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Abstract By analogy with the Choi matrix we associate an operator Cϕ ∈ B(H ) to each
weak* continuous A -bimodule map ϕ : B(K )→ B(H ), where K and H are normal
Hilbert modules over a von Neumann algebra A and K contains a cyclic vector for A .
If A ⊆ B(K ) has no central summands of type I (K cyclic), every normal A -bimodule
map on B(K ), which is positive on A ′, is shown to be completely positive on Z ′, where
A ′ and Z ′ are the commutant of A and of the center Z of A . We investigate cones
of bimodule maps, introduce the corresponding dual cones of operators and show that in
an appropriate context these notions reduce to those studied earlier by Størmer. We also
consider positive maps relative to a mapping cone and positivity in operator projective tensor
product of suitable operator bimodules.
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1 Introduction

The Choi matrix [3] of a map ϕ : Mn(C)→Mm(C), defined by Chϕ = ∑
n
i, j=1 ei, j⊗ϕ(ei, j),

where ei, j are the usual matrix units in Mn(C), has been of fundamental importance in
studying positive maps [26]. In fact, such matrices were introduced already by Pillis in [21]
and Jamiolkowski in [8] and the isomorphism from the linear maps L(Mn(C),Mm(C)) to the
Choi Matrices is called Jamiolkowski-Choi isomorphism. Different analogues of the Choi
matrix for maps between algebras of all bounded operators on infinite-dimensional Hilbert
spaces were introduced by Holevo [7], Li and Du [12], and by Størmer [27] for special
classes of maps on von Neumann algebras. Here we will study completely bounded normal
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A -bimodule maps ϕ : B(K )→B(H ), where K and H are normal Hilbert modules over
a von Neumann algebra A (that is, Hilbert spaces with normal representations of A ). In
the case H = K any such map sends A ′ (the commutant of A ) into itself and can be
represented by certain weak* convergent sum (Kraus decomposition [11]), so that the class
of such maps include those considered by Størmer in [27]. If K contains a cyclic vector Ω

for A , then, as a normal bounded A -bimodule map, ϕ is determined by the operator

Cϕ := ϕ(Ω ⊗Ω
∗) ∈ B(K ),

where Ω ⊗Ω ∗ denotes the rank-one operator, (Ω ⊗Ω ∗)ξ := 〈ξ ,Ω〉Ω . This naturally gen-
eralizes the notion of the Choi matrix; namely, in the case, A = Mn(C), we may take
K =Cn⊗Cn and Ω = ∑

n
j=1 ε j⊗ε j, where (ε j)

n
j=1 is the standard orthonormal basis of Cn.

Then the classical Choi matrix of of a linear map ϕ : Mn(C)→Mm(C) is just CidMn(C)⊗ϕ .
Just as in the finite-dimensional case, also in the wider context of A -bimodule maps

ϕ : B(K ) → B(K ) the operator Cϕ encodes the properties of ϕ and of the restriction
ϕ|A ′. After demonstrating this in Section 3, we will study in Section 4 mapping cones of
completely bounded A -bimodule maps from operator A -systems X to B(K ), where K is
a normal Hilbert A -module containing a cyclic and separating vector for A . For positive
maps such cones were introduced by Størmer [24], but perhaps surprisingly, many results
can be proved without assuming the maps to be positive, although the case of positive maps
is the most important. We show that there is a natural duality between such mapping cones
and certain cones in X (if X is strong). As shown in Section 5, when A = B(L ) for a
Hilbert space L , this duality reduces to the type of duality of mapping cones studied by
Størmer [25], but in general in infinite dimensions it can not be described solely in terms
of the Choi operators of maps. For a mapping cone C consisting of positive completely
bounded A-bimodule maps on a von Neumann algebra R, where A is a C∗-subalgebra of
R, and an operator A-system X , we consider in Section 7 the notion of a C -positive map
from X to R, which in the case A = C and R = B(H ) essentially coincides (at least in the
case of symmetric mapping cones) with the notion introduced by Størmer [24] . We will also
prove an extension theorem for such maps provided that R is the W∗-envelope of a nuclear
C∗algebra. (In the special case A =C and R = B(H ) this reduces to the Størmer extension
theorem only in the case of symmetric mapping cones, but does not cover the more general
cones studied in [24], [26], [29].) To investigate such mapping cones, we need a suitable
notion of positivity for elements of projective tensor products of the form XA⊗̂AR], where
X is an operator system over a C∗-subalgebra A of a von Neumann algebra R and R] is
the pre-dual of R. This notion, introduced in Section 6, is based on completely positive
A-bimodule maps from X to R, CPA(X ,R). If R] is the dual space of a C∗-algebra R (thus
R = R]], the W∗-envelope of R), then it is natural to ask, when is the set CPA(X ,R) weak*
dense in CPA(X ,R]]) (for then the smaller set CPA(X ,R) can be used in the definition of
positivity in XA⊗̂AR]). We consider briefly this question in Section 8.

2 Preliminaries

All C∗-algebras considered here are assumed to be unital, unless stated otherwise, and are
denoted by A,B,C, ..., while W∗-algebras are usually denoted by A ,B,R....

By a representation of A on a Hilbert space H we mean a unital ∗-representation π :
A→ B(H ); this makes H a Hilbert A-module by aξ := π(a)ξ (a ∈ A, ξ ∈H ). A Hilbert
A-module K is called cyclic if there exists a vector Ω ∈K such that H = [AΩ ] (where [.]
denotes the closure of the linear span). The set of all bounded A-module maps on a Hilbert
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A-module H is denoted by BA(H ). (This is just the commutant A′ of A if A ⊆ B(H ).)
Then B(H ) is an A-bimodule, and a norm closed A-subbimodule of such a B(H ) is called
an operator A-bimodule. (Such bimodules can be characterized abstractly [1], [20].) If in
addition X is an operator system (that is, X is closed under the involution ∗ on B(H ) and
contains the identity operator), then X is called an operator A-system.

A Hilbert module H over a von Neumann algebra A is called normal if the underlying
representation A → B(H ) is normal. Then a norm closed A subbimodule X of B(H ) is
called a normal operator A -bimodule; if in addition X is weak* closed, then X is called
a normal dual operator A -bimodule. A normal dual operator A -system is a normal dual
operator A -bimodule which is also an operator A -system.

For operator A-bimodules X and Y we will denote by CBA(X ,Y )A the space of all com-
pletely bounded (c.b.) A-bimodule maps from X to Y , and by CPA(X ,Y ) the subset of all
completely positive such maps. If X and Y are dual operator A -bimodules (or operator
A -systems), we denote by NCBA (X ,Y )A (or NCPA (X ,Y )) the space of all weak* con-
tinuous maps in CBA (X ,Y )A (in CPA (X ,Y ), respectively). The corresponding spaces of
all bounded and all bounded normal A-bimodule maps will be denoted by BA(X ,Y ) and
NBA(X ,Y ), respectively.

By X ] we denote the dual of a Banach X , which carries the canonical operator space
structure if X is an operator space [1], [6], [22]. If X is a (normed) A-bimodule, then so is
X ] by (aρb)(x) := ρ(bxa). If X is a dual space, then X] denotes its predual.

For a von Neumann subalgebra A in B(H ) there is a so called A ,A -topology on
B(H ) that is in between the strong operator and the norm topology [14], [15], but in this pa-
per we will only need to know (in Section 4) which convex sets are closed in this topology, so
it suffices to describe continuous linear functionals. If X is a normal operator A -bimodule,
a functional ρ ∈ X ] is A ,A -continuous if for each x ∈ X the maps A → C, defined by
a 7→ ρ(ax) and a 7→ ρ(xa), are weak* continuous. The A -subbimodules of B(H ) closed
in this topology are called strong. For example, if A = B(H ) is identified with the space
of bounded matrices MJ(C), where J is the cardinality of an orthonormal basis of H , then
strong A -bimodules turn out to be precisely MJ(C)-bimodules of the form MJ(V ), where
V is a norm-complete operator space.

The operator projective tensor product X⊗̂Y of operator spaces X , Y is defined so that
its dual space (X⊗̂Y )] is completely isometric to CB(X ,Y ]) under the natural map which
sends θ ∈ (X⊗̂Y )] to θ̌ ∈ CB(X ,Y ]) defined by 〈θ̌(x),y〉= θ(x⊗ y) [1],[6]. If X and Y are
operator A-bimodules, then X⊗̂Y is a Banach A-bimodule by a(x⊗ y)b := (ax)⊗ (yb). Let
N(X ,Y ) be the closed A-subimodule of X⊗̂Y generated by the set

{axb⊗ y− x⊗bya : a,b ∈ A, x ∈ X , y ∈ Y}.

The quotient space (X⊗̂Y )/N(X ,Y ) is denoted by

XA⊗̂AY

and the coset of x⊗ y ∈ X⊗̂Y in XA⊗̂AY by xA⊗Ay. The dual space of XA⊗̂AY consists of
functionals in (X⊗̂Y )] that annihilate N(X ,Y ); under the identification (X⊗̂Y )] =CB(X ,Y ])
these correspond to A-bimodule maps from X to Y ]. Thus

(XA⊗̂AY )] = CBA(X ,Y ])A.

T(H ) denotes the trace-class operators on a Hilbert space H . Given a subset A of
B(H ) and cardinals m, n, we denote by Mm,n(A) the set of all those m×n matrices with the
entries in A that represent bounded operators from H n to H m.
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3 The Choi operator of a map

Throughout this section H and K are normal Hilbert modules over a von Neumann alge-
bra A and K contains a cyclic vector Ω for A .

Definition 3.1 The Choi operator of a map ϕ ∈ NBA (B(K ),B(H ))A or of a map ϕ ∈
BA (T(K ),T(H )) is

Cϕ = ϕ(Ω ⊗Ω
∗).

Example 3.1 Let A = B(L ) for a separable Hilbert space L , K = L ⊗L , (εi) an or-
thonormal basis of L and ei, j := εi⊗ε∗j the corresponding matrix units. Any normal Hilbert
A -module H is of the form H0⊗L for a Hilbert space H0 [9, 10.4.7]. For any normal
completely bounded map θ : B(L )→ B(H0) the map ϕ := θ⊗1B(L ) : B(K )→ B(H )

is in NBA (B(K ),B(H ))A . For any sequence λ = (λi) ∈ `2, with all λi 6= 0, the vector
Ω := ∑i λiεi⊗ εi ∈K is cyclic for A . The rank one operator Ω ⊗Ω ∗ on K can be ex-
pressed (by an easy computation) as

Ω ⊗Ω
∗ = ∑

i, j
λiλ j(εi⊗ ε

∗
j )⊗ (εi⊗ ε

∗
j ) = ∑

i, j
λiλ jei, j⊗ ei, j. (3.1)

Hence
Cϕ = ϕ(Ω ⊗Ω

∗) = ∑
i, j

λiλ jθ(ei, j)⊗ ei, j,

which is just (a slight modification of) the operator considered in [12, 1.3, 1.4]. If dimL <
∞, we may choose all λi equal to 1 and in this way we obtain that Cθ⊗1B(L )

is essentially the
Choi matrix of θ (see [26] or [3]).

Remark 3.1 The maps on a factor M ⊆ B(K ) considered by Størmer [27] can be regarded
as M ′-bimodule maps on B(K ), and in this way the above definition of the Choi operator
can be seen as extension of that in [27].

Normal maps into a general W∗-algebra R usually can not be described explicitly.
Therefore it is worth to state the following generalization of a theorem of Choi [3] and
Kraus [11]. We denote by CCPA(X ,Y ) the set of all A-bimodule c.p. contractions from X to
Y .

Theorem 3.1 Let σ : A →R be a normal ∗-homomorphism between W∗-algebras (so that
R is an A -bimodule) and L a separable Hilbert space. Each weak* continuous map ϕ ∈
CCPA (B(L )⊗A ,R) = CCPA (M∞(A ),R) is of the form

ϕ([xi, j]) =
∞

∑
k=1

r∗k [σ(xi, j)]rk ([xi, j] ∈M∞(A )) (3.2)

for some columns rk ∈M∞,1(CA (R)) with ∑
∞
k=1 r∗k rk ≤ 1, where CA (R)= {r∈R : rσ(a)=

σ(a)r ∀a ∈A }.

Proof Let ϕ ∈ CCPA (M∞(A ),R) be weak* continuous, (ε j) an orthonormal basis of L ,
ei, j = εi⊗ ε∗j the corresponding matrix units in B(L ) and Ω := ∑

∞
j=1 λ jε j⊗ ε j ∈L ⊗L ,

where all λ j 6= 0. Note that M∞(C) = B(L ) is contained in M∞(A ). So ϕ(ei, j) is defined
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and σ(a)ϕ(ei, j) = ϕ(aei, j) = ϕ(ei, ja) = ϕ(ei, j)σ(a) shows that ϕ(ei, j) ∈ CA (R). Since
Ω ⊗Ω ∗ can be expressed as in (3.1), we have

(ϕ⊗1B(L ))(Ω ⊗Ω
∗) =

∞

∑
i, j=1

λiλ jϕ(ei, j)⊗ ei, j.

This is a positive element of M∞(CA (R)), hence of the form

(ϕ⊗1B(L ))(Ω ⊗Ω
∗) = [Ti,k][Tk, j]

∗ = ∑
i, j

∑
k

Ti,kT ∗j,k⊗ ei, j

for a matrix [Ti, j] = ∑i, j Ti, j⊗ ei, j ∈M∞(CA (R)). Thus

ϕ(ei, j) =
1

λiλ j

∞

∑
k=1

Ti,kT ∗j,k.

This can also be written as

ϕ(ei, j) =
∞

∑
k=1

TkΛei, jΛ
∗T ∗k , (3.3)

where Λ is the diagonal matrix with (λ−1
i ) along the diagonal and

Tk := [T1,k,T2,k, . . .], Tj,k ∈CA (R).

From (3.3) we have that

∞

∑
k=1

(TkΛ)(TkΛ)∗ =
∞

∑
k,i=1

(TkΛ)ei,i(TkΛ)∗ =
∞

∑
i=1

ϕ(ei,i) = ϕ(1)≤ 1,

hence each TkΛ is in M1,∞(CA (R)) and the map

M∞(A )→R, [xi, j] 7→
∞

∑
k=1

(TkΛ)[σ(xi, j)](TkΛ)∗ (3.4)

is weak* continuous. By (3.3) this map agrees with ϕ on matrix units ei, j, hence by weak*
continuity and A -bimodule property the two maps must be identical. So

ϕ([xi, j]) =
∞

∑
k=1

(TkΛ)[σ(xi, j)](TkΛ)∗ =
∞

∑
k=1

r∗k [σ(xi, j)]rk,

where rk = (TkΛ)∗. ut

Just as properties of a map between matrix algebras can be read from the properties of
its Choi matrix ([8], [3], [26]), the same holds in our more general context.

Proposition 3.2 A map ϕ ∈ NBA (B(K ),B(H ))A is completely positive (or positive) if
and only if Cϕ ≥ 0.
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Proof We must verify that Cϕ ≥ 0 implies that the amplification

ϕn : Mn(B(K )) = B(K n)→ B(H n) = Mn(B(H ))

is positive for each n = 1,2, . . .. Since finite sums of rank one positive operators are weak*-
dense in B(K n)+, it suffices to show that ϕn(ξ ⊗ ξ ∗) ≥ 0 for each ξ ∈K n. Since Ω is
cyclic for A , ξ can be approximated by vectors of the form aΩ , where a = [a1, . . . ,an]

T ∈
Mn,1(A ). But for ξ of the form ξ = aΩ we have

ϕn(ξ ⊗ξ
∗) = [ϕ(aiΩ ⊗Ω

∗a∗j)] = aϕ(Ω ⊗Ω
∗)a∗ ≥ 0.

ut

If the map x 7→ ∑i aixbi on A , where ai and bi are fixed elements of A , is positive, is then
the map x 7→ ∑i bixai also positive? In matrix algebras the trace enables us to see each of
the two maps as the dual of the other, but if A is purely infinite, there is no trace and the
following theorem helps to answer the question.

Theorem 3.3 Denote by Z the center of A ⊆ B(K ), assume that K contains a cyclic
vector for A and that A has no non-zero central parts of type I. If ϕ ∈ NCBA (B(K )) is
such that ϕ|A ′ is positive, then ϕ|Z ′ is completely positive.

Proof We may assume that ‖ϕ‖ ≤ 1. Since K is cyclic for A , by [23] ϕ is completely
bounded and, as a normal A -bimodule map, necessarily of the form

ϕ(x) = ∑
i

a′ixb′i (a′i,b
′
i ∈A ′), (3.5)

where the sums
∑

i
a′ia
′∗
i and ∑

i
b′∗i b′i (3.6)

are convergent in the strong operator topology (s.o.t.). If the sums (3.6) are norm conver-
gent, then ‖ϕ|A ′‖cb = ‖ϕ|A ′‖ by [13, 3.3] since A ′ has non non-zero central parts of
type I. The same holds even if the sums (3.6) are only s.o.t. convergent, for by the non-
commutative Egoroff theorem [30, II.4.13] (noting that ∑i∈F a′ia

′∗
i increases if F is en-

larged) in each s.o.t. neighborhood of 1 there exists a projection e′ ∈ A ′ such that the
sums ∑i e′a′ia

′∗
i e′ and ∑i e′b′∗i b′ie

′ are norm convergent. Let ϕe′(x) := ∑i e′a′ixb′ie
′. Since

‖ϕe′ |A ′‖cb = ‖ϕe′ |A ′‖ ≤ ‖ϕ|A ′‖ and ϕe′(x) converges to ϕ(x) as e′ converges to 1 in
the s.o.t., it follows that ‖ϕ|A ′‖cb = ‖ϕ|A ′‖.

If ϕ(1) = 1, then ϕ|A ′ is a unital complete contraction, hence completely positive [6,
5.2.1]. More generally, if ϕ(1) is invertible, we may write ϕ = a′ψa′, where a′ := ϕ(1)1/2 ∈
A ′ and ψ(x) := a′−1ϕ(x)a′−1. Since ψ|A ′ is positive, ‖ψ|A ′‖ = ‖ψ(1)‖ = 1 [20, 2.9],
hence ψ|A ′ is a unital contraction, hence a unital complete contraction (by previous para-
graph), thus completely positive. But then ϕ|A ′ is also completely positive. If ϕ(1) is not
invertible, then we apply the argument just given to the maps ϕk := ϕ + 1

k id (k = 1,2, . . .)
and let k→ ∞. So ϕ|A ′ is completely positive.

Thus the map (ϕ|A ′)⊗ idA : A ′ max
⊗ A → A ′ max

⊗ A on the maximal C∗-algebraic
tensor product is completely positive [22, 11.3]. Since ϕ is an A -bimodule map, the diagram

A ′ max
⊗ A

(ϕ|A ′)⊗idA

−−−−−−−−−−−→ A ′ max
⊗ A

↓ q ↓ q

A ′A
ϕ

−−−−−−−−−−−→ A ′A

,
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where q is the natural ∗-epimorphism a′⊗a 7→ a′a, commutes. Since each positive element

in Mn(A ′A ) can be lifted to a positive element in Mn(A ′ max
⊗ A ), it follows that ϕ|A ′A

is completely positive. Then by weak* continuity the same holds also for ϕ|A ′A . But
A ′A = Z ′. ut

The following proposition generalizes the well-known criterion for positivity of linear
maps between matrix algebras [8], [26, 4.1.11] and also for maps on factors considered in
[27, Th. 10].

Proposition 3.4 (i) For each ϕ ∈ NBA (B(H ),B(K ))A and all a ∈A , a′ ∈ BA (H ) the
equality

〈ϕ(a′)aΩ ,Ω〉= Tr(Cϕ]
a′a)

holds, hence ϕ|BA (H ) is positive if and only if Tr(Cϕ]
a′a)≥ 0 for all a′ ∈ BA (H )+ and

a ∈A+.
(ii) If ϕ ∈ NBA (B(K ),B(H ))A is such that ϕ(T(K )) ⊆ T(H ), then ϕ] can be ex-

tended uniquely to a weak* continuous map in B(B(H ),B(K )), namely to (ϕ|T(K ))] ∈
NBA (B(H ),B(K ))A , and

〈(ϕ|T(K ))])(a′)aΩ ,Ω〉= Tr(Cϕ a′a)

for all a ∈ A and a′ ∈ BA (H ), hence (ϕ|T(K ))]|BA (H ) is positive if and only if
Tr(Cϕ a′a)≥ 0 for all a ∈A+ and a′ ∈ BA (H )+.

(iii) In the same situation as in (ii), if H =K (so that Cϕ and Cϕ]
are both defined), then

we have that Tr(Cϕ]
a′a)≥ 0 for all a ∈A+ and a′ ∈ BA (K )+ if and only if Tr(Cϕ a′a)≥ 0

for all a ∈A+ and a′ ∈ BA (K )+.

Proof (i) We compute that

Tr(Cϕ]
a′a) = Tr(ϕ](Ω ⊗Ω

∗)a′a) = Tr(ϕ(a′)a(Ω ⊗Ω
∗)) = 〈ϕ(a′)aΩ ,Ω〉.

Applying this to a∗a instead of a and noting that ϕ(a′)∈BA (K ) (since aϕ(a′) = ϕ(aa′) =
ϕ(a′a) =ϕ(a′)a for all a∈A ) we get 〈ϕ(a′)aΩ ,aΩ〉=Tr(Cϕ]

a′a∗a). This proves (i), since
[A Ω ] = K and all positive elements in A are of the form a∗a.

(ii) Since T(H ) is weak* dense in B(H ), the uniqueness of the extension is obvious.
To prove the existence, we first observe (by an easy application of the closed graph theorem)
that the map ϕ|T(K ) : T(K )→ T(H ) is bounded also in the trace norms ‖ · ‖1 on T(K )
and T(H ). Hence the adjoint (ϕ|T(K ))] exists, and clearly it is in NBA (B(H ),B(K ))A .
Evidently (ϕ|T(K ))]|T(H ) = ϕ], hence (ϕ|T(K ))] is a weak* continuous extension of
ϕ]. A similar computation as in (i) proves the equality stated in (ii).

(iii) By (i) and (ii) it suffices to show that (ϕ|T(K ))]|A ′ is positive if and only if
ϕ|A ′ is positive, where A ′ = BA (K ). First we consider the case, when A ′ is finite. Let
τ ′ be a faithful normal trace on A ′, extended to L1(A ′). Recall that A ′ ⊆ L1(A ′) = (A ′)],
where each a′ ∈A ′ corresponds to the functional ρa′ ∈ (A ′)] by ρa′(x′) = τ ′(a′x′) (see [30,
V.2.18]). We will show that

(ϕ|T(K ))]|A ′ = (ϕ|A ′)]|A ′. (3.7)

This will imply (since a map is positive if and only if its dual map is positive and A ′
+ is

dense in L1(A ′)+) that (ϕ|T(K ))]|A ′ is positive if and only if (ϕ|A ′)] is positive on
L1(A ′) (= (A ′)]), which is the case if and only if ϕ|A ′ is positive. To prove (3.7), recall
that the predual (A ′)] of A ′ is the quotient (A ′)] = T(K )/A ′

⊥, where A ′
⊥ := {t ∈ T(K ) :
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Tr(ta′) = 0 ∀a′ ∈A ′}. Observe that (A ′)⊥ is invariant under ϕ , since (ϕ|T(K ))](A ′) ⊆
A ′ by the A -bimodule property of (ϕ|T(K ))]. Thus ϕ induces a map ϕ̇ : (A ′)]→ (A ′)]
and it is easy to verify that (ϕ̇)] = (ϕ|T(K ))]|A ′. So, to prove (3.7), we need to show that
(ϕ̇)] = (ϕ|A ′)]|A ′ or (equivalently by density of A ′ in L1(A ′)), that

τ
′((ϕ̇)](a′)b′) = τ

′((ϕ|A ′)](a′)b′) (a′,b′ ∈A ′). (3.8)

Extending τ ′ to a normal state on B(K ), let t ∈ T(K ) be the operator representing τ ′, that
is

τ
′(x′) = Tr(x′t) ∀x′ ∈A ′. (3.9)

The left side of (3.8) can be expressed as

τ
′((ϕ̇)](a′)b′) = τ

′(a′ϕ̇(b′)), (3.10)

where on the right-hand side of this identity b′ is regarded as an element of L1(A ′) = A ′
] =

T(K )/A ′
⊥ and ϕ̇(b′) is the class ϕ(tb′)· of ϕ(tb′) in (A ′)], where tb′ ∈T(K ) is the operator

representing the functional ρb′ , that is, τ ′(x′b′) = Tr(x′tb′) for all x′ ∈ A ′. Using (3.9) we
now have

Tr(x′tb′) = τ
′(x′b′) = Tr(x′b′t) ∀x′ ∈A ′,

hence we may take tb′ = b′t. Therefore (3.10) can be rewritten as

τ
′((ϕ̇)](a′)b′) = τ

′(a′ϕ(tb′)
·) = τ

′(a′ϕ(b′t)·). (3.11)

Recall that since ϕ and hence (ϕ|T(K ))] is automatically completely bounded by [23] and
a normal A -bimodule map by hypothesis, it is necessarily of the form

(ϕ|T(K ))](x) = ∑
i

b′ixa′i,

where a′i,b
′
i ∈ A ′ are such that the sums ∑i a′∗i a′i and ∑i b′ib

′∗
i are convergent in the strong

operator topology (see [23] or [13]). Then it follows readily that ϕ|T(K ) must be of the
form ϕ(x) = ∑i a′ixb′i, where the sum is convergent in the trace norm for each x ∈ T(K ). So
it follows now from (3.11) that

τ
′((ϕ̇)](a′)b′) = τ

′((∑
i

a′a′ib
′tb′i)

·) = τ
′(∑

i
a′a′ib

′ṫb′i). (3.12)

Now observe that ṫ is just the identity element 1A ′ ∈A ′ ⊆ L1(A ′) = A ′
] = T(K )/A ′

⊥ (as
can be seen by applying (3.12) to the identity map x 7→ 1x1 in place of ϕ). Thus (3.12) can
be rewritten as

τ
′((ϕ̇)](a′)b′) = τ

′(∑
i

a′a′ib
′b′i) = τ

′(a′ϕ(b′)) = τ
′((ϕ|A ′)](a′)b′),

which agrees with the right-hand side of (3.8).
When A ′ is semi-finite (but not necessarily finite), we chose a net (p′F) of finite projec-

tions in A ′ increasing to 1 and consider the maps ϕF : B(p′FK )→B(p′FK )∼= p′F B(K )p′F
defined by ϕF(x)= p′F ϕ(x)p′F . Since BA p′F

(p′FK )= p′FA ′p′F is finite, we have by what we
have already proved that Tr(CϕF p′F a′p′F a) is positive for all a′ ∈A ′ and a∈A if and only if
the same holds for Tr(C(ϕF )] p′F a′p′F a), where CϕF = (p′F Ω)⊗ (p′F Ω)∗. But CϕF = p′FCϕ p′F
and C(ϕF )] = p′FCϕ]

p′F , hence we get the desired conclusion in the limit as p′F → 1.
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By the central decomposition of A the proof can now evidently be reduced to the case
when A (and hence also A ′) is of type III. Assume that ϕ|A ′ is positive, hence ϕ|Z ′ is c.p.
by Theorem 3.3. Then ϕ|Z ′ is necessarily of the form ψ(x) = c′∗xc′ for an (infinite) column
c′= (c′i) with the entries in A ′ such that the sum ∑i c′∗i c′i is s.o.t. convergent (the proof of this
is the same as in [13, 1.2]). If A is a factor, Z ′ = B(K )⊇ T(K ), so we may take x of the
form ξ ⊗ξ ∗ (ξ ∈K ). Then ‖ϕ(x)‖1 = Tr(ϕ(x)) = ∑i〈c′ic′∗i ξ ,ξ 〉, hence by polarization the
sum ∑i c′ic

′∗
i converges (recall that ϕ|T(K ) : T(K )→ T(K ) is bounded). It follows that

(ϕ|T(K ))] is of the form x 7→ ∑i c′ixc′∗i , which is (completely) positive, hence so is also its
restriction to A ′. If A is not necessarily a factor, then by using the fact that Z is unitarily
equivalent to a direct sum of algebras of the form L∞(µ)⊗ 1 acting on L2(µ)⊗L for a
positive measure µ and a Hilbert space L , it can be shown that the sum ∑i cic∗i is weak*
convergent and consequently the map ψ : B(K )→ B(K ), ψ(x) = c′∗xc′ (which coincides
with ϕ on Z ′) maps T(K ) into itself. Moreover, since (ϕ|T(K ))] and (ψ|T(K ))] are both
A -bimodule maps (hence also Z -bimodule maps), they preserve Z ′, hence ϕ(Z ′

⊥)⊆Z ′
⊥

and ψ(Z ′
⊥)⊆Z ′

⊥, where Z ′
⊥ ⊆ T(K ) is the annihilator of Z ′. Thus we have the induced

maps
ϕZ ,ψZ : (Z ′)] = T(K )/Z ′

⊥→ (Z ′)].

The intersection (Z ′)]∩Z ′ is dense in (Z ′)] and weak* dense in Z ′. On this intersection
the maps ϕZ and ψZ are just the restrictions of ϕ and ψ , respectively. Since ϕ|Z ′ = ψ|Z ′,
it follows that ϕZ = ψZ . Hence ϕ

]
Z : Z ′ → Z ′ is given by ϕ

]
Z (z′) = ψ

]
Z (z′) = c′z′c′∗,

which is a (completely) positive map. Since (ϕ|T(K ))]|A ′ = ϕ
]
Z |A

′, this proves that the
positivity of ϕ|A ′ implies the positivity of (ϕ|T(K ))]|A ′. The proof of the converse fol-
lows by essentially the same arguments. ut

Proposition 3.5 If A ⊆ B(K ) is a factor, Ω ∈K is a cyclic trace vector for A and H is
a normal Hilbert A -module such that BA (H ) is finite, then ϕ(Ω ⊗Ω ∗) ∈ T(H ) for any
map ϕ ∈ NCBA (B(K ),B(H ))A . Hence ϕ(K(K ))⊆ K(H ).

Proof Note that A is finite and Ω is a trace vector also for A ′ and a separating vector
for A [9, 7.2.14]. By [30, V.18] H is isometrically isomorphic to a module of the form
q′K m for a cardinal m and a projection q′ ∈Mm(A ′), where A ′ = BA (K ). We claim that
m can be taken to be finite. To show this, let let τ ′ be the semi-finite normal faithful trace
on Mm(A ′) (defined by τ ′([a′i, j]) = ∑i τ ′0(ai,i), where τ ′0 is the canonical trace on the factor
A ′, τ ′0(a

′) = 〈a′Ω ,Ω〉). Since q′Mm(A ′)q′ ∼= BA (H ) is finite by assumption, τ ′(q′)< ∞.
Let n ∈ N be such that (n− 1)τ ′(1A ′) ≤ τ ′(q′) ≤ nτ ′(1A ′), where 1A ′ has been identified
with the diagonal projection 1A ′ ⊕ 0⊕ 0⊕ . . . in Mm(A ′). Let r′ ∈ A ′ be a projection
such that τ ′(r′) = τ ′(q′)− (n− 1)τ ′(1A ′). Then q′ is equivalent to the diagonal projection
p′ := 1A ′ ⊕ . . .⊕ 1A ′ ⊕ r′ ⊕ 0⊕ . . . since τ ′(p′) = τ ′(q′). This implies that H ∼= q′K m

is isomorphic (as a Hilbert A -module) to p′K m, which can be regarded as a Hilbert A -
submodule of K n.

Since ϕ is necessarily of the form (3.5, 3.6), but with a′∗i and b′i in BA (H ,K ) (instead
of A ′), we have ϕ(Ω ⊗Ω ∗) = ∑i a′iΩ ⊗ (b′∗i Ω)∗, hence

‖ϕ(Ω ⊗Ω
∗)‖1 ≤∑

i
‖a′iΩ‖‖b′∗i Ω‖ ≤ (∑

i
〈a′∗i a′iΩ ,Ω〉)1/2(∑

i
〈b′ib′∗i Ω ,Ω〉)1/2. (3.13)

Further, since H ⊆K n, a′∗i and b′i are of the form

a′∗i = [a′∗i,1, . . . ,a
′∗
i,n] and b′i = [b′i,1, . . . ,b

′
i,n] (a′i, j,b

′
i, j ∈A ′)
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and the expression on the right side of (3.13) is equal to

(∑
i

n

∑
j=1
〈a′∗i, ja′i, jΩ ,Ω〉)1/2(∑

i

n

∑
j=1
〈b′i, jb′∗i, jΩ ,Ω〉)1/2.

Since Ω is a trace vector for A ′, it now follows that

‖ϕ(Ω ⊗Ω
∗)‖1 ≤ (

n

∑
j=1

∑
i
〈a′i, ja′∗i, jΩ ,Ω〉)1/2(

n

∑
j=1

∑
i
〈b′∗i, jb′i, jΩ ,Ω〉)1/2. (3.14)

Since ∑i a′ia
′∗
i = ∑i[a′i,ka′∗i, j] ∈Mn(A ′) and n is finite, the sum ∑

n
j=1 ∑i a′i, ja

′∗
i, j is in A ′. The

same applies also to the sum ∑
n
j=1 ∑i b′∗i, jb

′
i, j, hence the right side of (3.14) is finite and

therefore ϕ(Ω ⊗Ω ∗) ∈ T(H ).
We still have to prove the inclusion ϕ(K(K ))⊆K(H ). Since every operator in K(K )

can be approximated in norm by linear combinations of operators of the form ξ ⊗ ξ ∗ (ξ ∈
K ) and each ξ ∈K can be approximated by vectors of the form aΩ (a ∈A ), it suffices to
note that ϕ(aΩ ⊗ (aΩ)∗) = aϕ(Ω ⊗Ω ∗)a∗ ∈ T(H )⊆ K(H ). ut

In Proposition 3.5 the assumption that A is a factor is not redundant, as shown by the
following example.

Example 3.2 Let A = `∞ act on K = `2 in the usual way. Ω := (1, 1
2 ,

1
3 , . . .) ∈K is cyclic

for A . Let L = `2⊗ `2 and let A act on L as A ⊗ 1, so that BA (L ) = A⊗B(`2) ∼=
M∞(A )∼= `∞(M∞(C)) = `∞(B(`2)). Let ei = (0, . . . ,0,1,0, . . .) be the usual rank 1 projec-
tions in A and let p′ ∈ `∞(M∞(C)) be the projection given by the sequence p′ = (q1,q2, . . .),
where q j ∈ M∞(C) is the diagonal projection with the first j entries along the diagonal
equal to 1 and all the remaining entries equal to 0 (that is, q j = e1 + . . .+ e j). Since each
q j is a finite projection and the q j are centrally orthogonal in `∞(M∞(C)), p′ is a finite
projections in `∞(M∞(C)). Regarded as an element of BA (L ) = M∞(`

∞), p′ is the diag-
onal matrix, whose diagonal entries in `∞ are the sums ∑

∞
k= j ek = (0, . . . ,0,1,1, . . .). Let

a′i ∈ BA (K ,L ) (i = 1,2, . . .) be defined as column a′i = (ei,ei, . . . ,ei,0,0, . . .)T , where the
first i components are equal to ei, and define ϕ ∈NCBA (B(K ),B(L )) by ϕ(x) =∑i a′ixa′∗i .
Note that ∑i a′ia

′∗
i = p′, ϕ is a c.p. map and p′a′i = a′i implies that the range of ϕ is contained

in p′B(L )p′ ∼= B(H ), where H := p′L . Since p′ is finite in BA (L ), BA (H ) is finite.
However, ϕ(Ω ⊗Ω ∗) = ∑i a′iΩ ⊗ (a′iΩ)∗ is not in the trace class since

Tr(ϕ(Ω ⊗Ω
∗)) = ∑

i
〈a′iΩ ,a′iΩ〉= ∑

i
〈a′∗i a′iΩ ,Ω〉= ∑

i
i〈eiΩ ,Ω〉=

∞

∑
i=1

1
i
= ∞.

Remark 3.2 Suppose that Ω ∈K is cyclic and separating for A and let S be the closure of
the map aΩ 7→ a∗Ω (the well known operator from the Tomita-Takesaki theory [9], [30]).
For each ϕ ∈ NBA (B(K ))A there is a connection between Cϕ = ϕ(Ω ⊗Ω ∗) and Cϕ]

=
ϕ](Ω ⊗Ω ∗) that can be expressed as follows:

The domain of the operators S∗ϕ(Ω ⊗Ω ∗)∗S contains A Ω and

S∗ϕ(Ω ⊗Ω
∗)∗S⊆ ϕ](Ω ⊗Ω

∗). (3.15)

Moreover, ϕ(Ω ⊗Ω ∗)∗S(A Ω)⊆A ′Ω .

We will omit the relatively simple proof of this fact (not needed in this article), which
uses the fact that ϕ is of the form (3.5) .
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4 Cones of maps and cones of operators

Definition 4.1 Let R be a W∗-algebra, A a C∗-algebra, π : A→ R a ∗-homomorphism
(making R an A-bimodule) and X an operator A-system.

(i) A mapping cone in CBA(X ,R)A is a weak* closed cone C ⊆ CBA(X ,R)A such that
αϕ ∈ C for all ϕ ∈ C and α ∈ CPA(R). (We do not assume in general that ϕβ ∈ C for all
β ∈ CPA(X) and ϕ ∈ C .)

(ii) An operator cone in X is a norm closed cone D ⊆ X such that a∗xa∈D for all a∈ A
and x ∈D .

(iii) The predual operator cone in X of a mapping cone C ⊆ CBA(X ,R)A is

C◦ = {x ∈ X : Reϕ(x)≥ 0 ∀ϕ ∈ C },

where Reϕ(x) = 1
2 (ϕ(x)+ϕ(x)∗).

(iv) The dual mapping cone in CBA(X ,B(K ))A of an operator cone D ⊆ X is

D◦ = {ϕ ∈ CBA(X ,B(K ))A; Reϕ(x)≥ 0 ∀x ∈D}.

We will need the following consequence of [15, 3.8, 3.9]:

Proposition 4.1 Let C be a cone in a strong operator A -bimodule X such that a∗ca ∈ C
for all c ∈ C and a ∈A and let K be a normal Hilbert A -module containing a separating
and cyclic vector for A . If C is closed in the A ,A -topology then for each x ∈ X \C there
exists a map ρ ∈ CBA (X ,B(K ))A such that Reρ(c) ≥ 0 for all c ∈ C and Reρ(x) 6≥ 0.
Moreover, if X is a dual normal operator A -bimodule and C is weak* closed, we may take
ρ to be weak*-continuous.

Proof Since K has a separating vector for A , all normal states on A are vector states [9,
7.2.3], hence K contains (up to isomorphisms) all cyclic normal Hilbert A -modules and it
follows from [15, 3.8, 3.9] (or from [17, 2.3]) that there exist ρ ∈ CBA (X ,B(K ))A (which
can be taken weak* continuous if X is a normal-dual operator A -bimodule and C is weak*
closed) and α ∈ R such that Reρ(c)≥ α1B(K ) for all c ∈ C and Reρ(x) 6≥ α1B(K ). Note
that for each ξ ∈K the set {〈Reρ(c)ξ ,ξ 〉 : c ∈ C } is a cone in R, hence we may take
α = 0. ut

Theorem 4.2 Let K be a normal Hilbert A -module with a unit vector Ω ∈K which is
cyclic and separating for A and let X be a strong operator A -system. Then:

(i) (C◦)◦ = C for each mapping cone C ⊆ CBA (X ,B(K ))A .
(ii) (D◦)◦ = D for each A ,A -closed operator cone D ⊆ X.

Proof (i) Evidently C ⊆ (C◦)◦. To prove that equality holds here, assume the contrary, that
there exists ϕ ∈ (C◦)◦ \C . Since X \ := CBA (X ,B(K ))A is a normal dual operator A ′-
bimodule, where A ′ = BA (B(K )), and C is weak* closed, by Proposition 4.1 there exists
ρ ∈ NCBA ′(X \,B(K ))A ′ such that Reρ(ψ) ≥ 0 for all ψ ∈ C and Reρ(ϕ) 6≥ 0. By [16,
5.1] each ρ ∈NCBA ′(X \,B(K ))A ′ is just the evaluation at some element x ∈ X , hence for
a suitable x ∈ X we have now Reψ(x) ≥ 0 for all ψ ∈ C (hence x ∈ C◦) and Reϕ(x) 6≥ 0,
hence ϕ /∈ (C◦)◦, a contradiction.

(ii) Again, the inclusion D ⊆ (D◦)◦ is evident. If x ∈ X \D , then by Proposition 4.1
there exists ϑ ∈ CBA (X ,B(K ))A such that Reϑ(d)≥ 0 for all d ∈D (thus ϑ ∈D◦) and
Reϑ(x) 6≥ 0, hence x /∈ (D◦)◦. ut
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We remark that Theorem 4.2 holds (with the same proof) also for not necessarily σ -
finite A , if K is such that all normal states on A and on A ′ are vector states arising from
vectors in K . (This is so if A is in the standard form on K [30, IX]).

Example 4.1 We can describe all weak* closed operator cones D in A+. (Thus, here X =A
for a W∗-algebra A .) Assume that 0 6= x ∈ D . Since a∗xa ∈ D for all a ∈ A , it follows
easily (by considering those positive a that are functions of x) that D contains a non-zero
projection e ∈ A . Then, since the central carrier p := Ce of e is a sum of projections in
A that are equivalent to sub-projections of e and D is weak* closed, it follows readily
that p ∈ D . Similarly D contains the range projection of each x ∈ D , hence a standard
maximality argument shows that D = qA+, where q is the largest central projection in D .

We can also describe the dual cones. Since any A -bimodule map ϕ : A → B(K ) is
determined by a′ := ϕ(1) ∈A ′, we have CBA (A ,B(K ))A ∼= A ′, hence

D◦ = {a′ ∈A ′ : Re(a′x)≥ 0 ∀x ∈D}= {a′ ∈A ′ : Re(a′qa)≥ 0 ∀a ∈A+}

= {a′ ∈A ′ : qRea′ ≥ 0}.

Let K be a normal Hilbert A -module with a cyclic and separating vector Ω for A
and let A ′ = BA (K ). A normal mapping cone in CBA (B(K ))A is a mapping cone
C ⊆ CBA (B(K ))A (in the sense of Definition 4.1) such that the set Cnor of all weak*
continuous maps in C is weak* dense in C . For a′ ∈A ′ let Ma′∗,a′ ∈ CBA (B(K ))A be de-
fined by Ma′∗,a′(x) = a′∗xa′. Motivated by the finite-dimensional case [26], we could define
the predual cone C� as

C� := (Cnor)� := {Cψ ∈ B(K ) : ψ ∈ NCBA (B(K ))A ,ReTr(CψCϕ]
)≥ 0 ∀ϕ ∈ Cnor},

where Cϕ]
= ϕ](Ω ⊗Ω ∗) ∈ T(K ) and Cψ = ψ(Ω ⊗Ω ∗). (Note that C� is not necessarily

an operator cone in the sense of Definition 4.1 since Ma∗,a ◦ψ (a ∈A ) is not necessarily in
C� because Ma∗,a is not an A -bimodule map (if A is not abelian).)

Lemma 4.1 C� = {Cψ : ψ ∈ NCBA (B(K ))A , Reϕ(Cψ)≥ 0 ∀ϕ ∈ Cnor}.

Proof Since Ω is cyclic for A ′, we have that Reϕ(Cψ) = Reϕ(ψ(Ω ⊗Ω ∗)) ≥ 0 if and
only if Re〈ϕψ(Ω ⊗Ω ∗)a′Ω ,a′Ω〉 ≥ 0 for all a′ ∈A ′. This can be written as

ReTr(((Ma′∗ ,a′ϕψ)(Ω ⊗Ω
∗))(Ω ⊗Ω

∗))≥ 0.

Since Ma′∗,a′ϕ ∈ Cnor for all a′ ∈ A ′ and ϕ ∈ Cnor, it follows that Reϕ(Cψ) ≥ 0 for all
ϕ ∈ Cnor if and only if ReTr((ϕψ(Ω ⊗Ω ∗))(Ω ⊗Ω ∗))≥ 0 for all ϕ ∈ Cnor, which can be
expressed as ReTr(CψCϕ]

)≥ 0. ut

Lemma 4.2 If K (and hence also A ) is finite-dimensional, then the map

γ : CBA (B(K ))A → B(K ), γ(ψ) =Cψ = ψ(Ω ⊗Ω
∗)

is an isomorphism.
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Proof If γ(ψ) = 0, then ψ(aΩ ⊗ (bΩ)∗) = aψ(Ω ⊗Ω ∗)b∗ = 0 for all a,b ∈ A , hence
ψ(x) = 0 for all rank one operators x ∈ B(K ), since [A Ω ] = K . Therefore ψ = 0 and γ

is injective. To prove surjectivity, we only need to observe that for each x ∈ B(K ) the map
ψ ∈ CBA (B(K ))A ,

ψ(∑
j

a jΩ ⊗ (b jΩ)∗) := ∑
j

a jxb∗j

is well defined, for clearly ψ is then an A -bimodule map on B(K ) with ψ(Ω ⊗Ω ∗) = x.
For this, it suffices to note that ∑ j a jΩ ⊗Ω ∗b∗j = 0 implies that ∑ j a j(a′Ω ⊗ (b′Ω)∗)b∗j = 0
for all a′,b′ ∈A ′, hence ∑ j a jxb∗j = 0 for all (rank one, at first) operators x ∈ B(K ) since
Ω is cyclic for A ′. ut

Theorem 4.2(i) tells us that each mapping cone C in CBA (B(K ))A can be expressed as
an intersection of cones of the form Ĉb := {ϕ ∈CBA (B(K ))A : Reϕ(b)≥ 0} (b∈B(K )),
if K contains a cyclic and separating vector for A . A similar argument shows that each
mapping cone C in NCBA (B(K ))A = CBA (K(K ),B(K ))A = (K(K )A⊗̂AT(K ))] is
an intersection of cones of the form

Cb := {ϕ ∈ NCBA (B(K ))A : Reϕ(b)≥ 0}, (4.1)

where b is in the smallest strong operator A -subbimodule of B(K ) containing K(K ). If
dimK < ∞, Lemma 4.2 (together with Theorem 4.2(i)) implies that C is an intersection
of cones of the form Cb, where b ranges over Choi matrices of maps, and then Lemma 4.1
implies that the duality of cones can be defined in terms of Choi matrices. But in infinite
dimensions this is not true, as can be seen from Proposition 3.5 and the following remark.

Remark 4.1 If b /∈ T(K ), the cone Cb (defined by (4.1)) can not always be expressed as
an intersection of cones of the form Ct (t ∈ T(K )) (defined by (4.1) with b replaced by t).
To prove this, it suffices to show that there exists a sequence of elements a′k ∈ A ′ weak*
converging to an element a′ such that Re(a′)2 6≤ 0 and (a′k)

2 = 0 for all k. Namely, then the
sequence of maps

Ma′k ,a
′
k
∈ NCBA (B(K ))A , Ma′k ,a

′
k
(x) := a′kxa′k,

is such that for each t ∈ T(K ) the sequence Ma′k ,a
′
k
(t) converges to Ma′a′(t) in the weak

operator topology. Hence the map Ma′,a′ is in each cone of the form Ct (t ∈ T(K )) that
contains all the maps Ma′k ,a

′
k
. The cone C−1 contains all the maps Ma′k ,a

′
k

(since Ma′k ,a
′
k
(−1) =

−(a′k)2 = 0), but does not contain Ma′,a′ (since ReMa′,a′(−1) =−Re(a′)2 6≥ 0. Hence C−1 6=⋂
t∈T(K ),Ct⊇C−1

Ct .
To prove the existence of a sequence (a′k) with the required properties in a II1 factor A ′,

let p′ ∈A ′ be a projection equivalent to p′⊥ = 1− p′, hence p′A ′p′ ∼= p′⊥A ′p′⊥. Since in
a factor of type II1 there exists a sequence of unitaries weak* converging to 0 (this can be
seen by taking (an injective) subfactor realized as L(G) for an appropriate group G), there is
a sequence u′k ∈ p′⊥A ′p′ weak* converging to 0 and such that u′∗k u′k = p′ and u′ku′∗k = p′⊥.
Then a′k = p′+ u′k− u′∗k − p′⊥ satisfies (a′k)

2 = 0, the a′k weak* converge to a′ := p′− p′⊥

and Re(a′)2 = 1.
The maps Ma′k ,a

′
k

defined above are not completely positive, but replacing a′k with b′k =

a′k ⊕ a′∗k , Ma′k ,a
′
k

with Mb′k ,b
′∗
k

and −1 with the matrix
[

0 −1
0 0

]
, we get an example of c.p.

maps demonstrating the same phenomenon.
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5 B(L )-convex cones

The aim of this section is to show that when A = B(L ) the duality of cones considered in
Section 4 reduces to the type of duality investigated by Størmer [26]. If A = B(L ) for a
separable Hilbert space L , the Hilbert space K :=L ⊗L contains a cyclic and separating
vector for A ∼= 1B(L )⊗A . If we identify B(L ) with Mm(C) (where m = dimL ∈ N∪
{∞}), then all strong operator B(L )-systems are of the form X = Mm(V ), where V is an
operator system [18, 3.4]. We will use the notation V⊗B(L ) := Mm(V ). There is a natural
completely isometric isomorphisms

ιV : V⊗B(L )→ CB(T(L ),V )⊆ CB(T(L ),V ]]) = (V ]⊗̂T(L ))], (5.1)

[1, 1.5.14(10)], determined by

〈(ιV (w))(t),v]〉= 〈w,v]⊗ t〉 (t ∈ T(L ), v] ∈V ], w ∈V⊗B(L )),

which shows naturality, but it is more conveniently defined by choosing matrix units ei, j ∈
B(L ) and setting

ιV (∑
i, j

vi, j⊗ ei, j)(t) = ∑
i, j
〈ei, j, t〉vi, j (t ∈ T(L ), [vi, j] ∈Mm(V ) =V⊗B(L )). (5.2)

(To see that the sum on the right side of (5.2) is even norm convergent, set v = ∑i, j〈ei, j, t〉vi, j

and first note that for each v] ∈V ] we have

|〈v],v〉|= ∑
i, j
〈ei, j, t〉〈v],vi, j〉|= |Tr(t[〈v],vi, j〉])| ≤ ‖t‖1‖[vi, j]|‖v]‖.

Then apply this inequality to the tail of the series on the right side of (5.2), that is, to t− pnt pn
instead of t, where pn = ∑

n
i=1 ei,i. Since limn→∞ ‖t− pnt pn‖1 = 0, it follows that the series

on the right-hand side of (5.2) is norm-convergent.)
Using the natural identification

CBB(L )(V⊗B(L ),B(L )⊗B(L ))B(L )
∼= CB(V,B(L )), ϕ⊗1B(L ) 7→ ϕ. (5.3)

and also the identification B(L )⊗B(L )∼= CB(T(L ),B(L )) (a special case of (5.1)), for
each w ∈V⊗B(L ) the evaluation

ew : CBB(L )(V⊗B(L ),B(L )⊗B(L ))B(L )→ B(L )⊗B(L ),

ϕ⊗1B(L )
ew7→ (ϕ⊗1B(L ))(w),

corresponds to the composition

cw : CB(V,B(L ))→ CB(T(L ),B(L )), cw(ϕ) = ϕ ◦ ιV (w);

this is the meaning of Lemma 5.1 below. We will use this fact to prove Corollary 5.1 below,
which together with [26, 6.1.5, 6.1.6(iv)] shows that duality of cones of Section 4 essentially
coincides, when A =B(L ), with the duality studied by Størmer [25], [26], [28] (at least for
symmetric mapping cones as defined in [26]). We will omit the simple verification (using
(5.2)) of the following lemma.
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Lemma 5.1 The following diagram commutes:

CBB(L )(V⊗B(L ),B(L )⊗B(L ))B(L )

∼=−→ CB(V,B(L ))
↓ ew ↓ cw

B(L )⊗B(L )
ιT(L )−→ CB(T(L ),B(L ))

.

For a map ϕ : U → V between operator spaces equipped with involutions the adjoint
map ϕ∗ is defined by

ϕ
∗(u) = ϕ(u∗)∗ (u ∈U).

For an operator system V the isomorphism ιV : V⊗B(L ) → CB(T(L ),V ) (defined by
(5.2)) is easily seen to be involution preserving. But ιV does not necessarily map positive
elements in V⊗B(L ) to completely positive maps and for this reason we state Lemma
5.2 below. By an anti-automorphism of a C∗-algebra R we mean the involution preserv-
ing anti-automorphism, that is, a linear bijection τ on R such that τ(yx) = τ(x)τ(y) and
τ(x∗) = τ(x)∗. For example, in the case R = B(K ), choose an orthonormal basis of K and
let τ be the transposition, τ(x) = xT , relative to this basis. For any two anti-automorphisms
τ1,τ2 the composition τ1τ2 is an automorphism, so all anti-automorphisms are equivalent
for our purposes.

Lemma 5.2 Let τ be an anti-automorphism of B(L ), V an operator system, w∈V⊗B(L )
and ϕ ∈ CB(V,B(L )). Then (ϕ⊗1B(L ))(w)≥ 0 if and only if

τ ◦ϕ ◦ (ιV (w)) ∈ CP(T(L ),B(L )),

where T(L ) inherits its matrix ordered structure from B(L ).

Proof Denote ι = ιV . Choose an orthonormal basis of L , let ei, j be the corresponding
matrix units, pn = ∑

n
i=1 ei,i and denote by Mpn,pn the two-sided multiplication x 7→ pnxpn

on T(L ) and on B(L ). Since any anti-automorphism of B(L ) is a composition of the
transposition and an (inner) automorphism of B(L ), the proof is reduced to the case when
τ is the transposition relative to the given basis (so that τ commutes with the compressions
x 7→ pnxpn). For w of the form w = ∑i, j vi, j ⊗ ei, j and t ∈ T(L ) we have from (5.2) that
(τ ◦ϕ ◦ ι(w))(t) = ∑i, j〈ei, j, t〉τϕ(vi, j), from which we see that τ ◦ϕ ◦ ι(w) is c.p. if and only
if all the maps Mpn,pn ◦τ ◦ϕ ◦ ι(w)◦Mpn,pn are c.p.. Further, (ϕ⊗1B(L ))(w)≥ 0 if and only
if Mpn,pn ◦ϕ⊗Mpn,pn(w) ≥ 0 for all n. In this way the proof is reduced to the case when
dimL < ∞. Then, given w = ∑i, j vi, j⊗ei, j ∈V ⊗B(L ), we compute (using (5.2)) the Choi
matrix of the map τ ◦ϕ ◦ (ι(w)) to be equal to

∑
k,l

τ ◦ϕ ◦ (ι(w))(ek,l)⊗ ek,l = ∑
k,l

∑
i, j
〈ei, j,ek,l〉τϕ(vi, j)⊗ ek,l = ∑

k,l
τϕ(vl,k)⊗ ek,l ,

which is just the transpose of the matrix ∑k,l ϕ(vl,k)⊗ el,k = (ϕ ⊗ 1B(L ))(w). Since such
a map is c.p. if and only if its Choi matrix is positive and positivity is preserved under
transposition, this finishes the proof. ut

All completely positive maps on B(L ) can be weak* approximated by finite sums of maps
of the form x 7→ a∗xa (a ∈ B(L )) and all completely positive 1B(L ) ⊗B(L )-bimodule
maps on B(L )⊗B(L ) can be weak* approximated by finite sums of maps of the from
x 7→ (b∗⊗ 1B(L ))x(b⊗ 1B(L )), where b ∈ B(L ) (this follows from [5, 2.5]). Thus, if we
define a mapping cone in CB(V,B(L )) as a weak* closed cone C that is invariant un-
der c.p. maps on B(L ) (that is, θϕ ∈ C for all ϕ ∈ C and all c.p. maps θ on B(L )),
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then under isomorphism (5.3) such cones correspond precisely to the mapping cones in
CBB(L )(V⊗B(L ),B(L )⊗B(L ))B(L ) as defined in Section 4.

The map ιV : V⊗B(L )→CB(T(L ),V ) defined by (5.2 ) is an B(L )-bimodule map, if
we define the B(L )-bimodule structure on CB(T(L ),V ) by (aψb)(t) = ψ(bta). Therefore
the cones D in CB(T(L ),V ) that correspond to operator cones in V⊗B(L ) (as defined in
Definition 4.1) have the property

ψ ◦Ma∗,a ∈D ∀ψ ∈D and ∀ a ∈ B(L ),

where Ma∗,a is the two-sided multiplication t 7→ a∗ta (t ∈ T(L )). We will call such cones
operator cones in CB(T(L ),V ).

To interpret Theorem 4.2 in our present context, we still have to determine, which oper-
ator cones D in CB(T(L ),V ) are such that the corresponding cones ι

−1
V (D) in V⊗B(L )

are closed in the B(L ),B(L )-topology, which is determined by all the functionals ρ ∈
(V⊗B(L ))] with the property that for each x ∈ V⊗B(L ) the maps a 7→ ρ(ax) and a 7→
ρ(xa) are weak* continuous on B(L ). We denote the space of all such functionals by
(V⊗B(L ))]B(L ) .

Lemma 5.3 (V⊗B(L ))]B(L ) ∼=V ]⊗̂T(L ).

Proof For each ρ ∈ (V⊗B(L ))]B(L ) the restriction ρ 7→ ρ|(V ⊗̌K(L )) is isometric since
for a net (pk) of finite-rank projections in K(L ) increasing to the identity 1B(L ) we have
that ρ(x) = limk,l ρ(pkxpl) for all x ∈V⊗B(L ). On the other hand we have the completely
isometric isomorphism κ : V ]⊗̂T(L )→ (V ⊗̌K(L ))] (see [6, (10.1.9)]), given by

κ(v]⊗ t)(v⊗ c) = 〈v],v〉〈t,c〉 (c ∈ K(L ), t ∈ T(L ),v] ∈V ],v ∈V ). (5.4)

If we show that for each y ∈V ]⊗̂T(L ) the maps a 7→ aκ(y) and a 7→ κ(y)a are weak* con-
tinuous on B(L ), then (since V ⊗̌K(L ) is dense in V⊗B(L ) in the B(L ),B(L )-topology)
each κ(y) has a unique extension to an element ρ ∈ (V⊗B(L ))]B(L ) , so this will prove the
lemma. To prove the required continuity, we may assume that y is of the form y = v]⊗ t
(v] ∈V ], t ∈ T(L )), since the space of normal functionals on a W∗-algebra is norm-closed.
Thus we need to verify that for each z ∈ V ⊗̌K(L ) the map a 7→ (aκ(y))(z) = κ(y)(za)
is weak* continuous on B(L ) (and similarly for the other map) and again we may as-
sume that z is of the form z = v⊗ c (v ∈ V , c ∈ K(L )). In this case we have by (5.4)
κ(y)(za) = κ(v]⊗ t)(v⊗ ca) = 〈v],v〉〈t,ca〉, which is clearly weak* continuous in a. ut

Let CBsa(X ,Y ) denotes the subset of all self-adjoint maps in CB(X ,Y ), that is, maps ϕ

satisfying ϕ(x∗) = ϕ(x)∗). (Note that for such maps Reϕ(x) = ϕ(Rex).) Since τ and ιV are
involution-preserving, in view of (5.3) and Lemmas 5.1, 5.2, 5.3 we can now reformulate for
mapping cones C ⊆CBsa(V,B(L )) and operator cones D ⊆CBsa(T(L ),V ) the definitions
of C◦ and D◦ as

C◦sa := {σ ∈ CBsa(T(L ),V ) : τϕσ is completely positive ∀ϕ ∈ C }

and
D◦sa := {ϕ ∈ CBsa(V,B(L )) : τϕσ is completely positive ∀σ ∈D}.

Then the following can be considered as a special case of Theorem 4.2:

Corollary 5.1 (C◦sa)
◦sa =C and (D◦sa)◦sa =D for all mapping cones C ⊆CBsa(V,B(L ))

(which are weak* closed by definition) and all operator cones in D ⊆ CBsa(T(L ),V ) that
are closed in the topology determined by V ]⊗̂T(L ).
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In Corollary 5.1 the duality between CB(T(L ),V ) and V ]⊗̂T(L ) is of course given by
〈ϕ,v]⊗ t〉 = 〈v],ϕ(t)〉. Note also that C ⊆ CBsa(V,B(L )) may be any weak* closed cone
such that a∗C a⊆ C for all a ∈ B(L ), where V is any operator system.

6 Positivity in operator-projective tensor products

Let τ be an anti-automorphism of B(K ). The pairing

〈b, t〉τ := Tr(τ(b)t) (b ∈ B(K ), t ∈ T(K )), (6.1)

makes T(K ) a predual of B(K ). Since τ is the composition of an automorphism and the
transposition, τ is weak* continuous, hence τ] : T(K )→ T(K ) exists.

The reason of using the pairing (6.1), instead of just (b, t) 7→ Tr(bt), is in the well-
known correspondence between maps in CP(B(H ),B(K )) and positive functionals on
B(H )⊗̂T(K ). Namely, an element w ∈ B(H )⊗̂T(K ) is called positive if and only if it is
positive in the C∗-algebra B(H )⊗B(K ) and it is well-known (see [26, 4.2.7] in the case
τ is a transposition) that a map ϕ ∈ CB(B(H ),B(K )) is completely positive if and only if
the dual functional ϕ̃ ∈ (B(H )⊗̂T(K ))], defined by

ϕ̃(x⊗ t) := 〈τ(ϕ(x)), t〉= Tr(τ(ϕ(x))t) (x ∈ B(H ), t ∈ T(K ))

is positive. (In general W∗-algebras it seems more natural to use anti-automorphisms, when
they exist [4], instead of transpositions.) This will suggest how to define positive elements
in tensor products of the form XA⊗̂AR], where X is an operator A-system and R] is the
predual of a W∗-algebra R such that R contains the image of A under a ∗-homomorphism
π , so that R is an operator A-bimodule by axb := π(a)xπ(b) (x ∈R, a,b ∈ A). Thus R] is
a Banach A-bimodule by

〈x,aωb〉 := 〈bxa,ω〉 (a,b ∈ A, x ∈R, ω ∈R]).

We would like to associate to each map ϕ ∈ CBA(X ,R)A a linear functional ϕ̃ on XA⊗̂AR]

by
ϕ̃(xA⊗Aω) = 〈τ(ϕ(x)),ω〉 (x ∈ X , ω ∈R]), (6.2)

where τ is a fixed anti-automorphism of R. For ϕ̃ to be well-defined, we must modify the
A-bimodule multiplications in R] so that (denoting by ◦ the new multiplication)

〈τ(ϕ(axb)),ω〉= ϕ̃(axbA⊗Aω) = ϕ̃(xA⊗Ab◦ω ◦a) = 〈τ(ϕ(x)),b◦ω ◦a〉

for all a,b ∈ A, x ∈ X and ω ∈R]. This means that 〈τ(π(a)ϕ(x)π(b)),ω〉 = 〈τ(ϕ(x)),b ◦
ω ◦a〉, which can also be written as

〈τ(ϕ(x)),τ(π(a))ωτ(π(b))〉= 〈τ(ϕ(x)),b◦ω ◦a〉.

Thus we introduce to R] the new A-bimodule multiplications by

a◦ω := ωτ(π(a)) and ω ◦a := τ(π(a))ω (ω ∈R], a ∈ A). (6.3)

R] equipped with the A-bimodule operations (6.3) is denoted by Rτ
] .

Rτ
] is regarded as a predual of R through the pairing

〈x,ω〉τ := 〈τ(x),ω〉 (6.4)
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and as such carries the operator space structure, where for each n ∈ N the norm on Mn(Rτ
] )

is defined by

‖[ωi, j]‖τ = sup{‖[〈τ(xk,l),ωi, j〉]‖ : [xk,l ] ∈Mm(R), ‖[xk,l ]‖= 1, m ∈ N}.

The usual involution on R] is also an involution on Rτ
] and has the property

(a◦ω ◦b)∗ = b∗ ◦ω
∗ ◦a∗ (a,b ∈ A, t ∈Rτ

] ).

Definition 6.1 Given an operator A-system X , an element w ∈ XA⊗̂ARτ
] is positive (w≥ 0)

if and only if ϕ̃(w) ≥ 0 for all ϕ ∈ CPA(X ,R), where ϕ̃ ∈ (XA⊗̂ARτ
] )

] is determined by
(6.2). Let (XA⊗̂ARτ

] )+ denote the cone of all positive elements in XA⊗̂ARτ
] .

Under the isomorphism (XA⊗̂ARτ
] )

] ∼= CBA(X ,R)A (where the duality between Rτ
] and R

is given by (6.4)) ϕ̃ corresponds to ϕ , so ϕ̃ is bounded.
There is a natural involution on XA⊗̂ARτ

] , determined by

(xA⊗̂Aω)∗ = x∗A⊗̂Aω
∗ (x ∈ X , ω ∈Rτ

] ).

A matrix [ωi, j] ∈Mn(Rτ
] ) is positive if and only if the matrix [ρi, j] := [τ](ωi, j)] is pos-

itive in Mn(R]) (that is, if and only if the map R→Mn(C), x 7→ [ρi, j(x)] is positive). This
implies the following remark.

Remark 6.1 Let τ and ν be anti-automorphisms of R. A map σ : Rτ
] →Rν

] is completely
positive if and only if ν]στ

−1
] is a completely positive map on R].

Proposition 6.1 Let τ and ν be anti-automorphisms of R and let α = τν−1, an automor-
phism of R. For any operator A-system X let idX be the identity map on X and denote by Ψ

the map idX A⊗̂Aα] : XA⊗̂ARτ
] → XA⊗̂ARν

] . Then:
(i) Ψ is a completely isometric isomorphism such that ϕ̃ν(Ψ(w)) = ϕ̃τ(w) for each

map ϕ ∈ CPA(X ,R) and all w ∈ XA⊗̂ARτ
] , where ϕ̃τ and ϕ̃ν are the linear functionals on

XA⊗̂ARτ
] and XA⊗̂ARν

] (respectively) that correspond to the map ϕ according to the rule
(6.2). In particular

Ψ((XA⊗̂ARτ
] )+) = (XA⊗̂ARν

] )+.

(ii) (θ A⊗̂Aσ)((XA⊗̂ARτ
] )+) ⊆ (Y A⊗̂ARν

] )+ for completely positive A-bimodule maps
σ : Rτ

] →Rν
] and θ : X → Y between any operator A-systems X ,Y .

(iii) If X ⊆ Y are operator A-systems and R is injective, then the natural map

XA⊗̂ARτ
] → Y A⊗̂ARτ

]

is completely isometric and hence, regarding XA⊗̂ARτ
] as a subspace of Y A⊗̂ARτ

] , we have
(XA⊗̂ARτ

] )+ = (XA⊗̂ARτ
] )∩ (Y A⊗̂ARτ

] )+.

Proof (i) First observe that

α](cωd) = α
−1(c)α](ω)α−1(d) (c,d ∈R, ω ∈R]) (6.5)

for every automorphism α of R. Indeed, for every x ∈R we compute that

〈x,α](cωd)〉=〈dα(x)c,ω〉= 〈α(α−1(d)xα
−1(c)),ω〉

=〈α−1(d)xα
−1(c),α](ω)〉= 〈x,α−1(c)α](ω)α−1(d)〉,
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from which (6.5) follows. Using (6.5) with α = τν−1, it is straightforward to verify that α] :
Rτ

] →Rν
] is a homomorphism of A-bimodules. It can be verified that α] is also a completely

isometric isomorphism, hence so is Ψ = idX A⊗̂Aα]. Further, for any ϕ ∈ CPA(X ,R), x ∈ X
and ω ∈R] we have

ϕ̃
ν(Ψ(xA⊗̂Aω) =ϕ̃

ν(xA⊗̂Aα](ω)) = 〈ν(ϕ(x)),α](ω)〉
=〈α(ν(ϕ(x))),ω〉= 〈τ(ϕ(x)),ω〉= ϕ̃

τ(xA⊗̂Aω),

hence by linearity and continuity ϕ̃ν(Ψ(w)) = ϕ̃τ(w) for all w ∈ XA⊗̂ARτ
] .

(ii) Let ρ = ν]στ
−1
] , so that ρ is a c.p. map on R] by Remark 6.1. For any ϕ ∈CPA(Y,R)

and x ∈ X , ω ∈Rτ
] we have for w := xA⊗̂Aω that

ϕ̃
ν((θ A⊗̂Aσ)(w)) =〈ν(ϕ(θ(x))),σ(ω)〉= 〈(ϕθ)(x),ν]((ν−1

] ρτ])(ω))〉

=〈τ((ρ]
ϕθ)(x)),ω〉= ˜((ρ]ϕθ)

τ

(w),

hence by linearity and continuity

ϕ̃
ν((θ A⊗̂Aσ)(w)) = ρ̃]ϕθ

τ

(w)

for all w ∈ XA⊗̂ARτ
] . If w is positive, so is by definition also ρ̃]ϕθ

τ

(w) since ρ]ϕθ ∈
CPA(X ,R), hence by the last equality (θ A⊗̂Aσ)(w) is positive.

(iii) By injectivity of R any map in CBA(X ,R)A extends to a map in CBA(Y,R)A of the
same norm [20, p. 95], so the restriction map CBA(Y,R)A→ CBA(X ,R)A is a completely
quotient map, hence its pre-adjoint XA⊗̂ARτ

] → Y A⊗̂ARτ
] must be completely isometric.

The last identity in (iii) follows now directly from the definition of the cones (XA⊗̂ARτ
] )+

and (Y A⊗̂ARτ
] )+ since any map in CPA(X ,R) can be extended to a map in CPA(Y,R). ut

The operator space structure on Rτ
] is independent of the choice of τ since for any other

anti-automorphism ν of R the map α = τν−1 is an automorphism, hence completely iso-
metric. When π(A) is contained in the center Z of R and τ(z) = z for each z ∈ Z (for
example, if A = C), then the bimodule operations (6.3) are the usual ones on R], hence Rτ

]

is independent of the choice of τ and so XA⊗̂ARν
] = XA⊗̂ARτ

] . Further, one can verify that
ϕ̃τ(Ψ(w)) = (τ−1ατϕ)˜τ(w) for all w ∈ XA⊗̂ARτ

] and ϕ ∈ CPA(X ,R). Since any automor-
phism (in particular τ−1ατ) is a c.p. map, it follows from the definition of (XA⊗̂ARτ

] )+ that
the map Ψ = idX A⊗̂Aα] preserves the set (XA⊗̂ARτ

] )+. On the other hand, by Proposition
6.1 Ψ((XA⊗̂ARτ

] )+) = (XA⊗̂ARν
] )+, hence (XA⊗̂ARν

] )+ = (XA⊗̂ARτ
] )+. This proves the

following corollary.

Corollary 6.2 If π(A)⊆Z , then for all anti-automorphisms τ of R satisfying τ|Z = idZ

the space XA⊗̂ARτ
] and the set (XA⊗̂ARτ

] )+ are independent of τ .

Given a homomorphism πA : A→ R of C∗-algebras and an anti-automorphism τ of R,
regarding R] as the pre-dual (R]])] of the universal W∗-envelope R]] of R, we see that R]

inherits from (R]])τ]]

] an operator A-bimodule structure. R] with this new structure is denoted

by R]
τ .

If R] is the dual of a not necessarily unital C∗-algebra B (for example, if R = B(H )),
then the adjoint map of the natural embedding ι : B→ B]] = R is a projection ι] : R] =
B]]]→ B] =R]. This implies that for any homomorphism π : A→ B of C∗-algebras (making
B an operator A-bimodule) and any operator A-bimodule X the natural map Θ : XA⊗̂AR]→
XA⊗̂AR] is completely isometric.
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Proposition 6.3 If R] = B] for a not necessarily unital C∗-algebra B which is a bimodule
over a C∗-algebra A, X is an operator A-system, σ is an anti-automorphism of B and τ =σ ]]

(an automorphism of R), then an element w ∈ XA⊗̂ARτ
] is positive if and only if Θ(w) is

positive in XA⊗̂A(R
])τ]] , where Θ : XA⊗̂AR]→ XA⊗̂AR] is the natural map.

Proof By definition w is positive if and only if ϕ̃τ(w) ≥ 0 for all ϕ ∈ CPA(X ,R), while
Θ(w) is positive if and only if ψ̃τ]](Θ(w)) ≥ 0 for all ψ ∈ CPA(X ,R]]). Let κ : R]→R]

be the canonical map (regarded as inclusion) and q = κ], a projection from R]] onto R. On
elements of the form xA⊗Aω (x ∈ X , ω ∈Rτ

] ) we have

ψ̃
τ]](Θ(xA⊗Aω)) =〈τ]](ψ(x)),ω〉= 〈ψ(x),τ](ω)〉

=〈ψ(x),κ(τ](ω))〉= 〈τqψ(x),ω〉= q̃ψ
τ
(xA⊗Aω).

By linearity and continuity the identity ψ̃τ]](Θ(w)) = q̃ψ
τ
(w) holds for all w ∈ XA⊗̂ARτ

] .
Since qψ ∈ CPA(X ,R) for each ψ ∈ CPA(X ,R]]), and since each ϕ ∈ CPA(X ,R) may be
regarded as an element of CPA(X ,R]]), it follow that w is positive if and only if Θ(w) is
positive. ut

7 C -positive maps

Motivated by the work of Størmer [24], [26] we state the following definition.

Definition 7.1 Let R be a W∗-algebra, π : A→R a homomorphism of C∗-algebras (mak-
ing R an A-bimodule) and τ an anti-automorphism of R such that τ(π(A)) = π(A). For a
mapping cone C ⊆CBA(R)A consisting of self-adjoint maps ϕ (that is, ϕ(x∗) = ϕ(x)∗) and
an operator A-system X define

PC (X) = {w ∈ XA⊗̂ARτ
] : w = w∗, (idX A⊗̂Aθ

])(w) ∈ (XA⊗̂AR]
τ)+ ∀θ ∈ C }.

A map ψ = ψ∗ ∈ CBA(X ,R)A is called C -positive if

ψ̃
τ(PC (X))⊆ [0,∞).

The set of all C -positive maps is denoted by PC (X ,R).

Lemma 7.1 τθτ−1 ∈ CBA(R)A for all θ ∈ CBA(R)A and ‖τθτ−1‖cb = ‖θ‖cb.

It is routine to verify that τθτ−1 is an A-bimodule map. The verification of the norm
equality in Lemma 7.1 is based on the fact that the map α : R → R, α(x) = τ(x)∗, is a
∗-isomorphism of R onto the conjugate algebra of R, hence completely isometric, as well
as on the fact that the involution is isometric. We will omit the details of this verification.

Theorem 7.1 In the situation as in Definition 7.1 assume that R] = B] for a not neces-
sarily unital C∗-algebra B, τ = τ

]]
B for an anti-automorphism τB of B, π = ιπA for a ∗-

homomorphism πA : A→ B, where ι : B→ B]] = R is the canonical map, τC τ−1 = C and
τ(π(A)) = π(A). Then PC (X ,R) is the smallest mapping cone C̃ in CBA(X ,R)A that con-
tains all maps θϕ , where θ ∈ C and ϕ ∈ CPA(X ,R). (By definition C̃ is the weak* closure
of all finite sums of maps of the form θϕ).
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Proof Let us first verify the inclusion C̃ ⊆ PC (X ,R), in other words, that θϕ ∈ PC (X ,R)
for all θ ∈ C and ϕ ∈ CPA(X ,R). Since (θϕ)∗ = θ ∗ϕ∗ = θϕ , we need only to show that
θ̃ϕ

τ

(w) ≥ 0 for all w ∈ PC (X). By Lemma 7.1 τθτ−1 ∈ CBA(R)A, hence (τ−1)]θ ]τ] ∈
CBA(R

]
τ)A, so we have for all x ∈ X and ω ∈Rτ

]

θ̃ϕ
τ

(xA⊗Aω) =〈τθϕ(x),ω〉= 〈ϕ(x),θ ]
τ
](ω)〉

=〈τϕ(x),(τ])−1
θ
]
τ
](ω)〉= ϕ̃

τ(idX A⊗̂A(τ
])−1

θ
]
τ
])(xA⊗Aω).

Thus by linearity and continuity

θ̃ϕ
τ

(w) = ϕ̃
τ((idX A⊗̂A(τ

])−1
θ
]
τ
])(w)) (7.1)

for all w ∈ XA⊗̂ARτ
] . Since by hypothesis τθτ−1 ∈ C and w ∈ PC (X), we have by the

definition of PC (X) that

(idX A⊗̂A(τθτ
−1)])(w) ∈ (XA⊗̂AR]

τ)+

for all w ∈ PC (X). By the definition of positive elements in XA⊗̂AR]
τ this means that

ϕ̃τ((idX A⊗̂A(τθτ−1)])(w)) ≥ 0 for all ϕ ∈ CPA(X ,R]]), hence in particular for all ϕ ∈
CPA(X ,R), thus it follows from (7.1) that θ̃ϕ

τ

(w)≥ 0.
Now, to prove the equality C̃ = PC (X ,R), assume the contrary, that there exists ψ ∈

PC (X ,R)\ C̃ . Then by the Hahn-Banach theorem there exists a functional

w ∈ (CBA(X ,R)A)] = XA⊗̂ARτ
]

such that
θ̃ϕ

τ

(Rew) = Re θ̃ϕ
τ

(w)≥ 0 ∀θ ∈ C ,∀ϕ ∈ CPA(X ,R) (7.2)

and
ψ(Rew) = Reψ(w)< 0. (7.3)

By (7.1) the inequality (7.2) means that ϕ̃τ((idX A⊗̂A(τ
])−1θ ]τ])(Rew)) ≥ 0; since this

holds for all ϕ ∈ CPA(X ,R), it follows from Proposition 6.3 that

(idX A⊗̂A(τ
])−1

θ
]
τ
])(Rew) ∈ (XA⊗̂AR]

τ)+.

Since this holds for all θ ∈ C and τC τ−1 = C , we conclude that Rew ∈ PC (X), hence
ψ(Rew)≥ 0 since ψ ∈ PC (X ,R). But this contradicts (7.3). ut

The following is a partial generalization of the Størmer extension theorem [24], [29].
(In the case A = C it covers the symmetric mapping cones of [26], but not the general ones
since our definition of C -positivity is slightly different from [26].)

Theorem 7.2 In the same situation as in Theorem 7.1 assume that C consists only of pos-
itive maps and that R is injective. Let Y be an operator A-system containing X. Then each
ψ ∈ PC (X ,R) can be extended to a map in PC (Y,R).

Proof By Theorem 7.1 there is a net of maps ψk of the form ψk = ∑ j θk, jϕk, j converging to
ψ in the weak*, hence also in the point weak* topology. Thus in particular ψk(1)→ ψ(1),
so, passing to a subnet, we may assume that the net (ψk(1)) is bounded. Since R is assumed
to be injective, each ϕk, j ∈ CPA(X ,R) can be extended to a map ηk, j ∈ CPA(Y,R) (see
[20], [31]). Then ηk := ∑ j θk, jηk, j extends ψk and, since ηk is a positive map (because all
ηk, j are completely positive and θk, j are positive by our hypothesis about C ), we have that
‖ηk‖ ≤ 2‖ηk(1)‖ = 2‖ψk(1)‖, hence the net (ηk) is bounded. Clearly each weak* limit
point η of the net (ηk) is an extension of ψ , and η ∈ PC (Y,R) by Theorem 7.1. ut
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8 When is CPA(X ,R) weak* dense in CPA(X ,R]])?

Positive cone in XA⊗̂AR]
τ is defined in terms of maps in CPA(X ,R]]). Since R]] is in general

very large, it is natural to ask: does the condition that ϕ̃(w)≥ 0 for all ϕ ∈CPA(X ,R) already
guarantee that an element w ∈ XA⊗̂AR]

τ is positive? It follows by an application of the
Hahn-Banach separation theorem that the answer is positive if and only if the set CPA(X ,R)
is weak* dense in CPA(X ,R]]). (Here we regard R as a C∗-subalgebra of R]], through the
canonical map ι : R→ R]], and consequently CBA(X ,R)A as a subspace in CBA(X ,R]])A by
identifying each ϕ ∈ CBA(X ,R)A with ιϕ .) This density question is interesting even in the
case A = C. Namely arguments of Kirchberg [10, 2.5.1] and Ozawa [19, 2.8] show, for a
separable X , that the set UCP(X ,R) (unital c.p. maps) is weak* dense in UCP(X ,R]]) for all
R if and only if X has the lifting property in the sense that for each C∗-algebra R and ideal J in
R every u.c.p. map ϕ : X→R/J can be lifted to a u.c.p. map θ : X→R, so that qθ =ϕ , where
q : R→ R/J is the quotient map. (For example, X may be a separable nuclear C∗-algebra [2,
C3].) Restricting to W∗-algebras, we can dispense with the separability assumption on X :

Proposition 8.1 Let X be a (not necessarily separable) operator system. If UCP(X ,R) is
weak* dense as a subset of UCP(X ,R]]) for all W∗-algebras R, then X has the lifting
property for all von Neumann algebras R and norm-closed ideals in R.

Conversely, if A is finite-dimensional, X is an operator A-system which has the lifting
property as an operator system, then the set UCPA(X ,R) (CPA(X ,R)) is weak* dense in
UCPA(X ,R]]) (in CPA(X ,R]]), respectively) for every C∗-algebra R which contains A as a
C∗-subalgebra.

Proof Let J be a norm closed two-sided ideal in R, q : R → R/J the quotient map and
ϕ : X → R/J a unital c.p. map. Then q]] : A]] → (R/J)]] splits (since J]] is of the form
pR]] for a central projection p∈R]]), hence there exists a complete contraction θ : X→R]]

such that q]]θ = ιR/Jϕ , where ιR/J : R/J→ (R/J)]] is the canonical map. If UCP(X ,R)

is weak* dense in UCP(X ,R]]), there exists a net of u.c.p. maps σk : X → R such that
the maps ιRσk weak* converge to θ , where ιR : R →R]] is the canonical map. Let ι

−1
R :

R]] → R be the weak* continuous extension of (ιR)−1 [9, Section 10.1]. Then ι
−1
R θ =

p.w.∗ limk ι
−1
R ιRσk = p.w.∗ limk σk. Since the maps ι

−1
R and σk all have their ranges in R

and the restriction of the weak* topology of R]] to R is just the weak topology, we can
replace the maps σk by suitable convex combinations (denoted again by σk) to achieve the
point-norm (p.n.) convergence, thus ι

−1
R θ = p.n. limk σk. Note that q]]ιR = ιR/Jq. Using

also that q]]θ = ιR/Jϕ and setting σ = ι
−1
R θ , we have

ιR/Jqσ =ιR/Jqι
−1
R θ = ιR/Jq(p.n. lim

k
σk) = p.n. lim

k
ιR/Jqσk

=p.n. lim
k

q]]ιRσk = q]](p.w.∗ lim
k

ιRσk) = q]]θ = ιR/Jϕ.

Since the map ιR/J is injective, this implies that qσ = ϕ , that is, σ is a lift of ϕ .
For the converse, note that by the lifting property of X each map ψ ∈ UCP(X ,R]])

can be weak* approximated by maps θk in UCP(X ,R) (see [19, 2.8]). Assume now that
ψ ∈ UCPA(X ,R]]). Since A is finite-dimensional, it is linearly spanned by a finite group G
of unitaries [9, p. 526], and the averages

ϕk : X → R, ϕk(x) :=
1
|G| ∑u∈G

u∗θk(ux)
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are completely contractive unital (hence c.p.) A-bimodule maps (as selfadjoint left A-module
maps) that approximate ψ . If ϕ ∈ CPA(X ,R]]), then by an argument from [6, 5.1.6] we can
write ϕ = aψa, where ψ ∈ UCPA(X ,R]]) and a =

√
ϕ(1) is in the relative commutant

CA(R]]) of A in R. An averaging over a finite group of unitaries that span A shows that
CA(R) is strong* dense in CA(R]]). Strong* approximating a with a bounded net of elements
of CA(R) and weak* approximating ψ by maps in UCPA(X ,R) we get the desired approxi-
mation of ϕ . ut

For which R is CP(X ,R) weak* dense in CP(X ,R]]) for all operator systems X? At least
for W∗-algebras the answer is simple:

Proposition 8.2 Let R be a W∗-algebra. The set CP(X ,R) is weak* dense in CP(X ,R]])
for all operator systems X if and only if R is of the form

R =⊕kMnk(Zk), where Zk are abelian, nk ∈ N and sup
k

nk < ∞. (8.1)

Proof If R is not of the form (8.1), then R contains a copy of an algebra of the form
⊕kMnk(Zk), where Zk are abelian and supk nk = ∞ (this follows from the type decompo-
sition and the halving lemma), which contains a completely isometric copy (as an operator
system) of B(`2) (as can be seen by considering suitable compressions). Hence R is not
locally reflexive [2], [22], [6], which means that there exist a finite-dimensional operator
system X ⊆ R]] such that the inclusion ψ : X → R]] can not be weak* approximated by
complete contractions from CP(X ,R) [2, 9.1.2]. By a well-known argument [2, p. 35] this
implies that ψ can not be approximated by maps in CP(X ,R).

Conversely, if R is of the form (8.1), then R is injective and nuclear, so by [2, 9.4.1]
locally reflexive. Therefore, given an operator system X and ψ ∈ UCP(X ,R]]), for each
finite-dimensional operator system V ⊆ X the map ψ|V can be weak* approximated by
maps ϕk ∈UCP(V,R). Each such ϕk can be extended to a map ψk ∈UCP(X ,R). Since this
holds for every finite-dimensional V ⊆ X , it follows easily that ψ is in the weak* closure of
UCP(X ,R). For a non-unital map ψ ∈ CP(X ,R]]), write ψ as aψ1a, where a ∈R]] and ψ1
is unital (see the proof in [6, 5.1.6]), approximate ψ1 and approximate a by elements from
R in the strong* topology. ut

When X = A, any A-bimodule map ϕ from X to R (or to R]]) is determined by the el-
ement ϕ(1), which is in the centralizer CA(R) := {x ∈ R : xa = ax ∀a ∈ A} (in CA(R]]),
respectively). Thus CPA(A,R) ∼= CA(R)+ and CPA(A,R]]) ∼= CA(R]])+. However, CA(R)
is usually not weak* dense in CA(R]]). The following example shows that even in an en-
tirely commutative W ∗-context (where there is no problem with the density of centralizers)
CPA(X ,R) can fail to be weak* dense in CPA(X ,R]]).

Example 8.1 Let A=R =Z be an abelian W∗-algebra and X =Z ]]. Let πu : Z →B(Hu)
be the universal representation of Z . Each character χ on Z is a direct summand in πu,
acting on a one-dimensional subspace Cξ of Hu. The corresponding projection e : Hu→Cξ

is minimal in BZ (Hu) and can not be equivalent to any sub-projection of 1−e in BZ (Hu)
(since χ is not equivalent to any other representation of Z ). Thus the central carriers Ce and
C1−e of e and 1− e must be orthogonal, which means that e = Ce, hence e is in the center
Z ]] of BZ (Hu) (= BZ ]](Hu)). We claim that for each ϕ ∈ CPZ (Z ]],Z ), ϕ(e) must be
of the form ϕ(e) = ∑

∞
n=1 λnqn, where qn are minimal projections in Z and λn ∈ R+ satisfy

limn→∞ λn = 0. To show this, assume that

δ ∈ σ(ϕ(e)) (the spectrum of ϕ(e)) and δ > 0.
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For each n ∈ N let pn and p = p{δ} be the spectral projections of ϕ(e) in Z corresponding

to the interval [δ 2n−1
2n ,δ 2n+1−1

2n+1 ) and to the singleton {δ}, respectively. If p 6= 0 and p is not a
minimal projection in Z , we can write p = f1 + f2, where f1, f2 are non-zero projections in
Z . If e f j = 0, then ϕ(e) f j = ϕ(e f j) = 0, in contradiction with ϕ(e) f j = δ f j. Thus, e f j 6= 0,
and by minimality of e we have e ≤ f j, so e ≤ f1 ∧ f2 = 0, a contradiction. Thus p = p{δ}
must be a minimal projection in Z (or 0). Assume now (to reach a contradiction) that δ

is not an isolated point of σ(ϕ(e)). Then, since ∑
∞
n=m pn is the spectral projection of ϕ(e)

corresponding to the interval [δ 2m−1
2m ,δ ), which is non-zero for each m ∈N because δ is not

isolated in σ(ϕ(e)), it follows pn 6= 0 for infinitely many n. If epn = 0 for some such n, then

0≤ δ
2n−1

2n pn ≤ ϕ(e)pn = ϕ(epn) = 0

would imply that pn = 0, a contradiction. Thus, by the minimality of e it follows that e≤ pn
for each such n. But taking two different such n1 and n2 it follows that e ≤ pn1 pn2 = 0, a
contradiction. Thus all nonzero points δ in σ(ϕ(e)) are isolated, hence σ(ϕ(e)) must be a
sequence (λn) converging to 0 (together with 0) and the corresponding spectral projections
qn must be minimal in Z . If Z has no minimal projections, then this implies that ϕ(e) = 0,
hence in this case idZ ]] is not in the point-weak* closure of CPZ (Z ]],Z ). However, even
in the discrete case Z = `∞, any character χ ∈Z ], such that χ is the evaluation at a point
in β (N) \N, annihilates all minimal projections in `∞, hence also all elements of the form
ϕ(e) = ∑

∞
n=1 λnqn, where limn→∞ λn = 0 and qn are minimal projections in Z . Thus again

idZ ]] can not be in the point-weak* closure of CPZ (Z ]],Z ).
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