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Preface.

This report is written in connection with a new course (in year 2000!) with the
title Convexity and optimization at the University of Oslo. The course aims at up-
per undergraduate student in (applied) mathematics, statistics or mathematical
economics. The main goal of the course is to give an introduction to the subjects
of linear programming and convexity.

Many universities offer linear programming courses at an undergraduate level, and
there are many books around written for that purpose. There are several inter-
esting and important topics that one typically covers in such a course: modeling,
the simplex algorithm, duality, sensitivity analysis, implementation issues, appli-
cations in network flows, game theory, approximation etc. However, for students
in (applied) mathematics (or economics) I believe it is important to understand
the “neighborhood” of linear programming, which is convexity (or convex ana-
lysis). Convexity is fundamental to the whole area of optimization, and it is also
of great importance in mathematical statistics, economics, functional analysis,
approximation theory etc.

The purpose of this report is to introduce the reader to convexity. The prerequi-
sites are mainly linear algebra and linear programming (LP) including the duality
theorem and the simplex algorithm. In our Convexity and optimization course we
first teach LP, now based on the excellent book by Vanderbei, [15]. This book
is extremely well written, and explains ideas and techniques elegantly without
too many technicalities. The second, and final, part of the course is to go into
convexity where this report may be used. There is plenty of material in convex-
ity and the present text gradually became longer than originally planned. As
a consequence, there is probably enough material in this report for a separate
introductory course in convexity. In our Convexity and optimization course we
therefore have to omit some of the material.

A classic book in convex analysis is Rockafellar’s book [11]. A modern text which
treats convex analysis in combination with optimization is [6]. Comprehensive
treatments of convex analysis is [16] and [12]. The latter book is an advanced text
which contains lots of recent results and historical notes. For a general treatment
of convexity with application to theoretical statistics, see [14]. The book [17] also
treats convexity in connection with a combinatorial study of polytopes.

In this text we restrict the attention to convexity in IRn. However, the reader
should know that the notion of convexity makes sense in vector spaces more gener-
ally. The whole theory can be directly translated to the case of finite-dimensional
vector spaces (as e.g., the set of real m× n-dimensional matrices). Many results,
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but not all of them, also hold in infinite-dimensional vector spaces; this is treated
within the area of functional analysis.

Acknowledgment. I would like to thank Bjarne Johannessen for producing the
figures and giving suggestions that improved the text. Moreover, I appreciate
very much the stimulating environment here at the University of Oslo and I am
grateful to my colleagues for support and interesting discussions.

GD. Oslo, Jan. 7, 2000.

In the present edition a number of misprints have been corrected and a few minor
changes have been made.

GD. Oslo, Dec. 15, 2000.

Now a new chapter on convex optimization has been added and again some minor
changes have been done.

GD. Oslo, Oct. 13, 2004.

Some minor corrections have been made.

GD. Oslo, Aug. 25, 2009.



Chapter 1

The basic concepts

This first chapter introduces convex sets and illustrates how convex sets arise in
different contexts.

1.1 Is convexity useful?

Many people think that it is, even people not working with convexity! But this
may not convince you, so maybe some of our examples below give you some
motivation for working your way into the world of convexity. These examples are
all presented in an informal style to increase readability.

Example 1.1.1. (Optimization and convex functions) Often one meets optimiza-
tion problems where one wants to minimize a real-valued function of n variables,
say f(x), where x = (x1, . . . , xn). This arises in e.g., economical applications
(cost minimization or profit maximization), in statistical applications (estima-
tion, regression, curve fitting), approximation problems, scheduling and planning
problems, image analysis, medical imaging, engineering applications etc.

The ideal goal would be to find a point x∗ such that f(x∗) ≤ f(x) holds for
all other points x; such a solution x∗ is called a globally optimal solution. The
problem is that most (numerical) methods for minimizing a function can only
find a locally optimal solution, i.e., a point x0 with function value no greater
than the function values of points “sufficiently near” x0. Unfortunately, although
a locally optimal solution is good locally, it may be very poor compared to some
other solutions. Thus, for instance, in a cost minimization problem (where x =
(x1, . . . , xn) is an activity vector) it would be very good news if we were able to
prove (using our mathematical skills!) that our computed locally optimal solution
is also a globally optimal solution. In that case we could say to our boss: “listen,
here is my solution x∗ and no other person can come up with another solution
having lower total cost”.

1
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f(x1, x2) f(x) f(x)

x1

x2 x x

Figure 1.1: Some convex functions

If the function f is convex, then it is always true that a locally optimal solution
is also globally optimal!

We study convex functions in Chapter 5. Some convex functions are illustrated
in Fig. 1.1. You will learn what a convex function is, how to decide if a given
function is convex, and how to minimize a convex function.

At this point you might ask one of the following questions:

• I recall that a convex function f : IR → IR is convex whenever its second
derivative is nonnegative, i.e., the “graph bends upwards”. But what does
it mean that a function of several variables is convex?

• Does the “local implies global property” above also hold for other functions
than the convex ones?

• Will I meet convex functions in other areas of mathematics, statistics, nu-
merical analysis etc?

• If the function f is only defined on a subset S of IRn. Can f still be convex?
If so, how can we minimize it? And, does the “local implies global property”
still hold?

You will get answers to these, and many more, questions. Concerning the last
question, we shall see that the set S of points should have a certain property in
order to make an extended definition of convexity meaningful. This property is:
S is a convex set.

Example 1.1.2. (Convex set) Loosely speaking a convex set in IR2 (or IRn) is a
set “with no holes”. More accurately, a convex set C has the following property:
whenever we choose two points in the set, say x, y ∈ C, then all points on the
line segment between x and y also lie in C. Some examples of convex sets in the
plane are: a sphere (ball), an ellipsoid, a point, a line, a line segment, a rectangle,
a triangle, see Fig. 1.2. But, for instance, a set with a finite number p of points
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is only convex when p = 1. The union of two disjoint (closed) triangles is also
nonconvex.

Why are convex sets important? They arise in lots of different situations where
the convexity property is of importance. For instance, in optimization the set
of feasible points is frequently convex. This is true for linear programming and
many other important optimization problems. We can say more, the convexity of
the feasible set plays a role for the existence of optimal solutions, the structure
of the set of optimal solutions, and (very important!) how to solve optimization
problems numerically.

But convex sets arise in other areas than optimization. For instance, an important
area in statistics (both in theory and applications) is estimation where one uses
statistical observations to “estimate” the value of one or more unknown para-
meters in a model. To measure quality of a solution one uses a “loss function”
and, quite often, this loss function is convex. In statistical decision theory the
concept of risk sets is central. Well, risk sets are convex sets. Moreover, under
some additional assumption on the statistical setting, these risk sets are very
special convex sets, so-called polytopes. We shall study polytopes in detail later.

Another example from statistics is the expectation operator. The expectation of a
random variable relates to convexity. Assume that X is a discrete variable taking
values in some finite set of real numbers, say {x1, . . . , xr} with probabilities pi of
the event X = xi. Probabilities are all nonnegative and sum to one, so pj ≥ 0 and
∑r

j=1
pj = 1. The expectation (or mean) of X is the number

EX =
r

∑

j=1

pjxj .

It should be regarded as a weighted average of the possible values that X can
attain, and the weights are simply the probabilities. Thus, a very likely event
(meaning that pj is near one) gets large weight in this sum. Now, in the language
of convexity, we say that EX is a convex combination of the numbers x1, . . . , xr.
We shall work a lot with convex combinations. An extension is when the discrete
random variable is a vector, so it attains values in a finite set S = {x1, . . . , xr} of
points in IRn. The expectation is now defined by EX =

∑r
j=1

pjxj which, again,
is a convex combination of the points in S.

A question: assume that n = 2 and r = 4 and choose some vectors x1, . . . , x4 ∈
IR2. Experiment with some different probabilities p1, . . . , p4 and calculate EX in
each case. If you now vary the probabilities as much as possible (nonnegative and
sum one), which set of possible expectations do you get?
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Figure 1.2: Some convex sets in the plane.

Example 1.1.3. (Approximation) In many applications of mathematics different
approximation problems arise. Many such problems are of the following type:
given some set S ⊂ IRn and a vector a 6∈ S, find a vector x ∈ S which is as close
to a as possible among elements in S. The form of this problem depends on the set
S (and a) and how one measures the distance between vectors. In order to measure
distance one may use the Euclidean norm (given by (‖x‖ = (

∑n
j=1

|xj|
2)1/2) or

some other norm. (We shall discuss different vector norms in Chapter 5).

Is there any connection to convexity here? First, norm functions, i.e., functions
x → ‖x‖, are convex functions. This is so for all norms, not just the Euclidean
norm. Second, a basic question is if a nearest point (to a in S) exists. The answer
is yes, provided that S is a closed set. We discuss closed sets (and some topology)
in Chapter 2. Next, we may be interested in knowing if there are more than one
point that is nearest to a in S. It turns out that if S is a convex set (and the norm
is the Euclidean norm), then the nearest point is unique. This may not be so for
nonconvex sets. Even more can be said, as a theorem of Motzkin says that......

Well, we keep Motzkin’s theorem a secret for the time being.

Hopefully, you now have an idea of what convexity is and where convexity ques-
tions arises. Let us start the work!

1.2 Nonnegative vectors

We are here concerned with the set IRn of real vectors x = (x1, . . . , xn). We
use boldface symbols for vectors and matrices. The set (vector space) of all real
matrices with m rows and n columns is denoted by IRm,n. From linear algebranonnegative

vector we know how to sum vectors and that we can multiply a vector by a scalar (a
real number). Convexity deals with inequalities, and it is convenient to say that
x ∈ IRn is nonnegative if each component xi is nonnegative. We let IRn

+ denote
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the set of all nonnegative vectors. The zero vector is written O (the dimension
is suppressed, but should be clear from the context). We shall frequently use
inequalities for vectors, so if x, y ∈ IRn we write

x ≤ y (or y ≥ x)

and this means that xi ≤ yi for i = 1, . . . , n. Note that this is equivalent to that
y − x ≥ O.

Exercise 1.1. Let x1, x2, y1, y2 ∈ IRn and assume that x1 ≤ x2 and y1 ≤ y2.
Verify that the inequality x1 +y1 ≤ x2 +y2 also holds. Let now λ be a nonnegative
real number. Explain why λx1 ≤ λx2 holds. What happens if λ is negative?

Example 1.2.1. (The nonnegative real vectors) The sum of two nonnegative
numbers is again a nonnegative number. Similarly, we see that the sum of two
nonnegative vectors is a nonnegative vector. Moreover, if we multiply a nonneg-
ative vector by a nonnegative number, we get another nonnegative vector. These
two properties may be summarized by saying that IRn

+ is closed under addition
and multiplication by nonnegative scalars. We shall see that this means that IRn

+

is a convex cone, a special type of convex set.

Exercise 1.2. Think about the question in Exercise 1.1 again, now in light of
the properties explained in Example 1.2.1.

Exercise 1.3. Let a ∈ IRn
+ and assume that x ≤ y. Show that aTx ≤ aTy. What

happens if we do not require a to be nonnegative here?

1.3 Linear programming

A linear programming problem (LP problem, for short) is an optimization prob- linear

programming

problem

lem where one wants to maximize or minimize some linear function cTx of the
variable vector x = (x1, . . . , xn) over a certain set. This set is the solution set of a
system of linear equations and inequalities in x. More specifically, an LP problem
in standard form is

maximize c1x1 + . . . +cnxn

subject to

a11x1 + . . . +a1nxn ≤ b1;
...

am1x1 + . . . +amnxn ≤ bm;

x1, . . . , xn ≥ 0.

(1.1)
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With our notion of nonnegativity of vectors this LP problem may be written
nicely in matrix form as follows

maximize cTx

subject to

Ax ≤ b;

x ≥ O.

(1.2)

Here A = [ai,j ] is the m × n matrix with (i, j)th element being ai,j and b is
the column vector with ith component bi. We recall that each vector x is called
feasible in the LP problem (1.2) if it satisfies Ax ≤ b and x ≥ O. Let P be the set
of all feasible solutions in (1.2). The properties of this set depend, of course, on
the coefficient matrix A and the right-hand side b. But, is there some interesting
property that is shared by all such sets P ? Yes, it is described next.

Example 1.3.1. (Linear programming) Let P be the feasible set of (1.2) and
assume that P is nonempty. Choose two distinct feasible points, say x1 and x2.
Thus, x1, x2 ∈ P and x1 6= x2. What can be said about the vector z = (1/2)x1 +
(1/2)x2? Geometrically, z is the midpoint on the line segment L in IRn between
x1 and x2. But does z lie in P ? First, we see that z ≥ O (recall Example 1.2.1).
Moreover, Az = A[(1/2)x1+(1/2)x2] = (1/2)Ax1+(1/2)Ax2 ≤ (1/2)b+(1/2)b =
b again by our rules for calculating with nonnegative vectors. This shows that z
does lie in P , so it is also a feasible solution of the LP problem. Now, exactly the
same thing happens if we consider another point, say w on the line segment L. We
know that w may be written as (1−λ)x1 +λx2 (or, if you prefer, x1 +λ(x2−x1))
for some scalar λ satisfying 0 ≤ λ ≤ 1. Thus, P has the property that it contains
all points on the line segment between two points in P . This is precisely the
property that P is convex.

An attempt to illustrate the geometry of linear programming is given in Fig. 1.3
(where the feasible region is the solution set of five linear inequalities).

1.4 Convex sets, cones and polyhedra

We now define our basic notion. A set C ⊆ IRn is called convex if (1−λ)x1+λx2 ∈convex set

C whenever x1, x2 ∈ C and 0 ≤ λ ≤ 1. Geometrically, this means that C contains
the line segment between each pair of points in C. In the previous example we
showed that the set

P = {x ∈ IRn : Ax ≤ b, x ≥ O} (1.3)

is convex for all A ∈ IRm,n and b ∈ IRm. In fact, this set is a very special convex
set, called a polyhedron. Polyhedra is the subject of a later chapter. How can we
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b

b

b

b

b

feasible set

cTx : maximum value

cTx = const.

c

x∗

Figure 1.3: Linear programming
.

prove that a set is convex? The direct way is to use the definition as we did in
Example 1.3.1. Later we learn some other useful techniques. How can we verify
that a set S is not convex? Well, it suffices to find two points x1 and x2 and
0 ≤ λ ≤ 1 with the property that (1 − λ)x1 + λx2 6∈ S (you have then found a
kind of “hole” in S).

Example 1.4.1. (The unit ball) The unit ball in IRn is the set B = {x ∈ IRn :
‖x‖ ≤ 1}, i.e., the set of points with Euclidean distance at most one to the origin.
(So ‖x‖ = (

∑

j |xj |
2)1/2 is the Euclidean, or l2-norm, of the vector x ∈ IRn). We

shall show that B is convex. To do this we use the definition of convexity combined
with the triangle inequality which says that

‖u+ v‖ ≤ ‖u‖ + ‖v‖ for u, v ∈ IRn.

So let x, y ∈ B and λ ∈ [0, 1]. We want to show that (1−λ)x+λy ∈ B, i.e., that
‖(1 − λ)x + λy‖ ≤ 1. We use the triangle inequality (and norm properties) and
calculate ‖(1−λ)x+λy‖ ≤ ‖(1−λ)x‖+‖λy‖ = (1−λ)‖x‖+λ‖y‖ ≤ (1−λ)+λ = 1.
Therefore B is convex.

Exercise 1.4. Show that every ball B(a, r) := {x ∈ IRn : ‖x− a‖ ≤ r} is convex
(where a ∈ IRn and r ≥ 0).

Some examples of convex sets in IR2 are found in Fig. 1.2. linear

system
By a linear system we mean a finite set of linear equations and/or linear inequal-
ities involving variables x1, . . . , xn. For example, the set P in (1.3) was defined as
the solution set of a linear system. Consider the linear system x1+x2 = 3, x1 ≥ 0,
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a1

a2

a3 aT
3 x = α3

{x : aT
1 x ≤ α1, a

T
2 x ≤ α2, a

T
3 x ≤ α3}

Figure 1.4: Linear system and polyhedron

x2 ≥ 0 in the variables x1, x2. The solution set is the set of points (x1, 3 − x1)
where 0 ≤ x1 ≤ 3. This linear system may be written differently. For instance,
an equivalent form is x1 + x2 ≤ 3, −x1 − x2 ≤ −3, −x1 ≤ 0, −x2 ≤ 0. Here we
only have ≤-inequalities and these two systems clearly have the same solution
set. From this small example, it should be clear that any linear system may easily
be converted to a system (in the same variables) with only linear inequalities of
≤-form, i.e., a linear system ax ≤ b. Motivated by these considerations, we define
a polyhedron in IRn as a set of the form {x ∈ IRn : Ax ≤ b} where A ∈ IRm,n andpolyhedron

b ∈ IRm (m is arbitrary, but finite). Thus, a polyhedron is the solution set of a
linear system Ax ≤ b, see Fig. 1.4. As we observed, this means that the solution
set of any linear system is a polyhedron. Moreover, by repeating the argument of
Exercise 1.3.1 we have the following result.

Proposition 1.4.1 (Polyhedra). The solution set of any linear system in the
variable x ∈ IRn is a polyhedron. Every polyhedron is a convex set.

Project 1.1 (Different LP forms). Often LP problems are written in different
forms than the one in (1.2). For instance, the feasible set may one of the following
ones

P0 = {x0 ∈ IRn0 : A0x0 ≤ b0, x0 ≥ O};

P1 = {x1 ∈ IRn1 : A1x1 = b1, x1 ≥ O};

P2 = {x2 ∈ IRn2 : A2x2 ≤ b2}.

(1.4)

All these sets are polyhedra as explained above. You are now asked to work out
that these three sets are “equally general” in the sense that each Pi may be
written as a set Pj for all i and j. We have already mentioned how one can write
P0 and P1 in the form P2 (rewriting each equation as a pair of ≤-inequalities).
Note that, in this process, we could use the same number of variables (so, for
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instance, n2 = n1). However, this is not so when you write P2 in the form P1 (or
P0). Actually, we need two techniques for going from P2 to (say) P1.

The first technique is to introduce equations instead of inequalities. Recall that
A2x2 ≤ b2 means that the vector z defined by the equation z = b2 − A2x2 is
nonnegative. So, by introducing additional variables you may do the job. Explain
the details.

The second technique is to make sure that all variables are required to be non-
negative. To see this, we observe that a variable xj with no sign constraint, may
be replaced by two nonnegative variables x′j and x′′j by introducing the equation
xj = x′j − x′′j . The reason is simply that any real number may be written as a
difference between two nonnegative numbers. Explain the details in the transfor-
mation.

Note that it is common to say simply that that “a linear system Ax ≤ b may be
written in the form Ax = b, x ≥ O” although this may require a different x, A
and b. Similar terminology is used for LP problems in different forms.

Exercise 1.5. Explain how you can write the LP problem max {cTx : Ax ≤ b}
in the form max {cTx : Ax = b, x ≥ O}.

Example 1.4.2. (Optimal solutions in LP) Consider an LP problem, for instance
max {cTx : x ∈ P} where P is a polyhedron in IRn. We assume that the problem
has a finite optimal value v := max{cTx : x ∈ P}. Recall that the set of optimal
solutions is the set

F = {x ∈ P : cTx = v}.

Give an example with two variables and illustrate P , c and F .

Next, show that F is a convex set. In fact, F is a polyhedron. Why? We mention
that F is a special subpolyhedron of P , contained in the boundary of P . Later
we shall study such sets F closer, they are so-called faces of P . For instance, we
shall see that there are only finitely many faces of P . Thus, there are only finitely
many possible sets of optimal solutions of LP problems with P as the feasible
set.

Example 1.4.3. (Probabilities) Let T = {t1, . . . , tn} be a set of n real numbers.
Consider a discrete stochastic variable X with values in T and let the probability
of the event that X = tj be equal to pj for j = 1, . . . , n. Probabilities are non-
negative and sum to 1, so the vector of probabilities p = (p1, . . . , pn) lies in the
set Sn = {x ∈ IRn : x ≥ O,

∑n
j=1

xj = 1}. This set is a polyhedron. It is called
the standard simplex in IRn for reasons we explain later.
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Figure 1.5: A convex cone in R
3

Exercise 1.6. Make a drawing of the standard simplices S1, S2 and S3. Verify
that each unit vector ej lies in Sn (ej has a one in position j, all other components
are zero). Each x ∈ Sn may be written as a linear combination x =

∑n
j=1

λjej

where each λj is nonnegative and
∑n

j=1
λj = 1. How? Can this be done in several

ways?

A set C ⊆ IRn is called a convex cone if λ1x1+λ2x2 ∈ C whenever x1, x2 ∈ C andconvex cone

λ1, λ2 ≥ 0. An example is IRn
+, the set of nonnegative vectors in IRn. A convex

cone in IR3 is shown in Fig. 1.5. Note that every (nonempty) convex cone contains
O (just let λ1 = λ2 = 0 in the definition). Moreover, a convex cone is closed under
multiplication by a nonnegative scalar: if x ∈ C and λ ∈ IR+, then λx ∈ C. The
reader should verify this property based on the definition.

Exercise 1.7. Show that each convex cone is indeed a convex set.

There are two examples of convex cones that are important for linear program-
ming.

Exercise 1.8. Let A ∈ IRm,n and consider the set C = {x ∈ IRn : Ax ≤ O}.
Prove that C is a convex cone.

A convex cone of the form {x ∈ IRn : Ax ≤ O} where A ∈ IRm,n is called a
polyhedral cone . Let x1, . . . , xt ∈ IRn and let C(x1, . . . , xt) be the set of vectorspolyhedral

cone of the form
t

∑

j=1

λjxj

where λj ≥ 0 for each j = 1, . . . , t.

Exercise 1.9. Prove that C(x1, . . . , xt) is a convex cone.

A convex cone of the form C(x1, . . . , xt) is called a finitely generated cone, and wefinitely

generated

cone

say that it is generated by the vectors x1, . . . , xt. If t = 1 so C = {λx1 : λ ≥ 0},
C is called a ray. More generally, the set R = {x0 + λx1 : λ ≥ 0} is called a

ray
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halfline and we say that x1 is a direction vector for R. Thus, a ray is a halfline halfline

direction

vector

starting in the origin.

Later we shall see (and prove) the interesting fact that these two classes of cones
coincide: a convex cone is polyhedral if and only if it is finitely generated.

Exercise 1.10. Let S = {(x, y, z) : z ≥ x2 + y2} ⊂ IR3. Sketch the set and verify
that it is a convex set. Is S a finitely generated cone?

1.5 Linear algebra and affine sets

Although we assume that the reader is familiar with linear algebra, it is useful to
have a quick look at some important linear algebra notions at this point. Here is
a small linear algebra project.

Project 1.2 (A linear algebra reminder). Linear algebra is the foundation of
convex analysis. We should recall two important notions: linear independence linear

algebra

concepts

and linear subspace.

Let x1, . . . , xt be vectors in IRn. We say that x1, . . . , xt are linearly independent
if

∑t
j=1

λjxj = O implies that λ1 = . . . = λt = 0. Thus, the only way to linearly

independentwrite the zero vector O as a linear combination
∑t

j=1
λjxj of the given vectors

x1, . . . , xt is the trivial way with all coefficients λj being zero. This condition may
be expressed in matrix notation when we introduce a matrix x with jth column
being the vector xj . Thus, x ∈ IRn,t and linear independence of x1, . . . , xt means
that xλ = O implies that λ = O (we then say that x has full column rank).
As a small example, consider the vectors x1 = (1, 0,−1) and x2 = (1, 2, 3) in
IR3. These are linearly independent as λ1x1 + λ2x2 implies that λ2 = 0 (consider
the second component) and therefore also λ1 = 0. Note that any set of vectors
containing the zero vector is linearly dependent (i.e., not linearly independent).

Show the following: if x =
∑t

j=1
λjxj =

∑t
j=1

µjxj , then λj = µj for each
j = 1, . . . , n. Thus, the vector x can only be written as a linear combination
of the vectors x1, . . . , xt in a unique way. Give an example illustrating that such
a uniqueness result does not hold for linearly dependent vectors.

We proceed to linear subspaces. Recall that a set L ⊆ IRn is called a (linear)
subspace if it is closed under addition and multiplication with scalars. This means
that λ1x1 + λ2x2 ∈ L whenever x1, x2 ∈ L and λ1, λ2 ∈ IR. A very important fact
is that every linear subspace L may be represented in two different ways. First,
consider a maximal set of linearly independent vectors, say x1, . . . , xt, in L. This
means that if we add a vector in L to this set we obtain a linearly dependent
set of vectors. Then x1, . . . , xt spans L in the sense that L is precisely the set
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of linear combinations of the vectors x1, . . . , xt. Moreover, as explained above
due to the linear independence, each vector in L may be written uniquely as a
linear combination of x1, . . . , xt. This set of t vectors is called a basis of L. Abasis

crucial fact is that L may have many bases, but they all have the same number of
elements. This number t is called the dimension of L. The second representation
of a linear subspace L is as the kernel of some matrix. We recall that the kernel
(or nullspace) of a matrix A ∈ IRm,n is the set of vectors x satisfying Ax = O.kernel

(nullspace) This set is denoted by Ker(A).

Check that the kernel of any m×n matrix is a linear subspace. Next, try to show
the opposite, that every linear subspace is the kernel of some matrix. Confer with
some linear algebra textbook (hint: orthogonal complements).

Why bother with linear subspaces in a text on convexity? One reason is that
every linear subspace is a (very special) polyhedron; this is seen from the kernel
representation L = {x ∈ IRn : Ax = O}. It follows that every linear subspace is
a convex set.

Prove, using the definitions, that every linear subspace is a convex set.

Our final point here is that the two different representations of linear spaces may
be generalized to hold for large classes of convex sets. This will be important to
us later, but we need to do some more work before these results can be discussed.

Linear algebra, of course, is much more than a study of linear subspaces. For
instance, one of the central problems is to solve linear systems of equations. Thus,
given a matrix A ∈ IRm,n and a vector b ∈ IRm we want to solve the linear equation
Ax = b. Often, we have that m = n and that A is nonsingular (invertible). This
means that the columns of a are linearly independent and therefore Ax = b has
a unique solution. However, there are many interesting situations where one is
concerned with rectangular linear systems, i.e., where the number of equations
may not be equal to the number of variables. Examples here are optimization
and regression analysis and approximation problems.

Now, any linear system of equations Ax = b is also a linear system as we have
defined it. Thus, the solution set of Ax = b must be a polyhedron. But, this
polyhedron is very special as we shall see next.

Project 1.3 (Affine sets). We say that a set C ⊆ IRn is affine provided thataffine set

it contains the line through any pair of its points. This means that whenever
x1, x2 ∈ C and λ ∈ IR the vector (1 − λ)x1 + λx2 also lies in C. Note that this
vector equals x1 + λ(x2 − x1) and that, when x1 and x2 are distinct, the vector
x2 − x1 is a direction vector for the line through x1 and x2.
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For instance, a line in IRn is an affine set. Another example is the set C =
{x0 +λ1r1 +λ2r2 : λ1, λ2 ∈ IR} which is a two-dimensional “plane” going through
x0 and spanned by the nonzero vectors r1 and r2. See Fig. 1.6 for an example.

Show that every affine set is a convex set!

Here is the connection between affine sets and linear systems of equations. Let C
be the solution set of Ax = b where A ∈ IRm,n and b ∈ IRm. Show that C is an
affine set! In particular, the solution set H of a single equation aTx = α, where
a 6= O, is an affine set. Such a set H is called a hyperplane, and the vector a is
called a normal vector of the hyperplane. Give some examples of hyperplanes in
IR2, and in IR3! We say that two hyperplanes H and H ′ are parallel if they have
parallel normal vectors. Show that two hyperplanes in IRn that are not parallel
must intersect! What kind of set is the intersection?

Are there any affine sets that are not the solution set of some system of equations?
The answer is no, so we have

Proposition 1.5.1 (Affine sets). Let C be a nonempty subset of IRn. Then C is
an affine set if and only if there is a matrix A ∈ IRm,n and a vector b ∈ IRm for
some m such that

C = {x ∈ IRn : Ax = b}.

Moreover, C may be written as C = L + x0 = {x + x0 : x ∈ L} for some linear
subspace L of IRn. The subspace L is unique.

We leave the proof as an exercise.

Project 1.4 (Preservation of convexity). Convexity is preserved under several
operations, and the next result describes a few of these. We here use som set
notation. When A,B ⊆ IRn their sum is the set A+B = {x+ y : x ∈ A, y ∈ B}.
Similarly, when λ ∈ IR we let λA := {λx : x ∈ A}. In each situation below you
should give an example, and try to prove the statement.

1. Let C1, C2 be convex sets in IRn and let λ1, λ2 be real numbers. Then
λ1C1 + λ2C2 is convex.

2. The intersection of any (even infinite) family of convex sets is a convex set
(you may have shown this already!).

3. Let T : IRn → IRm be an affine transformation, i.e., a function of the form
T (x) = Ax+ b, for some A ∈ IRm,n and b ∈ IRm. Then T maps convex sets
to convex sets, i.e, if C is a convex set in IRn, then T (C) = {T (x) : x ∈ C}
is a convex set in IRm.
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an affine set

the parallel linear subspace

Figure 1.6: Affine set

1.6 Exercises

Exercise 1.11. Consider the linear system 0 ≤ xi ≤ 1 for i = 1, . . . , n and let
P denote the solution set. Explain how to solve a linear programming problem

max{cTx : x ∈ P}.

What if the linear system was ai ≤ xi ≤ bi for i = 1, . . . , n. Here we assume
ai ≤ bi for each i.

Exercise 1.12. Is the union of two convex sets again convex?

Exercise 1.13. Determine the sum A +B in each of the following cases:

(i) A = {(x, y) : x2 + y2 ≤ 1}, B = {(3, 4)};

(ii) A = {(x, y) : x2 + y2 ≤ 1}, B = [0, 1] × {0};

(iii) A = {(x, y) : x+ 2y = 5}, B = {(x, y) : x = y, 0 ≤ x ≤ 1};

(iv) A = [0, 1] × [1, 2], B = [0, 2] × [0, 2].

Exercise 1.14. (i) Prove that, for every λ ∈ IR and A,B ⊆ IRn, it holds that
λ(A+B) = λA+λB. (ii) Is it true that (λ+µ)A = λA+µA for every λ, µ ∈ IR
and A ⊆ IRn? If not, find a counterexample. (iii) Show that, if λ, µ ≥ 0 and
A ⊆ IRn is convex, then (λ+ µ)A = λA+ µA.

Exercise 1.15. Show that if C1, . . . , Ct ⊆ IRn are all convex sets, then C1 ∩ . . .∩
Ct is convex. Do the same when all sets are affine (or linear subspaces, or convex
cones). In fact, a similar result for the intersection of any family of convex sets.
Explain this.

Exercise 1.16. Consider a family (possibly infinite) of linear inequalities
aT

i x ≤ bi, i ∈ I, and C be its solution set, i.e., C is the set of points satisfying
all the inequalities. Prove that C is a convex set.
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Exercise 1.17. Consider the unit disc S = {(x1, x2) ∈ IR2 : x2
1 + x2

2 ≤ 1} in IR2.
Find a family of linear inequalities as in the previous problem with solution set
S.

Exercise 1.18. Is the unit ball B = {x ∈ IRn : ‖x‖2 ≤ 1} a polyhedron?

Exercise 1.19. Consider the unit ball B∞ = {x ∈ IRn : ‖x‖∞ ≤ 1} is convex.
Here ‖x‖∞ = maxj |xj | is the max norm of x. Show that B∞ is a polyhedron.
Illustrate when n = 2.

Exercise 1.20. Consider the unit ball B1 = {x ∈ IRn : ‖x‖1 ≤ 1} is convex.
Here ‖x‖1 =

∑n
j=1

|xj | is the absolute norm of x. Show that B1 is a polyhedron.
Illustrate when n = 2.

Exercise 1.21. Prove Proposition 1.5.1.

Exercise 1.22. Let C be a nonempty affine set in IRn. Define L = C −C. Show
that L is a subspace and that C = L+ x0 for some vector x0.

SUMMARY OF NEW CONCEPTS AND RESULTS:

• convex set
• convex cone (finitely generated, polyhedral)
• polyhedron
• linear system
• linear programming
• linear algebra: linear independence, linear subspace, representations
• affine set
• the norms ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞
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Chapter 2

Convex hulls and Carathéodory’s theorem

We have now introduced our main objects: convex sets and special convex sets
(convex cones, polyhedra). In this chapter we investigate these objects further,
and a central notion is that of convex combinations of points. We shall define the
dimension of a set and study the topological properties of convex sets.

2.1 Convex and nonnegative combinations

In convex analysis one is interested in certain special linear combinations of vec-
tors that represent “mixtures” of points. Consider vectors x1, . . . , xt ∈ IRn and
nonnegative numbers (coefficients) λj ≥ 0 for j = 1, . . . , t such that

∑t
j=1

λj = 1.

Then the vector x =
∑t

j=1
λjxj is called a convex combination of x1, . . . , xt ∈ IRn, convex

combinationsee Fig. 2.1. Thus, a convex combinations is a special linear combination where
the coefficients are nonnegative and sum to one. A special case is when t = 2 and
we have a convex combination of two points: λ1x1 + λ2x2 = (1 − λ2)x2 + λ2x2.
Note that we may reformulate our definition of a convex set by saying that it is
closed under convex combinations of each pair of its points.

We give a remark on the terminology here. If S ⊆ IRn is any set, we say that x is
a convex combination of points in S if x may be written as a convex combination
of a finite number of points in S. Thus, there are no infinite series or convergence
questions we need to worry about.

Example 2.1.1. (Convex combinations) Consider the following four vectors in
IR2: (0, 0), (1, 0), (0, 1) and (1, 1). The point (1/2, 1/2) is a convex combination
of (1, 0) and (0, 1) as we have (1/2, 1/2) = (1/2) · (1, 0) + (1/2) · (0, 1). We also
see that (1/2, 1/2) is a convex combination of the vectors (0, 0) and (1, 1). Thus,
a point may have different representations as convex combinations.

17



18 CHAPTER 2. CONVEX HULLS AND CARATHÉODORY’S THEOREM
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Figure 2.1: Convex combinations

Similarly, we call a vector
∑t

j=1
λjxj a nonnegative combination of the vectors nonnegative

combinationx1, . . . , xt when λ1, . . . , λt ≥ 0. It is clear that every convex combination is also
a nonnegative combination, and that every nonnegative combination is a linear
combination.

Exercise 2.1. Illustrate some combinations (linear, convex, nonnegative) of two
vectors in IR2.

The following result says that a convex set is closed under the operation of taking
convex combinations. This is similar to a known fact for linear subspaces: they
are closed under linear combinations.

Proposition 2.1.1 (Convex sets). A set C ⊆ IRn is convex if and only if it
contains all convex combinations of its points. A set C ⊆ IRn is a convex cone if
and only if it contains all nonnegative combinations of its points.

Proof. If C contains all convex combinations of its points, then this also holds
for combinations of two points, and then C must be convex. Conversely, assume
that C is convex. We prove that C contains every convex combination of t of its
elements using induction on t. When t = 2 this is clearly true as C is convex.
Assume next that C contains any convex combination of t − 1 elements (where
t ≥ 3). Let x1, . . . , xt ∈ C and λj > 0 for j = 1, . . . , t where

∑t
j=1

λj = 1. Thus,
0 < λ1 < 1 (if λ1 = 1 we would get t = 1). We have that

(∗) x = λ1x1 + (1 − λ1)

t
∑

j=2

(λj/(1 − λ1))xj .
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Note that
∑t

j=2
λj/(1− λ1) = 1, and each element is nonnegative. Therefore the

vector y =
∑t

j=2
(λj/(1 − λ1))xj is a convex combination of t− 1 elements in C

so y ∈ C, by the induction hypothesis. Moreover, x is a convex combination of x1

and y, both in C, and therefore x ∈ C as desired. The result concerning conical
combinations is proved similarly.

Exercise 2.2. Choose your favorite three points x1, x2, x3 in IR2, but make sure
that they do not all lie on the same line. Thus, the three points form the corners
of a triangle C. Describe those points that are convex combinations of two of the
three points. What about the interior of the triangle C, i.e., those points that lie
in C but not on the boundary (the three sides): can these points be written as
convex combinations of x1, x2 and x3? If so, how?

2.2 The convex hull

Consider two distinct points x1, x2 ∈ IRn (let n = 2 if you like). There are many
convex sets that contain both these points. But, is there a smallest convex set
that contains x1 and x2? It is not difficult to answer this positively. The line
segment L between x1 and x2 has these properties: it is convex, it contains both
points and any other convex set containing x1 and x2 must also contain L. Note
here that L is precisely the set of convex combinations of the two points x1 and
x2. Similarly, if x1, x2, x3 are three points in IR2 (or IRn) not all on the same line,
then the triangle T that they define must be the smallest convex set containing
x1, x2 and x3. And again we note that T is also the set of convex combinations
of x1, x2, x3 (confer Exercise 2.2).

More generally, let S ⊆ IRn be any set. Define the convex hull of S, denoted by convex hull

conv(S) as the set of all convex combinations of points in S (see Fig. 2.2). The
convex hull of two points x1 and x2, i.e., the line segment between the two points,
is often denoted by [x1, x2]. An important fact is that conv(S) is a convex set,
whatever the set S might be. Thus, taking the convex hull becomes a way of
producing new convex sets.

Exercise 2.3. Show that conv(S) is convex for all S ⊆ IRn. (Hint: look at two
convex combinations

∑

j λjxj and
∑

j µjyj, and note that both these points may
be written as a convex combination of the same set of vectors.)

Exercise 2.4. Give an example of two distinct sets S and T having the same
convex hull. It makes sense to look for a smallest possible subset S0 of a set S
such that S = conv(S0). We study this question later.

Exercise 2.5. Prove that if S ⊆ T , then conv(S) ⊆ conv(T ).
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a) b)

The set S

conv(S)

Figure 2.2: Convex hull

The following proposition tells us that the convex hull of a set S is the smallest
convex set containing S. Recall that the intersection of an arbitrary family of sets
consists of the points that lie in all of these sets.

Proposition 2.2.1 (Convex hull). Let S ⊆ IRn. Then conv(S) is equal to the
intersection of all convex sets containing S. Thus, conv(S) is the smallest convex
set containing S.

Proof. From Exercise 2.3 we have that conv(S) is convex. Moreover, S ⊆ conv(S);
just look at a convex combination of one point! Therefore W ⊆ conv(S) where
W is defined as the intersection of all convex sets containing S. Now, consider
a convex set C containing S. Then C must contain all convex combinations of
points in S, this follows from Proposition 2.1.1. But then conv(S) ⊆ C and we
conclude that W (the intersection of such sets C) must contain conv(S). This
concludes the proof.

What we have just done concerning convex combinations may be repeated for
nonnegative combinations. Thus, when S ⊆ IRn we define the conical hull of S,conical

hull denoted by cone(S) as the set of all nonnegative combinations of points in S.
This set is always a convex cone. Moreover, we have that

Proposition 2.2.2 (Conical hull). Let S ⊆ IRn. Then cone(S) is equal to the
intersection of all convex cones containing S. Thus, cone(S) is the smallest convex
cone containing S.

The proof is left as an exercise.

Exercise 2.6. If S is convex, then conv(S) = S. Show this!

Exercise 2.7. Let S = {x ∈ IR2 : ‖x‖2 = 1}, this is the unit circle in IR2.
Determine conv(S) and cone(S).
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Example 2.2.1. (LP and convex cones) Consider a linear programming problem
max{cTx : x ∈ P} where P = {x ∈ IRn : Ax = b, x ≥ O}. We have that
Ax =

∑n
j=1

xjaj where aj is the jth column of a. Thus, P is nonempty if and
only if b ∈ cone({a1, . . . , an}). Moreover, a point x is feasible in the LP problem
(i.e., x ∈ P ) if its components xj are the coefficients of aj when b is represented
as a nonnegative combination of a1, . . . , an.

We have seen that by taking the convex hull we produce a convex set whatever
set we might start with. If we start with a finite set, a very interesting class of
convex sets arise. A set P ⊂ IRn is called a polytope if it is the convex hull of a polytope

finite set of points in IRn. Polytopes have been studied a lot during the history
of mathematics. Some polytopes are illustrated in Fig. 2.4. The convex set in
Fig. 2.2 b) is not a polytope. Today polytope theory is still a fascinating subject
with a lot of activity. One of the reasons is its relation to linear programming,
because most LP problems have a feasible set which is a polytope. In fact, we
shall later prove an important result in polytope theory saying that a set is a
polytope if and only if it is a bounded polyhedron. Thus, in LP problems with
bounded feasible set, this set is really a polytope.

Example 2.2.2. (LP and polytopes) Consider a polytope P = conv({x1, . . . , xt}).
We want to solve the optimization problem

(∗) max{cTx : x ∈ P}

where c ∈ IRn. As mentioned above, this problem is an LP problem, but we do
not worry too much about this now. The interesting thing is the combination
of a linear objective function and the fact that the feasible set is a convex hull
of finitely many points. To see this, consider an arbitrary feasible point x ∈ P .
Then x may be written as a convex combination of the points x1, . . . , xt, say
x =

∑t
j=1

λjxj for some λj ≥ 0, j = 1, . . . , t where
∑

j λj = 1. Define now

v = maxj c
Txj . We then calculate

cTx = cT
∑

j

λjxj =
t

∑

j=1

λjc
Txj ≤

t
∑

j=1

λjv = v
t

∑

j=1

λj = v.

Thus, v is an upper bound for the optimal value in the optimization problem (∗).
We also see that this bound is attained whenever λj is positive only for those
indices j satisfying cTxj = v. Let J be the set of such indices. We conclude that
the optimal solutions of the problem (∗) is the set

conv({xj : j ∈ J})



22 CHAPTER 2. CONVEX HULLS AND CARATHÉODORY’S THEOREM

which is another polytope (contained in P ). The procedure just described may
be useful computationally if the number t of points defining P is not too large.
In some cases, t is too large, and then we may still be able to solve the problem
(∗) by different methods, typically linear programming related methods.

2.3 Affine independence and dimension

We know what we mean by the dimension dim(L) of a linear subspace L of IRn:
dim(L) is the cardinality of a basis in L, or equivalently, the maximal number of
linearly independent vectors lying in L. This provides a starting point for defining
the dimension of more general sets, in fact any set, in IRn.

The forthcoming definition of dimension may be loosely explained as follows. Let
S be a set and pick a point x1 in S. We want (the undefined) dimension of S to
tell how many (linearly) independent directions we can move in, starting from x
and still hit some point in S. For instance, consider the case when S is convex
(which is of main interest here). Say that we have a point x ∈ S and can find
other points x1, . . . , xt that also lie in S. Thus, by convexity we can “move” from
x in each of the directions xj −x for j = 1, . . . , t and still be in S (if we do not go
too far). If the vectors x1 −x, . . . , xt −x are linearly independent, and t is largest
possible, we say that S has dimension t. We now make these ideas more precise.

First, we introduce the notion of affine independence. A set of vectors x1, . . . , xt ∈
IRn are called affinely independent if

∑t
j=1

λjxj = O and
∑t

j=1
λj = 0, imply thataffinely

independent

vectors

λ1 = . . . = λt = 0. This definition resembles the definition of linear independence
except for the extra condition that the sum of the λ’s is zero. Note that if a set of
vectors is linearly independent, then it is also affinely independent. In fact, there
is a useful relationship between these two notions as the next proposition tells
us.

Proposition 2.3.1 (Affine independence). The vectors x1, . . . , xt ∈ IRn are
affinely independent if and only if the t−1 vectors x2−x1, . . . , xt−x1 are linearly
independent.

Proof. Let x1, . . . , xt ∈ IRn be affinely independent and assume that λ2, . . . , λt ∈
IR and

∑t
j=2

λj(xj − x1) = O. Then (−
∑t

j=2
λj)x1) +

∑t
j=2

λjxj = O. Note here
that the sum of all the coefficients is zero, so by affine independence of x1, . . . , xt

we get that λ2 = . . . = λt = 0. This proves that x2 − x1, . . . , xt − x1 are linearly
independent. Conversely, let x2 − x1, . . . , xt − x1 be linearly independent and
assume

∑t
j=1

λjxj = O and
∑t

j=1
λj = 0. Then λ1 = −

∑t
j=2

λj and therefore

O = (−
∑t

j=2
λj)x1 +

∑t
j=2

λjxj =
∑t

j=2
λj(xj − x1). But, as x2 − x1, . . . , xt − x1
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Figure 2.3: Affine independence

are linearly independent, we must have λ2 = . . . = λt = 0 and therefore also
λ1 = −

∑t
j=2

λj = 0.

In the example shown in Fig. 2.3 the vectors x1, x2, x3 are affinely independent
and the vectors x2 − x1 and x3 − x1 are linearly independent.

Exercise 2.8. Does affine independence imply linear independence? Does linear
independence imply affine independence? Prove or disprove!

A useful property of affine independence is that this property still holds whenever
all our vectors are translated with a fixed vector as discussed in the next exercise.

Exercise 2.9. Let x1, . . . , xt ∈ IRn be affinely independent and let w ∈ IRn. Show
that x1 + w, . . . , xt + w are also affinely independent.

We can now, finally, define the dimension of a set. The dimension of a set S ⊆ IRn, dimension

denoted by dim(S), is the maximal number of affinely independent points in
S minus 1. So, for example in IR3, the dimension of a point and a line is 0 and
1 respectively, and the dimension of the plane x3 = 0 is 2. See Fig. 2.4 for some
examples.

Exercise 2.10. Let L be a linear subspace of dimension (in the usual linear
algebra sense) t. Check that this coincides with our new definition of dimension
above. (Hint: add O to a “suitable” set of vectors).

Consider a convex set C of dimension d. Then there are (and no more than)
d + 1 affinely independent points in C. Let S = {x1, . . . , xd+1} denote a set of
such points. Then the set of all convex combinations of these vectors, i.e., conv(S),
is a polytope contained in C and dim(S) = dim(C). Moreover, let A be the set of
all vectors of the form

∑t
j=1

λjxj where
∑t

j=1
λj = 1 (no sign restriction of the

λ’s). Then A is an affine set containing C, and it is the smallest affine set with
this property. A is called the affine hull of C. affine hull

Exercise 2.11. Prove the last statements in the previous paragraph.
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Figure 2.4: Dimensions

Some special polytopes and finitely generated cones are of particular interest. A
simplex P in IRn is the convex hull of a set S of affinely independent vectors in IRn.simplex

We recall from Example 1.4.3 the set Sn = {x ∈ IRn : x ≥ O,
∑n

j=1
xj = 1} which

is the standard simplex in IRn. It is indeed a simplex as Sn = conv({e1, . . . , en})
and the unit vectors e1, . . . , en are affinely (even linearly) independent. Thus,
dim(Sn) = n− 1.

A simplex cone in IRn is a finitely generated convex cone K spanned by linearlysimplex

cone independent vectors. Then, clearly, dim(K) equals the number of these generating
vectors.

Proposition 2.3.2 (Unique representation). (i) Let the vectors x1, . . . , xt ∈ IRn

be affinely independent and consider the simplex P = conv({x1, . . . , xt}) generated
by these vectors. Then each point in P has a unique representation as a convex
combination of x1, . . . , xt.

(ii) Let x1, . . . , xt ∈ IRn be linearly independent and consider the simplex cone
C = cone({x1, . . . , xt}) generated by these vectors. Then each point in C has a
unique representation as a nonnegative combination of x1, . . . , xt.

2.4 Convex sets and topology

To study convex sets it is useful with some basic knowledge to topology. For
instance, we want to discuss the boundary of a convex set. If this set is full-
dimensional, like the unit ball {x ∈ IRn : ‖x‖ ≤ 1} in IRn, then the boundary is
{x ∈ IRn : ‖x‖ = 1} which may not be so surprising. But what is the “boundary”
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of the set C = {(x1, x2, 0) ∈ IR3 : x2
1+x

2
2 ≤ 1}? We now give the proper definitions

of these concepts.

A closed ball is a set of the form B(a, r) = {x ∈ IRn : ‖x−a‖ ≤ r} where a ∈ IRn closed ball

and r ∈ IR+, i.e. this set consists of all points with distance not larger than r
from a. The corresponding open ball, defined whenever r > 0, is B◦(a, r) = {x ∈ open ball

IRn : ‖x−a‖ < r}. We shall now define the notions of open and closed sets. First,
we should say that every closed ball is indeed a closed set, and every open ball is
an open set. A set S ⊆ IRn is called open if it contains an open ball around each open set

of its points, that is, for each x ∈ S there is an ǫ > 0 such that B◦(a, ǫ) ⊆ S.
For instance, in IR each open interval {x ∈ IR : a < x < b} is an open set. A set
S ⊆ IRn is called closed if its (set) complement S̄ = {x ∈ IRn : x 6∈ S} is open. closed set

Every closed interval {x ∈ IR : a ≤ x ≤ b} is a closed set.

Exercise 2.12. Construct a set which is neither open nor closed.

A very useful fact is that closed sets may be characterized in terms of convergent
sequences. We say that a point sequence {xk}∞k=1

⊂ IRn converges to x if ‖xk −
x‖ → 0 as k → ∞. Each such sequence is called convergent and x is called the
limit point of the sequence. We also write xk → x in this case. convergent

sequenceExercise 2.13. Show that xk → x if and only if xk
j → xj for j = 1, . . . , n. Thus,

convergence of a point sequence simply means that all the component sequences
are convergent.

Consider now a set S and a sequence {xk} in S (meaning that each point xk lies
in S). Assume that the sequence converges to the point x. Does this limit point
lie in S? No, not in general, but this is true if S is closed, see below.

A set S in IRn is called bounded if there is a number M such that ‖x‖ ≤ M for
all x ∈ S. This means that S does not contain points with arbitrary large norm, bounded

or equivalently, it does not contain points with arbitrary large components. A set
is called compact if it is both closed and bounded. In optimization problems the compact set

feasible set is (almost always) a closed set, often it is even compact.

A function f : IRn → IRk is continuous at the point x ∈ IRn if for each ǫ > 0 there
is an δ > 0 such that if y satisfies ‖y − x‖ < δ then ‖f(y) − f(x)‖ < ǫ. If f is continuous

functioncontinuous at every point, f is simply said to be continuous.

Some other useful basic results in topology are summarized next. We refer to any
introductory book in analysis or topology for proofs and more on the subject. A
rather naive attempt to illustrate topology is seen in Fig. 2.5.

Theorem 2.4.1 (Topology, continuity etc). (i) A set S is closed if and only if
it contains the limit point of each convergent point sequence in S.

(ii) A set S is compact if and only if each point sequence in S has a convergent
subsequence (with limit point in S).
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Figure 2.5: Compactness and continuity

(iii) The union of any family of open sets is an open set, and the intersection of
a finite number of open sets is an open set.

(iv) The union of a finite number of closed sets is a closed set, and the intersection
of any family of closed sets is a closed set.

(v) If f : IRn → IRk is continuous and S ⊆ IRn is compact, then the image
f(S) = {f(x) : x ∈ S} is also compact.

(vi) A function f : IRn → IRk is continuous if and only if the inverse image
f−1(S) = {x ∈ IRn : f(x) ∈ S} is closed for every closed set S in IRk.

(vii) If f : IRn → IRk is continuous and xk → x, then f(xk) → f(x).

(viii) (Weierstrass’ theorem) A continuous mapping f of a compact set into IR
attains its maximum and minimum in S, i.e., there are points x1, x2 ∈ S such
that

f(x1) ≤ f(x) ≤ f(x2) for all x ∈ S.

Example 2.4.1. (Polyhedra are closed) Consider a polyhedron P = {x ∈ IRn :
Ax ≤ b} in IRn, where A ∈ IRm,n and b ∈ IRm. Then P is closed. We can
see this from statement (vi) of Theorem 2.4 in the following way. The function
f : IRn → IRm defined by f(x) = Ax is continuous (every linear transformation is
continuous). Moreover, the set S = {y ∈ IRm : y ≤ b} is clearly closed. Therefore
P = f−1(S) must be closed. Note that a polyhedron may not be compact (there
are unbounded polyhedra). The class of compact polyhedra consists precisely of all
polytopes, we shall return to this later.

Exercise 2.14. Show that every simplex cone is closed.

The interior int(S) of a set S is defined as the union of all open sets con-interior

tained in S. This set must be open due to property (iii) of Theorem 2.4.1.
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In fact, int(S) is the unique largest open set contained in S. For instance, we
have int(B(a, r)) = B◦(a, r). The closure cl(S) of a set S is the intersection closure

of all closed sets containing S. This set must be closed due to property (iv) of
Theorem 2.4.1 and it is the unique smallest closed set containing S. Note that
int(S) ⊆ S ⊆ cl(S). We have that S is open if and only if int(S) = S, and that
S is closed if and only if cl(S) = S.

The boundary bd(S) of S is defined by bd(S) = cl(S) \ int(S). For instance, we boundary

have that bd(B(a, r)) = {x ∈ IRn : ‖x− a‖ = r}.

Exercise 2.15. Prove that x ∈ bd(S) if and only if each ball with center x
intersects both S and the complement of S.

Thus, if x ∈ bd(S), then we can find a sequence of points in S that converges
to x (as x ∈ cl(S)), and we can also find a sequence of points outside S that
converges to x.

As mentioned above, in convex analysis, we also need the concept of relative
topology. Since a convex set C in IRn may have dimension smaller than n, it is of relative

topologyinterest to study C as a subset of “the smallest space” it lies in. Here the proper
space is the affine hull of C, aff(C). We recall that this is the smallest affine set
that contains C. Our next definition of relative interior point also makes sense
for arbitrary sets. Let S ⊆ IRn and x ∈ S. We say that x is a relative interior
point of S if there is r > 0 such that

B◦(x, r) ∩ aff(S) ⊆ S.

This means that x is the center of some open ball whose intersection with aff(S)
is contained in S. We let rint(S) denote the relative interior of S, this is the set relative

interiorof all relative interior points of S. Finally, we define the relative boundary of S,
relative

boundary

denoted by rbd(S), as those points in the closure of S not lying in the relative
interior of S, i.e.,

rbd(S) = cl(S) \ rint(S).

Each point in rbd(S) is called a relative boundary point of S, see Fig. 2.6.

Exercise 2.16. Consider again the set C = {(x1, x2, 0) ∈ IR3 : x2
1 + x2

2 ≤ 1}.
Verify that (i) C is closed, (ii) dim(C) = 2, (iii) int(C) = ∅, (iv) bd(C) = C,
(v) rint(C) = {(x1, x2, 0) ∈ IR3 : x2

1 + x2
2 < 1} and (vi) rbd(C) = {(x1, x2, 0) ∈

IR3 : x2
1 + x2

2 = 1}.

With all the machinery introduced above, let us look at convex sets from a topo-
logical perspective. A basic result in this area is the following theorem. It says
that when C is convex then (except for one of the end points) every line segment
between a point in rint(C) and a point in the closure of C also lies in rint(C).
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Figure 2.6: Relative topology

Several other results on the topology of convex sets may be derived from this
theorem.

Theorem 2.4.2 (A convex set has “thin boundary”). Let C ⊆ IRn be a non-
empty convex set. Let x1 ∈ rint(C) and x2 ∈ cl(C). Then (1 − λ)x1 + λx2 ∈
rint(C) for all 0 ≤ λ < 1.

Proof. We first prove this result for the case when x1 ∈ rint(C) and x2 ∈ C.
Since x1 ∈ rint(C) there is a r > 0 such that B(x1, r) ∩ aff(C) ⊆ C. Define
w = (1 − λ)x1 + λx2 where 0 ≤ λ < 1. We shall show that

(∗) B(w, (1 − λ)r) ∩ aff(C) ⊆ C.

To do this, let x ∈ B(w, (1 − λ)r) ∩ aff(C) and let

y := x1 + (1/(1 − λ))(x− w) = (1/(1 − λ))x+ (1 − 1/(1 − λ))x2.

Since y is an affine combination of x and x2, both lying in aff(C), we see that
y ∈ aff(C). Moreover, ‖y − x1‖ = (1/(1 − λ))‖x − w‖ ≤ r. This shows that
y ∈ B(x1, r) ∩ aff(C) and therefore y ∈ C. We also have that x = (1− λ)y + λx2

and because C is convex, this implies that x ∈ C. This proves the relation in (∗)
and it follows that w ∈ rint(C).

We have finished the proof of the special case when x2 ∈ C. Consider now the
general case when x1 ∈ rint(C) and x2 ∈ cl(C). Again we define w = (1 −
λ)x1 + λx2 where 0 ≤ λ < 1. Since x2 ∈ cl(C), there is a point x′2 ∈ C which is
sufficiently near x2, namely λ‖x′2 − x2‖ < (1 − λ)r. Define next

y := x1 + (λ/(1 − λ))(x2 − x′2) = (1/(1 − λ))w + (1 − 1/(1 − λ))x′2.

Then y ∈ aff(C) and ‖y − x1‖ = (λ/(1 − λ))‖x2 − x′2‖ < r. Therefore y ∈
B(x1, r)∩aff(C) so y ∈ rint(C). Finally, we have w = (1−λ)y+λx′2 so w ∈ rint(C)
and the proof is complete.
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We now give a main result on how convexity is preserved under several topological
operations on a convex set. The proof of this result is left as an exercise; it is an
immediate consequence of Theorem 2.4.2.

Theorem 2.4.3 (Convexity under topological operations). If C ⊆ IRn is a convex
set, then all the sets rint(C), int(C) and cl(C) are convex.

Another result that also follows from Theorem 2.4.2 is the following one. It says
that the three sets rint(C), C (assumed to be convex) and cl(C) are very close.
For instance, they all have the same relative boundary.

Theorem 2.4.4 (Sets that are “close”). Let C ⊆ IRn be a convex set. Then each
object in the following list coincide for these three sets rint(C), C and cl(C): (i)
the affine hull, (ii) the dimension, (iii) the relative interior, (iv) the closure, and
(v) the relative boundary.

We omit the proof, but a reader who likes topology might try to prove it. Again,
the main tool is Theorem 2.4.2.

2.5 Carathéodory’s theorem and some consequences

If a point x lies in the convex hull of some set S ⊆ IRn we know that x may be
written as convex combination of points in S. But how many points do we need
for this? Maybe there is some way of reducing a convex combination x of “many”
points to a convex combination of fewer points, still producing the same point x.
This may seem reasonable, especially when we compare to what we know from
linear algebra: a point in a linear subspace of dimension t may be written as a
linear combination of a set of t basis vectors of L. We shall see that a related
result holds for convex hulls, although things are a little bit more complicated.

The following result, due to Carathéodory, says that any point in the convex hull
of some points may be written as a convex combination of “few” of these points,
see Fig. 2.7.

Theorem 2.5.1 (Carathéodory’s theorem). Let S ⊆ IRn. Then each x ∈ conv(S)
may be written as a convex combination of (say) m affinely independent points
in S. In particular, m ≤ n + 1.

Proof. Since x ∈ conv(S) there are nonnegative numbers λ1, . . . , λt and vectors
x1, . . . , xt ∈ S such that

∑

j λj = 1 and x =
∑

j λjxj . In fact, we may assume
that each λj is positive, otherwise we could omit some xj from the representation.
If x1, . . . , xt are affinely independent, we are done, so assume that they are not.
Then there are numbers µ1, . . . , µt not all zero such that

∑t
j=1

µjxj = O and
∑t

j=1
µj = 0. Since the µjs are not all zero and sum to zero, at least one of
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Figure 2.7: Carathéodory’s theorem

these numbers must be positive, say that µ1 > 0. We now multiply the equation
∑

j µjxj = O by a nonnegative number α and subtract the resulting equation
from the equation x =

∑

j λjxj . This gives

x =
∑

j

(λj − αµj)xj .

Note that
∑

j(λj − αµj) =
∑

j λj − α
∑

j µj = 1. When α = 0 this is just our
original representation of x. But now we gradually increase α from zero until one
of the coefficients λj − αµj becomes zero, say this happens for α = α0. Recall
here that each λj is positive and so is µ1. Then each coefficient λj − α0µj is
nonnegative and at least one of them is zero. But this means that we have found
a new representation of x as a convex combination of t − 1 vectors from S.
Clearly, this reduction process may be continued until we have x written as a
convex combination of, say, m affinely independent points in S. Finally, there are
at most n+ 1 affinely independent points in IRn so m ≤ n+ 1.

There is a similar result for conical hulls which may be proved similarly (another
exercise!).

Theorem 2.5.2 (Carathéodory for cones). Let S ⊆ IRn. Then each x ∈ cone(S)
may be written as a nonnegative combination of (say) m linearly independent
points in S. In particular, m ≤ n.

Carathéodory’s theorem says that, for a given point x ∈ IRn in the convex hull of
a set S of points, we can write x as a convex combination of at most n+1 affinely
independent points from S. This, however, does not mean, in general, that there
is a “convex basis” in the sense that the same set of n + 1 points may be used
to generate any point x. Thus, the “generators” have to be chosen specifically
for each x. This is in contrast to the existence of a basis for linear subspaces. It
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should be noted that a certain class of convex sets, simplices, discussed below,
has a “convex basis”; this is seen directly from the definitions below.

We discuss some interesting consequences of Carathéodory’s theorem.

Example 2.5.1. (Carathéodory and LP) Consider the LP problem max {cTx :
x ∈ P} where P = {x ∈ IRn : Ax = b, x ≥ O}. We assume that the rows
of A are linearly independent, and therefore m ≤ n, and that P is nonempty.
As discussed before this means that b lies in the finitely generated convex cone
cone({a1, . . . , an}) where a1, . . . , an are the columns of the matrix A. So b may
be written as a nonnegative combination of a1, . . . , an ∈ IRm. Moreover, due to
Carathéodory’s theorem for cones (Theorem 2.5.2), it is possible to write b as
a nonnegative combination of t linearly independent aj’s. Since aj ∈ IRm, we
must have t ≤ m. In other words, there is a nonnegative x ∈ IRn with at least
n − t components being zero such that Ax = b, and the nonzeros correspond to
linearly independent columns of A. The basic feasible solutions of our LP problem
are all of this form. Thus, we have a new proof of a fundamental fact in linear
programming: if an LP problem (of the form above) is feasible, it contains a basic
feasible solution.

Recall that a simplex is a very special polytope, it is the convex hull of affinely
independent points. It turns out that any polytope may be written as a union of
simplices. To get the idea, consider a (convex) pentagon in the plane. For each
subset of three of these five vertices (“corners”) we get a triangle (a simplex),
and the union of all these triangles is the pentagon. Here is the general result,
obtained using Carathéodory’s theorem.

Theorem 2.5.3 (Simplex decomposition of polytopes). Every polytope in
IRn can be written as the union of a finite number of simplices. Each finitely
generated cone can be written as the union of a finite number of simplex cones.

Proof. Consider a polytope P = conv({x1, . . . , xt}) in IRn. For each subset of
x1, . . . , xt consisting of affinely independent vectors we take the convex hull and
thereby obtain a simplex contained in P . Now, the union of all these simplices
must be equal to P for, Carathéodory’s theorem, each point x may be written as
a convex combination of affinely independent points selected from x1, . . . , xt, so
x lies in the corresponding simplex. Things are similar for cones!

Recall that a set S in IRn is bounded if there is a number M such that ‖x‖ ≤M
for all x ∈ S. This means that S does not contain points with arbitrary large
norm, or equivalently, it does not contain points with arbitrary large components.

Exercise 2.17. Show that every polytope in IRn is bounded. (Hint: use the prop-
erties of the norm: ‖x+ y‖ ≤ ‖x‖ + ‖y‖ and ‖λx‖ = λ‖x‖ when λ ≥ 0).
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Exercise 2.18. Consider the standard simplex St. Show that it is compact, i.e.,
closed and bounded.

What about polytopes more generally, are they compact as well? The answer is
“yes”!

Proposition 2.5.4 (Compactness of polytopes). Every polytope in IRn is
compact, i.e., closed and bounded.

Proof. Let P = conv({x1, . . . , xt}) ⊂ IRn. Then P is the image of the function f
from the standard simplex St to IRn which maps the point (λ1, . . . , λt) (nonnega-
tive and with sum one) to the point

∑t
j=1

λjxj . The function f is continuous and
St is compact, so from Theorem 2.4.1 (v) we may then conclude that the image
P is compact.

This proof was interesting! It also showed that every polytope P is the image of a
standard simplex under a certain mapping. This mapping is of the form x = Aλ
(λ ∈ IRt and x ∈ IRn is the point in the polytope) so it is linear. At first, this may
sound strange as simplices are very simple objects while polytopes are not. But
when t is large compared to n (see notation in the proof) our operation may be
viewed as a projection from a higher dimensional space to a lower dimensional
one, and this operation can be quite complicated.

Proposition 2.5.5. Every finitely generated convex cone in IRn is closed.

Proof. From Theorem 2.5.3 we know that each finitely generated cone C can be
written as the union of a finite number of simplex cones. But every simplex cone
is closed (see Exercise 2.14), so then C must be closed.

Exercise 2.19. Give an example of a convex cone which is not closed.

Finally, we mention that it also holds that the convex hull of a compact set is
compact. The proof is similar to the one above.

2.6 Exercises

Exercise 2.20. Let S ⊆ IRn and let W be the set of all convex combinations of
points in S. Prove that W is convex.

Exercise 2.21. Prove the second statement of Proposition 2.1.1.

Exercise 2.22. Give a geometrical interpretation of the induction step in the
proof of Proposition 2.1.1.

Exercise 2.23. Let S = {(0, 0), (1, 0), (0, 1)}. Show that conv(S) = {(x1, x2) ∈
IR2 : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1}.



2.6. EXERCISES 33

Exercise 2.24. Let S consist of the points (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1),
(1, 1, 0), (1, 0, 1), (0, 1, 1) and (1, 1, 1). Show that conv(S) = {(x1, x2, x3) ∈ IR3 :
0 ≤ xi ≤ 1 for i = 1, 2, 3}. Also determine conv(S \ {(1, 1, 1)} as the solution set
of a system of linear inequalities. Illustrate all these cases geometrically.

Exercise 2.25. Let A,B ⊆ IRn. Prove that conv(A + B) = conv(A) + conv(B).
Hint: it is useful to consider the sum

∑

j,k λjµk(aj + bk) where aj ∈ A, bk ∈ B
and λj ≥ 0, µk ≥ 0 and

∑

j λj = 1 and
∑

k µk = 1.

Exercise 2.26. When S ⊂ IRn is a finite set, say S = {x1, . . . , xt}, then we have

conv(S) = {
t

∑

j=1

λjxj : λj ≥ 0 for each j,
∑

j

λj = 1}.

Thus, every point in conv(S) is a convex combination of the points x1, . . . , xt.
What happens if, instead, S has an infinite number of elements? Then it may not
be possible to give a fixed, finite subset S0 of S such that every point in conv(S) is
a convex combination of elements in S0. Give an example which illustrates this.

Exercise 2.27. Let x0 ∈ IRn and let C ⊆ IRn be a convex set. Show that
conv(C ∪ {x0}) = {(1 − λ)x0 + λx : x ∈ C, λ ∈ [0, 1]}.

Exercise 2.28. Prove Proposition 2.2.2.

Exercise 2.29. Confer Exercise 2.9. Give an example showing that a similar
property for linear independence does not hold. Hint: consider the vectors (1, 0)
and (0, 1) and choose some w.

Exercise 2.30. If x =
∑t

j=1
λjxj and

∑t
j=1

λj = 1 we say that x is an affine
combination of x1, . . . , xt. Show that x1, . . . , xt are affinely independent if and only
if none of these vectors may be written as an affine combination of the remaining
ones.

Exercise 2.31. Prove that x1, . . . , xt ∈ IRn are affinely independent if and only
if the vectors (x1, 1), . . . , (xt, 1) ∈ IRn+1 are linearly independent.

Exercise 2.32. Prove Proposition 2.3.2.

Exercise 2.33. Prove that cl(A1∪ . . .∪At) = cl(A1)∪ . . .∪cl(At) holds whenever
A1, . . . , At ⊆ IRn.

Exercise 2.34. Prove that every bounded point sequence in IRn has a convergent
subsequence.

Exercise 2.35. Find an infinite set of closed intervals whose union is the open
interval 〈0, 1〉. This proves that the union of an infinite set of closed intervals
may not be a closed set.

Exercise 2.36. Let S be a bounded set in IRn. Prove that cl(S) is compact.

Exercise 2.37. Let S ⊆ IRn. Show that either int(S) = rint(S) or int(S) = ∅.
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Exercise 2.38. Prove Theorem 2.4.3 Hint: To prove that rint(C) is convex, use
Theorem 2.4.2. Concerning int(C), use Exercise 2.37. Finally, to show that cl(C)
is convex, let x, y ∈ cl(C) and consider two point sequences that converge to x
and y, respectively. Then look at a convex combination of x and y and construct
a suitable sequence!

Exercise 2.39. Prove Theorem 2.5.2.

SUMMARY OF NEW CONCEPTS AND RESULTS:

• convex combination, nonnegative combination
• convex hull, conical hull, affine hull
• affinely independent vectors
• Carathéodory’s theorem
• polytope
• simplex, simplex cone
• dimension of a set
• topology: open, closed, closure, interior, boundary, relative boundary, rela-

tive boundary
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Chapter 3

Projection and separation

This chapter deals with some properties of convex sets that are useful in linear
programming, mathematical economics, statistics etc. The two central concepts
are projection and separation. Projection deals with the problem of finding a
nearest point in a set to a given point outside the set. Geometrically, in IR3,
separation is to distinguish two sets by a (two-dimensional) plane so the two sets
are on different sides of the plane. This notion is treated in IRn as well.

3.1 The projection operator

A problem that often arises in applications is to find a nearest point in some set
S ⊂ IRn to a given point x. This is a problem of best approximation of x from the
set S. We here consider such problems and the role of convexity. In this section
some basic knowledge of topology is useful.

Let S be a closed subset of IRn. From topology we recall that S is closed if and
only if S contains the limit point of each convergent sequence of points in S.
Thus, if {xk}∞k=1

is a convergent sequence of points where xk ∈ S, then the limit
point x = limk→∞ xk also lies in S.

Closedness is important for the mentioned approximation problem, as it assures
that a nearest point in S exists. For S ⊆ IRn and x ∈ IRn we define

dS(x) = inf{‖x− s‖ : s ∈ S} (3.1)

where ‖ · ‖ denotes the Euclidean norm (‖x‖ = (
∑n

j=1
|xj |

2)1/2). The function
dS(·) is called the distance function of S as it simply measures the distance fromdistance

function x to the set S. Recall that “infimum” means the “the largest lower bound”. A
point s ∈ S such that ‖x − s‖ = dS(x) is called a nearest point to x in S. Wenearest

point now give a basic existence result.

36
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Proposition 3.1.1 (Nearest point). Let S ⊆ IRn be a nonempty closed set and
let x ∈ IRn. Then there is a nearest point s ∈ S to x, i.e., ‖x− s‖ = dS(x).

Proof. From the definition of dS(x) we see that there is a sequence {sk}∞k=1
of

points in S such that limk→∞ ‖x− sk‖ = dS(x). In particular we must have that
‖x − sk‖ ≤ M for some number M (the sequence {‖x− sk‖} of real numbers is
convergent an therefore bounded). This implies that our point sequence {sk}∞k=1

is bounded as well: ‖sk‖ = ‖sk − x + x‖ ≤ ‖sk − x‖ + ‖x‖ ≤ M + ‖x‖ by
the triangle inequality for norms. Thus, by Exercise 2.34, there is a subsequence
si1 , si2, . . . which converges to some point s. Since S is closed s must lie in S.
Moreover, dS(x) = limj→∞ ‖x− sij‖ = ‖x− s‖. To get the last equality we used
the continuity of the norm function.

Thus, closedness of S assures that a nearest point exists. But such a point may
not be unique.

Exercise 3.1. Give an example where the nearest point is unique, and one where
it is not. Find a point x and a set S such that every point of S is a nearest point
to x!

Here is a nice property of closed convex sets: the nearest point is unique!

Theorem 3.1.2 (Unique nearest point for convex sets). Let C ⊆ IRn be a
nonempty closed convex set. Then, for every x ∈ IRn, the nearest point x0 to
x in C is unique. Moreover, x0 is the unique solution of the inequalities

(x− x0)
T (y − x0) ≤ 0 for all y ∈ C. (3.2)

Proof. Let x0 be a nearest point to x in C. Such a point exists according to
Proposition 3.1.1. We shall first establish a useful inequality related to x0.

Let y ∈ C and let 0 < λ < 1. Since C is convex, (1 − λ)x0 + λy ∈ C and
since x0 is a nearest point we have that ‖(1 − λ)x0 + λy − x‖ ≥ ‖x0 − x‖, i.e.,
‖(x0−x)+λ(y−x0)‖ ≥ ‖x0−x‖. By squaring both sides and calculating the inner
products we obtain ‖x0 − x‖2 + 2λ(x0 − x)T (y − x0) + λ2‖y − x0‖

2 ≥ ‖x0 − x‖2.
We now subtract ‖x0 − x‖2 on both sides, divide by λ, let λ → 0+ and finally
multiply by −1. This proves that the inequality (3.2) holds for every y ∈ C. Let
now x1 be another nearest point to x in C; we want to show that x1 = x0. By
letting y = x1 in (3.2) we get

(∗1) (x− x0)
T (x1 − x0) ≤ 0.

By symmetry (or repeating the arguments that lead to (3.2) and now letting
y = x0) we also get that

(∗2) (x− x1)
T (x0 − x1) ≤ 0.
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Figure 3.1: Projection onto a convex set

By adding the inequalities (∗1) and (∗2) we obtain ‖x1 − x0‖
2 = (x1 − x0)

T (x1 −
x0) ≤ 0 which implies that x1 = x0. Thus, the nearest point is unique.

The inequality (3.2) in the previous proof has a nice geometrical interpretation
(see Fig. 3.1): the angle between the vectors x − x0 and y − x0 (both starting
in the point x0) is obtuse, i.e., larger than 90◦. Note that, if one finds a point
x0 that satisfies (3.2) for any y ∈ C, then x0 is the projection of x in C.

For every nonempty closed convex set C and x ∈ IRn let pC(x) denote the unique
nearest point to x in S. This defines a function pC : IRn → C which is called the
projection or nearest-point map of C. Note that ‖x− pC(x)‖ = dC(x).projection

Example 3.1.1. (The least squares problem) Let A ∈ IRm,n and b ∈ IRm. The
linear least squares approximation problem , or simply the least squares problem,least

squares is to find a vector x ∈ IRn which minimizes ‖Ax − b‖. The problem arises, for
instance, in many statistical applications. We want to relate this problem to
projection. To do so, define L = {Ax : x ∈ IRn} so this is the linear subspace
of IRm spanned by the columns of the matrix a. The least squares problem is
equivalent to finding a vector z ∈ L (so z = Ax for some x) such that ‖z − b‖
is minimized. Thus, we want to find the nearest point to b in the convex set L.
From above we therefore know that the optimal solution z is unique (but x may
not be unique, see below) and that z is characterized by the inequality in (3.2):

(b− z)T (w − z) ≤ 0 for all w ∈ L.

By setting z = Ax in this inequality and varying w we obtain the following system
of so-called normal equations

ATAx = AT b.

This system has a unique solution x if the columns of a are linearly indepen-
dent (then the coefficent matrix is nonsingular; it is even positive definite). If
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the columns of a are linearly dependent, there are many solutions x: the set of
solutions is a nontrivial affine set. Note, however, that in any case the projection
z = Ax is unique.

We also mention (without proof) an interesting result which says that the prop-
erty of having unique projection is characteristic for closed convex sets. The result
is due to T.S. Motzkin (1935).

Theorem 3.1.3 (Motzkin’s characterization of convex sets). Let S ⊆ IRn

be a nonempty closed set. Assume that each x ∈ IRn has a unique nearest point
in S. Then S is convex.

3.2 Separation of convex sets

Consider the sphere S = {x ∈ IR3 : ‖x‖ ≤ 1} in IR3. Through each boundary
point a of S, i.e., a point with ‖a‖ = 1 we can place a tangential plane H . It
consists of the points x satisfying the equation aTx = 1. We say that H supports
S at x, meaning that all points of S lie on the same side of the plane, as they
satisfy aTx ≤ 1, and, moreover, H intersects S (in a). In this section we discuss
supporting hyperplanes more generally. Our presentation is influenced by [12].

We call H ⊂ IRn a hyperplane if it is of the form H = {x ∈ IRn : aTx = hyperplane

α} for some nonzero vector a and a real number α. The vector a is called the
normal vector of the hyperplane. We see that every hyperplane is an affine set
of dimension n− 1. Each hyperplane divides the space into two sets H+ = {x ∈
IRn : aTx ≥ α} and H− = {x ∈ IRn : aTx ≤ α}. These sets H+ and H− are called
halfspaces and they intersect in H . Let S ⊂ IRn and let H be a hyperplane in halfspace

IRn. If S is contained in one of the halfspaces H+ or H− and H ∩S is nonempty,
we say that H is a supporting hyperplane of S. Moreover, in this situation we supporting

hyperplanesay that H supports S at x, for each x ∈ H ∩ S.

Exercise 3.2. Let a ∈ IRn\{O} and x0 ∈ IRn. Then there is a unique hyperplane
H that contains x0 and has normal vector a. Verify this and find the value of the
constant α (see above).

To simplify the presentation we now restrict the attention to closed convex sets.
Then each point outside our set C gives rise to a supporting hyperplane as the
following lemma tells us. Recall that pC(x) is the (unique) nearest point to x in
C.

Proposition 3.2.1 (Supporting hyperplane). Let C ⊆ IRn be a nonempty closed
convex set and let x ∈ IRn \C. Consider the hyperplane H containing pC(x) and
having normal vector a = x − pC(x). Then H supports C at pC(x) and C is
contained in the halfspace H− = {y : aT y ≤ α} where α = aTpC(x).
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Figure 3.2: Separation

Proof. Note that a is nonzero as x 6∈ C while pC(x) ∈ C. Then H is the hyper-
plane with normal vector a and given by aTy = α = aTpC(x). We shall show
that C is contained in the halfspace H−. So, let y ∈ C. Then, by (3.2) we have
(x− pC(x))T (y − pC(x)) ≤ 0, i.e., aTy ≤ aTpC(x) = α as desired.

We now explain the concept of separation of sets. It is useful to extend our
notation for hyperplanes and halfspaces as follows:

Ha,α := {x ∈ IRn : aTx = α};

H−
a,α := {x ∈ IRn : aTx ≤ α};

H+
a,α := {x ∈ IRn : aTx ≥ α}.

Here the normal vector a is nonzero as usual. Consider two sets S and T in IRn. We
say that the hyperplane Ha,α separates S and T if S ⊆ H−

a,α and T ⊆ H+
a,α or viceseparating

hyperplane versa. See Fig. 3.2 for an example in IR2. Note that both S and T may intersect
the hyperplane Ha,α in this definition, in fact, they may even be contained in the
hyperplane. The special case where one of the sets S and T has a single point is
important and will be discussed soon.

There are some stronger notions of separation, and we are here concerned with
one of these. We say that the hyperplane Ha,α strongly separates S and T if therestrong

separation is an ǫ > 0 such that S ⊆ H−
a,α−ǫ and T ⊆ H+

a,α+ǫ or vice versa. This means that

aTx ≤ α− ǫ for all x ∈ S;

aTx ≥ α + ǫ for all x ∈ T .

Exercise 3.3. Give an example of two disjoint sets S and T that cannot be
separated by a hyperplane.
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Remark. Consider a set S and a point p (so T = {p}) lying in IRn. There may be
many hyperplanes separating S and p, and we make an observation which will be
useful later. Assume that p lies in the affine hull aff(S). Let L be the unique linear
subspace which is parallel to aff(S), so aff(S) = L+ x0 for some x0 ∈ S. Assume
that it is possible to separate S and p and consider a separating hyperplane with
normal vector a. Thus, we have aTx ≤ aT p for each x ∈ S, i.e., aT (x− p) ≤ 0 for
all x ∈ S. Consider any point x ∈ S. Since both x and p lie in aff(S), we have that
x = x0 + l1 and p = x0 + l2 for suitable l1, l2 ∈ L. Therefore, x− p = l1 − l2 ∈ L.
Now, the normal vector a may be decomposed as a = a1 + a2 where a1 ∈ L and
a2 ∈ L⊥ (the orthogonal complement of L). It follows that aT (x−p) = aT

1 (x−p).
Thus, the component a2 of a plays no role for the separation property. The lesson
is: in order to separate S and p ∈ aff(S) we may choose a normal vector lying in
the unique linear subspace that is parallel to aff(S).

Exercise 3.4. In view of the previous remark, what about the separation of S
and a point p 6∈ aff(S)? Is there an easy way to find a separating hyperplane?

We may now present one of the basic results on separation of convex sets.

Theorem 3.2.2 (Strong separation). Let C ⊆ IRn be a nonempty closed convex
set and assume that x ∈ IRn \ C. Then C and x can be strongly separated.

Proof. Let H be the hyperplane containing pC(x) and having normal vector x−
pC(x). From Proposition 3.2.1 we know that H supports C at pC(x). Moreover
x 6= pC(x) (as x 6∈ C). Consider the hyperplane H∗ which is parallel to H (i.e.,
having the same normal vector) and contains the point (1/2)(x + pC(x)). Then
H∗ strongly separates x and C.

Our next result is along the same lines as Proposition 3.2.1, except that it treats
a more general situation where the set may not be closed. To motivate the result
consider a convex set C ⊆ IRn with d = dim(C) < n, i.e., C is not fulldimensional.
Then any hyperplane contained in aff(C) will be a supporting hyperplane to C at nontrivial

supporting

hyperplane

every point of C. These supporting hyperplanes are clearly not of much interest,
so we need another concept here. Consider a hyperplane H which supports a
convex set C at the point x where we now allow x to be a relative boundary
point of C. We say that H is a nontrivial supporting hyperplane at x provided
that C is not contained in H . For instance, in the example of Fig. 3.3 the set C
lies in the xy-plane while the (nontrivial) supporting hyperplane does not.

Theorem 3.2.3 (Supporting hyperplane, more generally). Let C ⊆ IRn be a
nonempty convex set and let x ∈ rbd(C). Then C has a nontrivial supporting
hyperplane at x.
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C
x ∈ rbd(C)

Figure 3.3: Nontrivial supporting hyperplane

Proof. From Theorem 2.4.4 we know that C and its closure cl(C) have the same
relative boundary, so x is also a relative boundary point of cl(C). Therefore there
is a sequence of points xk lying in aff(C) \ cl(C) that converges to x. Now, for
each k we may find a hyperplane that separates cl(C) (which is closed) and xk;
this follows from Proposition 3.2.1. More precisely, there is a vector ak ∈ IRn such
that

(∗) (ak)Ty ≤ (ak)Txk for all y ∈ cl(C).

We may here choose the normal vector ak to have length 1, i.e., ‖ak‖ = 1 and
with ak ∈ L where L is the unique linear subspace parallel to aff(C) (confer the
remark given before Theorem 3.2.2). Since the set K = {z ∈ L : ‖z‖ = 1} is
compact (closed and bounded), it follows from Theorem 2.4.1 that we can find a
convergent subsequence {akj} of {ak} which converges to, say, a ∈ K. Note that
a has norm 1, so it is nonzero. Passing to the limit for this subsequence in (∗),
we obtain the inequality

aTy ≤ aTx for all y ∈ cl(C).

Thus, the corresponding hyperplane H supports C at x and it only remains to
prove that H is a nontrivial supporting hyperplane. Assume that C ⊆ H . Then
C ⊆ H ∩ aff(C). As a lies in L (which is parallel to aff(C)) the set H ∩ aff(C)
has strictly lower dimension than aff(C). But this would imply that C has lower
dimension than aff(C) which is impossible due to Theorem 2.4.4. Thus, C is not
contained in H and therefore H is a nontrivial supporting hyperplane.

Let us now consider an important application of these separation results. It con-
cerns an exterior (or outer) representation of closed convex sets. This result may
be seen as a generalization of the useful facts in linear algebra: (i) every linear
subspace is the intersection of linear hyperplanes (i.e., hyperplanes containing the
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C

H : supporting hyperplane

H−: supporting halfspace

Figure 3.4: Supporting hyperplane and halfspace

origin), and (ii) every affine set is the intersection of hyperplanes. For convex sets
we just have to intersect halfspaces instead. If H is a supporting hyperplane of
the set C and C ⊆ H+ (or C ⊆ H−) we call H+ (or H−) a supporting halfspace supporting

halfspaceof C, see Fig. 3.4.

Corollary 3.2.4 (Outer description of closed convex sets). Let C ⊆ IRn be
a nonempty closed convex set. Then C is the intersection of all its supporting
halfspaces.

Proof. Since C is contained in each of its supporting halfspaces, C must also be
contained in the intersection of these sets. Assume that this inclusion is strict.
Then there is a point x 6∈ C so that x lies in every supporting halfspace of C. Since
C is a closed convex set we may apply Proposition 3.2.1 and find a supporting
hyperplane H which supports C at the projection point pC(x). But, as pointed
out in the proof of Proposition 3.2.1 (or Theorem 3.2.2), one of the halfspaces
associated with H supports C but it does not contain x. This contradicts our
assumption, and we conclude that C is the intersection of all its supporting
halfspaces.

In Fig. 3.5 some of the supporting hyperplanes that define the convex set C are
shown.

Let us consider an important application of separation. Farkas’ lemma for linear
inequalities tells us under which conditions a linear system of inequalities has a
solution. It is closely related to the strong duality theorem for linear programming.
In fact, Farkas’ lemma may be derived from the duality theorem and vice versa.
In many books on LP one proves the duality theorem algorithmically by showing
that the simplex algorithm terminates. Here we want to illustrate how Farkas’
lemma is obtained from our convexity theory. We consider the following version
of Farkas’ lemma. We let the jth column of a matrix A be denoted by aj.
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C

Figure 3.5: Outer description

Theorem 3.2.5 (Farkas’ lemma). Let A ∈ IRm,n and b ∈ IRm. Then there exists
an x ≥ O satisfying Ax = b if and only if for each y ∈ IRm with yTA ≥ O it also
holds that yT b ≥ 0.

Proof. Consider the finitely generated convex cone C = cone({a1, . . . , an}) ⊆
IRm. Then C is closed (recall Proposition 2.5.5). We observe that Ax = b has a
nonnegative solution simply means (geometrically) that b ∈ C. Assume now that
Ax = b and x ≥ O. If yTA ≥ O, then yT b = yT (Ax) = (yTA)x ≥ 0 as the inner
product of two nonnegative vectors. Conversely, if Ax = b has no nonnegative
solution, then b 6∈ C. But then, by Theorem 3.2.2, C and b can be strongly
separated, so there is a nonzero vector y ∈ IRn and α ∈ IR with yTx ≥ α for
each x ∈ C and yT b < α. As O ∈ C, we have α ≤ 0. We claim that yTx ≥ 0
for each x ∈ C: for if yTx < 0 for some x ∈ C, there would be a point λx ∈ C
with λ > 0 (C is a cone) such that yT (λx) < α, a contradiction. Therefore (as
aj ∈ C) yTaj ≥ 0 so yTA ≥ O. Since yT b < 0 we have proved the other direction
of Farkas’ lemma.

It is important to understand the geometrical content of Farkas’ lemma: b lies
in the finitely generated cone C = cone({a1, . . . , an}) if and only if there is no
hyperplane H = {x ∈ IRn : yTx = 0} (having normal vector y) that (strongly)
separates b and C, i.e., yT b < 0 and yTaj > 0 for each j. See the illustration in
Fig. 3.6.

We conclude this section with another separation theorem. It may be derived
from Theorem 3.2.2, but we omit the proof here.

Theorem 3.2.6 (More on separation). Let S and T be disjoint nonempty closed
convex sets in IRn. Then S and T can be separated. If, moreover, S is compact
and T is closed, then S and T can be strongly separated.
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C = cone({a1, ..., a4})
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separating hyperplane {x : yTx = 0}

Figure 3.6: Geometry of Farkas’ lemma

3.3 Exercises

Exercise 3.5. Let C ⊆ IRn be convex. Recall that if a point x0 ∈ C that satisfies
( 3.2) for any y ∈ C, then x0 is the (unique) nearest point to x in C. Now, let C
be the unit ball in IRn and let x ∈ IRn satisfy ‖x‖ > 1. Find the nearest point to
x in C. What if ‖x‖ ≤ 1?

Exercise 3.6. Let L be a line in IRn. Find the nearest point in L to a point x ∈
IRn. Use your result to find the nearest point on the line L = {(x, y) : x+3y = 5}
to the point (1, 2).

Exercise 3.7. Let H be a hyperplane in IRn. Find the nearest point in H to a
point x ∈ IRn. In particular, find the nearest point to each of the points (0, 0, 0)
and (1, 2, 2) in the hyperplane H = {(x1, x2, x3) : x1 + x2 + x3 = 1}.

Exercise 3.8. Let L be a linear subspace in IRn and let q1, . . . , qt be an orthonor-
mal basis for L. Thus, q1, . . . , qt span L, qT

i qj = 0 when i 6= j and ‖qj‖ = 1
for each j. Let q be the n × t-matrix whose jth column is qj, for j = 1, . . . , t.
Define the associated matrix p = qqT . Show that px is the nearest point in L to
x. (The matrix P is called an orthogonal projector (or projection matrix)). Thus,
performing the projection is simply to apply the linear transformation given by p.
Let L⊥ be the orthogonal complement of L. Explain why (I − P )x is the nearest
point in L⊥ to x.

Exercise 3.9. Let L ⊂ IR3 be the subspace spanned by the vectors (1, 0, 1) and
(0, 1, 0). Find the nearest point to (1, 2, 3) in L using the results of the previous
exercise.

Exercise 3.10. Show that the nearest point in IRn
+ to x ∈ IRn is the point x+

defined by x+

j = x+

j = max{xj , 0} for each j.
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Exercise 3.11. Find a set S ⊂ IRn and a point x ∈ IRn with the property that
every point of S is nearest to x in S!

Exercise 3.12. Verify that every hyperplane in IRn has dimension n− 1.

Exercise 3.13. Let C = [0, 1]×[0, 1] ⊂ IR2 and let a = (2, 2). Find all hyperplanes
that separates C and a.

Exercise 3.14. Let C be the unit ball in IRn and let a 6∈ C. Find a hyperplane
that separates C and a.

Exercise 3.15. Find an example in IR2 of two sets that have a unique separating
hyperplane.

Exercise 3.16. Let S, T ⊆ IRn. Explain the following fact: there exists a hyper-
plane that separates S and T if and only if there is a linear function l : IRn → IR
such that l(s) ≤ l(t) for all s ∈ S and t ∈ T . Is there a similar equivalence for
the notion of strong separation?

Exercise 3.17. Show that a convex set C is bounded if and only if rec(C) = {O}.

Exercise 3.18. Let C be a nonempty closed convex set in IRn. Then the associated
projection operator pC is Lipschitz continuous with Lipschitz constant 1, i.e.,

‖pC(x) − pC(y)‖ ≤ ‖x− y‖ for all x, y ∈ IRn.

(Such an operator is called nonexpansive). You are asked to prove this using
the following procedure. Define a = x − pC(x) and b = y − pC(y). Verify that
(a−b)T (pC(x)−pC(y)) ≥ 0. (Show first that aT (pC(y)−pC(x) ≤ 0 and bT (pC(x)−
pC(y) ≤ 0 using ( 3.2). Then consider ‖x − y‖2 = ‖(a − b) + (pC(x) − pC(y))‖2

and do some calculations.)

Exercise 3.19. Consider the outer description of closed convex sets given in
Corollary 3.2.4. What is this description for each of the following sets: (i) C1 =
{x ∈ IRn : ‖x‖ ≤ 1}, (ii) C2 = conv({0, 1}n), (iii) C3 is the convex hull of the
points (1, 1), (−1, 1), (1,−1), (−1,−1) in IR2, (iv) C4 is the convex hull of all
vectors in IRn having components that are either 1 or -1.

SUMMARY OF NEW CONCEPTS AND RESULTS:

• nearest point
• projection operator
• hyperplane, normal vector
• supporting hyperplane
• separation, strong separation



Chapter 4

Representation of convex sets

We recall that in Corollary 3.2.4 we saw how any closed convex set may be
represented as the intersection of all its supporting halfspaces. One of the topics
of this chapter is to find other (“interior”) representations of a convex set. In
fact, having different such representations is useful for analysis or optimization
in connection with convex sets.

4.1 Faces of convex sets

This section deals with faces of convex sets. As an illustration consider the unit
cube in IR3 (see Fig. 4.1): C = {x ∈ IR3 : 0 ≤ xi ≤ 1 for i = 1, 2, 3}. Then C has
eight faces of dimension zero, these are the points (x1, x2, x3) where xi ∈ {0, 1}
for i = 1, 2, 3. C has twelve faces of dimension one, for instance [(0, 0, 0), (1, 0, 0)]
and [(1, 1, 0), (1, 1, 1)]. Finally, it has six faces of dimension two. These are the
ones you look at when you throw dice, so for instance, a two-dimensional face is
the convex hull of the points (0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, 1, 0).

Let C be a convex set in IRn. We say that a convex subset F of C is a face of face

C whenever the following condition holds: if x1, x2 ∈ C is such that (1 − λ)x1 +
λx2 ∈ F for some 0 < λ < 1, then x1, x2 ∈ F . In other words the condition
says: if a relative interior point of the line segment between two points of C lies
in F , then the whole line segment between these two points lies in F . It is also
convenient to let the empty set and C itself be faces of C, these are called the
trivial faces of C. trivial

faces

Example 4.1.1. (Faces) Consider the unit square in IR2: C = {(x1, x2) : 0 ≤
x1 ≤ 1, 0 ≤ x2 ≤ 1}. Let F1 = conv({(0, 0), (1, 1)} which is a diagonal of the
square. F1 is a convex subset of C, but it is not a face of C. To see this, consider the
point z = (1/2, 1/2) ∈ F1 and note that z = (1/2)(1, 0) + (1/2)(0, 1). If F1 were

47
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face of dim. 0

face of dim. 1

face of dim. 2

Figure 4.1: Some faces of the unit cube

a face, the face definition would give that (1, 0), (0, 1) ∈ F1 which is not true.
Therefore F is not a face of C. On the other hand, the set F2 = conv({(0, 0), (1, 0)}
is a face of C. To verify this assume that x1, x2 ∈ C and z := (1−λ)x1 +λx2 ∈ F2

for some 0 < λ < 1. Since z ∈ F2 we must have z2 = 0, so (1− λ)x1,2 + λx2,2 = 0
(where e.g., x2,1 is the first component of the vector x2). But here x1,1, x2,1 ≥ 0
(as x1, x2 ∈ C) and because 0 < λ < 1 we must have that x1,2 = x2,2 = 0 and
therefore x1, x2 ∈ F2 as desired.

Exercise 4.1. Consider the polytope P ⊂ IR2 being the convex hull of the points
(0, 0), (1, 0) and (0, 1) (so P is a simplex in IR2). (i) Find the unique face of
P that contains the point (1/3, 1/2). (ii) Find all the faces of P that contain the
point (1/3, 2/3). (iii) Determine all the faces of P .

Exercise 4.2. Explain why an equivalent definition of face is obtained using the
condition: if whenever x1, x2 ∈ C and (1/2)(x1 + x2) ∈ F , then x1, x2 ∈ F .

Every nontrivial face of a convex set is a (convex) subset of the boundary of C,
see Exercise 4.19. Thus, in the example above the diagonal F1 could not be a face
of C as it is not a subset of the boundary of C.

There is another face-concept which is closely related to the one above. Let C ⊆
IRn be a convex set and H a supporting hyperplane of C. Then the intersection
C ∩H is called an exposed face of C, see Fig. 4.2. We also consider the empty setexposed

face and C itself as (trivial) exposed faces of C. Note that every exposed face of C is
convex, as the intersection of convex sets. Exposed faces are of great interest in
optimization. Consider the optimization problem

max{cTx : x ∈ C}

where C ⊆ IRn is a closed convex set and c ∈ IRn. This includes linear program-
ming. Assume that the optimal value v is finite. Then the set of optimal solutions
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exposed face

supporting hyperplane

Figure 4.2: Exposed face

is
{x ∈ C : cTx = v}

which is an exposed face of C. This is so because the hyperplane defined by
cTx = v is supporting, and each point in C also lies in the halfspace defined by
cTx ≤ v. In fact, the exposed faces are precisely the set of optimal solutions in
problems of maximizing a (nontrivial) linear function over C.

Proposition 4.1.1 (Relation between faces and exposed faces). Let C be a
nonempty convex set in IRn. Then each exposed face of C is also a face of C.

Proof. Let F be an exposed face of C. Then, for some suitable vector c ∈ IRn, F
is the set of optimal solutions in the problem of maximizing cTx over C. Define
v = max{cTx : x ∈ C}. Thus, F = {x ∈ C : cTx = v}. We noted above that
F is convex, and we now verify the remaining face property. Let x1, x2 ∈ C and
assume that (1−λ)x1+λx2 ∈ F for some 0 < λ < 1. Then cT ((1−λ)x1+λx2) = v
and, moreover,

(i) cTx1 ≤ v
(ii) cTx2 ≤ v

by the definition of the optimal value v. Assume now that at least one of the
inequalities (i) and (ii) above is strict. We multiply inequality (i) by 1−λ, multiply
inequality (ii) by λ and add the resulting inequalities. Since λ lies strictly between
0 and 1 we then obtain

v > (1 − λ)cTx1 + λcTx2 = cT ((1 − λ)x1 + λx2) = v.

From this contradiction, we conclude that cTx1 = v and cTx2 = v, so both x1 and
x2 lie in F and we are done.
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Remark. The technique we used in the previous proof is often used in convexity
and optimization: if a convex combination (with strictly positive coefficients) of
some inequalities holds with equality, then each of the individual inequalities
must also hold with equality.

For polyhedra the two notions face and exposed face coincide, but this may not
be so for more general convex sets, see Exercise 4.20.

Consider a face F1 of a convex set C. Then F1 is convex so it makes sense to look
at some face F2 of F1. Then F2 ⊆ C and F2 is convex. But is it a face of C?

Proposition 4.1.2 (Face of face). Let C ⊆ IRn be a nonempty convex set. Let
F1 be a face of C and F2 a face of F1. Then F2 is also a face of C.

Exercise 4.3. Prove this proposition!

Consider again a convex set C in IRn. There are certain faces of C that have
special interest. Recall that, by definition, every face is also a convex set, and the
faces may have different dimensions. A face of F of C with dim(F ) = 0 consists
of a single point, and it is called an extreme point. Thus, x ∈ C is an extremeextreme

point point of C if and only if whenever x1, x2 ∈ C satisfies x = (1/2)(x1 + x2), then
x1 = x2 = x. The set of all extreme points of C is denoted by ext(C). A bounded
face of C that has dimension 1 is called an edge. Consider next an unboundededge

face F of C that has dimension 1. Since F is convex, F must be either a line
or a halfline (i.e., a set {x0 + λz : λ ≥ 0}). If F is a halfline, we call F an
extreme halfline of C. The union of all extreme halflines of C is a set which weextreme

halfline denote by exthl(C). Note that if C contains no line, then all unbounded faces of
dimension one must be extreme halflines. Moreover, if C is a convex cone, then
every extreme halfline is also a ray and it is therefore often called an extreme
ray. See Fig. 4.3 for an illustration of the concepts extreme point and extremeextreme ray

halfline.

Exercise 4.4. Define C = {(x1, x2) ∈ IR2 : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1}. Why
does C not have any extreme halfline? Find all the extreme points of C.

Exercise 4.5. Consider a polytope P ⊂ IRn, say P = conv({x1, . . . , xt}). Show
that if x is an extreme point of P , then x ∈ {x1, . . . , xt}. Is every xj necessarily
an extreme point?

4.2 The recession cone

In this section we study how unbounded convex sets “behave towards infinity”.
To introduce the ideas, consider the unbounded convex set C = {(x1, x2) ∈ IR2 :
x1 ≥ 1, x2 ≥ 2}. Consider the halfline R starting in the point (4, 3) and having
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Figure 4.3: Extreme point and halfline

direction vector z = (1, 1). We see that R is contained in C. Consider another
halfline now starting in (2, 6) and again with direction vector z. This halfline also
lies in C. In fact, testing out different start point but using the same direction
vector z you probably get convinced that all these halflines lie entirely in C. Thus,
only the direction matters, not the starting point. This property, which certainly
does not hold for all sets, turns out to hold for all convex sets as we shall see
below. In our example, we see that all direction vectors that are nonnegative have
this interesting property. We then say that the recession cone of C is the convex
cone IR2

+.

Let C hereafter be a nonempty closed convex set in IRn. Define the set

rec(C, x) = {z ∈ IRn : x+ λz ∈ C for all λ ≥ 0}.

This is the set of directions of halflines from x that lie in C.

Exercise 4.6. Show that rec(C, x) is a closed convex cone. First, verify that
z ∈ C implies that µz ∈ C for each µ ≥ 0. Next, in order to verify convexity you
may show that

rec(C, x) =
⋂

λ>0

1

λ
(C − x)

where 1

λ
(C − x) is the set of all vectors of the form 1

λ
(y − x) where y ∈ C.

The following important result says that the closed convex cone rec(C, x) actually
does not depend on x, it only depends on C!

Proposition 4.2.1 (On recession cones). The closed convex cone rec(C, x)
does not depend on x.
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Proof. Let x1 and x2 be distinct points in C and let z ∈ rec(C, x1). Consider the
two halflines Ri = {xi + λz : λ ≥ 0} for i = 1, 2. Then R1 ⊆ C and we want to
prove that also R2 ⊆ C. To do this consider a point y2 ∈ R2, where y2 6= x2, and
let w ∈ [x1, y2) (this set is [x1, y2] \ {y2}). The halfline from x2 that goes through
w must intersect the halfline R1 (as R1 and R2 lie in the same two-dimensional
plane). But then, as both this intersection point and x2 lie in C, convexity implies
that w ∈ C. It follows that [x1, y2) ⊆ C and since C is closed this implies that
y2 ∈ C. We have therefore proved that R2 ⊆ C. Since this holds for every
z ∈ rec(C, x1) we conclude that rec(C, x1) ⊆ rec(C, x2). The converse inclusion
follows by similar arguments (i.e., by symmetry), so rec(C, x1) = rec(C, x2).

Due to this proposition we may define rec(C) := rec(C, x) and this set is called
the recession cone (or asymptotic cone) of C.recession

cone

(asymptotic

cone)

Based on the recession cone we may produce another interesting set associated
with our closed convex set C. Define

lin(C) = rec(C) ∩ (−rec(C)).

The set is called the lineality space of C. Thus, z ∈ lin(C) means that bothlineality

space z and −z lie in rec(C). So lin(C) consist of all direction vectors of lines that are
contained in C (as well as the zero vector). We remark that the notions recession
cone and lineality space also make sense for nonclosed convex sets. But in that
case the recession cone may not be closed.

Exercise 4.7. Consider a hyperplane H. Determine its recession cone and lin-
eality space.

Exercise 4.8. What is rec(P ) and lin(P ) when P is a polytope?

Exercise 4.9. Let C be a closed convex cone in IRn. Show that rec(C) = C.

Exercise 4.10. Prove that lin(C) is a linear subspace of IRn.

Exercise 4.11. Show that rec({x : Ax ≤ b}) = {x : Ax ≤ O}.

Often the treatment of convex sets becomes simpler if the lineality space is trivial,
so it just contains the zero vector. We say that a convex set C is line-free if itline-free,

pointed contains no line, or equivalently, that lin(C) = {O}. Sometimes, especially for
polyhedra, the term pointed is used instead of line-free. From linear algebra we
recall that if L is a linear subspace of IRn, then its orthogonal complement,orthogonal

complement denoted by L⊥, is defined by

L⊥ = {y ∈ IRn : y ⊥ x for all x ∈ L}.

Here y ⊥ x means that these vectors are orthogonal, i.e., that yTx = 0.
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It is useful to keep the following result in mind. Any closed convex set C ⊆
IRn may be written as

C = lin(C) + C ′ (4.1)

where lin(C) is the lineality space of C and C ′ is a line-free closed convex set which
is contained in lin(C)⊥. [Proof: Define L = lin(C) and consider the orthogonal
decomposition (from linear algebra) IRn = L⊕L⊥. Let x ∈ C, so x = x1 + x2 for
some (unique) x1 ∈ L and x2 ∈ L⊥. Then x2 = x−x1 ∈ C (as x1 ∈ L = lin(C)) so
C ⊆ L+(C∩L⊥). Conversely, assume x = x1+x2 where x1 ∈ L and x2 ∈ C∩L⊥.
Then x ∈ C as x2 ∈ C and x1 ∈ L. Therefore C = L + (C ∩ L⊥) which shows
(4.1) with C ′ = C ∩ L⊥. Clearly C ′ is closed and convex (as intersection of such
sets), and it is easy to see that C ′ is line-free.]

Thus, every vector in C may be written uniquely as a sum of a vector in C ′ and
one in L. Therefore, we will mainly be interested in understanding the structure
of line-free convex sets in the following.

Exercise 4.12. Let C be a line-free closed convex set and let F be an extreme
halfline of C. Show that then there is an x ∈ C and a z ∈ rec(C) such that
F = x+ cone({z}).

Exercise 4.13. Decide if the following statement is true: if z ∈ rec(C) then
x+ cone({z}) is an extreme halfline of C.

4.3 Inner representation and Minkowski’s theorem

The goal in this section is to present and prove results saying that any closed
convex set C may be written as the convex hull conv(S) of a certain subset S of C.
Naturally, one would like to have S smallest possible. It turns out that a possible
choice for the subset S is the boundary of C, in fact, with some exceptions, one
may even let S be the relative boundary of C.

Exercise 4.14. Consider again the set C = {(x1, x2, 0) ∈ IR3 : x2
1 + x2

2 ≤ 1}
from Exercise 2.16. Convince yourself that C equals the convex hull of its relative
boundary. Note that we here have bd(C) = C so the fact that C is the convex
hull of its boundary is not very impressive!

Exercise 4.15. Let H be a hyperplane in IRn. Prove that H 6= conv(rbd(H)).

In order to come to our main result we warm up with the following geometrical
lemma.

Lemma 4.3.1. Let C be a line-free closed convex set and assume that x ∈
rint(C). Then there are two distinct points x1, x2 ∈ rbd(C) such that x ∈ [x1, x2].
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Proof. The affine hull of C, aff(C), is parallel to a unique linear subspace L,
so aff(C) = L + x0 for some x0 ∈ C. We observe that rec(C) ⊆ L (for if z ∈
rec(C), then x0 + z ∈ C ⊆ x0 + L, so z ∈ L). Moreover, −rec(C) ⊆ L as
L is a linear subspace. Thus, rec(C) ∪ (−rec(C)) ⊆ L. We now prove that this
inclusion is strict. For if rec(C) ∪ (−rec(C)) = L, then it is easy to see that
both rec(C) and −rec(C) must contain some line, and this contradicts that C is
line-free. Therefore, there is a vector z ∈ L \ (rec(C) ∪ (−rec(C))). Consider
the point x(t) = x + tz. Since x ∈ rint(C) there is some λ0 > 0 such that
x(t) ∈ C when |t| ≤ λ0. On the other hand, if t is large enough x(t) 6∈ C as
z 6∈ rec(C). Since C is closed there is a maximal t, say t = t1 such that x(t) lies
in C. Thus, x(t1) ∈ rbd(C). Similarly (because z 6∈ −rec(C)) we can find t2 such
that x(t2) ∈ rbd(C). Moreover, we clearly have that x ∈ [x1, x2] and the proof is
complete.

The inner representation of convex sets becomes at its nicest when we consider
convex sets not containing any line, i.e., line-free convex sets. But having in mind
the decomposition in (4.1) we realize that the general case is easy to deduce from
the line-free case. At this point recall that ext(C) is the set of all extreme points of
C and exthl(C) is the union of all extreme halflines of C. The following theorem
is of great importance in convexity and its applications.

Theorem 4.3.2 (Inner description of closed convex sets). Let C ⊆ IRn be a
nonempty and line-free closed convex set. Then C is the convex hull of its extreme
points and extreme halflines, i.e.,

C = conv(ext(C) ∪ exthl(C)).

Proof. We prove this by induction on d = dim(C). If dim(C) = 0, C must be a
one-point set, and then the result is trivial. Assume that the result holds for all
line-free closed convex sets in IRn having dimension strictly smaller than d. Let
C be a line-free closed convex set with d = dim(C) > 0. Let x ∈ C. We treat two
possible cases separately.

First, assume that x ∈ rbd(C). From Proposition 3.2.3C has a nontrivial support-
ing hyperplane H at x. Then the exposed face C ′ := C ∩H of C is a strict subset
of C and dim(C ′) < d (as C contains a point which does not lie in aff(C ′) ⊆ H).
Since C ′ is convex and has dimension less than d, and x ∈ C ′, we conclude from
our induction hypothesis that x may be written as a convex combination of points
in ext(C ′)∪ exthl(C ′). But ext(C ′) ⊆ ext(C) and exthl(C ′) ⊆ exthl(C) so we are
done.

The remaining case is when x ∈ rint(C) (for rbd(C) = cl(C) \ rint(C) = C \
rint(C) as C is closed). We now use Lemma 4.3.1 and conclude that x may be
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Figure 4.4: Minkowski’s theorem, inner description

written as a convex combination of two points x1 and x2 lying on the relative
boundary of C. But, by the first part of our proof, both x1 and x2 may be written
as convex combinations of points in ext(C ′)∪ exthl(C ′). A small calculation then
proves that also x is a convex combination of points in ext(C ′) ∪ exthl(C ′) and
we are done.

The geometry of Theorem 4.3.2 is illustrated in Fig. 4.4.

The previous theorem may be reformulated in a more convenient form.

Corollary 4.3.3 (Inner description – another version). Let C ⊆ IRn be a nonempty
and line-free closed convex set. Choose a direction vector z for each extreme
halfline of C and let Z be the set of these direction vectors. Then we have that

C = conv(ext(C)) + rec(C) = conv(ext(C)) + cone(Z).

Proof. Note first that Z ⊆ rec(C) (see Exercise 4.12) and by convexity cone(Z) ⊆
rec(C) (why?). Let x ∈ C, so by Theorem 4.3.2 we may write x as a convex
combination of points v1, . . . , vt in ext(C) and points w1, . . . , wr in exthl(C).
But every point wj in exthl(C) may be written wj = xj + zj for some xj ∈ C
and zj ∈ Z. From this we obtain that x is a convex combination of v1, . . . , vt

plus a nonnegative combination of points z1, . . . , zr in Z. This proves that C ⊆
conv(ext(C)) + cone(Z) ⊆ conv(ext(C)) + rec(C) (the last inclusion is due to
what we noted initially). Moreover, the inclusion conv(ext(C)) + rec(C) ⊆ C,
follows directly from the fact that C is convex and the definition of the recession
cone. This proves the desired equalities.

If a convex set is bounded, then clearly rec(C) = {0}. Therefore we get the
following very important consequence of Corollary 4.3.3.
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Corollary 4.3.4 (Minkowski’s theorem). If C ⊆ IRn is a compact convex set,
then C is the convex hull of its extreme points, i.e., C = conv(ext(C)).

4.4 Polytopes and polyhedra

The goal of this section is to continue the investigations that led to Minkowski’s
theorem on inner representation of convex sets. But now we concentrate on poly-
hedra and for these special convex sets there are some very nice, and important,
results. Our presentation is influenced by [10].

We consider a

(⋄) nonempty line-free (pointed) polyhedron P = {x ∈ IRn : Ax ≤ b}

where A ∈ IRm,n and b ∈ IRm. We let ai denote the ith row in A (treated as
a column vector though). It follows from our assumption (⋄) that rank(A) = n
and m ≥ n where rank(A) denotes the rank of A. In fact, if rank(A) < n there
would be a nonzero vector z ∈ IRn such that Az = O (as the dimension of the
nullspace (kernel) of A is n−rank(A)). But then, for x0 ∈ P , we get A(x0 +λz) =
Ax0 + λaz ≤ b, so P would contain the line through x0 having direction vector
z. This contradicts that P is line-free, so we conclude that rank(A) = n and
therefore that m ≥ n.

Our first job is to understand the concepts of extreme point and extreme halfline
better. A point x0 ∈ P is called a vertex of a polyhedron P if x0 is the (unique)vertex

solution of n linearly independent equations from the system Ax = b. This
means that x0 lies in P and that we can find n distinct row indices i1, . . . , in
(recall that m ≥ n) such that ai1 , . . . , ain are linearly independent and aT

i1
x0 =

bi1 , . . . , a
T
inx0 = bin . These selected rows form a nonsingular n×n submatrix A0

of A and b0 is the corresponding subvector of b. Thus we have that A0x0 = b0.
Note that the linear independence (i.e., A0 nonsingular) assures that x0 is the
unique solution of this system of equations. It turns out that a vertex is nothing
more than a good old extreme point!

Lemma 4.4.1 (Extreme point = vertex). Let x0 ∈ P . Then x0 is a vertex of
P if and only if x0 is an extreme point of P .

Proof. Let x0 be a vertex of P , so there is a n × n submatrix A0 of A and a
corresponding subvector b0 of b such that A0x0 = b0. Assume that x0 = (1/2)x1 +
(1/2)x2 where x1, x2 ∈ P . Let ai be a row of A0. We have that aT

i x1 ≤ bi and
aT

i x2 ≤ bi (as both points lie in P ). But if one of these inequalities were strict
we would get aT

i x0 = (1/2)aT
i x1 + (1/2)aT

i x2 < bi which is impossible (because
A0x0 = b0). This proves that A0x1 = b0 and A0x2 = b0. But A0 is nonsingular so
we get x1 = x2 = x0. This shows that x0 is an extreme point of P .
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Conversely, assume that x0 ∈ P is not a vertex of P , and consider all the indices
i such that aT

i x0 = bi. Let A0 be the submatrix of A containing the corresponding
rows ai, and let b0 be the corresponding subvector of b. Thus, A0x0 = b0 and,
since x0 is not a vertex, the rank of A0 is less than n, so the kernel (nullspace)
of A0 contains a nonzero vector z, i.e., A0z = O. We may now find a “small”
ǫ > 0 such that the two points x1 = x0 + ǫ · z and x2 = x0 − ǫ · z both lie in P .
(For each row ai which is not in A0 we have aT

i x0 < bi and a small ǫ assures that
aT

i (x0 ± ǫz) < bi). But x0 = (1/2)x1 + (1/2)x2 so x0 is not an extreme point.

Exercise 4.16. Consider a polyhedral cone C = {x ∈ IRn : Ax ≤ O} (where, as
usual, a is a real m× n-matrix). Show that O is the unique vertex of C.

We now turn to extreme halflines and how they may be viewed. Consider a face
F of P with dimension one. Due to (⋄) this set F is not a line so it is an extreme
halfline, say

F = x0 + cone({z}) = {x0 + λz : λ ≥ 0}

for some x0 ∈ P and z ∈ rec(P ). Moreover, the extremeness property means that
we cannot find two nonparallel vectors z1, z2 ∈ rec(P ) such that z = z1 + z2. The
following result is analogous to Lemma 4.4.1 and tells us how extreme halflines
may be found directly from the matrix a. We leave the proof as an exercise (it is
very similar to the proof of Lemma 4.4.1).

Lemma 4.4.2 (Extreme halfline). Let R = x0 + cone({z}) be a halfline in P .
Then R is an extreme halfline if and only if A0z = O for some (n − 1) × n
submatrix A0 of a with rank(A0) = n− 1.

The previous two lemmas are useful when one wants to determine all (or some) of
the vertices (or extreme halflines) of a polyhedron. Another consequence is that
the number of vertices and extreme halflines is finite.

Corollary 4.4.3 (Finiteness). Each pointed polyhedron has a finite number of
extreme points and extreme halflines.

Proof. According to Lemma 4.4.1 each vertex of a pointed polyhedron P = {x ∈
IRn : Ax ≤ b} is obtained by setting n linearly independent inequalities among the
m inequalities in the defining system Ax ≤ b to equality. But there are only a finite

number of such choices of subsystems (in fact, at most

(

m
n

)

= m!/(n!(m−n)!)),

so the number of vertices is finite. For similar reasons the number of extreme
halflines is finite (at most m!/((n− 1)!(m− n+ 1)!)).

Remark. As we saw in the proof, an upper bound on the number of vertices of
a polyhedron Ax ≤ b (where A ∈ IRm,n) is m!/(n!(m − n)!). This is the number
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of different ways of choosing n different objects (active inequalities) from m. The
following much better (smaller) upper bound was shown by P. McMullen:

(

m− ⌊(n + 1)/2⌋
m− n

)

+

(

m− ⌊(n + 2)/2⌋
m− n

)

.

For instance, whenm = 16 and n = 8 the upper bound of our proof is 16!/(8!·8!) =
12870 while McMullens bound is 660. For a further discussion on the number of
vertices, see e.g. [2].

We are now ready to prove a very important result for polyhedra. It is known
under several names: the main theorem for polyhedra or the representation theo-
rem for polyhedra or Motzkin’s representation theorem. T.S. Motzkin proved the
result in its general form in 1936, and earlier more specialized versions are due
to G. Farkas, H. Minkowski and H. Weyl. The theorem holds for all polyhedra,
also non-pointed polyhedra.

Theorem 4.4.4 (Main theorem for polyhedra). Each polyhedron P ⊆ IRn may
be written as

P = conv(V ) + cone(Z)

for finite sets V, Z ⊂ IRn. In particular, if P is pointed, we may here let V be the
set of vertices and let Z consist of a direction vector of each extreme halfline of
P .

Conversely, if V and Z are finite sets in IRn, then the set P = conv(V )+cone(Z)
is a polyhedron. i.e., there is a matrix A ∈ IRm,n and a vector b ∈ IRm for some
m such that

conv(V ) + cone(Z) = {x ∈ IRn : Ax ≤ b}.

Proof. Consider first a pointed polyhedron P ⊆ IRn. Due to Corollary 4.4.3 P
has a finite number of extreme halflines. Moreover the set V of vertices is finite
(Lemma 4.4.1). Let Z be the finite set consisting of a direction vector of each of
these extreme halflines. It follows from Corollary 4.3.3 that

P = conv(V ) + cone(Z).

This proves the first part of the theorem when P is pointed. If P = {x ∈ IRn :
Ax ≤ b} is not pointed, we recall from (4.1) that P = P ′⊕ lin(P ) where lin(P ) is
the lineality space of P and P ′ is pointed. In fact, we may let P ′ be the pointed
polyhedron

P ′ = {x ∈ IRn : Ax ≤ b, Bx = O}

where the rows b1, . . . , bk ∈ IRn of the k × n-matrix B is a basis of the linear
subspace lin(P ). By the first part of the theorem (as P ′ is pointed) there are



4.4. POLYTOPES AND POLYHEDRA 59

finite sets V and Z ′ such that P = conv(V ) + cone(Z ′). We now note that
lin(P ) = cone(b0, b1, . . . , bk) where b0 = −

∑k
j=1

bj (see Exercise 4.31). But then
it is easy to check that P = conv(V ) + cone(Z) where Z = Z ′ ∪ {b0, b1, . . . , bk}
so the first part of the theorem is shown.

We shall prove the second part by using what we just showed in a certain (clever!)
way.

First, we prove the result for convex cones, so assume that C is a finitely generated
cone, say C = cone({z1, . . . , zt}). We introduce the set

C◦ = {a ∈ IRn : zT
j a ≤ 0 for j = 1, . . . , t}.

The main observation is that C◦ is a polyhedral cone (and therefore a polyhedron)
in IRn: it is defined by the linear and homogeneous inequalities zT

j a ≤ 0 for
j = 1, . . . , t (here a is the variable vector!). Thus, by the first part of the theorem,
there is a finite set of vectors a1, . . . , as ∈ C◦ such that C◦ = cone({a1, . . . , as})
(because any polyhedral cone has only one vertex, namely O, see Exercise 4.16).
We shall prove that

(∗) C = {x ∈ IRn : aT
i x ≤ 0 for i = 1, . . . , s}.

If x0 ∈ C, then x0 =
∑t

j=1
µjzj for some µj ≥ 0, j ≤ t. For each i ≤ s and

j ≤ t we have from the definition of C◦ that aT zj ≤ 0 and therefore aTx0 =
∑t

j=1
µja

T zj ≤ 0. This shows the inclusion “⊆” in (∗). Assume next that x0 6∈
C. As C = cone({z1, . . . , zt}) it follows from Farkas’ lemma (Theorem 3.2.5)
that there is a vector y ∈ IRn such that yTx0 > 0 and yTzj < 0 for each j.
Therefore y ∈ C◦ so y =

∑

i λiai for nonnegative numbers λi (i ≤ s). But x0

violates the inequality yTx ≤ 0 (as yTx0 > 0). This implies that x0 6∈ {x ∈ IRn :
aT

i x ≤ 0 for i = 1, . . . , s}. This proves (∗) and we have shown that every finitely
generated convex cone is polyhedral.

More generally, let P = conv(V ) + cone(Z) where V and Z are finite sets in IRn.
Let V = {v1, . . . , vk} and Z = {z1, . . . , zm}. Let C = cone({(v1, 1), . . . , (vk, 1),
(z1, 0), . . . , (zm, 0)}), so this is a finitely generated convex cone in IRn+1. By what
we just showed this cone is polyhedral, so there is a matrix A ∈ IRm,n+1 such that
C = {(x, xn+1) :

∑n
j=1

ajxj + an+1xn+1 ≤ O} (here aj is the jth column of A).
Note that x ∈ P if and only if (x, 1) ∈ C (see Exercise 4.32). Therefore, x ∈ P if
and only if Ax+ an+1 · 1 ≤ O, i.e., Ax ≤ b where b = −an+1. This proves that P
is a polyhedron and our proof is complete.

A very important consequence of the Main theorem for polyhedra is the following.
The proof is an exercise.
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a) b) c)

Finite set Convex hull Bounded polyhedron

Figure 4.5: Polytope = bounded polyhedron

Corollary 4.4.5 (Polytopes). A set is a polytope if and only if it is a bounded
polyhedron.

In the plane, the geometrical contents of Theorem 4.3.2 is quite simple, see
Fig. 4.5. But it is certainly a nontrivial, and important, fact that the result
holds in any dimensions.

Consider an LP problem max{cTx : x ∈ P} where P is a bounded polyhedron,
which, therefore, contains no line or halfline. Then the previous proposition shows
that we can solve the LP problem by comparing the objective function for all the
vertices, and there is a finite number of these. This is not a good algorithm in
the general case, because the number of vertices may be huge, even with a rather
low number of inequalities in the defining system Ax ≤ b. However, the fact that
LP’s may be solved by searching through vertices only has been the starting point
for another algorithm, the simplex method, which, in practice, is a very efficient
method for solving linear programming problems.

Example 4.4.1. (Combinatorial optimization and (0, 1)-polytopes) The area of
combinatorial optimization deals with optimization problems associated with typ-
ically highly structured finite (or discrete) sets. Most of these problems involve a
feasible set which may be viewed as a certain subset S of {0, 1}m. Thus, S consists
of certain (0, 1)-vectors and each vector x ∈ S specifies a subset of {1, . . . , m},
namely F = {j : xj = 1}. We say that x is the incidence vector of the set F and
it is also denoted by χF . As an example, consider the famous Traveling Salesman
Problem (TSP): given a set of cities and intercity distances, find a tour visiting
each city exactly once such that the total distance traveled is as small as possi-
ble. If we have n cities there are m = n(n − 1)/2 possible city pairs and a tour
is to choose n such consecutive pairs, say {c1, c2}, {c2, c3}, . . . , {cn−1, cn}, {cn, c1}
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(where no city is visited more than once). Thus, every tour may be viewed as a
certain subset of “the set of city pairs” {1, . . . , m}. Equivalently, the tours corre-
spond to a certain subset STSP of {0, 1}m. The problem of finding a shortest tour
may now be seen as the problem of minimizing a linear function over the set

PTSP = conv(STSP ).

The linear function of interest here is cTx =
∑m

j=1
cjxj where cj is the distance of

the jth city pair. The set PTSP is, by definition, a polytope, and it is usually called
the Traveling salesman polytope. The extreme points of PTSP are the incidence
vectors of tours (see Exercise 4.27). Since the minimum of a linear function is
attained in a vertex of the polytope, say x = χF , we obtain cTx = cTχF =
∑

j∈F cj which is the total length of the tour. This explains why PTSP is of
interest in connection with the TSP. Now, due to Corollary 4.4.5, PTSP is a
bounded polyhedron. Therefore there exists a linear system Ax ≤ b such that

PTSP = {x ∈ IRm : Ax ≤ b}.

As a consequence, in theory, the TSP may be viewed as a linear programming
problem max{cTx : Ax ≤ b}. A difficulty is that the structure of PTSP is very
complex, and lots of research papers have been written on the facial structure of
TSP polytopes (see e.g., [5] in a wonderful book on the TSP). This approach has
been very fruitful in gaining a mathematical understanding of the TSP and also
solving TSP problems computationally. We should say that the TSP is a so-called
NP-hard optimization problem, which loosely speaking means that, most likely,
for this problem there is no efficient algorithm that is guaranteed to find an op-
timal solution. Note the very important fact that the approach we have sketched
here for the TSP may also be applied to other combinatorial optimization prob-
lems. This is the topic of the area of polyhedral combinatorics in which convexity,
and polyhedral theory in particular, play important roles. Thus, for polyhedral
combinatorics, Corollary 4.4.5 may be seen as a main driving force!

We now turn to a study of faces of polyhedra. There will be two main goals: one
is to show that notions of exposed face and face coincide for polyhedra, and the
second goal is to give a useful description of faces in terms of linear systems. First,
we shall go for the second goal! A subsystem A′x ≤ b′ of a linear system Ax ≤ b
is obtained by deleting some (possibly none) of the constraints in Ax ≤ b. The
ith row of the matrix A will be denoted by aT

i below. We say that an inequality valid

inequalitycTx ≤ α is valid for a set P ⊆ IRn if P ⊆ {x ∈ IRn : cTx ≤ α}, i.e., each point
x in P satisfies cTx ≤ α.

Theorem 4.4.6. Consider a polyhedron P = {x ∈ IRn : Ax ≤ b}. A nonempty
set F is an exposed face of P if and only if

F = {x ∈ P : A′x = b′} (4.2)
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for some subsystem A′x ≤ b′ of Ax ≤ b.

Proof. Let ai denote the ith row of A (viewed as a column vector). Let F be
a nonempty exposed face of P , so F = {x ∈ P : cTx = α} where cTx = α
defines a supporting halfspace for P . Then the optimal value v∗ of the linear
programming problem (P) max {cTx : Ax ≤ b} satisfies v∗ = α < ∞ and we
have F = {x ∈ P : cTx = v∗}. From the LP duality theorem we have that

v∗ = max{cTx : Ax ≤ b} = min{yT b : yTA = cT , y ≥ O}

and the dual LP must be feasible (as the primal optimal value is finite). Let y∗

be an optimal dual solution, so (y∗)TA = cT , y∗ ≥ O and (y∗)T b = v∗, and define
I ′ = {i ≤ m : yi > 0}. We claim that (4.2) holds with the subsystem a′x ≤ b′

consisting of the inequalities aT
i x ≤ bi for i ∈ I ′. To see this, note that for each

x ∈ P we have

cTx = (y∗)TAx =
∑

i∈I

y∗i (Ax)i =
∑

i∈I′

y∗i (Ax)i ≤
∑

i∈I′

y∗i bi = v∗.

Thus we have cTx = v∗ if and only if aT
i x = bi for each i ∈ I ′, and (4.2) holds.

Conversely, assume that the set F satisfies (4.2) for some subsystem A′x ≤ b′

of Ax ≤ b, say that A′x ≤ b′ consists of the inequalities aT
i x ≤ bi for i ∈ I ′

(where I ′ ⊆ {1, . . . , m}). Let c =
∑

i∈I′ ai and α =
∑

i∈I′ bi. Then cTx ≤ α is a
valid inequality for P (it is a sum of other valid inequalities, see Exercise 4.33).
Furthermore F is the face induced by cTx ≤ α, i.e., F = {x ∈ P : cTx = α}. In
fact, a point x ∈ P satisfies cTx = α if and only if aT

i x = bi for each i ∈ I ′.

Thus, Theorem 4.4.6 says that any (exposed) face of a polyhedron is obtained
by setting some of the valid inequalities to equality. This result is often used to
determine all (or some of) the faces of different polyhedra or polytopes. We now
apply the theorem to show the announced result that exposed faces and faces
coincide for polyhedra.

Theorem 4.4.7. Let P be a polyhedron in IRn. Then every face of P is also an
exposed face of P . Thus, for polyhedra, these two notions coincide.

Proof. In Proposition 4.1.1 we showed that every exposed face is also a face (for
any convex set), so we only need to prove the converse when P is a polyhedron.
So, let F be a face of a polyhedron P = {x ∈ IRn : Ax ≤ b}. Let I ′ be the set of
indices i such that aT

i x = bi holds for every x ∈ F . Therefore

(∗) F ⊆ G := {x ∈ P : aT
i x = bi for all i ∈ I ′}.
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Now, due to Theorem 4.4.6, G is an exposed face of P , so we are done if we can
prove that there is equality in (∗). Assume, to the contrary, that the inequality
is strict. G is a polyhedron which is the convex hull of a set Z (consisting of its
extreme points and extreme halflines). Then, by assumption, we can find at least
one point z ∈ Z which is outside F and one may also find a convex combination
w of points in Z with positive weight for z such that w ∈ F (explain why!).
But this contradicts that F is a face of P which proves that F = G and we are
done.

A facet of a polyhedron P ⊆ IRn may be defined as a face F of P with dim(F ) =
dim(P )−1. Consider a full-dimensional polytope P in IR3. It has nontrivial faces
of dimension zero (vertices), of dimension one (edges) and, finally, of dimension
two (facets). In 1752 the great Swiss mathematician L. Euler found a beautiful,
and simple, relation between the number of these faces. Let v, e and f denote facet

the number of vertices, edges and facets, respectively. Euler’s relation says that Euler’s

relation
v − e+ f = 2.

Later, in 1899, Poincaré found a generalization of this relation to arbitrary di-
mensions! To present this result, consider a polytope P of dimension r and let
fk(P ) be the number of faces of P of dimension k for k = −1, 0, 1, . . . , r. Here we
define f−1(P ) = fr(P ) = 1. With this notation we have the generalized Euler’s
relation (or Euler-Poincaré relation) saying that

r
∑

k=−1

(−1)k+1fk(P ) = 0

so the alternating sum of the numbers fk(P ) is zero!! For a proof of this relation
we refer to [16].

Facets of polyhedra are important for finding minimal linear systems that define
a polyhedron P , i.e., representations of P without any redundant inequalities.
Roughly speaking, each facet F of P requires an inequality in such a minimal
system, and, moreover F consists precisely of those points in P satisfying that
particular inequality with equality. We omit the details, but simply point out
that a study of facets of different types of combinatorial polyhedra is a theme in
the area of polyhedral combinatorics. For more about this and a full treatment
of the theory of polyhedra, we strongly recommend the book [13].

4.5 Exercises

Exercise 4.17. Let F be a face of a convex set C in IRn. Show that every extreme
point of F is also an extreme point of C.
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Exercise 4.18. Find all the faces of the unit ball in IR2. What about the unit
ball in IRn?

Exercise 4.19. Let F be a nontrivial face of a convex set C in IRn. Show that
F ⊆ bd(C) (recall that bd(C) is the boundary of C). Is the stronger statement
F ⊆ rbd(C) also true? Find an example where F = bd(C).

Exercise 4.20. Consider the convex set C = B + ([0, 1] × {0}) where B is the
unit ball (of the Euclidean norm) in IR2. Find a point on the boundary of C which
is a face of C, but not an exposed face.

Exercise 4.21. Let P ⊂ IR2 be the polyhedron being the solution set of the linear
system

x − y ≤ 0;

−x + y ≤ 1;

2y ≥ 5;

8x − y ≤ 16;

x + y ≥ 4.

Find all the extreme points of P .

Exercise 4.22. Find all the extreme halflines of the cone IRn
+.

Exercise 4.23. Determine the recession cone of the set {(x1, x2) ∈ IR2 : x1 >
0, x2 ≥ 1/x1}. What are the extreme points?

Exercise 4.24. Let B be the unit ball in IRn (in the Euclidean norm). Show that
every point in B can be written as a convex combination of two of the extreme
points of C.

Exercise 4.25. Let C be a compact convex set in IRn and let f : C → IR be a
function satisfying

f(
t

∑

j=1

λjxj) ≤
t

∑

j=1

λjf(xj)

whenever x1, . . . , xt ∈ C, λ1, . . . , λt ≥ 0 and
∑t

j=1
λj = 1. Such a function is

called convex, see chapter 5. Show that f attains its maximum over C in an
extreme point. Hint: Minkowski’s theorem.

Exercise 4.26. Prove Corollary 4.4.5 using the Main theorem for polyhedra.

Exercise 4.27. Let S ⊆ {0, 1}n, i.e., S is a set of (0, 1)-vectors. Define the
polytope P = conv(S). Show that x is a vertex of P if and only if x ∈ S.

Exercise 4.28. Let S ⊆ {0, 1}3 consist of the points (0, 0, 0), (1, 1, 1), (0, 1, 0)
and (1, 0, 1). Consider the polytope P = conv(S) and find a linear system defining
it.
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Exercise 4.29. Let P1 and P2 be two polytopes in IRn. Prove that P1 ∩ P2 is a
polytope.

Exercise 4.30. Is the sum of polytopes again a polytope? The sum of two poly-
topes P1 and P2 in IRn is the set P1 + P2 = {p1 + p2 : p1 ∈ P1, p2 ∈ P2}.

Exercise 4.31. Let L = span({b1, . . . , bk}) be a linear subspace of IRn. Define
b0 = −

∑k
j=1

bj. Show that L = cone({b0, b1, . . . , bk}). Thus, every linear subspace
is a finitely generated cone, and we know how to find a set of generators for L
(i.e., a finite set with conical hull being L).

Exercise 4.32. Let P = conv({v1, . . . , vk}) + cone({z1, . . . , zm}) ⊆ IRn. Define
new vectors in IRn+1 by adding a component which is 1 for all the v.-vectors and
a component which is 0 for all the z.-vectors, and let C be the cone spanned by
these new vectors. Thus,

C = cone({(v1, 1), . . . , (vk, 1), (z1, 0), . . . , (zm, 0)})

Prove that x ∈ P if and only if (x, 1) ∈ C. The cone C is said to be obtained by
homogenization of the polyhedron P . This is sometimes a useful technique for homogeni-

zationtranslating results that are known for cones into similar results for polyhedra, as
in the proof of Theorem 4.4.4.

Exercise 4.33. Show that the sum of valid inequalities for a set P is another
valid inequality for P . What about weighted sums? What can you say about the
properties of the set

{(a, α) ∈ IRn+1 : aTx ≤ α is a valid inequality for P}.

SUMMARY OF NEW CONCEPTS AND RESULTS:

• face, exposed face
• extreme point, extreme halfline, ray
• recession cone
• inner representation, Minkowski’s theorem
• main theorem for polyhedra
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Chapter 5

Convex functions

This chapter treats convex functions, both in the univariate and the multivariate
case. In order to give an idea of what a convex function is, we give a small
example. Consider two or more linear functions, say of a single variable, and let
f be the pointwise maximum of these functions. This function f is convex (loosely
speaking) as “its graph bends upwards”. We also observe that all the points in the
plane lying on or above the graph of f is a convex set (an unbounded polyhedron).

We start our treatment with functions of a single variable before we pass on to
the multivariate case.

5.1 Convex functions of one variable

Consider a function f : IR → IR. We say that f is convex if the inequality convex

function
f((1 − λ)x+ λy) ≤ (1 − λ)f(x) + λf(y) (5.1)

holds for every x, y ∈ IR and every 0 ≤ λ ≤ 1.

Example 5.1.1. (A convex function) Let f be given by f(x) = x2. Let us verify
that f is convex according to our definition. Let x, y ∈ IR and λ ∈ [0, 1]. After
some calculation we get

f((1 − λ)x+ λy) − ((1 − λ)f(x) + λf(y)) = −(1 − λ)λ(x− y)2

Since 0 ≤ λ ≤ 1 the last expression is nonpositive, and and the desired inequality
(5.1) holds. So f is convex (as you probably knew already).

Our analytical definition has a nice geometrical interpretation. It says that the
line segment between every pair of points (x, f(x)) and (y, f(y)) on the graph of
f lies above the graph of f in the interval between x and y, see Fig. 5.1. This

67
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x z = (1 − λ)x+ λy y

f(z)

(1 − λ)f(x) + λf(y)

Figure 5.1: Convex function

geometrical viewpoint also leads to an understanding of the growth of convex
functions. To describe this we introduce some simple notation. Let f : IR → IR
be any function. For every x ∈ IR we define the point Px = (x, f(x)) which then
lies on the graph of f . When x < y we let slope(Px, Py) denote the slope of the
line segment PxPy between Px and Py, so

slope(Px, Py) = (f(y)− f(x))/(y − x).

The following lemma is illustrated in Fig. 5.2.

Lemma 5.1.1 (Slopes). Let x1 < x2 < x3. Then the following statements are
equivalent:

(i) Px2
is below the line segment Px1

Px3
;

(ii) slope(Px1
, Px2

) ≤ slope(Px1
, Px3

);

(iii) slope(Px1
, Px3

) ≤ slope(Px2
, Px3

).

Exercise 5.1. Prove this lemma.

A direct consequence of the lemma is the following characterization of a convex
function defined on the real line.

Proposition 5.1.2 (Increasing slopes). A function f : IR → IR is convex if and
only if for each x0 ∈ IR the slope function

x→ (f(x) − f(x0))/(x− x0).

is increasing on IR \ {x0}.

Exercise 5.2. Show that the sum of convex functions is a convex function, and
that λf is convex if f is convex and λ ≥ 0 (here λf is the function given by
(λf)(x) = λf(x)).
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a1

a2

a3 a1 < a2 < a3

x1 x2 x3

Figure 5.2: Increasing slopes

Sometimes one meets convex functions that are not defined on the whole real
line. Let I ⊆ IR be an interval (whether the endpoints of I are contained in I or
not does not matter). Let f : I → IR be a function defined on I. We extend our
definition of convexity by saying that f is convex if the inequality (5.1) holds for
every x, y ∈ I and 0 ≤ λ ≤ 1.

A function f : I → IR (where I is an interval) is called concave if the function −f concave

is convex. This means that f((1−λ)x+λy) ≥ (1−λ)f(x)+λf(y) holds whenever
x, y ∈ IR and 0 ≤ λ ≤ 1. Any result for convex functions may be reformulated
in terms of concave functions by proper adjustments. Thus, we shall restrict the
attention to convex functions here.

A convex function need not be differentiable, consider for instance the function
f(x) = |x| which is convex but not differentiable in 0. However, convex func-
tions do have one-sided derivatives and are differentiable “almost everywhere” as
discussed next. Recall that the left-sided derivative of f at x0 is defined by one-sided

derivative
f ′
−(x0) := lim

x→x−

0

(f(x) − f(x0))/(x− x0).

provided this limit exists (here x tends towards x0 “from the left”, i.e., through
values x that are strictly smaller than x0). The right-sided derivative of f at x0

is defined similarly and it is denoted by f ′
+(x0).

Theorem 5.1.3 (One-sided derivatives). Let f : I → IR be a convex function
defined on an interval I. Then f has both left-and right-sided derivatives at every
interior point of I. Moreover, if x, y ∈ I and x < y it holds that

f ′
−(x) ≤ f ′

+(x) ≤ (f(y) − f(x))/(y − x) ≤ f ′
−(y) ≤ f ′

+(y).

In particular, both f ′
− and f ′

+ are increasing functions.
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Proof. Let z be an interior point of I and let x, y ∈ I satisfy x < z < y.
It follows from Proposition 5.1.2 that if x increases to z from the left, then
(f(x) − f(z))/(x − z) increases and is bounded above by (f(y) − f(z))/(y − z).
This implies that f ′

−(z) exists and that

f ′
−(z) ≤ (f(y) − f(z))/(y − z).

In this inequality, we now decrease y and conclude that f ′
+(z) exists and that

f ′
−(z) ≤ f ′

+(z). This proves the first and the last inequality of the theorem (letting
z = x and z = y, respectively) and the two remaining inequalities are obtained
from Proposition 5.1.2.

How can we decide if a function is convex? One way is to check the definition,
but this is often a lot of work. So it is useful to have convexity criteria that are
more convenient to check. If f is differentiable, a criterion for convexity is that
f ′ is increasing. We now prove a more general version of this which, in fact, is a
converse of Theorem 5.1.3.

Theorem 5.1.4 (Increasing derivative). Let f : I → IR be a continuous function
defined on an open interval I. Assume that f has an increasing left-derivative,
or an increasing right-derivative, on I. Then f is convex.

If f is differentiable, then f is convex if and only if f ′ is increasing. If f is two
times differentiable, then f is convex if and only if f ′′ ≥ 0 (i.e., f ′′(x) ≥ 0 for all
x ∈ I).

Proof. Assume that f has an increasing right-derivative f ′
+ on I. Let x, y ∈ I

satisfy x < y and let 0 < λ < 1. We shall show that (5.1) holds (when λ is 0 or
1, this inequality trivially holds). Define z = (1− λ)x+ λy. Note that x < z < y
and that z − x = λ(y − x) and y − z = (1 − λ)(y − x).

By the the mean-value theorem (for functions having a right-derivative) there is
a point a with x < a < z such that f ′

+(a) = (f(z) − f(x))/(z − x). This implies
that (f(z) − f(x))/(z − x) ≤ supx<t<z f

′
+(t). Similarly we obtain the inequality

(f(y) − f(z))/(y − z) ≥ infz<t<y f
′
+(t) and therefore

(∗) (f(z) − f(x))/(z − x) ≤ sup
x<t<z

f ′
+(t) ≤ inf

z<t<y
f ′

+(t) ≤ (f(y)− f(z))/(y − z).

Here the second inequality follows from our assumption that f ′
+ is increasing. We

now multiply the inequality (f(z)−f(x))/(z−x) ≤ (f(y)−f(z))/(y−z) by y−x
and (as z − x = λ(y − x) and y − z = (1 − λ)(y − x)) obtain (f(z) − f(x))/λ ≤
(f(y) − f(z))/(1 − λ). By rewriting this inequality we get f((1 − λ)x + λy) ≤
(1 − λ)f(x) + λf(y) which proves that f is convex. The proof is similar when f
has a left-sided derivative. The last two statements of the theorem are now easy
consequences.
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Exercise 5.3. Prove that the following functions are convex: (i) f(x) = x2, (ii)
f(x) = |x|, (iii) f(x) = xp where p ≥ 1, (iv) f(x) = ex, (v) f(x) = − ln(x)
defined on IR+.

We may now prove that every convex function is continuous on the interior of its
domain. In fact, a stronger Lipschitz continuity holds.

Corollary 5.1.5 (Continuity). Let f : I → IR be convex and let a, b ∈ int(I)
where a < b. Define M = max{−f ′

+(a), f ′
−(b)} (which is finite by Theorem 5.1.1).

Then

|f(y)− f(x)| ≤ M · |y − x| for all x, y ∈ [a, b].

In particular, f is continuous at every interior point of I.

Proof. If x = y the desired inequality is trivial so assume that x 6= y. If a <
x < y < b it follows from Theorem 5.1.3 that f ′

+(a) ≤ (f(y) − f(x))/(y − x) ≤
f ′
−(b) which implies that |(f(y) − f(x))/(y − x)| ≤ max{−f ′

+(a), f ′
−(b)} = M .

It is easy to see that this inequality holds for every x, y lying strictly between
a and b which proves the desired Lipschitz inequality. This directly implies that
f is continuous at every interior point of I (why?).

Thus, a convex function defined on an interval [a, b] (where a < b) is continuous
at every point x with a < x < b. Concerning the endpoints a and b, we can
only say that f(a) ≥ limx→a+ f(x) and f(b) ≥ limx→b− f(x) and any of these
inequalities may be strict.

Another consequence concerns the set of points for which a convex function is
not differentiable.

Corollary 5.1.6 (Sets of Differentiability). Let f : I → IR be convex and let
Z be the set of points for which f is not differentiable. Then Z is countable.

Proof. The idea is to find a one-to-one mapping r from Z to the set of rational
numbers. Since the latter set is countable, this will imply that Z is countable.
(Recall that a function r is one-to-one if distinct elements are mapped to distinct
elements).

For each z ∈ Z we have that f ′
−(z) < f ′

+(z) (confer Theorem 5.1.3) so we may
select a rational number r(z) satisfying f ′

−(z) < r(z) < f ′
+(z). This defines our

function r. If z < z′ we have that

f ′
−(z) < r(z) < f ′

+(z) ≤ f ′
−(z′) < r(z′) < f ′

+(z′)

so r(z) < r(z′). This proves that the function r is one-to-one as desired.
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We now look further at derivatives of convex functions. Let f : IR → IR be a
convex function. For each x ∈ IR we associate the closed interval

∂f(x) := [f ′
−(x), f ′

+(x)].

which is called the subdifferential of f at x. Each point s ∈ ∂f(x) is called asub-

differential subderivative of f at x. Note that, due to Theorem 5.1.3, ∂f(x) is a nonempty
sub-

derivative

and finite (closed) interval for each x ∈ IR. Moreover, f is differentiable at x if
and only if ∂f(x) contains a single point, namely the derivative f ′(x).

Corollary 5.1.7 (Subdifferential). Let f : IR → IR be a convex function and let
x0 ∈ IR. Then, for every s ∈ ∂f(x0), the inequality

f(x) ≥ f(x0) + s · (x− x0)

holds for every x ∈ IR.

Proof. Let s ∈ ∂f(x0). Note first that if x = x0 the inequality is trivial. Due to
Theorem 5.1.3 the following inequality holds for every x < x0:

(f(x) − f(x0))/(x− x0) ≤ f ′
−(x0) ≤ s.

Thus, f(x) − f(x0) ≥ s · (x− x0). Similarly, if x > x0 then

s ≤ f ′
+(x0) ≤ (f(x) − f(x0))/(x− x0)

so again f(x) − f(x0) ≥ s · (x− x0) and we are done.

Corollary 5.1.7 says that the (affine) function h : x→ f(x0)+s · (x−x0) supports
f at x0, i.e., h(x0) = f(x0) and h(x) ≤ f(x) for every x. Note that h can be seen
as a linear approximation to f at x0, see Fig. 5.3. Thus, a convex function has
a support at every point. There is a converse of this result that also holds: if a
function f : IR → IR has a support at every point x, then f is convex.

Let f : IR → IR be a convex function. We are interesting in minimizing f over IR.
Recall that x0 ∈ IR is called a global minimum of this optimization problem ifglobal

minimum
f(x0) ≤ f(x) for all x ∈ IR.

A weaker requirement is that the inequality holds for all x in some (sufficiently
small) neighborhood of x0. In that case we have a local minimum. In general,local

minimum when g : IR → IR is any function (no convexity assumed), a global minimum is
clearly also a local minimum, but the converse may not hold. However, for convex
function this converse does hold! For an interpretation of the following corollary,
see Fig. 5.4.
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slope a1 = f−(x)

slope a where a1 ≤ a ≤ a2

slope a2 = f+(x)

x

Figure 5.3: Subdifferential and linear approximation

Corollary 5.1.8 (Global minimum). Let f : IR → IR be a convex function and
let x0 ∈ IR. Then the following three statements are equivalent.

(i) x0 is a local minimum for f .

(ii) x0 is a global minimum for f .

(iii) 0 ∈ ∂f(x0).

Proof. Assume that (iii) holds. Then, by Corollary 5.1.7 (with s = 0) we have
that

f(x) ≥ f(x0) + s · (x− x0) = f(x0)

for all x ∈ IR which means that x0 is a global minimum and (ii) holds. As
mentioned above, the implication from (ii) to (i) is trivial. Finally, assume that
(i) holds. Then there is a positive number ǫ such that

(∗) f(x) ≥ f(x0) for all x ∈ [x0 − ǫ, x0 + ǫ].

If f ′
+(x0) < 0, we could find a z with x0 < z < x0+ǫ such that (f(z)−f(x0))/(z−

x0) < 0. But then f(z) < f(x0) contradicting (∗). Therefore f ′
+(x0) ≥ 0. Similarly

we prove that f ′
−(x0) ≤ 0. Consequently 0 ∈ ∂f(x0) and (iii) holds.

Note that, when f is differentiable, the optimality condition in Corollary 5.1.8
(statement (iii)) specializes into the statement that f ′(x0) = 0, i.e., that x0 is a
critical point.

There is a rich theory of subdifferentiability where many results from calculus
are generalized very nicely. Here is an example (the proof is indicated in Exercise
5.23).
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x0x1 x2

0 ∈ ∂f(x0)

Figure 5.4: Minimum of a convex function

Theorem 5.1.9 (Mean value theorem). Let f : [a, b] → IR be a convex function.
Then there exists a c ∈ 〈a, b〉 such that

f(b) − f(a)

b− a
∈ ∂f(c).

We cannot go further into this area here, but refer the interested reader to a
comprehensive treatment in [6].

Convex functions are central in several classical inequalities, like Jensen’s in-
equality, Hölder’s inequality, Minkowski’s inequality and the arithmetic-geometric
inequality etc. For a lot of material in this area we refer to a basic book on in-
equalities [9], see also [16]. As an illustration we prove Jensen’s inequality and
study an application.

Theorem 5.1.10 (Jensen’s inequality). Let f : I → IR be a convex function
defined on an interval I. If x1, . . . , xr ∈ I and λ1, . . . , λr ≥ 0 satisfy

∑r
j=1

λj = 1,
then

f(
r

∑

j=1

λjxj) ≤
r

∑

j=1

λjf(xj). (5.2)

Proof. This proof is very similar to the proof of Proposition 2.1.1. We use in-
duction on r and note first that for r = 2 the result is simply the definition of
convexity. Assume that (5.2) holds for any set of r points and scalars, where r is
some fixed number satisfying r ≥ 2. Let x1, . . . , xr+1 ∈ I and λ1, . . . , λr+1 ≥
0 satisfy

∑r+1

j=1
λj = 1. At least one of the λj ’s must be smaller than 1 (as

r ≥ 2), say that λr+1 < 1. We define λ = 1 − λr+1 so λ > 0. Consider the
point y = (1/λ)

∑r
j=1

λjxj . By our induction hypothesis, we have that f(y) ≤
∑r

j=1
(λj/λ)f(xj). Combining this inequality with the convexity of f we obtain
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f(
∑r+1

j=1
λjxj) = f(λy + λr+1xr+1) ≤ λf(y) + λr+1f(xr+1) ≤

∑r+1

j=1
(λj/λ)f(xj).

and the induction proof is complete.

Example 5.1.2. (Arithmetic and geometric means) In statistics one has different
notions of the average or mean of a set of numbers. Let x1, . . . , xr be given
numbers (data). The arithmetic mean is defined to be arithmetic

mean

(1/r)

r
∑

j=1

xj

and the geometric mean is defined as geometric

mean

(

r
∏

j=1

xj)
1/r.

The arithmetic-geometric inequality relates these two concepts and says that the
geometric mean is never greater than the arithmetic mean, i.e.,

(

r
∏

j=1

xj)
1/r ≤ (1/r)

r
∑

j=1

xj

This inequality may be proved quite easily using convexity. Recall that the func-
tion f(x) = − ln(x) is convex on IR+ (see Exercise 5.3). Using Jensen’s inequal-
ity (5.2) on f with λj = 1/r for r = 1, . . . , r we get − ln(

∑r
j=1

(1/r)xj) ≤

−
∑r

j=1
(1/r) ln(xj) = − ln((

∏r
j=1

xj)
1/r). Now, f is a strictly decreasing func-

tion so we get the desired inequality (
∏r

j=1
xj)

1/r ≤ (1/r)
∑r

j=1
xj .

Exercise 5.4. Consider Example 5.1.2 again. Use the same technique as in the
proof of arithmetic-geometric inequality except that you consider general weights
λ1, . . . , λr (nonnegative with sum one). Which inequality do you obtain? It in-
volves the so-called weighted arithmetic mean and the weighted geometric mean.

5.2 Convex functions of several variables

The notion of convex function also makes sense for real-valued functions of several
variables. This section treats such convex functions and we shall see that many
results from the univariate case extends to the general case of n variables.

Consider a real-valued function f : C → IR where C ⊆ IRn is a convex set. We
say that f is convex provided that the inequality

f((1 − λ)x+ λy) ≤ (1 − λ)f(x) + λf(y) (5.3)



76 CHAPTER 5. CONVEX FUNCTIONS

holds for every x, y ∈ IRn and every 0 ≤ λ ≤ 1. Note that, due to the convexity of
C, the point (1−λ)x+λy lies in C so the inequality makes sense. This definition convex

functionhas a simple geometrical interpretation in terms of the graph of f . The graph of
the function f is the set {(x, f(x)) : x ∈ IRn} which is a subset of IRn+1. Now,
the geometrical interpretation of convexity of f is: whenever you take two points
on the graph of f , say (x, f(x)) and (y, f(y)), the graph of f lies below the line
segment between the two chosen points.

Exercise 5.5. Repeat Exercise 5.2, but now for convex functions defined on some
convex set in IRn.

Exercise 5.6. Verify that every linear function from IRn to IR is convex.

We now give a result which may be useful for proving that a given function is
convex. A function h : IRn → IR is called affine if it holds for every x, y ∈ IRn and
λ ∈ IR that h((1 − λ)x + λy) = (1 − λ)h(x) + λh(y). Thus, h preserves affine
combinations. One can show that every affine function is the sum of a linear
function and a constant, i.e., if h is affine, then h(x) = cTx+α for some c ∈ IRn andaffine

function α ∈ IR.

Proposition 5.2.1 (Composition). Assume that f : IRn → IR is convex and
h : IRm → IRn is affine. Then the composition f ◦h is convex (where (f ◦h)(x) :=
f(h(x))).

Exercise 5.7. Prove Proposition 5.2.1.

Exercise 5.8. Let f : C → IR and let w ∈ IRn. Show that the function x →
f(x+ w) is convex.

Jensen’s inequality extends directly to the multivariate case. The proof is quite
similar, so it is omitted here.

Theorem 5.2.2 (Jensen’s inequality, more generally). Let f : C → IR be a convex
function defined on a convex set C ⊆ IRn. If x1, . . . , xr ∈ C and λ1, . . . , λr ≥
0 satisfy

∑r
j=1

λj = 1, then

f(
r

∑

j=1

λjxj) ≤
r

∑

j=1

λjf(xj). (5.4)

There are some interesting, and useful, connections between convex functions
and convex sets, and we consider one such basic relation. Let f be a real-valued
function defined on a convex set C ⊆ IRn. We define the following set in IRn+1 as-
sociated with f :

epi(f) = {(x, y) ∈ IRn+1 : y ≥ f(x)}.

The set epi(f) is called the epigraph of f . Thus, the epigraph is the set of pointsepigraph

in IRn+1 lying on or above the graph of f , see Fig. 5.5. For instance, if n = 1,
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epigraph

Figure 5.5: Convexity and epigraph

f(x) = x2 and C = IR, then epi(f) = {(x, y) ∈ IR2 : y ≥ x2}. Convexity of f and
convexity of epi(f) turn out to be really closely connected.

Theorem 5.2.3 (Epigraph). Let f : C → IR where C ⊆ IRn is a convex set.
Then f is a convex function if and only if epi(f) is a convex set.

Exercise 5.9. Prove Theorem 5.2.3 (just apply the definitions).

This theorem is useful because it means, for instance, that results for convex sets
may be applied to epi(f) in order to get results for a convex function f . Here is
one such application which is very useful.

Corollary 5.2.4 (Supremum of convex functions). Let fi, for i ∈ I, be a nonempty
family of convex functions defined on a convex set C ⊆ IRn. Then the function
f given by

f(x) = sup
i∈I

fi(x) for x ∈ C

is convex.

Proof. We see that y ≥ f(x) if and only if y ≥ fi(x) for all i ∈ I. This implies
that

epi(f) =
⋂

i∈I

epi(fi).

Now fi is convex so each set epi(fi) is convex (Theorem 5.2.3). The intersection of
(any family of) convex sets is a convex set (see Project 1.4), so epi(f) is convex.
This, again by Theorem 5.2.3, means that f is convex.

So, for instance, the maximum of a finite number of convex functions is a convex
function, see Fig. 5.6.
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: f
: g
: max {f, g}

Figure 5.6: Maximum of convex functions

Exercise 5.10. By the result above we have that if f and g are convex functions,
then the function max{f, g} is also convex. Prove this result directly from the
definition of a convex function.

Example 5.2.1. (The sum norm) The l1-norm, or sum norm, of a vector x ∈ IRnsum norm

is defined by

‖x‖1 =

n
∑

j=1

|xj |.

This defines a function f(x) = ‖x‖1 from IRn to IR. This function is convex which
can be seen as follows. First, we note that each of the functions x → xj and
x→ −xj are linear and therefore convex. Thus, the maximum of these functions,
i.e., the function x→ |xj|, is also convex, by Corollary 5.2.4. This holds for every
j and so the sum of these functions, namely f , is also convex.support

function Example 5.2.2. (The support function) Let P be a polytope in IRn, say P =
conv({v1, . . . , vt}). We are interested in LP problems given by

ψP (c) := max{cTx : x ∈ P}.

Thus, ψP (c) denotes the optimal value of this LP problem, the function ψP is
called the support function (or value function) of P . We consider P fixed, and
want to examine the behavior of ψP . We claim that ψP is a convex function. To
see this, note first that each of the functions fj : c→ cTvj is linear and therefore
convex. Thus, by Corollary 5.2.4, the maximum of these functions is also convex.
So, what is this maximum? We have for each c ∈ IRn that

max
j
cTvj = max{cTx : x ∈ P} = ψP (c)

since the optimal value of every LP problem over P is attained in one of the
extreme points (which is a subset of {v1, . . . , vt}). It follows that the support
function ψP is convex.
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Similarly, for the problem of maximizing a linear function over a compact convex
set C, the support function is convex. This is shown similarly, but we take the
supremum of an infinite family of linear functions, namely one for each extreme
point of C. Note here that we use Minkowski’s theorem (Corollary 4.3.4) saying
that a compact convex set is the convex hull of its extreme points.

We remark that the support function may also be defined for the problem of
optimizing over any set (even unbounded), but then we must replace “max” by
“sup” in the definition and allow infinite function values. This can be done, but
one needs to take proper care of the arithmetic involving infinite values. We do
not go into these matters here, but refer e.g. to [6].

Exercise 5.11. Let f : IRn → IR be a convex function and let α ∈ IR. Show that
the set {x ∈ IRn : f(x) ≤ α} is a convex set. Each such set is called a sublevel
set.

Example 5.2.3. (Vector norms) Vector norms are used to measure the “length”
or “size” of a vector. Thus, for instance, one can use norms to measure how
close two vectors are, and this is important in many connections. We shall relate
norms and convexity, and start by defining a norm in general terms. A function
f : IRn → IR is called a norm on IRn if it satisfies the following properties for vector norm

every x, y ∈ IRn and λ ≥ 0:

(i) f(x) ≥ 0 (nonnegative);

(ii) f(x) = 0 if and only if x = O (positive);

(iii) f(λx) = |λ|f(x) (homogeneous);

(iv) f(x+ y) ≤ f(x) + f(y) (triangle inequality).

(5.5)

Euclidean

norm
max norm

Often, the norm function f is written ‖ · ‖, i.e., f(x) = ‖x‖ is the norm of the
vector x. The l1-norm as defined in Example 5.2.1 satisfies (5.5) so it is a norm
on IRn. Another example is, of course, the Euclidean norm (or l2-norm) given by
‖x‖2 = (

∑n
j=1

|xj |
2)1/2. A third example is the l∞-norm, or max norm, defined by

‖x‖∞ = maxj≤n |xj |. A large class of norms may be defined as follows. For any
real number p ≥ 1 the lp-norm is given by ‖x‖p = (

∑n
j=1

|xj|
p)1/p. We see that for

p = 1 and p = 2 we obtain the sum norm and the Euclidean norm, respectively.
Moreover, it can be shown that

lim
p→∞

‖x‖p = ‖x‖∞

for every x ∈ IRn. Thus, the max norm is the (pointwise) limit of the lp-norms.

How can we prove that the lp-norms are really norms as defined in (5.5). It is
quite easy to see that the properties (i)–(iii) all hold, but the triangle inequality
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is not straightforward. In fact, the triangle inequality for lp-norms is known as
Minkowski’s inequality and it says thatMinkowski’s

inequality
‖x+ y‖p ≤ ‖x‖p + ‖y‖p for all x, y ∈ IRn. (5.6)

We shall prove Minkowski’s inequality below in connection with some other con-
vexity results. First, however, we observe that every norm is a convex function.
To check this, let x, y ∈ IRn and 0 ≤ λ ≤ 1. From the norm properties (5.5) we
obtain

‖(1 − λ)x+ λy‖ ≤ ‖(1 − λ)x‖ + ‖λy‖ = (1 − λ)‖x‖ + λ‖y‖

which shows the convexity of ‖ · ‖. The reader who wants to read more about
vector (and matrix) norms, may consult [7].

A function f : IRn → IR is called positively homogeneous if f(λx) = λf(x) holds
for every x ∈ IRn and λ ≥ 0.

Exercise 5.12. Verify that the function x→ ‖x‖p is positively homogeneous.

Exercise 5.13. Consider the support function of an optimization problem with
a linear objective function, i.e., let f(c) := max{cTx : x ∈ S} where S ⊆ IRn is
a given nonempty set. Show that f is positively homogeneous. Therefore (due to
Example 5.2.2), the support function is convex and positively homogeneous when
S is a compact convex set.

A positively homogeneous function need not be convex, but the next theorempositively

homogeneous gives the additional property needed to ensure convexity.

Theorem 5.2.5 (Positively homogeneous convex functions). Let f be a
positive homogeneous function defined on a convex cone C ⊆ IRn. Then f is
convex if and only if f(x + y) ≤ f(x) + f(y) for all x, y ∈ IRn (this property is
called subadditivity).

Proof. First, assume that f is convex. Then (1/2)f(x+y) = f((1/2)x+(1/2)y) ≤
(1/2)f(x) + (1/2)f(y), so f(x + y) ≤ f(x) + f(y). Next, assume that f(x +
y) ≤ f(x) + f(y) holds for all x, y ∈ IRn. Let x, y ∈ C and λ ∈ [0, 1]. Then
f((1−λ)x+λy) ≤ f((1−λ)x)+f(λy) = (1−λ)f(x)+λf(y) so f is convex.

The next theorem gives a convexity criterion which is of interest in connection
with norms.

Corollary 5.2.6 (A convexity criterion). Let f be a nonnegative and positive
homogeneous function defined on a convex cone C ⊆ IRn. Assume that the set
U := {x ∈ C : f(x) ≤ 1} is convex. Then f is a convex function on C.
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Proof. Due to Theorem 5.2.5 it suffices to show subadditivity (f(x+y) ≤ f(x)+
f(y)). Let x, y ∈ C and let a and b be positive numbers satisfying a > f(x) and
b > f(y). Then, as f is positive homogeneous f((1/a)x) = f(x)/a ≤ 1 and
f(y)/b ≤ 1. Thus, (1/a)x, (1/b)y ∈ U and, as U is assumed convex, any convex
combination of these two points also lies in U . Therefore

1

a + b
f(x+ y) = f(

1

a+ b
(x+ y)) = f(

a

a+ b
·
1

a
x+

b

a+ b
·
1

b
y) ≤ 1

so f(x + y) ≤ a + b. This holds for every a > f(x) and b > f(y). We may here
choose a arbitrarily close to f(x) (and b arbitrarily close to f(y)) as f(x), f(y) ≥
0, so it follows that f(x+ y) ≤ f(x) + f(y). Therefore f is convex on C.

Proof of Minkowski’s inequality. Let p ≥ 1 and let C = IRn
+ (which is a convex

cone). Consider the function f(x) = (
∑n

j=1
xp

j )
1/p for x ≥ O. First, we see that the

function f p (f to the power of p) is convex: it is the sum of the convex functions
x→ xp

j defined on IR+. Then, by Exercise 5.11, the set

{x ∈ C : f p(x) ≤ 1} = {x ∈ C : f(x) ≤ 1}

is convex. It now follows from Corollary 5.2.6 that f is convex (on C). Fi-
nally, since f is convex, we may conclude from Theorem 5.2.5, that f(x + y) ≤
f(x)+ f(y) for x, y ≥ O. This implies Minkowski’s inequality (by replacing xj by
|xj | which is nonnegative).

5.3 Continuity and differentiability

In this section we study continuity and differentiability properties of convex func-
tions.

We first need to recall the concept of directional derivative. Let f : IRn → IR be
a function and let x0 ∈ IRn and z ∈ IRn \ {O}. If the limit

lim
t→0

(f(x0 + tz) − f(x0))/t

exists, it is called the directional derivative of f at x0 in the direction z, and directional

derivativethis limit is denoted by f ′(x0; z). This number tells us the local growth rate
of the function when we move from the point x0 in the direction z. When we
let z = ej (the j’th unit vector) we get the j’th partial derivative: f ′(x0; ej) =
limt→0(f(x0 + tej)− f(x0))/t = ∂f(x)/∂xj . Below we will also consider one-sided
directional derivatives.
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Exercise 5.14. Let f(x) = xTx = ‖x‖2 for x ∈ IRn. Show that the directional
derivative f ′(x0; z) exists for all x and nonzero z and that f ′(x0; z) = 2zTx.

If we restrict a given (convex) function f : IRn → IR to some line L in IRn we
get a new function of a single variable (this variable describes the position on the
line). This construction will be useful for understanding the behavior of convex
functions of several variables. Let f : IRn → IR be a convex function and consider
a line L = {x0 +λz : λ ∈ IR} where x0 is a point on the line and z is the direction
vector of L. Define the function g : IR → IR by

g(t) = f(x0 + tz) for t ∈ IR.

We now prove that g is a convex function (of a single variable). Let t1, t2 ∈ IR and
let 0 ≤ λ ≤ 1. We have f((1 − λ)t1 + λt2) = f(x0 + ((1 − λ)t1 + λt2)z) = f((1 −
λ)(x0+t1z)+λ(x0+t2z)) ≤ (1−λ)f(x0+t1z)+λf(x0+t2z) = (1−λ)g(t1)+λg(t2)
and therefore g is convex.

Thus, the restriction g of a convex function f to any line is another convex
function. A first consequence of this result is that a convex function f : IRn → IR
has one-sided directional derivatives. In fact, since g is convex it has a right-sided
derivative at 0 (due to Theorem 5.1.3) so

g′+(0) = lim
t→0+

(g(t) − g(0))/t = lim
t→0+

(f(x0 + tz) − f(x0))/t = f ′
+(x0; z)

This shows that f ′
+(x0; z), the right-sided directional derivative of f at x0 in theone-sided

directional

derivative

direction z, exists and that it equals g′+(0). Clearly, a similar statement holds for
the left-sided directional derivative of f . This is true for any point x0 and nonzero
direction vector z. Note that a similar differentiability result holds for a convex
function defined on an open convex set C ⊆ IRn.

Recall that a convex function of a single variable is continuous on the interior of
its domain. A similar result holds for convex functions of several variables.

Theorem 5.3.1 (Continuity). Let f : C → IR be a convex function defined on
an open convex set C ⊆ IRn. Then f is continuous on C.

Proof. Let x0 ∈ C. Then we can find a full-dimensional polytope P having ver-
tices y1, . . . , yt such that x0 ∈ int(P ) ⊂ P ⊂ C (why?). Moreover, for a suitably
small r > 0 we have that B(x0, r) ⊆ P . (Recall that B(x0, r) is the closed ball
consisting of all points x satisfying ‖x− x0‖ ≤ r.)

We first prove that f is bounded above on B(x0, r). Let x ∈ B(x0, r) and define
M = maxj≤t f(yj). Since x ∈ B(x0, r) ⊆ P there are nonnegative numbers
λ1, . . . , λt with

∑

j λj = 1 such that x =
∑

j λjyj and therefore, due to the
convexity of f , f(x) ≤

∑

j λjf(yj) ≤
∑

j λjM = M .
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Consider a point x ∈ B(x0, r) with x 6= x0. Define the function g : [−r, r] → IR
by g(t) = f(x0 + tz) where z = (x− x0)/‖x− x0‖. Then (see above) g is convex
and it is bounded above by g(t) ≤ M for −r ≤ t ≤ r. According to Proposition
5.1.2 g has an increasing slope function so we obtain

−(M − g(0))/r ≤ (g(−r) − g(0))/(−r) ≤ (g(‖x− x0‖) − g(0))/‖x− x0‖ ≤

(g(r) − g(0))/r ≤ (M − g(0))/r.

Thus, |g(‖x− x0‖)− g(0)| ≤ ((M − g(0))/r) · ‖x− x0‖ which becomes, using the
definition of g,

|f(x) − f(x0)| ≤ ((M − f(x0))/r) · ‖x− x0‖.

This proves that f is continuous at x0 and the proof is complete.

How can we decide if a given function of several variables is convex? We recall
that in the one-variable case, when f is differentiable, the answer is to check the
sign of the second derivative. The function is convex if and only if f ′′(x) ≥ 0 for
all x. We shall now prove an extension of this result and obtain a criterion in
terms of the second-order partial derivatives. First, we establish a useful lemma.

Lemma 5.3.2 (One-variable characterization). Let f : C → IR be a real-valued
function defined on an open convex set C ⊆ IRn. For each x ∈ C and z ∈ IRn we
define the interval I = {t ∈ IR : x+ tz ∈ C} and the function g : I → IR given by
g(t) = f(x+ tz).

Then f is convex if and only if each such function g (for all x ∈ C and z ∈ IRn)
is convex.

Proof. In the beginning of this section we proved that the convexity of f implies
that each g is convex. To prove the converse let x, y ∈ C and 0 ≤ λ ≤ 1. Define
z = x − y. From the convexity of g we obtain f((1 − λ)x + λy) = f(x + λz) =
g((1−λ) ·0+λ ·1) ≤ (1−λ)g(0)+λg(1) = (1−λ)f(x)+λf(y) so f is convex.

The previous lemma says that a function of several variables is convex if and
only if it is “convex in every direction”. This means that certain results known
for convex functions of one variable have extensions to the multivariate case. We
now consider the mentioned convexity characterization in terms of second-order
partial derivatives.

Let f be a real-valued function defined on an open convex set C ⊆ IRn. We
assume that f has continuous second-order partial derivatives at every point in
C. Note that this implies that ∂2f/∂xi∂xj = ∂2f/∂xj∂xi holds everywhere. Let
Hf (x) ∈ IRn×n be the matrix whose (i, j)th entry is ∂2f(x)/∂xi∂xj . The square
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matrix Hf (x) is called the Hessian matrix of f at x. This matrix is symmetric
as just noted. We now recall a concept from linear algebra: a symmetric matrix Hessian

matrixA ∈ IRn×n is positive semidefinite if xTAx =
∑

i,j ai,jxixj ≥ 0 for each x ∈ IRn.
A useful fact is that a is positive semidefinite if and only if all the eigenvalues of
a are (real and) nonnegative.

Theorem 5.3.3 (Characterization via the Hessian). Let f be a real-valued func-
tion defined on an open convex set C ⊆ IRn and assume that f has continuous
second-order partial derivatives on C.

Then f is convex if and only if the Hessian matrix Hf(x) is positive semidefinite
for each x ∈ C.

Proof. Due to Lemma 5.3.2 f is convex if and only if each function g(t) = f(x+tz)
is convex. Since f has second-order partial derivatives on C, the function g is twice
differentiable on the interior of I = {t : x + tz ∈ C}. We use the chain rule for
calculating the first- and second-order derivatives of g, and they are

g′(t) =
∑n

j=1
(∂f/∂xj)zj

g′′(t) =
∑n

i=1

∑n
j=1

(∂2f/∂xi∂xj)zizj

for each t ∈ I and where the partial derivatives are evaluated at x + tz. From
Theorem 5.1.4 we have that g is convex if and only if g′′ ≥ 0, and the desired
result follows.

Example 5.3.1. (A quadratic function) Let A ∈ IRn×n be a symmetric matrix
which is positive semidefinite and consider the function f : IRn → IR given by

f(x) = xTAx =
∑

i,j

ai,jxixj .

Then it is easy to check that Hf(x) = A for each x ∈ IRn. Therefore, f is a convex
function.

Exercise 5.15. A quadratic function is a function of the form

f(x) = xTAx+ cTx+ α

for some (symmetric) matrix A ∈ IRn×n, a vector c ∈ IRn and a scalar α ∈ IR.
Discuss whether f is convex.

Sometimes we can determine that a symmetric matrix a is positive semidefinite by
a very simple test. A (real) symmetric n×nmatrix a is called diagonally dominant
if |ai,i| ≥

∑

j 6=i |ai,j| for i = 1, . . . , n. If all these inequalities are strict, a is strictlydiagonally

dominant diagonally dominant. These matrices arise in many applications, e.g. splines and
differential equations. It can be shown that every symmetric diagonally dominant
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matrix is positive semidefinite. For a simple proof of this fact using convexity, see
[3]. Thus, we get a useful test for convexity of a function: check if the Hessian
matrix Hf (x) is diagonally dominant for each x. Note, however, that this criterion
is only sufficient for f to be convex (so even if the Hessian is not diagonally
dominant the function f may still be convex).

We now turn to the notion of differentiability of a function. We recall that a
function f defined on an open set in IRn is said to be differentiable at a point x0 differ-

entiablein its domain if there is a vector d (which may depend on x0) such that

lim
h→O

(f(x0 + h) − f(x0) − dTh)/‖h‖ = 0.

More precisely this means the following: for every ǫ > 0 there is a δ > 0 such that
if h satisfies 0 < ‖h‖ < δ then it also holds that |f(x0+h)−f(x0)−d

Th|/‖h‖ < ǫ.
If f is differentiable at x0, the vector d is unique and it is called the gradient of
f at x0. gradient

Assume that f is differentiable at x0 and the gradient at x0 is d. Then we have
for every nonzero vector z that

lim
t→0

|f(x0+tz)−f(x0)−d
T tz|/‖tz‖ = (1/‖z‖) lim

t→0
|(f(x0+tz)−f(x0))/t−d

T z| = 0.

Here the existence of the first limit is due to the differentiability assumption. This
proves that f has a directional derivative at x0 in direction z and that

f ′(x0; z) = dT z.

In particular, we see that the function z → f ′(x0; z) is linear. Note that usually
the gradient d of f at x0 is denoted by ∇f(x0) and one can verify that

∇f(x0)
T = [∂f(x0)/∂x1, . . . , ∂f(x0)/∂xn] .

We have just shown that differentiability at x0 is a stronger notion than the exis-
tence of directional derivatives at that point. In fact, there exist nondifferentiable
functions that have directional derivatives in every direction at some point. We
now show that this does not happen for convex functions: even the existence of all
partial derivatives at a point turns out to imply that the function is differentiable
at that point.

Theorem 5.3.4 (Partial derivatives and differentiability). Let f be a real-valued
convex function defined on an open convex set C ⊆ IRn. Assume that all the
partial derivatives ∂f(x)/∂x1, . . . , ∂f(x)/∂xn exist at a point x ∈ C. Then f is
differentiable at x.
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Proof. Since the partial derivatives exist at the point x ∈ C we may define the
function g : IRn → IR by

g(h) = f(x+ h) − f(x) −∇f(x)Th.

where ∇f(x0)
T = [∂f(x0)/∂x1, . . . , ∂f(x0)/∂xn]. We shall show that f is differ-

entiable at x, i.e., that limh→O g(h)/‖h‖ = 0. Note that g(O) = 0. Moreover,
g has partial derivates and they are given by

∂g(h)/∂hj = ∂f(x+ h)/∂xj − ∂f(x)/∂xj

so, in particular, ∂g(O)/∂hj = 0.

We observe that g is convex (see Proposition 5.2.1). Let x ∈ IRn. As h =
∑n

j=1
hiei

we obtain

(∗) g(h) = g(
∑n

i=1
hiei) = g((1/n)

∑n
i=1

nhiei) ≤
∑n

i=1
(1/n)g(nhiei) =

∑n
i=1

hi · (g(nhiei)/(nhi)) ≤

‖h‖
∑n

i=1
|(g(nhiei)/(nhi))|.

Here, in the second last equality each summand with hi = 0 must be replaced
by zero, and the equality holds as g(O) = 0. To obtain the last equality we use
the Cauchy-Schwarz inequality and the triangle inequality as follows (for any
vector w):

∑n
i=1

hiwi = hTw ≤ ‖h‖‖w‖ ≤ ‖h‖‖
∑

j wiei‖ ≤ ‖h‖
∑

j |wi|‖ei‖ =
‖h‖

∑

j |wi|. An inequality similar to (∗) holds when we replace h by −h.

Furthermore, it follows from the convexity of g that g(h) + g(−h) ≥ g(O) = 0 so
−g(−h) ≤ g(h). Therefore we have shown the following inequalities

−
n

∑

i=1

|(g(−nhiei)/(nhi))| ≤ −g(−h)/‖h‖ ≤ g(h)/‖h‖ ≤
n

∑

i=1

|(g(nhiei)/(nhi))|.

Here, as h → O, both the left-most and the right-most term tend to ∂g(O)/∂hj

which is zero (see above). Thus, limh→O g(h)/‖h‖ = 0, as desired.

A convex function may not be differentiable everywhere, but it is differentiable
“almost everywhere”. More precisely, for a convex function defined on an open
convex set in IRn the set of points for which f is not differentiable has Lebesgue
measure zero. We do not go into further details on this here, but refer to e.g. [6]
for a proof and a discussion.

Another characterization of convex functions that involves the gradient may now
be presented.
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Theorem 5.3.5 (Characterization via gradients). Let f : C → IR be a differ-
entiable function defined on an open convex set C ⊆ IRn. Then the following
conditions are equivalent:

(i) f is convex.

(ii) f(x) ≥ f(x0) + ∇f(x0)
T (x− x0) for all x, x0 ∈ C.

(iii) (∇f(x) −∇f(x0))
T (x− x0) ≥ 0 for all x, x0 ∈ C.

Proof. Assume that (i) holds. Let x, x0 ∈ C and 0 ≤ λ ≤ 1. We have that

f(x0 + λ(x− x0)) = f((1 − λ)x0 + λx) ≤ (1 − λ)f(x0) + λf(x)

This implies that

(f(x0+λ(x−x0))−f(x0))/λ−∇f(x0)
T (x−x0) ≤ f(x)−f(x0)−∇f(x0)

T (x−x0).

If we let λ → 0+, then the left side of this inequality tends to 0, and therefore
f(x) − f(x0) −∇f(x0)

T (x− x0) ≥ 0, i.e., (ii) holds.

Assume next that (ii) holds. Then, for x, x0 ∈ C, we have that f(x) ≥ f(x0) +
∇f(x0)

T (x − x0) and (by symmetry) f(x0) ≥ f(x) + ∇f(x)T (x0 − x). Adding
these two inequalities gives (iii).

Finally, assume that (iii) holds. Let x, x0 ∈ C and consider the function g(t) =
f(x0 + t(x − x0)) for 0 ≤ t ≤ 1. Let 0 ≤ t1 ≤ t2 ≤ 1. Then, using the chain rule
we get

g′(t2)− g′(t1) = ∇f(x0 + t1(x−x0))
T (x−x0)−∇f(x0 + t2(x−x0))

T (x−x0) ≥ 0

due to (iii). This shows that g′ is increasing on [0, 1] and it follows from Lemma
5.3.2 that f is convex, so (i) holds.

This theorem is very important. Property (ii) says that the first-order Taylor
approximation of f at x0 (which is the right-hand side of the inequality in (ii))
always underestimates f . This result has interesting consequences for optimiza-
tion, see section 6.

Finally, we mention a result related to Corollary 5.1.7. Consider a convex function
f and an affine function h, both defined on a convex set C ⊆ IRn. We say
that h : IRn → IR supports f at x0 if h(x) ≤ f(x) for every x and h(x0) = supporting

functionf(x0). Thus, the mentioned Taylor approximation h above supports f at x0, see
Fig. 5.7. Note, however, that the concept of supporting function also makes sense
for nondifferentiable convex functions. In fact, the following general result holds,
and it can be proved using Corollary 3.2.4.
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graph of f

graph of
supporting function

Figure 5.7: Supporting function

Theorem 5.3.6. Let f : C → IR be a convex function defined on a convex set
C ⊆ IRn. Then f has a supporting (affine) function at every point. Moreover, f
is the pointwise supremum of all its (affine) supporting functions.

We remark that the last statement of this theorem represents a converse to the
fact known from Corollary 5.2.4, i.e., that every supremum of convex (and there-
fore affine) functions is convex.

5.4 Exercises

Exercise 5.16. Assume that f and g are convex functions defined on an inter-
val I. Determine which of the functions following functions that are convex or
concave: (i) λf where λ ∈ IR, (ii) min{f, g}, (iii) |f |.

Exercise 5.17. Let f, g : I → IR where I is an interval. Assume that f and
f + g both are convex. Does this imply that g is convex? Or concave? What if
f + g is convex and f concave?

Exercise 5.18. Let f : [a, b] → IR be a convex function. Show that

max{f(x) : x ∈ [a, b]} = max{f(a), f(b)}

i.e., a convex function defined on closed real interval attains its maximum in one
of the endpoints.

Exercise 5.19. Let f : I → IR be a convex function defined on a bounded interval
I. Prove that f must be bounded below (i.e., there is a number L such that f(x) ≥
L for all x ∈ I). Is f also bounded above?
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Exercise 5.20. Let f, g : IR → IR be convex functions and assume that f is
increasing. Prove that the composition f ◦ h is convex.

Exercise 5.21. Find the optimal solutions of the problem min{f(x) : a ≤ x ≤
b} where a < b and f : IR → IR is a differentiable convex function.

Exercise 5.22. Let f : 〈0,∞〉 → IR and define the function g : 〈0,∞〉 → IR by
g(x) = xf(1/x). Prove that f is convex if and only if g is convex. Hint: Prove
that

g(x) − g(x0)

x− x0

= f(1/x0) −
1

x0

·
f(1/x) − f(1/x0)

1/x− 1/x0

and use Proposition 5.1.2. Why is the function x→ xe1/x convex?

Exercise 5.23. Prove Theorem 5.1.9 as follows. Consider the function

g(x) = f(x) − f(a) −
f(b) − f(a)

b− a
(x− a).

Explain why g is convex and that it has a minimum point at some c ∈ 〈a, b〉 (note
that g(a) = g(b) = 0 and g is not constant). Then verify that

∂g(c) = ∂f(c) −
f(b) − f(a)

b− a

and use Corollary 5.1.8.

Exercise 5.24. Let f : IR → IR be an increasing convex function and let g :
C → IR be a convex function defined on a convex set C in IRn. Prove that the
composition f ◦ g (defined on C) is convex.

Exercise 5.25. Prove that the function given by h(x) = exT ax is convex when
a is positive definite.

Exercise 5.26. Let f : C → IR be a convex function defined on a compact convex
set C ⊆ IRn. Show that f attains its maximum in an extreme point. Hint: use
Minkowski’s theorem (Corollary 4.3.4).

Exercise 5.27. Let C ⊆ IRn be a convex set and consider the distance function
dC defined in ( 3.1), i.e., dC(x) = inf{‖x− c‖ : c ∈ C}. Show that dC is a convex
function.

Exercise 5.28. Prove Corollary 6.1.1 using Theorem 5.3.5.

Exercise 5.29. Compare the notion of support for a convex function to the notion
of supporting hyperplane of a convex set (see section 3.2). Have in mind that f
is convex if and only if epi(f) is a convex set. Let f : IRn → IR be convex and
consider a supporting hyperplane of epi(f). Interprete the hyperplane in terms of
functions, and derive a result saying that every convex function has a support at
every point.
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SUMMARY OF NEW CONCEPTS AND RESULTS:

• convex function
• subdifferential, subderivative
• continuity and subdifferentiability of convex functions
• criteria for convexity
• Jensen’s inequality and the arithmetic-geometric inequality
• epigraph
• support function
• vector norms
• Minkowski’s inequality
• directional derivative, differentiability
• gradient, Hessian matrix
• convexity criteria



Chapter 6

Nonlinear and convex optimization

Problems of minimizing a function in several variables arise in many areas of
mathematics and its applications. Several books and papers discuss this impor-
tant class of problems. We shall here give a very brief presentation of this area
and the focus is on convex optimization, i.e. to minimize a convex function over
a convex set. Our presentation is based on the book [1] which is an excellent
reference for both theory and algorithms. This book also dicusses nonconvex op-
timization (where many of the same ideas are used, but where it may be hard to
find a globally optimal solution). Another book that can be recommended is [6]
which treats this subject, both from a theoretical and a computational perspec-
tive. Moreover, the recent book [4] treats convexity and optimization in detail
with a focus on theory.

Secions 6.1 and 6.2 concentrate on convex optimization while the remaining sec-
tions also discuss nonlinear optimization more generally.

6.1 Local and global minimum in convex optimization

Recall the notions of local and global minimum defined in Section 5.1. Exactly the
same definitions are valid for the problem of minimizing a real-valued function of
several variables (defined on IRn or some proper subset). The following result is
a direct consequence of Theorem 5.3.5.

Corollary 6.1.1 (Global minimum). Let f : C → IR be a differentiable convex
function defined on an open convex set C ⊆ IRn. Let x∗ ∈ C. Then the following
three statements are equivalent.

(i) x∗ is a local minimum for f .

(ii) x∗ is a global minimum for f .

(iii) ∇f(x∗) = O (i.e., all partial derivatives at x∗ are zero).

91
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We leave the proof as an exercise. Note that in this corollary the domain of f is
an open convex set. This means that optimal solutions, if they exist, cannot lie
on the boundary of C, simply because each point on the boundary lies outside
C. Note also that when C is open the problem min{f(x) : x ∈ C} may not have
any optimal solution at all, even though f is bounded on C. A simple example
is when f(x) = x and C = {x ∈ IR : 1 < x < 3}. If, however, C = IRn, we have
an unconstrained problem and such complications do not occur. Below we treat
convex optimization problems where C is a closed convex set.

Due to Corollary 6.1.1, say when C = IRn, numerical algorithms for minimizing
a differentiable convex function f search for a stationary point x∗, i.e., a point
where ∇f(x∗) = O. For instance, consider the quadratic function

f(x) = (1/2) xTAx− bTx+ α

defined for x ∈ IRn. When A is symmetric and positive semidefinite this function
is convex (see Example 5.3.1 and Exercise 5.15). We calculate that

∇f(x) = Ax− b

so x is a stationary point if and only if Ax = b. Thus, the problem of finding a
local (and therefore global) minimum of a convex quadratic function boils down
to solving a linear system of equations. For other convex functions, the system
∇f(x) = O may be a nonlinear system of equations. Thus, many numerical
algorithms for solving this problem are based on Newton’s method for nonlinear
systems of equations.

Our next goal is to extend the result of Corollary 6.1.1 to the more typical
situation where C is a closed set. We consider the problem of minimizing a convex
function f over a (nonempty) closed convex set C in IRn, i.e.,

minimize f(x) subject to x ∈ C. (6.1)

In this case optimal solutions may lie on the (relative) boundary of C. Note that
the next result does not require f to be differentiable.

Lemma 6.1.2 (Global minimum in constrained problems). Let f : C → IR
be a convex function defined on a closed convex set C ⊆ IRn. Then, in problem
( 6.1), each local minimum is also a global minimum. Moreover, the set of minima
(optimal solutions) in ( 6.1) is a closed convex subset of C.

Proof. Assume that x∗ is a local minimum of problem (6.1). Then there is an
r > 0 such that f(x∗) ≤ f(x) for all x ∈ B(x∗, r) ∩ C. Let y ∈ C \ B(x∗, r) and



6.2. OPTIMALITY CONDITIONS FOR CONVEX OPTIMIZATION 93

assume that f(y) < f(x∗). Consider a point z lying in the relative interior of the
line segment between x∗ and y, so z = (1 − λ)x∗ + λy where 0 < λ < 1. Due to
the convexity of f we have

f(z) = f((1 − λ)x∗ + λy) ≤ (1 − λ)f(x∗) + λf(y) <

(1 − λ)f(x∗) + λf(x∗) = f(x∗).

By choosing λ sufficently small we assure that z lies in B(x∗, r) (and z ∈ C as
C is convex) and then we have the contradiction f(z) < f(x∗). This proves that
f(x∗) ≤ f(y) for each y ∈ C, so x∗ is a globally optimal solution. To prove the
last statement, let v∗ = f(x∗) denote the optimal value in problem (6.1). Then
the set of optimal solutions is the set C∗ = {x ∈ C : f(x) ≤ v∗} which is closed
and convex as both C and the sublevel set {x : f(x) ≤ v∗} are closed and convex
(see Exercise 5.11).

In Section 3.1 we discussed the problem of finding a nearest point in a closed
convex set C to a given point, say z. This is an example of a convex optimization
problem. Actually, it corresponds to minimizing a convex quadratic function:

minimize f(x) := ‖x− z‖2 subject to x ∈ C.

Moreover, Theorem 3.1.2 showed that there is a unique nearest point and that this
point may be characterized in terms of certain inequalities. This chacterization
was in fact an optimality condition. The next section studies optimality conditions
for our general problem of minimizing a convex function f over a convex set C.
Such conditions lie behind numerical algorithms for solving these optimization
problems.

6.2 Optimality conditions for convex optimization

In order to minimize a function f : IRn → IR one usually needs optimality
conditions that somehow describe optimal solutions. An algorithm can then be
set up to search for a point satisfying those conditions. This is familiar for a
differentiable function of a single variable: we look for a point where the derivative
is zero. Our goal here is to find general optimality conditions for convex functions
defined on a convex set.

Throughout the section we consider the following situation

• f : C → IR is a convex function defined on a convex set C ⊆ IRn.
• f is continuously differentiable

and the problem of interest is
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minimize f(x) subject to x ∈ C.

(In Section 6.5 we consider the more specific situation where C is the solution
set of a system of equations and inequalities.)

At a point x we know that the function f increases (locally) fastest in the direction
of the gradient ∇f(x). Similarly f decreases fastest in the direction −∇f(x).
Thus, in order to decrease the function value (if possible) we want to go from
x to another feasible point x′ (so x′ ∈ C) for which the direction d := x′ − x
satisfies ∇f(x)Td < 0. Due to Taylor’s formula (first order approximation) this
condition assures that f(x′) < f(x) provided that we make a suitably small step
in this direction.

The following theorem gives optimality conditions for our problem.convex

optimality

condition
Theorem 6.2.1 (Optimality condition). Let x∗ ∈ C. Then x∗ is a (local and
therefore global) minimum of f over C if and only if

∇f(x∗)T (x− x∗) ≥ 0 for all x ∈ C. (6.2)

Proof. Assume first that ∇f(x∗)T (x − x∗) < 0 for some x ∈ C. Consider the
function g(ǫ) = f(x∗ + ǫ(x − x∗)) and apply the mean value theorem to this
function. Thus, for every ǫ > 0 there exists an s ∈ [0, 1] with

f(x∗ + ǫ(x− x∗)) = f(x∗) + ǫ∇f(x∗ + sǫ(x− x∗))T (x− x∗).

Since ∇f(x∗)T (x−x∗) < 0 and the gradient function is continuous (our standard
assumption!) we have for sufficiently small ǫ > 0 that ∇f(x∗ + sǫ(x− x∗))T (x−
x∗) < 0. This implies that f(x∗ + ǫ(x − x∗)) < f(x∗). But, as C is convex, the
point x∗ + ǫ(x − x∗) also lies in C and so we conclude that x∗ is not a local
minimum. This proves that (6.2) is necessary for x∗ to be a local minimum of f
over C.

Next, assume that (6.2) holds. Using Theorem 5.3.5 we then get

f(x) ≥ f(x∗) + ∇f(x∗)T (x− x∗) ≥ f(x) for every x ∈ C

so x∗ is a (global) minimum.

It is quite instructive to see how the convexity of both the feasible set C and the
function f enters this proof. We understand that the convexity of C simplifies
the optimality condition.

A point x which satisfies (6.2) is called a stationary point. Thus, for these kindstationary

point of optimization problems, the goal is to find a stationary point since it is a global
optimal solution.
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Remark. The condition (6.2) is also a necessary optimality condition for a (local)
minimum of a general differentiable, but nonconvex function f . This is useful since
we may use the condition to find a set of candidates for being a local minimum
point. But, unfortunately, the condition may not be sufficient for x∗ to be a
minimum when f is nonconvex. (For instance, maximum points also satisfy this
condition.)

Example 6.2.1. Consider the problem to minimize f(x) subject to x ≥ O. So
here C = {x ∈ IRn : x ≥ O} is the nonnegative orthant. Then the optimality
condition (6.2) becomes

∂f(x∗)/∂xi = 0 for all i ≤ n with x∗i > 0, and

∂f(x∗)/∂xi ≥ 0 for all i ≤ n with x∗i = 0.

6.3 Feasible direction methods

We now consider the convex optimization problem

minimize f(x) subject to x ∈ C

where we assume that f is continuously differentiable and C is a nonempty closed
convex set on IRn. The method we discuss is a primal method meaning that it primal

methodproduces a sequence of primal feasible points, i.e., points in C. The algorithm is
iterative and generates a sequence {xk} in C according to

xk+1 = xk + αkdk

where x0 is some starting point in C. Here xk is the current solution, dk is the
search direction and αk is the step length. The problem in iteration k is to verify search

direction

step length

optimality of the currect solution or to find a suitable (nonzero) search direction
which leads to a new feasible point with smaller f -value. Thus the algorithm has
to perform two tasks in every iteration:

• find a search direction dk

• line search: find a suitable step length αk in direction dk.

The vector dk is a feasible direction in xk if xk +αdk lies in C for all positive and
suitably small α. Moreover, if dk is also a descent direction meaning that descent

direction
∇f(xk)Tdk < 0

then for suitable αk > 0 we have f(xk + αkdk) < f(xk) so a better solution has
been found. This general procedure is called a feasible direction method. feasible

direction

method
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Since C is convex one can see that any feasible direction dk at xk has the form
dk = x̄k −xk for some x̄k ∈ C and that xk +α(x̄k −xk) ∈ C for all suitably small
α, say α ≤ α̂. Note here that α̂ ≥ 1 due to the convexity of C. Thus, if xk is
nonstationary, i.e. (6.2) does not hold, then for some x̄k ∈ C we have

∇f(xk)T (x̄k − xk) < 0

so we have a decent direction. The next problem is to choose the step length
α. Any choice with 0 < α < α̂ will give a new feasible solution, so we want
to find one with small, perhaps smallest possible, f -value in this range. There
are several stepsize selection rules for this purpose. Some of them are “constant
stepsize” (meaning that αk = 1), “Armijo rule”1, and “limited minimization”
(minimize exactly for α ∈ [0, 1); for further rules, see [1]. Note that this problem
is a univariate convex minimization problem.

The conditional gradient method , also called the Frank-Wolfe method, is a feasibleconditional

gradient

method

direction method where we choose the feasible direction at xk by solving the
problem

minimize ∇f(xk)T (x− xk)

subject to x ∈ C

This corresponds to linearizing the objective function (first order Taylor approx-
imation at xk) and minimizing it over the whole feasible region C. If x̄k is the
optimal soluton found to this problem, the new search direction is dk = x̄k − xk.
This method makes sense if finding the new direction is a rather easy problem. For
instance, this is the case if C is a polyhedron for then we get a linear programming
problem which can be solved efficiently.

The following proposition says that, under some technical assumptions, feasible
direction methods work, i.e. they converge to a minimum point.

Proposition 6.3.1. Let {xk}, where xk+1 = xk +αkdk, be a sequence determined
by a feasible direction method. If dk is gradient related and αk is chosen using
the limited minimization rule (or the Armijo rule), then every limit point is a
stationary point.

The assumption that dk is gradient related is a technical assumption which pre-
vents the search direction dk to be nearly orthogonal to the gradiant ∇f(xk).
For if ∇f(xk)Tdk/(‖∇f(xk)‖‖dk‖) → 0, then the algorithm might get stuck at
a nonstationary point. For an algorithm where xk determines dk one says that
dk is gradient related if the following holds: for any subsequence {xk}k∈K that
converges to a nonstationary point, the corresponding subsequence {dk}k∈K is

1. Armijo rule: one chooses numbers 0 < β, σ < 1 and s and let αk = βms where mk is the
smallest nonnegative integer such that f(xk) − f(xk + βmdk) ≥ −σβm∇f(xk)T dk.
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bounded and satisfies limk→∞ sup∇f(xk)Tdk < 0. One can prove that dk is gra-
dient related in the conditional gradient method (see [1]) so this method converges
to a stationary point as desired.

Unfortunately, the speed of convergence may not be good for the conditional
gradient method. For instance, the convergence may be slow when C is a poly-
hedron. For certain nonpolyhedral sets it is known that the method has linear
convergence rate, i.e. for suitable numbers q, K and 0 < β < 1 the distance to
an optimal point x∗ satisfies

‖xk − x∗‖ ≤ qβk for all k ≥ K.

Although the convergence speed may not be very good, these methods are simple
and quite popular. Moreover, the computational task in every iteration may be
small.

Another method, which we do not discuss in detail, is called the constrained New-
ton’s method. It works for problems where f is twice continuously differentiable.
The method is based on minimizing a second order Taylor expansion of f near
xk in order to find the search direction dk. Thus, this minimization problem may
take longer than the corresponing linear problem (in the conditional gradient
method). However, one improves on the convergence speed and it can be shown
that the constrained Newton’s method converges superlinearly (meaning that for
every 0 < β < 1 there is a q such that the error is no more than qβk for all
suitably large k).

There are many other methods around and their suitability relates to the struc-
ture of the constraint set and also the complexity of the objective function f .
Again we refer to [1]) for further reading.

6.4 Nonlinear optimization and Lagrange multipliers

We now change focus and discuss more general nonlinear optimization problems.

Consider a nonlinear optimization problem

minimize f(x) subject to x ∈ S

where f : IRn → IR and S ⊆ IRn. In this section we leave the “convex setting”
so we have no convexity assumption on f or S. The feasible set S is usually
described in terms of certain equations and inequalities. This opens up for the
introduction of auxiliary variables called Lagrangian multipliers that provide a Lagrangian

multipliers
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powerful tool for developing theory as well as methods for solving the original
problem.

To be specific we first consider the nonlinear optimization problem with equality
constraints

minimize f(x)

subject to

hi(x) = 0 for i = 1, . . . , m

(6.3)

where f and h1, h2, . . . , hm are continuously differentiable functions from IRn into
IR.

We want to establish necessary optimality conditions for this problem. They are
useful for numerical algorithms. Such necessary conditions are contained in the
following theorem. Recall that Hf (x) denotes the Hessian matrix of f at x, i.e.
it contains the second order partial derivatives.

Theorem 6.4.1 (Lagrange mulipliers - necessary condition). Let x∗ be a local
minimum in problem ( 6.3) and assume that the corresponding gradients ∇hi(x

∗)
(i ≤ m) are linearly independent. Then there is a unique vector λ∗ = (λ∗1, λ

∗
2, . . . , λ

∗
m)

such that

∇f(x∗) +
m

∑

i=1

λ∗i∇hi(x
∗) = O. (6.4)

If f and each hi are twice continuously diffrentiable, then the following also holds

yT [Hf (x
∗) +

m
∑

i=1

λ∗iHhi
(x∗)]y ≥ 0 for all y with ∇hi(x

∗)Ty = 0 (i ≤ m). (6.5)

The numbers λ∗i in this theorem are called the Lagrangian multipliers. Note that
the Lagrangian multiplier vector λ is unique; this follows directly from the linear
independence assumption (although more arguments are needed to prove the
existence of λ∗).

We may interpret the theorem in the following way. At the point x∗ the linear sub-
space L(x∗) of first order feasible variations are vectors y satisfying ∇hi(x

∗)Ty = 0
i ≤ m. Note that, if each hi is linear, then L(x∗) consists of those y such that
x∗ + y is feasible, i.e., hi(x

∗ + y) = 0 for each i ≤ m. Thus, (6.4) says that in the
local minimum x∗ the gradient ∇f(x∗) of the objective function is orthogonal to
the subspace L(x∗) of first order feasible variations. This is reasonable since oth-
erwise there would be a feasible direction in which f would decrease. Note that
this necessary optimality condition corresponds to the condition ∇f(x∗) = O in
the unconstrained case.
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One may prove the theorem by eliminating variables based on the equations and
thereby reducing the problem to an unconstrained one. Another proof, which we
shall briefly look at, is the penalty approach. This approach is interesting as is
related to algorithms for actually solving the problem.

Proof. Let h = (h1, h2, . . . , hm), so h(x) = (h1(x), h2(x), . . . , hm(x)). For k =
1, 2, . . . consider the modified objective function

F k(x) = f(x) + (k/2)‖h(x)‖2 + (α/2)‖x− x∗‖2

where x∗ is the local minimum under consideration. The second term is a penalty
term for violating the constraints and the last term is there for proof technical
reasons. As x∗ is a local minimum there is an ǫ > 0 such that f(x∗) ≤ f(x) for all
x ∈ S where S = {x : ‖x − x∗‖ ≤ ǫ}. Choose now an optimal solution xk of the
problem min{F k(x) : ‖x− x∗‖ ≤ ǫ}; the existence here follows from Weierstrass’
theorem. For every k we have

F k(xk) = f(xk) + (k/2)‖h(xk)‖2 + (α/2)‖xk − x∗‖2 ≤ F k(x∗) = f(x∗).

By letting k → ∞ in this inequality we conclude that limk→∞ ‖h(xk)‖ = 0 (here
we use that f(xk) is bounded in the set {x : ‖x− x∗‖ ≤ ǫ}). So every limit point
x̄ of the sequence {xk} satisfies h(x̄) = O. The inequality above also implies (by
dropping a term on the left-hand side) that f(xk) + (α/2)‖xk − x∗‖2 ≤ f(x∗) for
all k, so by passing to the limit we get

f(x̄) + (α/2)‖x̄− x∗‖2 ≤ f(x∗) ≤ f(x̄)

where the last inequality follows from the facts that ‖x− x∗‖ ≤ ǫ and h(x̄) = O.
Clearly, this gives x̄ = x∗. We have therefore shown that the sequence {xk}
converges to the local minimum x∗. Since x∗ is the center of the ball S the points
xk lie in the interior of S for suitably large k. The conclusion is then that xk is
the unconstrained minimum of F k when k is sufficiently large. We may therefore
apply Corollary 6.1.1 so ∇F k(xk) = O. Thus, by calculation of gradient we obtain

O = ∇F k(xk) = ∇f(xk) + k∇h(xk)h(xk) + α(xk − x∗). (6.6)

For suitably large k the matrix ∇h(xk)T∇h(xk) is nonsingular (as the columns
of ∇h(xk)T are linearly independent due to rank(∇h(x∗)) = m and a continuity
argument). Multiply equation (6.6) by (∇h(xk)T∇h(xk))−1∇h(xk)T to obtain

kh(xk) = −(∇h(xk)T∇h(xk))−1∇h(xk)T (∇f(xk) + α(xk − x∗)).

Letting k → ∞ we see that the sequence {kh(xk)} is convergent and its limit
point λ∗ is given by

λ∗ = −(∇h(x∗)T∇h(x∗))−1∇h(x∗)T∇f(x∗).
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Finally, by passing to the limit in (6.6) we get

O = ∇f(x∗) + ∇h(x∗)λ∗

This proves the first part of the theorem; we omit proving the second part (it can
be found in [1]).

The first order necessary condition (6.4) along with the constraints h(x) = O is a
system of n+m equations in the n+m variables x1, x2, . . . , xn and λ1, λ2, . . . , λm.
One may use e.g. Newton’s method for solving these equations and find a candi-
date for an optimal solution.

The Lagrangian function associated with the problem (6.3) is the function L :Lagrangian

function IRn+m → IR defined by

L(x, λ) = f(x) +

m
∑

i=1

λihi(x)

Note that the equation (6.4) is equivalent to ∇xL(x∗, λ∗) = O while h(x∗) = O
corresponds to ∇λL(x∗, λ∗) = O. Thus, in order to solve (6.3) we may look
for a suitable Lagrangian multiplier vector λ∗ and a corresponding x∗ satisfying
h(x∗) = O and such that x∗ is a stationary point of the Lagrangian function, i.e.,
∇xL(x∗, λ∗) = O.

Necessary optimality conditions are used for finding a candidate solutions for be-
ing optimal. In order to verify optimality we need sufficient optimality conditions.

Theorem 6.4.2 (Lagrange mulipliers - sufficient condition). Assume that f and
h are twice continuously differentiable functions. Moreover, let x∗ be a point sat-
isfying the first order necesary optimality condition ( 6.4) and the following con-
dition

yTHL(x∗, λ∗)y > 0 for all y 6= O with ∇h(x∗)Ty = 0 (6.7)

where HL(x∗, λ∗) is the Hessian of the Lagrangian functions with second order
partial derivatives with respect to x. Then x∗ is a (strict) local minimum of f
subject to h(x) = O.

This theorem may be proved (see [1] for details) by considering the augmented
Lagrangian function

Lc(x, λ) = f(x) + λTh(x) + (c/2)‖h(x)‖2 (6.8)

where c is a positive scalar. This is in fact the Lagrangian function in the modified
problem

minimize f(x) + (c/2)‖h(x)‖2 subject to h(x) = O (6.9)
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and this problem must have the same local minima as the problem of minimizing
f(x) subject to h(x) = O. The objective function in (6.9) contains the penalty
term (c/2)‖h(x)‖2 which may be interpreted as a penalty (increased function penalty

termvalue) for violating the constraint h(x) = O. In connection with the proof of
Theorem 6.4.2 based on the augmented Lagrangian one also obtains the follow-
ing interesting and useful fact: if x∗ and λ∗ satisfy the sufficient conditions in
Theorem 6.4.2 then there exists a positive c̄ such that for all c ≥ c̄ the point x∗ is
also a local minimum of the augmented Lagrangian Lc(·, λ

∗). Thus, the original
constrained problem has been converted to an unconstrained one involving the
augmented Lagrangian. And, as we know, unconstrained problems are easier to
solve (solve the equations saying that the gradient is equal to zero).

6.5 Nonlinear optimization: inequality constraints

We now discuss the general nonlinear programming problem where there are both
equality and inequality constraints. The problem is then

minimize f(x)

subject to

hi(x) = 0 for i = 1, . . . , m

gj(x) ≤ 0 for j = 1, . . . , r.

(6.10)

We assume, as usual, that all these functions are are continuously differentiable
real-valued functions defined on IRn. In short form we write the constraints as
h(x) = O and g(x) ≤ O where we let h = (h1, h2, . . . , hm) and g = (g1, g2, . . . , gr).

A main difficulty in problems with inequality constraints is to determine which of
the inequalities that are active in an optimal solution. For, if we knew the active
inequalities, we would essentially have a problem with only equality constraints,
h(x) = O plus the active equalities, i.e. a problem as discussed in the previous
section. For small problems (solvable by hand-calculation) a direct method is to
consider all possible choices for active inequalities and solve the corresponding
equality-constrained problem by looking at the Lagrangian function.

Interestingly, one may also transform the problem (6.10) into the following equality-
constrained problem

minimize f(x)

subject to

hi(x) = 0 for i = 1, . . . , m

gj(x) + z2
j = 0 for j = 1, . . . , r.

(6.11)
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We have introduced artificial variables zj , one for each inequality. These square
of these variables represent slack in each of the original inequalities. Note that
there is no sign constraint on zj . Clearly, the problems (6.10) and (6.11) are
equivalent. This transformation is useful computationally; see below. Moreover,
it is useful theoretically as one may apply the optimality conditions from the
previous section to problem (6.11). We omit the details in this derivation (see
[1]), but the result is a set of optimality conditions for problem (6.10) called the
Karush-Kuhn-Tucker conditions, or simply KKT conditions. In order to presentKKT

conditions the KKT conditions we introduce the Lagrangian function

L(x, λ, µ) = f(x) +
m

∑

i=1

λihi(x) +
r

∑

j=1

µjgj(x).

The Hessian matrix of L at (x, λ, µ) containing second order partial derivatives
of L with respect to x will be denoted by ∇xxL(x, λ, µ). Finally, the indices of
the active inequalities at x is denoted by J(x), so J(x) = {j ≤ r : gj(x) = 0}.

Theorem 6.5.1 (Karush-Kuhn-Tucker conditions). Consider problem ( 6.10)
with the usual differentiability assumptions.

(i) Let x∗ be a feasible point which is regular, meaning that the gradients of hi

and each active gj at x∗ are linearly independent. Then there are unique Lagrange
multiplier vectors λ∗ = (λ∗1, λ

∗
2, . . . , λ

∗
m) and µ∗ = (µ∗

1, µ
∗
2, . . . , µ

∗
r) such that

∇xL(x∗, λ∗, µ∗) = O,

µ∗ ≥ 0 (j ≤ r),

µ∗ = 0 (j 6∈ J(x∗)).

(6.12)

If f , g and h are twice continuously diffrentiable, then the following also holds

yT∇xxL(x∗, λ∗, µ∗)y ≥ 0 (6.13)

for all y with ∇hi(x
∗)Ty = 0 (i ≤ m) and ∇gj(x

∗)Ty = 0 (j ∈ J(x∗)).

(ii) Assume that x∗, λ∗ and µ are such that x∗ is a feasible point and ( 6.12) holds.
Assume, moreover, that ( 6.13) holds with strict inequality for each y. Then x∗ is
a (strict) local minimum in problem ( 6.10)

We remark that the assumption that x∗ is a regular point may be too restrictive
in some situations, for instance there may be more than n active inequalities
in x∗. There exist several other weaker assumptions that assure the existence of
Lagrangian multipliers (and similar necessary conditions); see the discussion of
so-called constraint qualifications in [1].
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In the remaining aprt of this section we consider the convex optimization problem
and the corresponding KKT conditions. The convex programming problem giventhe convex

programming

problem

by
minimize f(x)

subject to

(i) aT
i x = bi for i = 1, . . . , m;

(ii) gk(x) ≤ 0 for k = 1, . . . , p.

(6.14)

Here we assume that all the functions f and gk are differentiable convex functions,
and that ai ∈ IRn and bi ∈ IR for each i. Let C denote the feasible set of problem
(6.14), so

C = {x ∈ IRn : aT
i x = bi for i = 1, . . . , m, gk(x) ≤ 0 for k = 1, . . . , p}.

The feasible set C is convex as the intersection of other convex sets. In fact, the
solution set of the linear equations in (i) is affine (and therefore convex) and each
sublevel set {x : gk(x) ≤ 0} is also convex as gk is convex (see Exercise 5.11).
Thus, C is a convex set described by linear and convex functions. Moreover, C is
a closed set since it is the intersection between a finite number of sets, each being
the inverse image of a continuous function. Note that, due to Corollary 6.1.1, we
have that a local minimum in (6.14) is also a global minimum. Therefore, we may
simply speak of a minimum below. Linear programming is a special case of the
convex programming problem, see also Example 6.5.4.

The KKT conditions may be simplified in the case of the convex programming
problem (6.14). We omit the proof, it can be found e.g. in [6] (see also [1], [16]).

Theorem 6.5.2. (i) Assume that x∗ is optimal in ( 6.14). Then there are La-
grangian multiplier vectors λ∗ and µ∗ such that ( 6.12) holds.

(ii) Assume that there is a point x′ ∈ C such that gj(x
′) < 0 holds for each

non-affine function gj (j ≤ r). Then the converse of (i) also holds, i.e., if there
are vectors λ∗ and µ∗ such that ( 6.12) holds, then x∗ is a minimum of the convex
programming problem ( 6.14).

The assumption stated in (ii) of the theorem (the existence of the vector x′) is
called the weak Slater assumption.

The KKT conditions have a geometrical interpretation, see Fig. 6.1. They say
that −∇f(x∗) may be written as a nonnegative combination of the ai’s plus a
linear combination of the gradients of the active constraints at x∗. (This means
that −∇f(x∗) lies in the so-called normal cone of C at x∗).

We shall now consider some examples of convex programming problems where
we apply Theorem 6.5.2.
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feasible set

x0

g(x) = 0

∇g(x0)

−∇f(x0)

a

aTx = b

Figure 6.1: KKT conditions

Example 6.5.1. (A one-variable problem) We start with a very simple example,
namely the one-variable problem: minimize f(x) subject to x ≥ 0. Here f :
IR → IR is a differentiable convex function. We here let g1(x) = −x and p = 1,
m = 0. In this case the KKT conditions become: there is a number z such that
f ′(x) − z = 0, z ≥ 0 and z(−x) = 0. This is one of the (rare) occasions where
we can eliminate the Lagrangian variable z via the equations z = f ′(x). So the
optimality conditions are: x ≥ 0 (feasibility), f ′(x) ≥ 0 and x · f ′(x) = 0. Thus,
if x > 0 we must have f ′(x) = 0 (x is an interior point of the domain so the
derivative must be zero), and if x = 0 we must have f ′(0) ≥ 0. From this, and
the convexity of f , we see that there are two possibilities. First, if f ′(0) > 0, then
the unique optimal solution is x = 0. Second, if f ′(0) ≤ 0, then each point x with
f ′(x) = 0 is optimal.

Example 6.5.2. (Quadratic optimization with equality constraints) Consider the
following quadratic optimization problem with linear equality constraints

minimize (1/2) xTDx− qTx

subject to

Ax = b

where D is positive semidefinite and A ∈ IRm×n, b ∈ IRm. This is a special case of
(6.14) where f(x) = (1/2) xTDx−qTx (so p = 0). We have that ∇f(x) = Dx−q.
Thus, the KKT conditions for this problem say that for some y ∈ IRm we have
that Dx− q +AT y = O. In addition, the vector x is feasible so we have Ax = b.
Thus, solving the quadratic optimization problem amounts to solving the linear
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system of equations

Dx+ aTy = q, Ax = b

which may be written as

(∗)

[

D AT

A O

] [

x
y

]

=

[

q
b

]

.

Under the additional assumption that D is positive definite and A has full row
rank, one can show that the coefficient matrix in (∗) is nonsingular so this system
has a unique solution x, y. Thus, for this problem, we may write down an explicit
solution (in terms of the inverse of the block matrix). Numerically, one finds
x (and the Lagrangian multiplier y) by solving the linear system (∗) by e.g.
Gaussian elimination or some faster (direct or iterative) method.

Example 6.5.3. (Quadratic programming) We extend the problem in the previ-
ous example by allowing linear inequality constraints as well:

minimize (1/2) xTDx− qTx

subject to

Ax = b

Cx ≤ r.

Here D, A and b are as above and C ∈ IRp,n, r ∈ IRp. We see that ∇f(x) = Dx−q
(as above) and that ∇gk(x) = −ek. Thus, the KKT conditions for this problem
say that for some y ∈ IRm and z ∈ IRn we have that Dx−q+AT y−z = O, z ≥ O
and zk · (−xk) = 0 for each k. We may here eliminate z from the first equation
and obtain the equivalent condition: there is a y ∈ IRm such that Dx+ ATy ≥ q
and (Dx+ ATy − q)k · xk = 0 for each k. In addition, we have Ax = b, Cx ≤ r.
This problem may be solved numerically, for instance, by a so-called active set
method, see [8].

Example 6.5.4. (Linear programming) As mentioned, linear programming is a
special case of the convex programming problem (6.14). We discuss this in some
detail. Consider the special case of (6.14) where f(x) = cTx for some vector
c ∈ IRn and gk(x) = −xk for k = 1, . . . , n (so p = n). Moreover we have the
constraints aT

i x = bi for i = 1, . . . , m. Let A be the m× n matrix whose i’th row
is ai, and let b be the vector with i’th component being bi. Then our optimization
problem is

minimize cTx subject to Ax = b, x ≥ O

which is a general LP problem. Let us see what the KKT conditions become in
this case. We calculate ∇f(x) = c and ∇gk(x) = −ek. Let x be a feasible solution
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of our LP. The KKT conditions state that there are vectors y ∈ IRm and z ∈ IRn

such that
(i) c+ ATy − z = O;

(ii) z ≥ O;

(iii) zk(−xk) = 0 for all k = 1, . . . , n.

We may here eliminate the vector z from equation (i) and obtain the equivalent
set of KKT conditions: there is a vector y ∈ IRm such that

(i) c+ ATy ≥ O;

(ii) (c+ ATy)k · xk = 0 for all k = 1, . . . , n.
(6.15)

These conditions relate to LP duality theory. The LP dual of our LP problem
(minimize cTx subject to Ax = b, x ≥ O) is the LP problem maximize bTw subject
to ATw ≤ c. From LP duality theory we know that a feasible solution x to the
primal problem is optimal if and only if there is a feasible solution in the dual
such that these two solutions satisfy the complementary slackness conditions. In
the present situation this optimality condition says: there is a vector w ∈ IRm

such that ATw ≤ c and (ATw − c)k · xk = 0 for each k = 1, . . . , n. But this is
precisely the content of the KKT conditions (6.15); just let y = −w. Therefore,
the KKT conditions, in the special case of linear programming, amount to the
optimality conditions known from LP duality theory. Moreover, we see that the
Lagrangian multiplier y corresponds to the dual variable w (and w = −y).

6.6 An augmented Lagrangian method

Consider again the nonlinear optimization problem with equality constraints
(6.3), i.e.,

minimize f(x)

subject to

hi(x) = 0 for i = 1, . . . , m

(6.16)

where f and each hi are continuously differentiable functions. We here briefly
discuss a numerical method for solving this problem. Note that this method also
applies to problems with inequality constraints; then we first apply the transfor-
mation to the equality-constrained problem (6.11).

The method is based on the augmented Lagrangian function

Lc(x, λ) = f(x) + λTh(x) + (c/2)‖h(x)‖2
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where c is a positive scalar. Recall that if x∗ and λ∗ satisfy the sufficient conditions
in Theorem 6.4.2 then there exists a positive c̄ such that for all c ≥ c̄ the point
x∗ is also a local minimum of the augmented Lagrangian Lc(·, λ

∗). This fact is
the basis of the algorithm which may be called the quadratic penalty function
method. quadratic

penalty

function

method

Proposition 6.6.1. Assume that f and each hi are continuous and that there
are feasible points in ( 6.3). Let {xk}, {λk} and {ck} be sequences satisfying

• xk is a global minimum of Lk
c
(x, λk) for x ∈ IRn,

• {λk} is bounded,
• 0 < ck < ck+1 for k ≥ 1, and ck → ∞.

Then every limit point of {xk} is a global minimum of the problem ( 6.16).

We remark that this proposition holds more generally for a constrained problem
where x ∈ S provided that {x ∈ S : h(x) = O} is nonempty; then we minimize
the augmented Lagrangian over S.

A common approach is to use Newton’s method for minimizing Lk
c
(x, λk). More-

over, one uses the previous solution xk−1 as the starting point of the minimization
in iteration k. A practical issue is how fast one should increase ck. One needs a
balance as too fast increase gives ill-conditioned problems and too slow increase
of ck gives slow convergence of xk towards the minimum. Although the quadratic
penalty function method works under extremely mild conditions on the multi-
plier vectors λk, simply boundedness, the method is faster if the multipliers are
updated suitably. One approach, called the method of multipliers, is to update method of

multipliersλk according to the formula

λk+1 = λk + ckh(xk)

This is motivated by a fact (which we do not prove) saying that, if x∗ is regular,
then the sequence {λk+ckh(xk)} converges towards the corresponding Lagrangian
multiplier vector λ∗.

We conclude at this point. But the story of convexity and optimization is much
longer. So, for fascinating mathematical theory, algorithms and a rich set of ap-
plications we recommend further reading in these areas. And, by now, you know
which books to consult! Good luck!

6.7 Exercises

Exercise 6.1. Consider the least squares problem minimize ‖Ax − b‖ over all
x ∈ IRn. From linear algebra we know that the optimal solutions to this problem
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are precisely the solutions to the linear system (called the normal equations)

ATAx = AT b.

Show this using optimization theory by considering the function f(x) = ‖Ax−b‖2.

Exercise 6.2. Prove that the optimality condition is correct in Example 6.2.1.

Exercise 6.3. Consider the problem to minimize a (continuously differentiable)
convex function f subject to x ∈ C = {x ∈ IRn : O ≤ x ≤ p} where p is some
nonnegative vector. Find the optimality conditions for this problem. Suggest a
numerical algorithm for solving this problem.

Exercise 6.4. Consider the optimization problem minimize f(x) subject to x ≥
O, where f : IRn → IR is a differentiable convex function. Show that the KKT
conditions for this problem are

x ≥ O, ∇f(x) ≥ O, and xk · ∂f(x)/∂xk = 0 for k = 1, . . . , n.

Discuss the consequences of these conditions for optimal solutions.

Exercise 6.5. Solve the problem: minimize (x+2y− 3)2 for (x, y) ∈ IR2 and the
problem minimize (x+ 2y − 3)2 subject to (x− 2)2 + (y − 1)2 ≤ 1.

Exercise 6.6. Solve the problem: minimize x2+y2−14x−6y subject to x+y ≤ 2,
x+ 2y ≤ 3.

Exercise 6.7. Solve the problem: minimize x2−y subject to y−x ≥ −2, y2 ≤ x,
y ≥ 0.

SUMMARY OF NEW CONCEPTS AND RESULTS:

• convex optimality condition
• stationary point
• descent direction
• feasible direction method
• conditional gradient method
• the convex programming problem
• Karush-Kuhn-Tucker conditions (KKT conditions)
• Lagrangian multipliers
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