	73		74	75	76	77	78	79	80	81
67	1																
71	60	65	29	61	1										Numb		
73	49	26	57	66	38	44											
79	10	30	11	33	20	00	2	66		40	41	44	53	1			
83	61	39	78	73	63	34		3		12	24	48	13	25	52	21	42
89	55	76	50	61		5	5	54		49	58	85	77	53	70	32	7
97	70	59	4	20	0	315	57	58		32	63	24	423	18	90	62	19
p	Indices																
	82	-83	838	84	85	86	87	88	89		90	91	92	93	94	95	96
	3															Numb	
89	21	$1{ }^{1} 63$	631	11	33	10	30	1					88	52	66	- 39	${ }^{1}$
97	77		37	47	41	11	55	81	17		85	37	88	52	66	- 39	

Table 5. Simple Continued Fractions for Square Roots of Positive Integers

d	\sqrt{d}	d	\sqrt{d}
2	[1; $\overline{2}]$	53	[7; $\overline{3,1,1,3,14}]$
3	[1;1,2]	54	[7; $\frac{3,1,1,3,14}{2,1,6,1,2,14]}$
5	[2; $\overline{4}]$	55	[7; $2,2,2,2,14$]
6	[2;2,4]	56	[7 ; $2,2,14$]
7	[2;1,1,1,4]	57	$[7 ; 1,1,4,1,1,14]$
8 10	[2; 1,4$]$	58	$\left[7 ; \frac{1,1,1,1,1,1,14}{}\right]$
10	[3;6]	59	$[7 ; 1,2,7,2,1,14]$
11 12	[3;3,6]	60	[7;1,2,1,14]
12	[3;2,6]	61	[7, $\overline{1,4,3,1,2,2,1,3,4,1,14}]$
14	[3;1,1,1,1,6]	62	[7; $1,6,1,14]$]
14 15	[3;1,2,1,6]	63	[7, 1,14]
17	$[3 ; 1,6]$ $[4 ; 8]$	65	[8;16]
18	$[4 ; 8]$ $[4 ; 4,8]$	66	[8;8,16]
18 19	$[4 ; 4,8]$ $[4 ; 2,1,3,1,2,8]$	67	[8;5,2,1,1,7,1,1,2,5,16]
19 20	$[4 ; 2,1,3,1,2,8]$ $[4 ; 2,8]$	68	[8;4,16]
21	$[4 ; 2,8]$	69	[8;3,3,1,4,1,3,3,16]
22	$[4 ; 1,1,2,1,1,8]$ $[4 ; 1,2,4,2,1,8]$	70	[8;2,1,2,1,2,16]
23	$[4 ; 1,2,4,2,1,8]$ $[4 ; 1,3,1,8]$	71	[8;2,2,1,7,1,2,2,16]
24	$[4 ; 1,3,1,8]$ $[4 ; 1,8]$	72	[8;2,16]
26	[5;10]	73	[8;1,1,5,5,1,1,16]
27	[$5 ; \overline{5,10}]$	74	[8;1,1,1,1,16]
28	[5;3,2,3,10]	75	[8;1,1,1,16]
29	[5;2,1,1,2,10]	76 77	$[8,1,2,1,1,5,4,5,1,1,2,1,16]$
30	[5;2,10]	78	$[8 ; 1,3,2,3,1,16]$
31	[5; $\overline{1,1,3,5,3,1,1,10}]$	79	[8;1,7,1,16]
32 33	[5;1,1,1,10]	80	[8;1,16]
33 34	[5;1,2,1,10]	82	[9;18]
34 35	[5;1,4, 1,10$]$	83	[9;9,18]
35 37	[5;1,10]	84	[9;6,18]
37	[6;12]	85	$[9 ; 4,1,1,4,18]$
38 39	[6;6,12]	86	$[9 ; 3,1,1,1,8,1,1,1,3,18]$
39	[6;4,12]	87	$[9 ; 3,18]$
40	[$6 ; 3,12]$	88	[$9 ; \underline{2,1,1,1,2,18}]$
41	[6;2,2,12]	89	[9;2,3,3,2,18]
42	[6;2,12]	90	[$9 ; 2,18$]
43	[6;1,1,3,1,5,1,3,1,1,12]	91	[9; $1,1,5,1,5,1,1,18]$
44	[6;1,1,1,2,1,1,1,12]	92	[9,1,1,2,4,2,1,1,18]
45	[6:1,2,2,2,1,12]	93	[9;1,1,4,6,4,1,1,18]
47	[6; $\frac{1,3,1,1,2,6,2,1,1,3,1,12]}{}$	94	[9;1,2,3,1,1,5,1,8,1,5,1,1,3,2,1,18]
8	[6;1,5,1,12]	95	[9;1,2,1,18]
-	[6;1,12]	96	[9;1,3,1,18]
1	[7;14]	97	[9;1,5,1,1,1,1,1,1,5,18$]$
1	[7;7,14]	98	[9;1,8,1,18]
52	[7;4, 1,2, 1,4,14]	99	[9;1,18]

Answers to Selected Problems

Section 1.1

1. a) 20 b) 55 c) 385 d) 2046
2. a) 32 b) 120 c) 14400 d) 32768
3. $1,2,6,24,120,720,5040,40320,362880,3628800$
4. $1,120,252,120,1$
5. $84,126,210$
6. $2^{n(n+1) / 2}$
7. 2^{n}
8. 65536
9. $x=y=1, z=2$

Section 1.2

1. $99=3 \cdot 33,145=5 \cdot 29,343=7 \cdot 49,0=888 \cdot 0$
2. a), c), d), e)
3. a) 5,15 b) 17,0 c) $-3,7$ d) $-6,2$
4. $a= \pm b$
5. b) 3
6. 0 if a is an integer, -1 otherwise.
7. b) $200,40,8,1$ c) 128,18
8. $20+18[x-1], \$ 1.08$ no, $\$ 1.28$ yes

Section 1.3

1. $(5554)_{7},(2112)_{10}$
2. $(328)_{10},(11111000000)_{2}$
3. $(8 F 5)_{16},(74 E)_{16}$
4. $(101010111100110111101111)_{2},(1101111011111010110011101101)_{2}$, (1001101000001011) 2
5. b) $-39,26$ c) $(1001)_{-2},(110011)_{-2},(1001101)_{-2}$
6. а) $14=2 \cdot 3!+1 \cdot 2!, 56=2 \cdot 4!+1 \cdot 3!+1 \cdot 2!, 384=3 \cdot 5!+1 \cdot 4$!

Section 1.4

1. $(10010110110)_{2}$
2. $(11110111)_{2}$
3. $(10110001101)_{2}$
4. $(1110)_{2},(10001)_{2}$
5. $(16665)_{16}$
6. $(33 E F)_{16}$
7. $(B 705736)_{16}$
8. $(11 C)_{16},(2 B 95)_{16}$
9. a) 7 gross, 7 dozen, and 8 eggs
c) 3 gross, 11 dozen, and 6 eggs
b) 11 gross, 5 dozen, and 11 eggs

Section 1.5

1. a) prime b) prime c) prime d) composite e) prime f) composite
2. $3,7,31,211,2311,59$
3. a) $24,25,26,27,28$
$\begin{array}{ll}\text { 14. } 53\end{array}$
b) $1000001!+2,1000001!+3, \ldots, 1000001!+1000001$
4. а) $1,3,7,9,13,15,21,25,31,33,37,43,49,51,63,67,69,73,75,79,87,93,99$

Section 2.1

1. a) 5 b) 111 c) 6 d) 1 e) 11 f) 2
2. 1 if a is odd and b is even or vice versa, 2 otherwise
3. 2121
4. a) 2 b) 5 c) 99 d) 3 e) 7 f) 1001
5. $66,70,105 ; 66,70,165$; or $42,70,165$
6. $(3 \mathrm{k}+2,5 \mathrm{k}+3)=1$ since $5(3 k+2)-3(5 \mathrm{k}+3)=1$

Section 2.2

1. a) 15 b) 6 c) 2 d) 5
2. a) $15=2 \cdot 45+(-1) 75$ b) $6=6 \cdot 222+(-13) 102$
c) $2=65 \cdot 1414+(-138) 666$ d) $5=800.44350+(-1707) 20785$
3. a) $1=1 \cdot 6+1 \cdot 10+(-1) 15$
b) $7=0 \cdot 70+(-1) 98+1 \cdot 105$
c) $5=-5 \cdot 280+4 \cdot 330+(-1) 405+1 \cdot 490$
4. a) 2
5. a) 2

Section 2.3

$\begin{array}{llllllll}\text { 1. a) } 2^{2} \cdot 3^{2} & \text { b) } 3 \cdot 13 & \text { c) } 2^{2} \cdot 5^{2} & \text { d) } 17^{2} & \text { e) } 2 \cdot 3 \cdot 37 & \text { f) } 2^{8} & \text { g) } 5 \cdot 103 & \text { h) } 23 \cdot 43\end{array}$ i) $2^{4} \cdot 3^{2} \cdot 5 \cdot 7$
j) $2^{6} 5^{3} \quad$ k) $\left.3 \cdot 5 \cdot 7^{2} \cdot 13 \quad 1\right) 9 \cdot 11 \cdot 101 \quad 3^{2} \cdot 11 \cdot 101$
8. b) $2^{18} \cdot 3^{8} \cdot 5^{4} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$
9. 249,337
10. $300,301,302,303,304$
12. b) $5,9,13,17,21,29,33,37,41,49,53,57,61,69,73,77,89,93,97,101$
d) $693=21.33=9.77$
14. a) 24 b) 210 c) 140 d) 11211 e) 80640 f) 342657
15. a) $2^{2} 3^{3} 5^{3} 7^{2}, 2^{7} 3^{5} 5^{5} 7^{7}$ b) $1,2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29$
c) $2 \cdot 5 \cdot 11,2^{3} \cdot 3 \cdot 5^{7} \cdot 7 \cdot 11^{13} \cdot 13$
d) $101^{1000}, 41^{11} 47^{11} 79^{111} 83^{111} 101^{1001}$
17. 18,$540 ; 36,270 ; 54,180 ; 90,108$
21. 308,490
25. a) 30,1001
29. а) $3^{2} \cdot 11 \cdot 75-104 \cdot 137$ c) $7 \cdot 31 \cdot 151$
d) $3^{2} \cdot 5 \cdot 7 \cdot 13 \cdot 17 \cdot 241$
e) $5^{2} \cdot 13 \cdot 41 \cdot 61 \cdot 1321$

$$
\text { f) } 3^{3} \cdot 5 \cdot 7 \cdot 13 \cdot 19 \cdot 37 \cdot 73 \cdot 109
$$

30. 103

Section 2.4

1. a) $23 \cdot 47 \cdot 641$
b) $7 \cdot 37 \cdot 53 \cdot 107$
c) $19^{2} \cdot 31 \cdot 4969$
2. a) 13.593
b) 73
c) 17.641
d) $103 \cdot 107$
e) $1601 \cdot 1999$
f) 4957.4967
3. c) 17.347
4. d) $13 \cdot 17,41 \cdot 61,293 \cdot 3413$
5. $5 \cdot 13 \cdot 37 \cdot 109$
6. $5 \quad 13.2^{n} \log _{10} 2$

Section 2.5

$\begin{array}{ll}\text { 1. a) } x=33+5 n, y=-11-2 n & \text { b) } x=-300+13 n, \mathrm{y}=400-17 n\end{array}$
$\begin{array}{ll}\text { 1. a) } x=33+5 n, y=-11-2 n & \text { b) } x=-300+13 n, y=400-17 n \\ \begin{array}{ll}\text { c) } x-21+14 n, y=-21-24 n & \text { d) no solution }\end{array} \quad \text { () } x=21+2 n & y=-21-3 n \\ \text { e) } x=889+1969 n, y=-633-1402 n & \end{array}$
2. 39 French francs, 11 Swiss francs
3. 17 apples, 23 oranges But $a_{p}<O_{r}$.
4. 18
5. a) $(14$-cent stamps, 21 -cent stamps $)=(25,0),(22,2),(19,4),(16,6),(13,8)$, $(10,10),(7,12),(4,14),(1,16)$
b) no solution
c) $(14$-cent stamps, 21 -cent stamps $)=(54,1),(51,3),(48,5),(45,7)$, $(42,9),(39,11),(36,13),(33,15),(30,17),(27,19),(24,21),(21,23)$, $(18,25),(15,27),(12,29),(9,31),(6,33),(3,35),(0,37)$
10. a) 3 b) 29 c) 242
11. a) $x=98-6 n, y=1+7 n, z=1-n$ b) no solution
c) $x=50-n, y=-100+3 n, z=150-3 n, w=n$
12. $($ nickels, dimes, quarters $)=(20,0,4),(17,4,3),(14,8,2),(11,12,1)$, $(8,16,0)$
13. 9 first-class, 19 second-class, 41 standby 14. no 15 . 7 cents and 12 cents

Section 3.1

1. a) $1,2,11,22$ b) $1,3,9,27,37,111,333,999$
2. a) 9 b) 9 c) 0 d) 12 e) 4 f) 1

3. a) 4 o'clock b) 6 o'clock c) 4 o'clock
4. $0,1,5,6$
5. $a \equiv \pm b(\bmod p)$
6. $n \equiv \pm 1(\bmod 6)$
7. $1,3,5,7,9,11,13,15,17,19,21,23,25$
8. a) 42
b) 2 c) 18
9. a) $1 \quad$ b) 1 c) 1 d) 1 e) $a^{p-1} \equiv 1(\bmod p)$ when p is prime and $p \nmid a$
10. a) -1
b) -1 c) -1
d) -1
e) $(p-1)!\equiv-1(\bmod p)$ when p is prime
11. a) 15621

Section 3.2

1. a) $x \equiv 3(\bmod 7)$
e) $x \equiv 812(\bmod 1001)$ b) $x \equiv 2,5,8(\bmod 9) \quad$ c) $x \equiv 7(\bmod 21)$
d) no solution
c) $x \equiv 5(\bmod 23)$
2. 19 hours
3. $c \equiv 0,6,12,18,24(\bmod 30), 6$ solutions
4. a) 13 b) 7 c) 5 d) 16
5. a) $(x, y) \equiv(0,5),(1,2),(2,6),(3,3),(4,0),(5,4),(6,1)(\bmod 7)$
b) $(x, y) \equiv(1,1),(1,3),(1,5),(1,7),(3,0),(3,2),(3,4),(3,6),(5,1),(5,3),(5,5),(5,7)$, $(7,0),(7,2),(7,4),(7.6)(\bmod 8)$
c) $(x, y) \equiv(0,0),(0,3),(0,6),(1,1),(1,4),(1,7),(2,2),(2,5),(2,8),(3,0),(3,3),(3,6)$, $(4,1),(4,4),(4,7),(5,2),(5,5),(5,8),(6,0),(6,3),(6,6),(7,1),(7,4),(7,7),(8,2)$, $(8,5),(8,8)(\bmod 9)$
d) no solution

Section 3.3

1. a) $x \equiv 37(\bmod 187)$
b) $x \equiv 23(\bmod 30)$
c) $x \equiv 6(\bmod 210)$
d) $x \equiv 150999(\bmod 554268)$
2. $2101-209$
3. a) $\mathrm{x} \equiv 28(\bmod 30)$
b) no solution
4. a) $x \equiv 23(\bmod 30)$
b) $x \equiv 100(\bmod 210) \quad$ c) no solution
d) $x \equiv 44(\bmod 840)$
e) no solution
5. 301
6. $0000,0001,0625,9376$
7. 26 feet 6 inches

Section 3.4

1. a) $(x, y) \equiv(2,2)(\bmod 5) \quad$ b) no solution \quad c) $(x, y) \equiv(0,2),(1,3),(2,4),(3,0)$ or
$(4,1)(\bmod 5)$
2. a) $(x, y) \equiv(0,4),(1,1),(2,5),(3,2),(4,6),(5,3),(6,0)(\bmod 7) \quad$ b) no solution
3. $0,1, p$, or p^{2}
4. a) $\left(\begin{array}{ll}0 & 1 \\ 2 & 3\end{array}\right)$
5. а) $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
b) $\left(\begin{array}{ll}3 & 1 \\ 4 & 2\end{array}\right)$ c) $\left(\begin{array}{ll}1 & 4 \\ 2 & 1\end{array}\right)$
6. a) $\left(\begin{array}{lll}4 & 4 & 3 \\ 4 & 3 & 4 \\ 3 & 4 & 4\end{array}\right)$ b) $\left(\begin{array}{lll}2 & 0 & 6 \\ 2 & 1 & 4 \\ 3 & 4 & 0\end{array}\right)$ c) $\left(\begin{array}{llll}5 & 5 & 5 & 4 \\ 5 & 5 & 4 & 5 \\ 5 & 4 & 5 & 5 \\ 4 & 5 & 5 & 5\end{array}\right)$
7. a) $x \equiv 0, y \equiv 1, z \equiv 2(\bmod 7) \quad$ b) $x \equiv 1, y \equiv 0, z \equiv 0(\bmod 7)$
c) $x \equiv 5, y \equiv 5, z \equiv 5, w \equiv 5(\bmod 7)$
8. a) 0 b) 5 c) 25 d) 1

Section 4.1

1. a) 2^{8}
b) 2^{4}
c) 2^{10}
d) 2^{1}
2. a) 5^{3}
b) 5^{4} c) 5^{1}
c) 5^{9}
3. a) by 3 , not by 9
b) by 3 , and 9
c) by 3 , and 9
d) not by 3
4. a) no
b) yes
c) no
d) no
5. a) those with their number of digits divisible by 3 , and by 9 b) those with an even number of digits c) those with their number of digits divisible by 6 (same for 7 and for 13)
d) 11
6. $a_{2 n} a_{2 n-1} \ldots a_{1} a_{0} \equiv a_{2 n} a_{2 n-1} a_{2 n-2}+\cdots+a_{5} a_{4} a_{3}+a_{2} a_{1} a_{0}(\bmod 37)$, $37 \backslash 443692,37 \mid 11092785$
7. a) no b) not by 3 , by 5 c) not by 5 , not by 13 d) yes
8. 73 c
9. $?=6$
10. a) incorrect b) incorrect c) passes casting out nines check d) no, for example part (c) is incorrect, but passes check

Section 4.2

2.

a) Friday
b) Friday
c) Monday
d) Thursday
e) Saturday
f) Saturday
g) Tuesday
h) Thursday
i) Monday
j) Sunday
k) Friday

1) Wednesday

Section 4.3

1. a)

Team Round	1	2	3	4	5	6	7
1	7	6	5	bye	3	2	1
2	bye	7	6	5	4	3	2
3	2	1	7	6	byc	4	3
4	3	bye	1	7	6	5	4
5	4	3	2	1	7	bye	5
6	5	4	bye	2	1	7	6
7	6	5	4	3	2	2	bye

3. a) Home teams: Round $1: 4,5$, Round $2: 2,3$, Round $3: 1,5$, Round $4: 3,4$, Round 5 : 1,2

Section 4.4
5. $558,1002,2174,4$

Section 5.1

1. -16
2. 1
3. 4
4. a) $x \equiv 9(\bmod 17)$
b) $x \equiv 17(\bmod 19)$
5. 1
6. 52

Section 5.2

17. $7 \cdot 23 \cdot 67$

Section 5.3

1. a) 1,5
b) $1,2,4,5,7,8$
c) $1,3,7,9$
d) $1,3,5,9,11,13$
c) $1,3,5,7,9.11,13,15$
2. $1,3,5, \ldots, 2^{m}-1$
3. 11
4. a) $x \equiv 9(\bmod 14)$
b) $x \equiv 13(\bmod 15)$
c) $x \equiv 7(\bmod 16)$
5. a) 1 b) 1
6. $\phi(13)=12, \phi(14)=6, \phi(16)=8, \phi(17)=16, \phi(18)=6, \phi(19)=18, \phi(20)=8$

Section $6.1 \quad 171$

1. a) 40 b) 128 c) 720 d) 5760
2. a) 1,2 b) $3,4,6$ c) no solution d) $7,9,14$, and 18 e) no solution f) $35,39,45,52,56,70,72,78,84,90$
3. a) 1,2 b) those integers n such that $8|n ; 4| n$, and n has at least one odd prime factor; n has at least two odd prime factors; or n has a prime factor $\mathrm{p} \equiv 1(\bmod 4)$ c) $2^{k}, k=1,2, \ldots$

Section 6.2

1. a) 48
b) 399
c) 2340
d) $2^{101}-1$
e) 6912
2. a) 9
b) 6 c) 15
d) 256
3. perfect squares
4. those positive integers that have only even powers of odd primes in their prime-
power factorization
5. a) 6,11
b) 10,17
c) $14,15,21,23$
d) $33,35,47$
e) no solution f) 44, 65
6. a) 1 b) 2
c) 4
d) 12
e) 192
f) 45360
7. a) primes primes
8. $n^{\tau(n) / 2}$
9. a) $73,252,2044$
b) $1+p^{k}$
c) $\left(p^{k(a+1)}-1\right) /\left(p^{k}-1\right)$
e) $\prod_{j=1}^{m}\left(p_{j}^{k(a,+1)}-1\right) /\left(p_{j}^{k}-1\right)$

Section 6.3

1. $6,28,496,8128,33550336,8589869056$
2. a) $12,18,20,24,30,36$ b) 945
3. a), c) prime
4. a), b), d) prime

Section 7.1

1. DWWDF NDWGD ZQ
2. I CAME I SAW I CONQUERED
3. IEXXK FZKXC UUKZC STKJW
4. PHONE HOME
5. 12
6. 9.12
7. а) $C \equiv 7 P+16(\bmod 26) \quad$ b) $C \equiv a c P+b c+d(\bmod 26)$
8. a) VSPFXH HIPKLB KIPMIE GTG b) EXPLOSIVES INSIDE

Section 7.2

1. RL OQ NZ OF XM CQ KE QI VD AZ
2. IGNORE THIS
3. $\left(\begin{array}{cc}3 & 24 \\ 24 & 25\end{array}\right)$
4. a) 1 b) 13 c) 26
5. $\left(\begin{array}{cccc}2 & 1 & 3 & 3 \\ 1 & 23 & 10 \\ 2 & 5 & 3 & 7\end{array}\right)$
6. digraphic Hill cipher with enciphering matrix $\left(\begin{array}{cc}1 & 6 \\ 2 & 13\end{array}\right)$
7. $\left(\begin{array}{llllll}5 & 2 & 0 & 0 & 0 & 0 \\ 3 & 1 & 3 & 1 & 0 & 0 \\ 2 & 1 & 3 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 & 3 & 1 \\ 0 & 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 5 & 2\end{array}\right)$

Section 7.3

1. 1417172711176576077614
2. DO NOT READ THIS
3. GOOD GUESS
4. 92
5. 150

Section 7.4

1. 1453,3019
2. 12151224147100230116
3. EAT CHOCOLATE CAKE
4. a) 037103540858085800871359035400000087154317970535 b) 00190977 075603700343064702740872082100730845074000000008014808030415 045802740740
5. c) 00420056048104810763000000510000029402620995049505430972 00000734015206470972
6. d) 13831812035200001383013010801351138318120130097212080956 $000009721515093712971208 \quad 227315150000$
7. 0872115215370169

Section 7.5

1. a) yes b) no c) yes d) no
2. $18=2+16=2+3+13=3+4+11=7+11$
3. $(17,51,85,8,16,49,64)$
4. 6242382306332274
5. $(44,37,74,72,50,24)$
6. a) $60=2 \cdot 3 \cdot 10=2 \cdot 5 \cdot 6=6 \cdot 10 \quad$ b) $15960=8 \cdot 21 \cdot 95$

Section 7.6

1. a) $3696,2640,5600,385$
b) 5389
2. 829

Section 8.1

1. a) 4
b) 4 c) 6
2. a) 3
b) 2,3
c) 3,7
d) $2,6,7,11$
e) 3,5
f) 5,11
3. 4
4. b) 23.89
5. c) 2209

Section 8.2

1. a) 2
b) 4
c) 8
d) 6
e) 12
f) 22
2. a) 4
b) the modulus is not prime
3. 1
4. b) 6
5. c) $22,37,8,6,8,38,26$

Section 8.3

1. $4,10,22$
2. a) 2 b) 2 c) 3 d) 2
3. a) 2 b) 2 c) 2 d) 3
4. a) $5 \quad$ b) $5 \quad$ c) $15 \quad$ d) 15
5. $7,13,17,19$

Section 8.4

1. $\operatorname{ind}_{5} 1=22, \operatorname{ind}_{5} 2=2, \operatorname{ind}_{5} 3=16, \operatorname{ind}_{5} 4=4, \operatorname{ind}_{5} 5=1, \operatorname{ind}_{5} 6=18, \operatorname{ind}_{5} 7=19$,
$\operatorname{ind}_{5} 8=6$, ind $_{5} 9=10$, ind $_{5} 10=3$, ind $_{5} 11=9$, ind $_{5} 12=20$, ind $_{5} 13=14$, ind $514=21$,
$\operatorname{ind}_{5} 15=17, \operatorname{ind}_{5} 16=8, \operatorname{ind}_{5} 17=7, \operatorname{ind}_{5} 18=12, \operatorname{ind}_{5} 19=15, \operatorname{ind}_{5} 20=5$.
ind $_{5} 21=13$, ind $_{5} 22=11$
2. a) $x \equiv 9(\bmod 23) \quad$ b) $x \equiv 9,14(\bmod 23)$
3. a) $x \equiv 7,18(\bmod 22) \quad$ b) no solution
4. $a \equiv 2,5$, or $6(\bmod 13)$
5. $b \equiv 8,9,20$, or $21(\bmod 29)$
6. $x \equiv 10,16,57,59,90,99,115,134,144,145,149$, or $152(\bmod 156)$
7. $x \equiv 1(\bmod 22), x \equiv 0(\bmod 23)$, or $x \equiv 1,12,45,47,78,91,93,100,137,139,144$, $183,185,188,210,229,231,232,252,254,275,277.321,323,367,369,386,413,415,430$, 459,461 , or $496(\bmod 506)$
8. a) $(1,2),(0,2) \quad$ c) $x \equiv 29(\bmod 32), x \equiv 42(\bmod 8)$
9. b) $(0,0,1,1),(0,0,1,4) d) x \equiv 17(\bmod 60)$
10. b) $(49938.99876) /(4 \cdot 49939.99877)=.24999249 \ldots$

Section 8.6

1. a) 20
b) 12 c) 36 d) 48
e) 180 f) 388080
g) 8640
h) 125411328000
2. a) 1,2
b) $3,4,6,8,12,24$
c) no solution
d) $5,10,15,16,20,30,40,48,60$, $80,120,240$ e) no solution f) $7,9,14,18,21,28,36,42,56,63,72,84,126$. 168, 252, 504
3. 65520
4. a) 11
b) 2
c) 7
d) 11
e) 19 f) 38
5. $5 \cdot 13 \cdot 17 \cdot 29,5 \cdot 17 \cdot 29,5 \cdot 29 \cdot 73$

Section 8.7

1. $69,76,77,92,46,11,12,14,19,36,29,84,5,25,62,84,5,25,62, \ldots$
2. $6,13,10,14,15,1,7,18,16,6,13, \ldots$, period length is 9
3. 10
4. a) 31
b) 715827882
c) 31
5. $1,24,25,18,12,30,11,10$
d) 195225786
c) 1073741823

Section 8.8

1. a) 8
b) 5 c) 2
d) 6
e) 30 f) 20
2. a) 2
b) 3
c) 2
d) 2
c) 5 f) 7
3. a) use spread $\mathrm{s}=3$ b) use spread $\mathrm{s}=21$ c) use spread $\mathrm{s}=2$

Section 9.1

$\begin{array}{llll}\text { 1. a) } 1 & \text { b) } 1,4 & \text { c) } 1,3,4,9,10,12 & \text { d) } 1,4,5,6,7,9,11,16,17\end{array}$
2. $1,1,-1,1,-1,-1$
11. a) $x \equiv 2,4(\bmod 7)$
b) $x \equiv 1(\bmod 7)$
c) no solution
15. $x \equiv 1,4,11,14(\bmod 15)$
36. c) DETOUR

Section 9.2

1. a) -1
b) -1 c) -1
d) -1
e) 1 f) 1
2. $p \equiv \pm 1(\bmod 5)$
3. $p \equiv \pm 1, \pm 3, \pm 9(\bmod 28)$

Section 9.3

1. a) 1 b) -1 c) 1 d) 1 e) $-1 \quad$ f) 1
2. $\mathrm{n} \equiv 1,7,11,17,43,49,53$, or $59(\bmod 60)$
3. $n \equiv 1,7,13,17,19,2937,71,83,91,101,103,107,109,113$, or $119(\bmod 120)$
4. a) $-1 \quad$ b) $-1 \quad$ c) -1

Section 10.1

6. a) .4 b) $.41 \overline{6}$ с) $\overline{923076}$ d) $\overline{5}$ e) $\overline{009}$ f) $\overline{000999}$
7. a) $(\overline{25})_{8}$ b) $(.2)_{8}$ c) $(\overline{(1463})_{8}$ d) $(.1 \overline{25})_{8}$ e) $(.0 \overline{52})_{8}$ f) $(.0 \overline{2721350564})_{8}$
8. a) $\frac{3}{25}$ b) $\frac{11}{90}$ c) $\frac{4}{33}$
9. a) $\frac{66}{343}$ b) $\frac{3}{70}$ c) $\frac{3}{20}$ d) $\frac{916}{1365}$
10. $b=2^{s_{1}} 3^{s_{2}} 5^{s_{3} 7^{s}}$, where s_{1}, s_{2}, s_{3}, and s_{4} are nonnegative integers, not all zero
11. a) 2,1
b) 1,1
c) 2,1
d) 0,22
e) 3,6 f) 0,60
12. a) 1,0
b) 2,0
c) 1,4
d) 2,1
e) 1,1 f) 2,4
13. a) 3
b) 11
c) 37
d) 101
e) 41,271 f) 7,13
14. a) $\frac{0}{1}, \frac{1}{7}, \frac{1}{6}, \frac{1}{5}, \frac{1}{4}, \frac{2}{7}, \frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{1}{2}, \frac{4}{7}, \frac{3}{5}, \frac{2}{3}, \frac{5}{7}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \frac{1}{1}$

Section 10.2

1. a) $15 / 7$
b) $10 / 7$
c) $6 / 31$
d) $355 / 113 \quad$ e) 2
f) $3 / 2$
g) $5 / 3$
h) $8 / 5$
2. a) $[1 ; 5]$
b) $[3 ; 7]$
c) $[0 ; 1,1,1,9]$
d) $[0 ; 199,1,4]$
e) $[-1 ; 1,22,3,1,1,2,2]$
f) $[0 ; 5,1,1,2,1,4,1,21]$

Section 10.3

$\begin{array}{lll}\text { 1. a) }[1 ; 2,2,2, \ldots] & \text { b) }[1 ; 1,2,1,2,1,2, \ldots] & \text { c) }[2 ; 4,4,4, \ldots] \\ \text { 2. a) } 1,31,5,1 & \text { b) } & 61 ; 1,1,1, \ldots]\end{array}$
$\begin{array}{llll}\text { 2. a) } 1,3,1,5,1 & \text { b) } 6,3,1,1,7 & \text { c) } 0,2,6,10,14 & \text { d) } 0,1,3,5,7\end{array}$
3. $\frac{312689}{99532}$
4. a) $\frac{2}{1}, \frac{3}{1}, \frac{8}{3}, \frac{11}{4}, \frac{19}{7}, \frac{87}{32}, \frac{106}{39}, \frac{193}{71}$ b) $\frac{193}{71}$
11. d) $\frac{25}{8}, \frac{47}{15}, \frac{69}{22}, \frac{91}{29}, \frac{113}{36}, \frac{135}{43}, \frac{157}{50}, \frac{179}{57}, \frac{201}{64}, \frac{223}{71}, \frac{245}{78}, \frac{267}{85}, \frac{289}{92}, \frac{311}{99}$

Section 10.4

1. a) $[2 ; \overline{1,1,1,4}]$ b) $[3 ; \overline{3,6}]$ c) $[4 ; \overline{1,3,1,8}]$ d) $[6 ; \overline{1,5,1,12}]$
2. a) $[1 ; 2]$
$\begin{array}{lll}\text { 3. a) }(23 \pm \sqrt{29}) / 10 & \text { b) }(-1+\sqrt{45}) / 2 & \text { c) }(8+\sqrt{82}) / 6 \\ \text { 4. b) }[10 ; 20],[17 \cdot 34],[47 \cdot 94]\end{array}$
3. b) $[10 ; \overline{20}],[17 ; \overline{34}],[47 ; \overline{94}]$
4. с) $[9 ; \overline{1,18}],[10 ; \overline{2,20}],[16 ; \overline{2,32}],[24 ; \overline{2,48}]$
5. c) $[6 ; 1,5,1,12],[7 ; 7,14],[16 ; 1,15,1,32]$
6. b), c), e)

Section 11.1

1. а) $3,4,5 ; 5,12,13 ; 15,8,17 ; 7,24,25 ; 21,20,29 ; 35,12,37$ b) $3,4,5 ; 6,8,10 ; 5,12,13 ; 9$, 12,$15 ; 15,8,17 ; 12,16,20 ; 7,24,25 ; 15,20,25 ; 10,24,26 ; 21,20,29 ; 18,24,30 ; 30,16,34$; $21,28,35 ; 35,12,37 ; 15,36,39 ; 24,32,40$
2. $x=\frac{1}{2}\left(m^{2}-2 n^{2}\right), y=m n, z=\frac{1}{2}\left(m^{2}+2 n^{2}\right)$ where m and n are positive integers, $x=\frac{1}{2}\left(2 m^{2}-n^{2}\right), y=m n, z=\frac{1}{2}\left(2 m^{2}+n^{2}\right)$ where m and n are positive integers, $m>n / \sqrt{2}$, and n is even
3. $x=\frac{1}{2}\left(m^{2}-3 n^{2}\right), y=m n, z=\frac{1}{2}\left(m^{2}+3 n^{2}\right)$ where m and n are positive integers, $m>\sqrt{3} n$, and $m \equiv n(\bmod 2)$

Section 11.3

1. a) $x= \pm 2, y=0 ; x= \pm 1, y= \pm 1$ b) no solution \quad c) $x= \pm 1, y= \pm 2$
2. a) $x= \pm 3, y= \pm 1$ b) no solution c) $x= \pm 5, y=0 ; x= \pm 13, y= \pm 8$
3. a) $x=70, y=13 \quad$ b) $x=9801, y=1820$
4. $x=1520, y=273$; $x=4620799, y=829920 ; x=42703566796801$, $y=766987012160$
5. a), d), e), g), h) yes b), c), f) no
6. $x=6239765965720528801, y=79892016576262330040$

Bibliography

BOOKS

Number Theory

1. W. W. Adams and L. J. Goldstein, Introduction to Number Theory, Prentice-Hall, Englewood Cliffs, New Jersey, 1976.
2. G. E. Andrews, Number Theory, W. B. Saunders, Philadelphia, 1971.
3. T. A. Apostol, Introduction to Analytic Number Theory, SpringerVerlag, New York, 1976.
4. R. G. Archibald, An Introduction to the Theory of Numbers, Merrill, Columbus, Ohio, 1970.
5. I. A. Barnett, Elements of Number Theory, Prindle, Weber, and Schmidt, Boston, 1969.
6. A. H. Beiler, Recreations in the Theory of Numbers, 2nd ed., Dover, New York, 1966.
7. E. D. Bolker, Elementary Number Theory, Benjamin, New York, 1970.
8. Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, New York, 1966.
9. D. M. Burton, Elementary Number Theory, Allyn and Bacon, Boston, 1976.
10. R. D. Carmichael, The Theory of Numbers and Diophantine Analysis, Dover, New York, 1959 (reprint of the original 1914 and 1915 editions).
11. H. Davenport, The Higher Arithmetic, 5th ed., Cambridge University Press, Cambridge, 1982.
12. L. E. Dickson, History of the Theory of Numbers, three volumes, Chelsea, New York, 1952 (reprint of the 1919 original).
13. L. E. Dickson, Introduction to the Theory of Numbers, Dover, New York 1957 (reprint of the original 1929 edition).
14. H. M. Edwards, Fermat's Last Theorem, Springer-Verlag, New York, 1977.
15. A. A. Gioia, The Theory of Numbers, Markham, Chicago 1970.
16. E. Grosswald, Topics from the Theory of Numbers, 2nd ed., Birkhauser, Boston, 1982.
17. R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, New York, 1981.
18. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford University Press, Oxford, 1979.
19. L. Hua, Introduction to Number Theory, Springer-Verlag, New York 1982.
20. K. Ireland and M. I. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, New York, 1982.
21. E. Landau, Elementary Number Theory, Chelsea, New York, 1958.
22. W. J. LeVeque, Fundamentals of Number Theory, Addison-Wesley, Reading, Massachusetts, 1977.
23. W. J. LeVeque, Reviews in Number Theory, six volumes, American Mathematical Society, Washington, D.C., 1974.
24. C. T. Long, Elementary Introduction to Number Theory, 2nd ed., Heath, Lexington, Massachusetts, 1972.
25. G. B. Matthews, Theory of Numbers, Chelsea, New York (no date).
26. I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers, 4th ed., Wiley, New York, 1980.
27. O. Ore, An Invitation to Number Theory, Random House, New York, 1967.
28. O. Ore, Number Theory and its History, McGraw-Hill, New York, 1948.
29. A. J. Pettofrezzo and D. R. Byrkit, Elements of Number Theory, Prentice-Hall, Englewood Cliffs, New Jersey, 1970.
30. H. Rademacher, Lectures on Elementary Number Theory, Blaisdell, New York 1964, reprint Krieger, 1977.
31. P. Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer-Verlag, New York, 1979.
32. J. Roberts, Elementary Number Theory, MIT Press, Cambridge, Massachusetts, 1977.
33. D. Shanks, Solved and Unsolved Problems in Number Theory, 2nd ed., Chelsea, New York, 1978.
34. J. E. Shockley, Introduction to Number Theory, Holt, Rinehart, and Winston, 1967.
35. W. Sierpiński, Elementary Theory of Numbers, Polski Akademic Nauk, Warsaw, 1964.
36. W. Sierpiński, A Selection of Problems in the Theory of Numbers, Pergammon Press, New York, 1964.
37. W. Sierpiński, 250 Problems in Elementary Number Theory, Polish Scientific Publishers, Warsaw, 1970.
38. H. M. Stark, An Introduction to Number Theory, Markham, Chicago, 1970; reprint MIT Press, Cambridge, Massachusetts, 1978.
39. B. M. Stewart, The Theory of Numbers, 2nd ed., Macmillan, New York, 1964.
40. J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, New York, 1939.
41. C. Vanden Eyden, Number Theory, International Textbook, Scranton, Pennsylvania, 1970.
42. I. M. Vinogradov, Elements of Number Theory, Dover, New York, 1954.

Number Theory with Computer Science

43. A. M. Kirch, Elementary Number Theory: A Computer Approach, Intext, New York, 1974.
44. D. G. Malm, A Computer Laboratory Manual for Number Theory, COMPress, Wentworth, New Hampshire, 1979.
45. D. D. Spencer, Computers in Number Theory, Computer Science Press, Rockville, Maryland, 1982.

Bibliography

Cryptography

46. B. Bosworth, Codes, Ciphers, and Computers, Hayden, Rochelle Park, New Jersey, 1982.
47. D. E. R. Denning, Cryptography and Data Security, Addison-Wesley, Reading, Massachusetts, 1982.
48. W. F. Friedman, Elements of Cryptanalysis, Aegean Park Press, Laguna Hills, California, 1978.
49. A. Gersho, ed., Advances in Cryptography, Dept. of Electrical and Computer Engineering, Univ. Calif. Santa Barbara, 1982.
50. D. Kahn, The Codebreakers, the Story of Secret Writing, Macmillan, New York, 1967.
51. A. G. Konheim, Cryptography: A Primer, Wiley, New York, 1981.
52. S. Kullback, Statistical Methods in Cryptanalysis, Aegean Park Press, Laguna Hills, California, 1976.
53. C. H. Meyer and S. M. Matyas, Cryptography: A New Dimension in Computer Data Security, Wiley, New York, 1982.
54. A. Sinkov, Elementary Cryptanalysis, Mathematical Association of America, Washington, D.C., 1966.

Computer Science

55. K. Hwang, Computer Arithmetic: Principles, Architecture and Design, Wiley, New York, 1979.
56. D. E. Knuth, Art of Computer Programming: Semi-Numerical Algorithms Volume 2, 2nd ed., Addison Wesley, Reading Massachusetts, 1981.
57. D. E. Knuth, Art of Computer Programming: Sorting and Searching, Volume 3, Addison-Wesley, Reading, Massachusetts, 1973.
58. L. Kronsjö, Algorithms: Their Complexity and Efficiency, Wiley, New York, 1979.
59. N. S. Szabó and R. J. Tanaka, Residue Arithmetic and its Applications to Computer Technology, McGraw-Hill, 1967.

General

60. H. Anton, Elementary Linear Algebra, 3rd ed., Wiley, New York, 1981.
61. E. Landau, Foundations of Analysis, 2nd ed., Chelsea, New York, 1960.
62. W. Rudin, Principles of Mathematical Analysis, 2nd ed., McGraw-Hill, New York 1964.

ARTICLES

Number Theory

63. L. M. Adleman, C. Pomerance, and R. S. Rumely, "On distinguishing prime numbers from composite numbers," Annals of Mathematics, Volume 117 (1983), 173-206.
64. J. Ewing, " $2^{86243}-1$ is prime," The Mathematical Intelligencer, Volume 5 (1983), 60.
65. J.E. Freund, "Round Robin Mathematics," American Mathematical Monthly, Volume 63 (1956), 112-114.
66. R. K. Guy, "How to factor a number" Proceedings of the Fifth Manitoba Conference on Numerical Mathematics, Utilitas, Winnepeg, Manitoba, 1975, 49-89.
67. A. K. Head, "Multiplication modulo n," BIT, Volume 20 (1980), 115116.
68. P. Hagis, Jr., "Sketch of a proof that an odd perfect number relatively prime to 3 has at least eleven prime factors," Mathematics of Computations, Volume 46 (1983), 399-404.
69. J. C. Lagarias and A. M. Odlyzko, "New algorithms for computing $\pi(x), "$ Bell Laboratories Technical Memorandum TM-82-11218-57.
70. H. P. Lawther, Jr., "An application of number theory to the splicing of telephone cables," American Mathematical Monthly, Volume 42 (1935), 81-91.
71. H. W. Lenstra, Jr., "Primality testing," Studieweek Getaltheorie en Computers, 1-5 September 1980, Stichting Mathematisch Centrum, Amsterdam, Holland.
72. G. L. Miller, "Riemann's hypothesis and tests for primality," Proceedings of the Seventh Annual ACM Symposium on the Theory of Computing, 234-239.
73. C. Pomerance, "Recent developments in primality testing," The
| Mathematical Intelligencer, Volume 3 (1981), 97-105.
74. C. Pomerance, "The search for primes," Scientific American, Volume 247 (1982), 136-147.
75. M. O. Rabin, "Probabilistic algorithms for testing primality," Journal of Number Theory, Volume 12 (1980), 128-138.
76. R. Rumely, "Recent advances in primality testing," Notices of the American Mathematical Society, Volume 30 (1983), 475-477.
77. D. Slowinski, "Searching for the 27 th Mersenne prime," Journal of Recreational Mathematics, Volume 11 (1978/9), 258-261.
78. R. Solovay and V. Strassen, "A fast Monte Carlo test for primality," SIAM Journal for Computing, Volume 6 (1977), 84-85 and erratum, Volume 7 (1978), 118.
79. H. C. Williams, "The influence of computers in the development of number theory," Computers and Mathematics with Applications, Volume 8 (1982), 75-93.
80. H. C. Williams, "Primality testing on a computer", Ars Combinatorica, Volume 5 (1978), 127-185.

Cryptography

81. L. M. Adleman, "A subexponential algorithm for the discrete logarithm problem with applications to cryptography," Proceedings of the 20th Annual Symposium on the Fondations of Computer Science, 1979, 5560.
82. M. Blum, "Coin-flipping by telephone - a protocol for solving impossible problems," IEEE Proceedings, Spring Compcon., 133-137.
83. W. Diffie and M. Hellman, "New directions in cryptography," IEEE Transactions on Information Theory, Volume 22 (1976), 644-655.
84. D. R. Floyd, "Annotated bibliographical in conventional and public key cryptography," Cryptologia, Volume 7 (1983), 12-24.
85. J. Gordon, "Use of intractable problems in cryptography," Information Privacy, Volume 2 (1980), 178-184
86. M. E. Hellman, "The mathematics of public-key cryptography," Scientific American, Volume 241 (1979) 146-157.
87. L. S. Hill, "Concerning certain linear transformation apparatus of cryptography," American Mathematical Monthly, Volume 38 (1931), 135-154.
88. A. Lempel, "Cryptology in transition," Computing Surveys, Volume 11 (1979), 285-303
89. R. J. Lipton, "How to cheat at mental poker," and "An improved power encryption method," unpublished reports, Department of Computer Science, University of California, Berkeley, 1979.
90. R. C. Merkle and M. E. Hellman, "Hiding information and signatures in trapdoor knapsacks," IEEE Transactions in Information Theory, Volume 24 (1978), 525-530.
91. S. Pohlig and M. Hellman, "An improved algorithm for computing logarithms over $\mathrm{GF}(p)$ and its cryptographic significance," IEEE Transactions on Information Theory, Volume 24 (1978), 106-110.
92. M. O. Rabin, "Digitalized signatures and public-key functions as intractable as factorization," MIT Laboratory for Computer Science Technical Report LCS/TR-212, Cambridge, Massachusetts, 1979.
93. R. L. Rivest, A. Shamir, and L. M. Adleman, "A method for obtaining digital signatures and public-key cryptosystems," Communications of the $A C M$, Volume 21 (1978), 120-126.
94. A. Shamir, "A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem," Proceedings of the 23rd Annual Symposium of the Foundations of Computer Science, 145-152.
95. A. Shamir, "How to share a secret," Communications of the ACM, Volume 22 (1979), 612-613.
96. A. Shamir, R. L. Rivest, and L. M. Adleman, "Mental Poker," The Mathematical Gardner, ed. D. A. Klarner, Wadsworth International, Belmont, California, 1981, 37-43.

List of Symbols

Σ

 $n!$
II

$\binom{m}{k}$
$a \mid b$
$a \backslash b$
[x]
$\left(a_{k} a_{k-1} \ldots a_{1} a_{0}\right)_{b}$
w
$O(f)$
$\pi(x)$
(a, b)
$\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
u_{n}
$[a, b]$
$\min (x, y)$
$\max (x, y)$
$p^{a} \| n$
$\left[a_{1}, a_{2}, \ldots, a_{n}\right]$
F_{n}
$a \equiv b(\bmod m)$
$a \not \equiv b(\bmod m)$
\bar{a}
$A \equiv B(\bmod m)$
\bar{A}
I
$\operatorname{adj}(A)$
$h(k)$
$\phi(n)$

Summation, 5
Factorial, 8
Product, 9

Binomial coeficient, 10
Divides, 19
Does not divide, 19
Greatest integer, 20
Base b expansion, 27
Computer word size, 33
Big-O notation, 38
Number of primes, 47
Greatest common divisor, 53
Greatest common divisor (of n integers), 55
Fibonacci number, 60
Least common multiple, 72
Minimum, 72
Maximum, 72
Exactly divide, 76
Least common multiple (of n integers), 77
Fermat number, 81
Congruent, 91
Not congruent, 91
Inverse, 104
Congruent (matrices), 119
Inverse (of matrix), 121
Identity matrix, 121
Adjoint, 122
Hashing function, 141
Euler's phi-function, 161
$\sum_{d \mid n}$
$f * g$
$\mu(n)$
$\sigma(n)$
$\tau(n)$
M_{m}
$E_{k}(P)$
$D_{k}(C)$
ord $_{m} a$
$\operatorname{ind}_{r} a$
$\lambda(n)$
$\lambda_{0}(n)$
$\left(\frac{a}{p}\right)$

$\left(\frac{a}{n}\right)$
$\left(. c_{1} c_{2} c_{3} \ldots\right)_{b}$
$\left(. c_{1} \ldots c_{n-1} c_{n} \ldots c_{n+k-1}\right)_{b}$
F_{n}
$\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{n}\right]$
$C_{k}=p_{k} / q_{k}$
$\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$
$\left[a_{0} ; a_{1}, \ldots, a_{N-1}, \overline{\left.a_{N}, \ldots, a_{N+k-1}\right]}\right.$
α^{\prime}

Summation over divisors, 170
Dirichlet product, 172
Möbius function, 173
Sum of divisors function, 174
Number of divisors function, 175
Mersenne number, 182
Enciphering transformation, 212
Deciphering transformation, 212
Order of a modulo $m, 232$
Index of a to the base $r, 252$
Minimal universal exponent, 269
Maximal ± 1 - exponent, 280

Legendre symbol, 289

Jacobi symbol, 314
Base b expansion, 341
Periodic base b expansion, 343
Farey series of order $n, 349$
Finite simple continued fraction, 351
Convergent of a continued fraction, 354
Infinite simple continued fraction, 362
Periodic continued fraction, 374
Conjugate, 377

Index

Absolute least residues, 93
Abundant integer, 185
Additive function, 174
Affine transformation, 191
Algorithm, 33,58
division, 19
Euclidean, 58
for addition, 33
for division, 37,41
for matrix multiplication, 43
for modular exponentiation, 97
for modular multiplication, 100
for multiplication, 35,39
for subtraction, 34
least-remainder, 67
Amicable pair, 185
Approximation,
best rational, 371
by rationals, 369
Arithmetic function, 166,418
Arithmetic, fundamental theorem of, 2,69
Arithmetic progression, primes in, 74
Automorph, 114
Babylonians, 1,25
Balanced ternary expansion, 30
Base, 27
Base b expansion, 27,341
Best rational approximation, 371
Big- O notation, 38,39
Binary notation, 27
Binomial coefficient, 10
Binomial theorem, 12
Biorhythms, 114
Bit operation, 38
Bits, 27
Block cipher, 198
Borrow, 35
Caesar, Julius, 189

Caesar cipher, 189
Calendar, 134
Gregorian, 135
International Fixed, 138
Cantor expansion, 30
Card shuffling, 152
Carmichael number, 155,272
Carry, 34
Casting out nines, 134
Character cipher, 189
Chinese, ancient, 2,107,
Chinese remainder theorem, 107
Cicada, periodic, 57
Cipher, 188
block, 198
Caesar, 189
character, 189
digraphic, 198
exponentiation, 205
Hill, 198
iterated knapsack, 224
knapsack, 221
monographic, 189
polygraphic, 198
product, 197
public-key, 2,212
Rabin, 215
RSA, 212
substitution, 189
transposition, 204
Vignère, 197
Ciphertext, 188
Clustering, 142
Coconut problem, 101
Coefficients, binomial, 10
Coin flipping, 298
Collatz conjecture, 24
Collision, 142
Common key, 208
Common ratio, 5
Complete system of residues, 93
Completely additive function, 174

Completely multiplicative
function, 166
Composite, 1,45
Computational complexity, 38
of addition, 39
of Euclidean algorithm, 62
of division, 41
of matrix multiplication, 43
of multiplication, 39
of subtraction, 39
Computer arithmetic, 33,109
Computer files, 141,227
Computer word size, 33,109
Congruence, 2,91
linear, 102
of matrices, 119
Congruence class, 92
Conjecture,
Collatz, 24
Goldbach, 50
Conjugate, 377
Continued fraction, 350
finite, 351
infinite, 362
periodic, 374425
purely periodic, 383
simple, 351
Convergent, 354
Coversion of bases, 28
Covering set of congruences, 115
Cryptanalysis, 188
Cryptography, 188
Cryptology, 188
Cubic residue, 262
Database, 227
Day of the week, 134
Decimal notation, 27
Deciphering, 186
Deciphering key, 213
Decryption, 188
Deficient integer, 185
Descent, proof by, 398
Diabolic matrix, 127
Digraphic cipher, 198
Diophantine equations, 86,391
linear, 86

Diophantus, 86
Dirichlet, G. Lejeune, 74
Dirichlet product, 172
Dirichlet's theorem on primes in arithmetic progression, 74
Divide, 18
Divisibility, 18
Divisibility tests, 129
Division algorithm, 19
Divisor, 18
Double hashing, 143
Draim factorization, 84
Duodecimal notation, 44
Electronic poker, 209,304
Enciphering, 188
Encryption, 188
Equation, diophantine, 86
Pell's, 404
Eratosthenes, 1
Eratosthenes, sieve of, 2,46
Euclid, 1
Euclidean algorithm, 58
Euler, L., 1
Euler phi-function, 161,167
Euler pseudoprime, 325
Euler's criterion, 290
Euler's factorization method, 85
Euler's theorem, 161
Exactly divide, 76
Expansion,
base $b, 27$
Cantor, 30
continued fraction, 350
periodic base $b, 343$
periodic continued function, 374
terminating, 341
\pm l-exponent, 280
Exponentiation cipher, 205
Factor, 18
Factor table, 411
Factorial function, 8
Factorization, 69,79
Draim, 84
Euler, 85

Fermat, 80
prime, 68
prime-power, 69
speed of, 80,215
Faltings, G., 400
Farey series, 349
Fermat, P. de, 1,397
Fermat factorization, 80
Fermat number, 81,302,311
Fermat prime, 81
Fermat quotient, 152
Fermat's last theorem, 398
Fermat's little theorem, 148
Fibonacci, 60
Fibonacci numbers, 60
generalized, 68
Fibonacci pseudo-random number generator, 279
Frequencies,
of letters, 193
of digraphs, 202
of polygraphs, 203
Function,
additive, 174
arithmetic, 166
completely additive, 174
completely multiplicative, 166
Euler phi, 161
factorial, 8
greatest integer, 20
hashing, 141
Liouville's, 174
Möbius, 173
multiplicative, 166
number of divisors, 175
sum of divisors, 174
Fundamental Theorem of Arithmetic, 69

Game of Euclid, 67
Gauss, C. G., 2,47
Gauss' generalization of
Wilson's theorem, 152
Gauss' lemma, 293
Generalized Riemann hypothesis, 158
Generalized Fibonacci numbers, 68
Geometric progression, 5

Goldbach, C., 50
Goldbach's conjecture, 50
Greatest common divisor, 53
Greatest integer function, 20
Greeks, ancient, 2
Hadamard, J., 48
Hanoi, tower of, 17
Hashing, 141
double, 143
quadratic, 304
Hashing function, 141
Hexadecimal notation, 27
Hilbert prime, 76
Hill cipher, 198
Identity matrix modulo $m, 121$
Inclusion-exclusion, principle of, 17,51
Incongruent, 91
Index of an integer, 252,421
Index of summation, 5
Index system, 262
Induction, mathematical, 4
Infinite simple continued fraction, 362
Infinitude of primes, 45,82
Integer,
abdundant, 185
deficient, 185
palindromic, 133
powerful, 76
square-free, 75
Inverse of an arithmetic function, 173
Inverse modulo $m, 104$
Inverse of a matrix modulo $m, 121$
Involutory matrix, 126,204
Irrational number, 336,367
Jacobi symbol, 314
Kaprekar constant, 31
Key, 141
common, 208
deciphering, 213
enciphering, 212
master, 228
public, 212
shared, 208

Knapsack cipher, 221
Knapsack problem, 219
k-perfect number, 186
Kronecker symbol, 324
k th power residue, 256
Lagrange, J., 147
Lagrange interpolation, 242
Lagrange's theorem (on continued functions), 378
Lagrange's theorem (on polynomial congruences), 239
Lamé, G., 62
Lamé's theorem, 62
Law of quadratic reciprocity, 297,314
Least common multiple, 72
Least nonnegative residue, 93
Least-remainder algorithm, 67
Legendre symbol, 289
Lemma, Gauss', 293
Linear combination, 54
greatest common divisor as a, 54,63
Linear congruence, 102
Linear congruential method, 275
Liouville's function, 174
Logarithms modulo p, 207
Lowest terms, 336
Lucas-Lehmer test, 183
Lucky numbers, 52
Magic square, 127
Master key, 228
Mathematical induction, 4
Matrix, involutory, 126
Matrix multiplication, 43
Maximal ± 1-exponent, 280
Mayans, 1,25
Mersenne, M., 182
Mersenne number, 182
Mersenne prime, 182
Method of infinite descent, 398
Middle-square method, 275
Miller's test, 156
Minimal universal exponent, 269
Möbius function, 173
Möbius inversion formula, 173
Modular exponentiation, 97
algorithm for, 97
Monographic cipher, 189
Monkeys, 101
Multiple precision, 33
Multiplication, 35,39
matrix, 43
Multiplicative function, 166
Multiplicative knapsack problem, 226
Mutually relatively prime, 56
Nim, 31
Notation,
big- $O, 38$
binary, 27
decimal, 27
duodecimal, 44
hexadecimal, 27
octal, 27
product, 9
summation, 5,170
Number,
Carmichael, 155,272
Fermat, 81
Fibonacci, 60
generalized Fibonacci, 68
irrational, 336
k-perfect, 186
lucky, 52
Mersenne, 182
perfect, 180
rational, 336
superperfect, 186
Number of divisors function, 175
Octal notation, 27
Operation, bit, 38
Order of an integer, 232
Pairwise relatively prime, 56
Palindromic integer, 133
Partial remainder, 37
Partial quotient, 351
Pascal's triangle, 12
Pell's equation, 404
Pepin's test, 311
Perfect number, 180
Period,
of a base b expansion, 343
of a continued fraction, 374
Periodic base b expansion, 343
Periodic cicada, 57
Periodic continued fraction, 374
Plaintext, 188
Poker, 209,304
Polygraphic cipher, 198
Powerful integer, 76
Prepperiod, 343
Primality test, 153,263
probabilistic, 158,334
Primes, 1,45
Fermat, 81
Hilbert, 76
in arithmetic progressions, 74
infinitude of, 45
Mersenne, 182
Wilson, 152
Prime number theorem, 47
Prime-power factorization, 69
Primitive root, 234,243420
Primitive Pythagorean triple, 391
Principle of inclusion-exclusion, 17
Principle of mathematical induction, 4 second, 8
Probabilistic primality test, 158,334
Probing sequence, 143
Problem,
knapsack, 219
multiplicative knapsack, 226
Product, Dirichlet, 172
Product cipher, 192
Property, reflexive, 92
symmetric, 92
transitive, 92
well-ordering, 4
Pseudoconvergent, 374
Pseudoprime, 2,153
Euler, 325
strong, 157
Pseudo-random numbers, 275
Pseudo-random number generator,
Fibonacci, 279
linear congruential, 275
middle-square, 275
pure multiplicative, 277
Public-key cipher, 2,212
Purely periodic continued fraction, 383
Pythagoras, 1
Pythagorean triple, 391
Pythagorean theorem, 391
Quadratic hashing, 304
Quadratic irrational, 375
Quadratic nonresidue, 288
Quadratic reciprocity law, 297,304
Quadratic residue, 288
Quotient, 19
Fermat, 152
partial, 351
Rabbits, 68
Rabin's cipher system, 215,303
Rabin's probabilistic primality test, $158,214,334$
Rational number, 336
Read subkey, 227
Recursive definition, 8
Reduced residue system, 162
Reduced quadratic irrational, 384
Reflexive property, 92
Regular polygon, constructability, 83
Relatively prime, 53
mutually, 56
pairwise, 56
Remainder, 19
Repunit, 133,165
Residue,
cubic, 262
k th power, 256
least nonnegative, 93
quadratic, 288
Residues,
absolute least, 93
complete system of, 93
reduced, 162
Root of a polynomial modulo $m, 238$
Round-robin tournament, 139
RSA cipher system, 212,274
Second principle of
mathematical induction, 8
Seed, 276
Shadows, 228
Shift transformation, 191
Shifting, 35
Sieve of Eratosthenes, 2,46
Signature, 216
Signed message, 216,218
Solovay-Strassen probabilistic primality test, 334
Splicing of telephone cables, 284
Spread of a splicing scheme, 284
Square-free integer, 75
Strong pseudoprime, 157
Subkey,
read, 227
write, 227
Substitution cipher, 189
Succinct certificate of primality, 266
Sum of divisors function, 174
Summation notation, 5
Super-increasing sequence, 220
Superperfect number, 186
Symbol,
Jacobi, 314
Kronecker, 324
Legendre, 289
Symmetric property, 92
System of residues,
complete, 93
reduced, 162
System of congruences, 107,116
Telephone cables, 284
Terminating expansion, 341
Test,
divisibility, 129
Lucas-Lehmer, 183
Miller's, 156
Pepin's, 311
primality, 153,263
probalistic primality, 158,334
Theorem,
binomial, 12
Chinese remainder, 107
Dirichlet's, 74
Euler's, 161

Fermat's last, 398
Fermat's little, 148
Lagrange's (on continued fractions), 378
Lagrange's (on polynomial congruences), 239
Lamés, 62
Wilson's, 147
Threshold scheme, 228,243
Tower of Hanoi, 17
Transitive property, 92
Transposition cipher, 204
Triangle,
Pascal's, 12
Pythogrean, 391
Twin primes, 50
Universal exponent, 269
Vallée-Poussin, C. de la, 48
Vignère ciphers, 197
Weights, problem of, 30
Well-ordering property, 4
Wilson, J., 147
Wilson prime, 152
Wilson's theorem, 147
Gauss' generalization of, 152
Word size, 33,104
Write subkey, 227

[^0]: 1. Such an axiomatic development of the integers and their arithmetic can be found in Landau [61].
