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Foreword

It is our pleasure to welcome you at Bled, the site of the Third Slovenian
Conference on Graph Theory.

This conference has made a long way from its first meeting in Dubrovnik
(now in Croatia) in 1985, organized by Tomaž Pisanski, the father of Graph
Theory in Slovenia. The second meeting was held at Bled in 1991 and coincided
with the outburst of the war for Slovenian independence. This caused a slight
inconvenience to the 30 participants but the meeting will be remembered as a
successful albeit adventurous event.

This year the number of participants more than tripled. The received ab-
stracts promise an interesting and fruitful contribution to mathematics. We
express our thanks to all of you for attending this conference and wish you a
mathematically productive week, but most of all a pleasant and relaxed stay in
Slovenia.

This collection contains only abstracts of the talks. The proceedings of the
conference will be published as a special volume of Discrete Mathematics after
thorough refereeing procedure following the standards of the journal.

The organizers are grateful to all those who helped make this meeting possi-
ble. Special thanks go to the Slovenian Ministry of Science and Technology, to
the Institute of Mathematics Physics and Mechanics at the University of Ljubl-
jana, to the Faculty of Education and the Faculty of Mathematics and Physics
at the University of Ljubljana, and to the software company Hermes SoftLab
for their financial support.

Dragan Marušič and Bojan Mohar

Ljubljana, June 17, 1995
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Imbeddings of Lexical Product of Graphs

Ghidewon Abay-Asmerom

In this paper we consider the genus imbedding of some families of the lexical
product of graphs H and G. The lexical product of H and G has V (H) ×
V (G), the cartesian product, for its vertex set. Its edge set consists of edges
{(u1, v1)(u2, v2)} whenever v1 6= v2 and u1u2 ∈ E(H). We denote the lexical
product of H and G by H

⊗
LG

If G is a Cayley graph, the lexical product H
⊗

LG can be regarded as a
covering space of a voltage graph H∗ obtained by modifying H according to the
configuration of G. This always starts with a suitable imbedding of H in some
orientable surface followed by a modification of the edges of H to get H∗. Con-
ditions are put on H and G so that the imbedding of the covering graph of H∗

is minimal. Minimum genus results for H
⊗

LG, where H is either a bipartite
graph, or a repeated cartesian product of cycles will be given. The imbedding
technique used here involves both surgery and voltage graph theory.

NetML – Graph Description Language

Vladimir Batagelj Andrej Mrvar

In the paper we present a special ’language’ NetML for description of graphs and
their visual representations.

A graph is usually described by listing its vertices and its lines. To describe
its picture we have to provide additional information (positions, shapes and
labels of vertices and lines) which is used by presentation programs to display the
picture of a given graph. This form of graph (picture) description is quite space
consuming. A more compact description can be obtained by two approaches:
factorisation – common parts of the descriptions are ’moved out’ (this can be
implemented by the mechanism of defaults); and proceduralisation – structure
is built from (regular) substructures.
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NetML supports all three forms of description. It considers also the following
additional requirements: most pictures from the literature can be expressed in
it; the user can assign to vertices and lines arbitrary values; limited extendability
and adaptability; it supports compressed formats of data; imports graph data
in some other standard formats.

We decided to base the design of NetML on SGML and we got some inspira-
tion from TEI.

In the paper a description of NetML based on some examples is given.

References

[1] Goldfarb C.F.: The SGML Handbook. Oxford University Press, Oxford, 1990.

[2] McGilton H., Campione M.: PostScript by Example. Addison-Wesley, Reading,
MA, 1992.

[3] Guidelines for Electronic Text Encoding and Interchange, TEI P3; Chapter 21:
Graphs, Networks, and Trees. May 1994. (M. Sperberg-McQueen, L. Burnhard,
eds.).
http://etext.virginia.edu/TEI.html.

Optimum Embedding of the Complete Graphs
in Books

Tomasz Bilski
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Embedding a graph in a book is an arrangement of vertices in a line along the
spine of the book and edges on the pages, in such a way, that edges residing
on the same page do not cross. Each nontrivial graph has many different em-
beddings in books. The embedding with minimum number of pages and with
minimum width is optimal. Every graph is a subgraph of a complete graph, so
finding a way for embedding complete graphs is particularly important.

The talk presents in detail the method for embedding complete graphs in
books, and the parameters of these embeddings: width of every page, minimum
width of the page, width of the book, cumulative pagewidth of the embedding.
The method is simple and effective, it uses 3 expressions to generate optimum
embedding of Kn in a book with n/2 pages for even n and (n+ 1)/2 pages for
odd n, the width of the generated book is n − 3. It will also be proved, that
the set of complete graphs is a proper subset of the set of graphs, for which the
presented method gives an optimal number of pages.

On the Faces Covering the Edges of a Graph

L. Boza J. Cáceres A. Márquez

In the literature, we can found many characterizations of different classes of
graphs which can be embedded in a certain manifold (in most cases, the plane
or the sphere) in such a way that the set of vertices holds some property. Let
us remind outerplanar graphs of G. Chartrand and F. Harary (Ann. Inst. H.
Poincaré, B 3, 1967, pag. 433-438), W−outerplanar graphs of L. Oubiña and
R. Zucchello (Discrete Mathematics, 1-51, 1984, pag. 243-249) or generalized
outerplanar graphs of J. Sedlá ček (Časopis Pěst. Mat., 113, 1988, pag. 213-
218).

In this paper, we propose a different point of view. Given n ∈ N and a
manifold S, we ask for the graphs which can be embedded in S in such a way
that all edges lie on the boundary of one of n fixed faces. So, we are interested
in graphs with an embedding which holds a property about edges, instead of
vertices.

We offer an algorithm to construct the forbidden subgraphs for that graphs
by using the forbidden multigraphs with an analogous property. Thus, we obtain
the solution for n = 1 and any manifold, the cases n = 2 and n = 3 for the
sphere and the case n = 2 for the torus.
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The Construction of Obstructions from Graph
Grammars

B. Courcelle

Sets of graphs can be specified in different ways: by characteristic graph prop-
erties (in particular by forbidden minors), by recursive formation rules called
graph grammars. A vast project consists in comparing these various types of
specifications at a general level, and of course in the framework of precise defi-
nitions. One may expect to obtain results of the following form: for every graph
property expressible in a certain logical language, there exists a grammar of a
certain type that generates the (finite) graphs satisfying this property and only
them, or vice versa. It is of course desirable to have effective constructions, i.e.,
to have algorithms that build grammars from logical formulas or vice versa.

In this lecture, we shall survey the main results in this direction that concern
the relationships between several finitary descriptions of sets of graphs:

(i) by characteristic properties expressed in monadic second-order logic,

(ii) by context-free graph grammars, (they provide internal descriptions in the
sense of Robertson, Seymour and Thomas) and

(iii) by forbidden minors.

Theorem: Every minor-closed set of graphs of bounded tree-width can be
specified by the following finite devices:

1- The finite obstruction set.
2- A monadic second-order formula.
3- A context-free graph grammar.

From any of these three devices one can construct the two others.

The construction of the obstructions and the monadic second-order formula
from the grammar is a new, unpublished result obtained by B. Courcelle and
G. Sénizergues. The lecture will also present the background results.

This work is supported by ESPRIT Working group “Computing by graph
transformation”.
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Graphs with Constant µ and µ̄

Edwin R. van Dam

A graph G has constant µ = µ(G) if any two vertices that are not adjacent have
µ common neighbours. G has constant µ and µ̄ if G has constant µ = µ(G),
and its complement has constant µ̄ = µ(Ḡ). If such a graph is regular, then
it is strongly regular, otherwise precisely two vertex degrees occur. Graphs
with constant µ and µ̄ also form a generalization of the (nontrivial) geodetic
graphs of diameter two. It turns out that graphs with constant µ and µ̄ have a
nice algebraic characterization: they are the graphs with two distinct restricted
Laplace eigenvalues. Nontrivial necessary conditions for existence are found.
Several constructions using symmetric block designs and strongly regular graphs
are given and characterized. A list of feasible parameter sets for graphs with
at most 40 vertices is generated. The results are joint work with Willem H.
Haemers.

A Note on Chromatic Polynomials

Ernesto Damiani Carlo Mereghetti Ottavio D’Antona

We write V (G) to designate the vertex set of a graph G. For any vertex v
we denote by d(v) its degree, by A(v) its adjacency set (i.e. the set of nodes
adjacent to v), and by G− v the subgraph induced by the set V (G)− {v}. Let
F = {G1, G2, . . . , Gr} be a family of simple, loopless graphs with |V (Gn)| = n
for n = 1, 2, . . . , r. Then F is said to be a persistent family of graphs (pfg, for
short) if there exists a total order v1, v2, . . . , vr on the nodes of Gr such that,
for n = 2, 3, . . . , r

i. A(vn) is a clique, and

ii. Gn−1 = Gn − vn.

We call PFG the set of all pfg’s. Easy examples of pfg’s are the sequences of
empty graphs, of complete graphs, and of (simple) paths; moreover, it is not
hard to obtain other persistent families of trees. To the contrary, the sequence
of cycles is not a pfg.

In the talk we show that:
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1. The chromatic polynomials of a pfg satisfy

pn(t) = (t− d(vn)) · pn−1(t)

2. Let Ln,k be the coefficient of tk in the chromatic polynomial pn(t) of a
pfg. Then

Ln,k = Ln−1,k−1 − d(vn) · Ln−1,k

3. Let Mn,k be the number of ways one can color Gn using exactly k colors,
and let Gn be a member of a pfg. Then

Mn,k = Mn−1,k−1 + (k − d(vn)) ·Mn−1,k

4. Write chromatic polynomials of a pfg as linear combinations of raising
factorial polynomials 〈 t 〉k, and let Nn,k be the coefficients. Then

Nn,k = Nn−1,k−1 − (k + d(vn)) ·Nn−1,k.

Obstructions to Planar Hypergraphs

I. J. Dejter J. Luque

A Kuratowski-type approach for finite hypergraphs with edges of rank at most
three is presented, leading to a quasi-order with a complete obstruction set to
planarity of six forbidden hypergraphs.

Hidden Cayley Graph Structures

I. J. Dejter H. G. Hevia O. Serra

A contribution to the study of the structure of complete Cayley graphs of cyclic
groups is given by means of a method of construction of graphs whose ver-
tices are labeled by subgraphs induced by equally colored K3’s. As a result, a
family of labeled graphs indexed on the odd integers appear whose diameters
are asymptotically of the order of the square root of the number of vertices.
This familiy can be obtained by modular reduction from a graph arising from
the Cayley graph of the group of integers with the natural numbers as set of
generators, which have remarkable local symmetry properties.
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Extremal Structure of Peg Solitaire Cones

David Avis Antoine Deza

We study the geometric and combinatorial properties of the cone associated
to the Peg Solitaire game (that is the dual cone of all feasible fractional Peg
Solitaire games). In particular we characterize all 0-1 valued extreme rays of
this cone and the graph induced by its facets, and compute the diameter of its
dual. We also show the strong link between an instance of the multicommodity
flow problem and a Peg Solitaire game. All extreme rays of the Peg Solitaire
cone are given for various small rectangular boards.

On Infinite Depth-First-Search Trees

R. Diestel J.M. Brochet

A well-founded tree T defined on the vertex set of a graph G is called normal
if the endvertices of any edge of G are comparable in T . Thus, finite normal
trees are simply depth-first search trees. Normal trees, when they exist, can
give excellent structural descriptions of the underlying graph. They do always
exist for countable graphs, and we look at what can be said in general.

Drawing Knots and Links

Gašper Fijavž Matjaž Kaufman Tomaž Pisanski

The problem of constructing a knot or a link given by its algebraic description
is considered. A heuristic algorithm for knot layout is presented.

The algorithm first produces an auxiliary planar graph G, uses planarity
testing for constructing a planar embedding of G and then places the vertices
by finding a suitable Schlegel diagram with the largest face as the outer face.
Finally, the subgraph representing the original knot or link is drawn by an
appropriate choice of Bezier curves.
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The algorithm is a part of the Vega project. The colors and shapes of the
knot or various link components can be selected. The picture of the knot or
the link is stored in the Encapsulated PostScript form (EPS). More information
about the implementation of the package is available at
http://www.mat.uni-lj.si/ftp/ftpout/vegadoc/htmldoc/vega02/manual/knot.htm

Kolmogorov Complexity and Ramsey Theory

W.L. Fouché

We discuss the preservation of structure of finite combinatorial structures under
partitions of a high descriptive complexity. Our aim is to show how the reflec-
tive (self-similar) properties of finite configurations follow from the well-known
combinatorial fact that almost all finite binary strings are of a high Kolmogorov
complexity. The results can be viewed as bringing to the fore analogues for
finite structures of some of the combinatorial phenomena typical of first-order
ℵ0-categorical structures (e.g. homogeneity and self-similarity). The arguments
are built on finitary combinatorial and computational constructions.
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Regular Orientations and Graph Drawing

Hubert de Fraysseix Tsuyoshi Matsumoto

Patrice Ossona de Mendez Pierre Rosenstiehl

A k-regular orientation of a graph is an orientation such that almost all vertices
have indegree k. Such orientations appear implicitly in many graph drawing
algorithms. Its importance is reinforced by two facts: first, bipolar orientations
of a planar graph are in bijection with 2-regular orientations of its angle graph;
secondly, a vertex packing of a maximal planar graph naturally induces a 3-
regular orientation.

Our discussion consists of four parts:

Representation of planar graph. It consists first in choosing the type
of objects for representing vertices, edges and faces, these objects being either
points, arcs or disks of the plane. The incidence relations are either inclusion,
contact or crossing relations between objects. The main representations of plane
graphs are related to specific orientations. A special mention is made for the
case where some paths are restricted to be represented by straight line segments.

From bipolar orientation to regular orientation. Bipolar orientations
of a planar graph are in bijction with 2-regular orientations of its angle graph.
Vertex packing generates 3-regular orientations. We shall extend the repre-
sentation of bipartite planar graphs by contacts of segments to three colorable
4-connected planar graphs.

Arboricity and regular orientation. We shall discuss the existence and
construction of a k-regular orientation and relate k-regular orientations to cov-
erings of a directed graph by k edge-disjoint rooted spanning trees oriented from
their roots towards their leaves.

The Fellows-Pollack conjecture. The k-regular orientation will be used
to settle a long-standing conjecture on the representability of planar graphs by
intersecting Jordan arcs: we shall prove that any 4-connected maximal planar
graph free of particular C4-separators can be represented by intersecting Jor-
dan arcs. We shall discuss the extension to intersecting straight line segments
representations.

References

[1] H. de Fraysseix and P. Ossona de Mendez. Regular orientations, arboricity
and augmentation. In Graph Drawing, pages 111–118, 1995.
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[4] H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl. Bipolar orienta-
tions revisited. Discrete Applied Mathematics, 56:157–179, 1995.

[5] P. Eades and R. Tamassia. Algorithms for drawing planar graphs: an anno-
tated bibliography. Tech. Rep. No. CS-89-09, Brown University, 1989.
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Even Cycles and K3,3-Free Digraphs

Anna Galluccio Martin Loebl

The Even Cycle Problem is the problem of recognizing whether a digraph con-
tains a directed cycle of even length. For this problem neither a polynomial-time
algorithm nor a proof of NP-completeness is known despite several links with
other combinatorial and algebraic problems have been proved.

A polynomial-time algorithm for solving this problem in planar digraphs has
been provided by Thomassen. We consider a slightly different problem:

Parity Path Problem: given a planar digraph G, a face F of G such that G−F
has no even directed cycle and two vertices x, y ∈ F , decide whether G−F
contains a directed path of prescribed parity from x to y.

It is not difficult to observe that a polynomial-time algorithm solving the
Parity Path Problem can be applied recursively to solve in polynomial-time the
Even Cycle Problem in planar digraphs.

Here, we show that the same algorithm may be used for proving that the
Even Cycle Problem is polynomially solvable in the class of K3,3-free digraphs.
This class consists of those digraphs whose underlying undirected graph does
not contain a subdivision of K3,3.

Finally, the fundamental role played by the subdivisions of K3,3 in the theory
of even directed cycles is pointed out.
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On t-perfect Graphs

Bert Gerards

A graph G = (V,E) is called t-perfect if the stable set polytope, that is the
convex hull of the characteristic vectors of the stable sets in G, is equal to the
solution set of the following system of linear inequalities:

xu ≥ 0 (u ∈ V )
xu + xv ≤ 1 (uv ∈ E)∑
u∈C xu ≤ |C|−1

2 (C is an odd circuit in G).

We characterize the class of graphs for which all subgraphs are t-perfect. Thus
extending earlier results of M. Boulala, J. Fonlupt, N. Sbihi, J.P. Uhry, A.
Schrijver, and the speaker. The proof of our result relies on a decomposition
theorem for the class of graphs under consideration.

This is joined work with Bruce Shepherd (London School of Economics).

On Cycles in the Sequence of Unitary Cayley
Graphs

Pedro Berrizbeitia Reinaldo E. Giudici

For each positive integer n we let Xn = Cay(Zn, Un), where Zn is the ring
of integers modulo n and Un is the multiplicative group of units modulo n.
Let pk(n) denote the number of induced k-cycles of Xn. In another work we
proved that the function 2k pk is a linear combination with integer coefficients
of multiplicative arithmetic functions. Here we prove the following theorem:

Given r ∈ N there is N(r) ∈ N such that pk(n) = 0 for all k ≥ N(r) and
for all n with at most r different prime divisors.

If m(r) is the minimum of the N(r) provided by the theorem, then we prove
that r ln r ≤ m(r) ≤ 9r!. In particular, together with the results obtained in our
previous work we have proved that for every r there are nontrivial arithmetic
functions f satisfying the following two properties:

(i) f is a Z-linear combination of multiplicative arithmetic function.

(ii) f(n) = 0 for every n with at most r different prime divisors.

The chromatic uniqueness of Xn for some values of n is also discussed.
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Tetrahedron Manifolds Via Coloured Graphs

Luigi Grasselli

In his paper “Tetrahedron manifolds and space forms” E. Molnar describes an
infinite class of 3-manifolds (depending on two natural integers n,m) by means of
suitable face identifications on a tetrahedra. These manifolds can be represented
by edge-coloured graphs; by making use of these combinatorial techniques, it
is easy to show that they are 2-fold coverings of the 3-sphere, branched over
suitable links. This immediately leads to the classification of these manifolds in
terms of Seifert fibered spaces.

The (r, 1)-designs with 13 Points

Harald Gropp

Definition 1: An (r, 1)-design is a finite incidence structure of points and lines
such that

(i) each line contains at least 2 points,
(ii) 2 different points are on exactly one common line, and
(iii) through each point there are exactly r lines.

Definition 2: A configuration (vr, bk) is a finite incidence structure with v
points and b lines such that

(i) there are k points on each line and r lines through each point, and
(ii) two different points are connected by a line at most once.

In [1] and [2] all 974 (r, 1)-designs with at most 12 points are constructed.
Among these (r, 1)-designs there are many well known combinatorial structures
like configurations or regular graphs. For at most 12 points the task could be
achieved without computer. The general strategy and analysis is explained in
[1]. Those designs which were not already known as configurations etc. are
investigated in [2] in the volume of the 1991 Bled Conference.

C. Pietsch used a computer program to construct all (r, 1)-designs with 13
points. Their number is exactly 13848.

These (r, 1)-designs will be investigated in this paper. Like in [2] it is tried
to describe some of the structures as graphs with additional properties. The
aim is to construct these designs without the use of a computer and to prove
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certain non-existences ( apart from those few cases where there are hundreds or
thousands of solutions for a certain parameter set ).

The main statement in [1] that for v ≤ 12 configurations are typical examples
of (r, 1)-designs is not true for v = 13. This gives rise to a lot of interesting new
graph-like structures which occur here.

References:
[1] H. Gropp, Configurations and (r, 1)-designs, Discrete Math. 129 (1994),

113-137.
[2] H. Gropp, Graph-like combinatorial structures in (r, 1)-designs, Discrete

Math. 134 (1994), 65-73.

Generalized Coverings and Matchings in
Hypergraphs

Barry Guiduli Zoltán Király

We introduce the concept of fractional matchings and fractional coverings of
order 2 in the setting of intersecting hypergraphs and show that they can be
used to partially solve a problem of Erdős and Gyárfás.

Let H(V,A) be a hypergraph and let w:A → R+ be a weighting of the edges
such that for every pair of vertices v1 and v2 in V ,

∑
A∩{v1,v2}6=∅ w(A) ≤ 1, then

w is a fractional matching of order 2 with value |w| =
∑
A w(A). The fractional

matching number of order 2 of H, denoted by ν∗2 (H), is the maximum value
of a fractional matching of order 2. Similarly, if t:

(
V
2

)
→ R+ is a weighting of

the pairs of vertices such that for every edge A,
∑
{v1,v2}∩A6=∅ t({v1, v2}) ≥ 1,

then t is a fractional covering of order 2 with value |t| =
∑
{v1,v2} t({v1, v2}).

The fractional covering number of order 2, denoted by τ∗2 (H), is the minimum
value of a fractional covering of order 2. Any fractional covering of order 2 is
a lower bound on ν∗2 (H), and furthermore, by the Duality Theorem of linear
programming, ν∗2 (H) = τ∗2 (H).

The following question was asked by Erdős and Gyárfás: “Given an r–inter-
secting multi-hypergraph on n points, what fraction of edges must be covered
by any of the best t points?” (Here “best” means that together they cover the
most.) They gave the answer for certain special choices of parameters, the first
unsolved case was r = 2, n = 6, t = 2. This problem arises as a generalization of
work by Mills, who considered the case r = 2, t = 1 and solved this for n ≤ 13.
We deal with the case r = 2, t = 2, and reformulate the problem in the above
terms.

16



We define Mt(H) to be the fraction of edges covered by any of the best t
points in the multi-hypergraph H, and let Mt(n) = min|V (H)|=nMt(H) where
the minimum is taken over intersecting multi-hypergraphs on n vertices. We
call Mt(n) the t-th Mill’s number. Furthermore, we define

ν∗(n) = max
|V (H)|=n

ν∗(H)

(where ν∗ is the ordinary fractional matching number) and

ν∗2 (n) = max
|V (H)|=n

ν∗2 (H)

for (non-multi) intersecting hypergraphs H. It follows that M1(n) = 1/ν∗(n)
and M2(n) = 1/ν∗2 (n). These are very hard to calculate in general; in fact, we
show that determining ν∗2 (t2 + t + 1) proves the existence or nonexistence of a
projective plane of order t.

We determine some specific values of ν∗2 : ν∗2 (6) = 5/4, ν∗2 (7) = ν∗2 (8) = 7/5,
ν∗2 (9) = 13/9, ν∗2 (10) = 3/2. We further conjecture that ν∗2 (11) = 8/5 and
ν∗2 (12) = 12/7.

If n = q2 + q + 1 and there exists a projective plane of order q, then we
show that ν∗2 (n) = n/(2q + 1) and that ν∗2 (n+ 2) > ν∗2 (n). We conjecture that
ν∗2 (n + 1) = ν∗2 (n). From the projective plane, it follows that asymptotically
ν∗2 (n) ≈

√
n/2.

We further conjecture that ν∗2 (n + 2) > ν∗2 (n) and that ν∗2 (n) > 2ν∗(n) for
all n.

Color-Critical Graphs and Hypergraphs with
Few Edges and No Short Cycles

H.L. Abbott Donovan Hare B. Zhou

We give constructions of color-critical graphs and hypergraphs with no cycles
of length 5 or shorter and with relatively few edges.
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List Homomorphisms

Pavol Hell

In analogy to list colourings, we seek a homomorphism from G to H which
restricts the allowed images of the vertices of G. (This includes the problem
of graph retraction.) We study the complexity of list homomorphisms for both
reflexive and irreflexive graphs. In each case we find that the problem is poly-
nomial for nicely structured graphs (interval graphs, circular arc graphs) and
NP-complete otherwise.

This is joint work with T. Feder and J. Huang.

On the Invariance of Colin de Verdière’s Graph
Parameter under Clique Sums

Hein van der Holst

For any undirected graph G, let µ(G) be the graph invariant introduced by
Colin de Verdière. We give a brief introduction to this invariant and discuss
the behaviour of µ(G) under clique sums of graphs. In particular, a forbidden
minor characterization of those clique sums G of G1 and G2 for which µ(G) =
max{µ(G1), µ(G2)} is given.

(Joint work with Alexander Schrijver and László Lovász.)

Hamming Graphs and Related Classes of
Graphs

Wilfried Imrich

The main topic of the talk is a survey of the structure and main proper-
ties of Hamming graphs, retracts of Hamming graphs and isometric subgraphs
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of Hamming graphs which lead to recognition algorithms for these classes of
graphs. There exist relatively concise algorithms for these problems of com-
plexity O(mn), where m denotes the number of vertices and n the number of
edges of the graphs in question.

We shall further mention other algorithms of better complexity, many of
which are joint work with S. Klavžar.

Special emphasis will also be given to the bipartite case in which these classes
are reduced to binary Hamming graphs, median graphs and partial binary Ham-
ming graphs.

Kronecker Products of Paths and Cycles:
Decomposition, Factorization and

Bi-pancyclicity

Pranava K. Jha

By a graph is meant a finite, simple and undirected graph. For graphs G =
(V,E) and H = (W,F ), the Kronecker product of G and H is denoted by G×H
and is defined as follows: V (G×H) = V ×W and E(G×H) = {{(u, x), (v, y)} :
{u, v} ∈ E and {x, y} ∈ F}. For connected graphs G and H, if G or H is non-
bipartite, then G×H is connected, otherwise G×H consists of two connected
components [8]. Further, G ×H is bipartite if and only if G or H is bipartite
[1].

Let Pm and Cn respectively denote a path on m vertices and a cycle on
n vertices, where V (Pk) = V (Ck) = {0, · · · , k − 1} and where adjacencies are
defined in the natural way. It is straightforward to see that vertices (p, q) and
(r, s) of Pm × Pn or C2i × Pn or C2i × C2j belong to the same component if
and only if p + q and r + s are of the same parity. Accordingly, a component
of Pm × Pn or C2i × Pn or C2i × C2j is called an even component (resp. odd
component) if a vertex (p, q) of that component is such that p+ q is even (resp.
odd).

The two components of Pm × Pn are isomorphic if and only if mn is even.
Further, the two components of each of C2i×Pn and C2i×C2j are isomorphic.

Principal results are as follows.

Theorem 1 Let m,n be even integers ≥ 4, where n ≡ 0 (mod 4). If p, q are
even integers ≥ 4 such that p|m, q|n and q ≡ 0 (mod 4), then each of the
following graphs admits of an edge decomposition into cycles, all of which are
of length pq/2:
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1. odd component of Pm+1 × Pn+1,

2. each component of Cm × Pn+1,

3. each component of Pm+1 × Cn, and

4. each component of Cm × Cn.

Theorem 2 Let m,n be even integers ≥ 4. If p, q are even integers ≥ 2 such
that p|m, q|n and q ≡ 2 (mod 4), then each of the following graphs admits of an
edge decomposition into paths, all of which are of length pq/2:

1. even component of Pm+1 × Pn+1,

2. each component of Cm × Pn+1,

3. each component of Pm+1 × Cn, and

4. each component of Cm × Cn.

Theorem 3 Let m,n be even integers ≥ 4, where n ≡ 0 (mod 4). If p, q are
even integers ≥ 4 such that p|m, q|n and q ≡ 0 (mod 4), then each of the
following graphs contains (mn)/(pq) vertex-disjoint cycles, all of which are of
length pq/2:

1. odd component of Pm+1 × Pn+1,

2. each component of Cm × Pn+1,

3. each component of Pm+1 × Cn, and

4. each component of Cm × Cn.

Theorem 4 For m ≥ 3 and j ≥ 1, each component of Cm × C4j admits of a
bi-pancyclic ordering, that is, a permutation < v0, v1, · · · , v2k−1 > of the ver-
tices such that for all t ∈ {2, · · · , k}, the subgraph induced by {v0, v1, · · · , v2t−1}
contains a Hamiltonian cycle, where 2k denotes the number of vertices in each
component of Cm × C4j.
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K6, K7 and K8 Minors in Graphs

Leif K. Jørgensen

In this talk I will present my results on the maximum number of edges (and the
structure of special classes) of (maximal) graphs with no K6, K7, K8 minor,
respectively.

Locally Constant Graphs

Aleksandar Jurǐsić Jack Koolen

A graph G is said to be locally C, where C is a graph or a class of graphs, when
for each vertex u of G the graph induced by the neighbours of u is isomorphic
to (respectively a member of) C. For example, the icosahedron is locally a
pentagon.

Gardiner’s Theorem implies that the neighbourhood of a vertex of a distance-
regular antipodal cover of diameter at least four projects to the neighbourhood
of the projected vertex. Therefore, if we know locally some graph of diameter
at least two, then we know locally its distance-regular antipodal cover as well.
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This is a very strong condition on a graph, for example, a connected graph that
is locally a pentagon must be the icosahedron.

Graph representations are used to characterize certain distance-regular graphs
which are locally strongly regular. This extends Terwilliger’s result that Q-
polynomial antipodal distance-regular graphs are locally strongly regular. New
nonexistence conditions for covers are derived from this. For example, from
the set of feasible intersection arrays of antipodal distance-regular graphs, one
quarter of those which are Q-polynomial are ruled out.

Sometimes the local strongly regular graph has the same parameters as the
point graph of a generalized quadrangle GQ(q + 1, q − 1). The graph for which
the local strongly regular graph is the point graph of a generalized quadrangle
is equivalent to an incidence structure called an extended generalized quadran-
gle (EGQ). These combinatorial objects have already been extensively studied
for almost ten years by several authors and Cameron constructed some new
antipodal distance-regular graphs of diameter three. Therefore there is hope
that this connection will provide some interesting ideas for new constructions
of antipodal distance-regular graphs.

Systems of Curves on Surfaces

M. Juvan A. Malnič B. Mohar

Let G be a graph embedded in a compact (bordered) surface Σ and let k be an
integer. It will be shown that there is a number N with the following property:
If Γ is a family of pairwise nonhomotopic cycles of G such that any two cycles
from Γ intersect in at most k vertices, then Γ contains at most N cycles. Some
applications of this result will be outlined.

Toughness and Edge–toughness

Gyula Y. Katona

Let ω(G) denote the number of components of a graph G. A graph G is t–tough
if |S| ≥ tω(G−S) for every subset S of the vertex set V (G) with ω(G−S) > 1.
We generalize this definition by including edges besides vertices and define a
new set of a graphs, the t–edge–tough graphs.
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We investigate the relation between toughness and edge–toughness.
Observation 1 If G is t–edge–tough then it is t–tough.
Observation 2 If G is hamiltonian then it is 1–edge-tough.
Observation 3 If G is 1–edge–tough then there exists a 2–factor in G.
Theorem 1 If G is 2t–tough then it is t–edge–tough.
Theorem 2 For every ε > 0 there exists a (2t−ε)–tough but non–t–edge–tough
graph.
It is also proved that it is NP–complete to decide whether a graph is t–edge–
tough or not if t is a natural number.

Finally the following conjecture arise naturally from Chvàtal’s conjecture.
Conjecture There exists a t1 such that every t1–edge–tough graph is hamil-
tonian.

Graphs That are k-locally a Hypercube

Sandi Klavžar Henry Martyn Mulder

Let k ≥ 2 and let G be a connected graph with odd girth at least 2k+3. Then G
is k-locally a hypercube if for any two vertices u and v of G with d(u, v) ≤ k, the
interval I(u, v) induces the cube Qd(u,v). Alternatively, G is k-locally an n-cube,
if for every vertex u of G, the k-th neighborhood of G induces a corresponding
neighborhood in the cube Qn. These graphs are preserved by the Cartesian
product operation. More precisely, if G is k-locally an n-cube and H is k′-
locally an n′-cube, then G2H is min{k, k′}-locally an (n+ n′)-cube.

A characterization of k-locally hypercubes will be given which in particular
leads to an O(d · |V (G)|2) recognition algorithm, where d is the degree of a
given graph G. The k-locally n-cubes will be classified for n ≤ 2k + 3. Besides
hypercubes one finds also the folded cubes 1

2Q2k+2, the extended odd graphs
Ek+2 and the Cartesian products 1

2Q2k+22K2. A connection with parallelisms
will also be established.
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Which Generalized Petersen Graphs are Cayley
graphs? - Revisited

Marko Lovrečič-Saražin

Nedela and Škoviera [2] found all generalized Petersen graphs (GPG’s) which are
also Cayley graphs (CG’s). This purely algebraic result is based on the theory
of regular maps on orientable surfaces. In what follows we would like to show
that the same goal can be reached applying only straightforward arguments of
elementary group theory, together with some known results about GPG’s and
Sabidussi’s criterion for CG’s. Besides, an extension of the notion of generalized
Petersen graphs is presented briefly.
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On Topological Tournaments in Digraphs of
Large Degree

W. Mader

We shall prove case n = 4 of the following conjecture: For every positive integer
n there is a (least) integer g(n) such that every finite digraph of minimum
outdegree g(n) does contain a subdivision of the acyclic tournament of order n.
We shall prove g(4) = 3.
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Some Problems in Graph Colorings

E. S. Mahmoodian

There are different ways of coloring of a graph. Namely, vertex coloring, edge
coloring, total coloring, list coloring, etc. Literature is full of fascinating papers
and even books and monographs on this subject. We will concentrate on the
uniqueness of the coloring of graphs and will introduce the concept of defining
sets on this subject. For example, in a given graph G, a set of vertices S with
an assignment of colors is said to be a defining set of vertex coloring, if there
exists a unique extension for the colors of S to a proper coloring of the vertices
of G.

The concept of defining set has been studied in some extent about the block
designs and also under the other name, a critical set, about the latin squares. A
connection with the latter topic will be shown. By graph theoretical methods,
the smallest defining sets of many classes of familiar graphs are determined,
which imply the critical sets of ordinary and back circulant latin rectangles.
The same as critical sets in latin squares one may think of the applications of
defining sets in graphs, into cryptography.

Infinite One-regular Graphs of Valency 4

Aleksander Malnič Dragan Marušič Norbert Seifter

A graph is said to be one-regular if its automorphism group acts regularly on
the set of its arcs. A construction of an infinite family of infinite one-regular
graphs of polynomial growth having valency 4 and vertex stabilizer Z2

2 is given.
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Completely Regular Codes and Simple Subsets

William J. Martin

An equitable partition in a graph is a partition of the vertices having the property
that, given any two cells Ci and Cj , all vertices in Ci have the same number
of neighbours in Cj . A subset C is a completely regular code if the partition
according to distance from C is equitable. Simple subsets constitute a general-
isation of these. (Intuitively, completely regular codes are the “P-polynomial”
simple subsets.) These families of objects arise in the study of quotients of
distance-regular graphs and association schemes, respectively. Today, I will
present some recent results in this area, taking examples from the Hamming
graphs, i.e., coding theory.

On Vertex and Edge but not Arc-transitive
Graphs of Valency 4

Dragan Marušič

A vertex-transitive graph is said to be 1
2 -transitive if its automorphism group is

vertex and edge but not arc-transitive. Let X be a 1
2 -transitive graph of valency

4 and D(X) be one of the two underlying oriented orbital graphs associated
with the action of AutX on V (X). An alternating cycle in X is a cycle whose
every other vertex is the head and every other the tail of the corresponding
two incident arcs in D(X). All alternating cycles have the same length, half of
which is called the radius of X. A 1

2 -transitive graph of valency 4 is said to be
tightly attached if any two adjacent alternating cycles have precisely every other
vertex in common.

Some general results on 1
2 -transitive graphs of valency 4 will be given. Also,

the classification of tightly attached 1
2 -transitive graphs of valency 4 will be

discussed.
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Representation of Graphs on a Torus

F.J. Cobos J.C. Dana A. Marquez F. Mateos

A complete characterization of the class of graphs that admit a toroidal visibility
representation is given. In that representation, vertices map to intervals parallel
to meridians in the the torus and two vertices are joined by an edge if their
corresponded intervals are joined by a strip parallel to the parallels in the torus.
We also study the relation of these graphs with those admiting a planar visibility
representation and those with a cylindric visibility representation.

Directed Minors

William McCuaig

A square real matrix is sign-nonsingular if it is forced to be nonsingular by
its pattern of negative, positive, and zero entries. A digraph is even if every
weighting of its arcs with zeros and ones results in a directed cycle of even
weight. The problem of characterizing sign-nonsingular matrices is equivalent
to the problem of characterizing even digraphs.

C. Little, and independently, P. Seymour and C. Thomassen have shown
that a digraph is even if and only if it has a subdigraph which is a weak odd
double directed cycle. We will characterize the digraphs which have either a
subdigraph which is a weak k-double directed cycle, where k ≥ 4, or a weak D4,
where D4 is a specific digraph with four vertices.

Strict Colourings for Classes of STS

Lorenzo Milazzo

The concepts of mixed hypergraph, strict colouring and upper chromatic num-
ber χ̄ introduced by Voloshin in 1993 are applied to the Steiner systems. A mixed
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hypergraph is characterised by the fact that it possesses anti-edges as well as
edges. In a colouring of a mixed hypergraph, every anti-edge has at least two
vertices of the same colour. The upper chromatic number χ̄ is the maximal num-
ber of colours for which there exists a colouring using all the colours. We prove
that for STS infinite colourable classes of these systems exist and determine the
exact value of the upper chromatic number.

Embedding Extension Problems

Bojan Mohar

If G is a graph and K is a Π-embedded subgraph of G, one can ask if the em-
bedding Π of K can be extended to an embedding of the entire graph G in the
same surface. More generally, one ask if Π can be extended to an embedding of
G which satisfies some additional requirements. Such problems are called em-
bedding extension problems, and the main question is to characterize (minimal)
obstructions for existence of required embedding extensions. Additionally, one
may ask for efficient algorithms that either discover an embedding extension or
find a minimal obstruction.

In the talk, a hierarchy of embedding extension problems will be presented
that can be used to get a general solution by means of efficient algorithms and
structural characterization of obstructions. Cf. [1]–[4].

A special case of these results — combined with an operation called com-
pression — has been used to devise linear time algorithms for embedding graphs
in an arbitrary fixed surface [4].

Part of this talk is a joint work with Martin Juvan and Jože Marinček.
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Homomorphisms of Regular Maps

Roman Nedela Martin Škoviera

By a map M = (K;R) we mean a 2-cell embedding of a graph K into a closed
orientable surface, R is the rotation system describing it. The map M is regular
if the map automorphism group Aut(M) acts regularly on the set of arcs of K.
Let M be a regular map and let K̃ be a graph which regularly covers K. Assume
that the covering is defined by a voltage assignment α assigning to each arc x
of K an element α(x) of a group G. Gvozdiak and Širáň proved that the lifted
map M̃ = (K̃; R̃) is regular if and only if the following uniformity condition
is satisfied: for each ϕ ∈ Aut(M) and each closed walk W of K α(W ) = 1 iff
α(ϕW ) = 1. We prove that every morphism of maps mapping a regular map
M̃ onto a regular map M can be described by a voltage assignment satisfying
the uniformity condition.

Orienting Cycle Elements of Oriented Rotation
Systems

Eugene T. Neufeld

The natural orientation that facial walks inherit from an orientable rotation
system cannot be extended to the class of cycles of the embedding, even for genus
zero. We explore the limits of such extensions, which we call bifurcating cycle
elements (of the cycle space of the embedded graph). We apply the concepts
and associated facts to obtain some results: for example, a simple, general, and
purely combinatorial proof that S/N0 ' K, where S is the cycle space of a
toroidal embedding, N0 is the subspace of S generated by the facial walks, and
K is the Klein group.
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The Thickness of Graphs without K5 Minors

M. Jünger P. Mutzel T. Odenthal M. Scharbrodt

The thickness θ(G) of a graph G = (V,E) is the minimum number k such
that the edge set E of G can be partitioned into k sets, each of them inducing a
planar graph. The thickness problem, asking for the thickness of a given graph
is a difficult problem. For the complete graphs and hypercubes, the thickness is
known. Even for the complete bipartite graphs, there are still some open cases.

We consider the class of graphs not contractible to K5. By using the de-
composition theorems of Wagner and Truemper, we show that the thickness of
graphs without K5-minors is either one or two and we get results about the
thickness of graphs not contractible to K5.

k-Coverings of Digraphs

Walter Pacco Raffaele Scapellato

We consider the categories of voltage digraphs VGk and of k-coverings Covk
and show how the construction of a k-covering (Γ̃,Γ, p), from a voltage digraph
(Γ, σ) is a functor. Let (Γ̃,Γ, p) be a k-covering. We introduce a notion of
partition for its vertex set and a suitable function aτ : V Γ̃ → V Γ̃, depending
on the partition, which characterizes the adjacences in Γ̃ in terms of voltages of
the base. The function aτ enables us to characterize liftings of homomorphisms
among bases of a k-covering in terms of their voltages. Finally, we describe the
digraphs Γ̃ which are double covering of some voltage digraph (Γ, σ) in VGk.

Recent Results on Geometric Graphs

Janos Pach

∗No abstract received.
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Computing Generating Functions From Partial
Recurrences

Marko Petkovšek

Combinatorial enumeration problems often lead to partial recurrences of the
form an = F (an−z1 , an−z2 , . . . , an−zk

), for n ≥ s, where s ∈ INd and Z =
{z1, z2, . . . , zk} ⊂ ZZd satisfy s − Z ⊂ INd. We prove a general existence and
uniqueness theorem for such equations based on the geometry of the set Z.
When F is a linear form with constant coefficients, we investigate the nature of
the corresponding generating function G(x) =

∑
n∈INd anxn. It turns out that

depending again on the geometry of Z, and assuming that boundary conditions
are nice, G can be rational, algebraic, or – surprisingly – even non-algebraic. In
the first two cases at least, it can be computed automatically.

Vega: A System for Doing Discrete Mathematics

Tomaž Pisanski

Vega is a system for doing Discrete Mathematics. It is a Mathematica based
collection of operations with interface to external packages and programs. In
1990 we started a project by adding an interface from Combinatorica by Steve
Skiena to nauty by Brendan McKay. Soon it became obvious that continuous
additions and modifications of the package produced an entirely new system
that we called Vega. Tens of students and colleagues throughout the world have
contributed to the Vega project.

The ideas behind Vega are simple. The project should be based on a powerful
and machine independent system like Mathematica or Maple. It should provide
an integrated and user friendly environment in which researchers, teachers and
students of mathematics or any other branch of science in which graphs are used,
can quickly test ideas and hypotheses on small and mid-size examples. First
algorithms are written quickly in Mathematica. If they are time consuming then
they are replaced by more efficient algorithms written in C, C++ or Pascal.

The documentation for Vega was converted to HTML. Several programs
have been written by Bla”z Lorger for automatic creation of the documentation
pages with hyperlinks and pictures included.
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There are several options available for viewing graphs. Encapsulated Postscript
files can be created from Vega, say by using its subsystem, Postgraf, by Bor
Plestenjak. EPS files are then converted to GIF and are available in the Vega
Graph Gallery. In addition there are several viewers available for viewing graph
data files. Some recent additions to Vega will be demonstrated, including knot
and link drawing package by Ga”sper Fijav”z.

Current version of the system and more information about the Vega Project
is available at: http://www.mat.uni-lj.si/dwnld.htm

Algorithmic Applications of the Immersion
Order

Barbara Plaut Mike Langston

The immersion order, like the minor order, is a WQO supporting polynomial-
time order tests. In this talk, we discuss some of the algorithmic aspects of
the immersion order. We use a well-known problem from circuit layout as an
example, with particular emphasis on FPGA partitioning. With this problem
we discuss the distinction between search and decision, and detail what is known
about self- reductions, closure-preserving operators and related developments.

Computing Visibility Graphs via
Pseudo–triangulations

Michel Pocchiola Gert Vegter

We show that the k free bitangents of a collection of n pairwise disjoint convex
plane sets can be computed in time O(k+n log n) and O(n) working space. The
algorithm uses only one advanced data structure, namely a splittable queue.
We introduce greedy pseudo–triangulations, whose combinatorial properties are
crucial for our method.
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Recent Developments in the Study of Finite
Edge-transitive Graphs

Cheryl E. Praeger

Much progress has been made recently in the study of finite edge-transitive
graphs. Part of the impetus has been the development of new tools for studying
permutation groups following the finite simple group classification. Topics which
will be discussed in this lecture will include s-path transitivity, a structural
approach to studying finite 2-arc transitive graphs, orders of vertex-transitive
non-Cayley graphs, and a structural study of finite Cayley graphs.

Simple Groups and Probabilistic Methods

László Pyber

In 1969 Dixon proved that two randomly chosen elements almost certainly gen-
erate the full alternating group Alt(n). This result has been extended to all finite
simple groups by Kantor, Lubotzky and Liebeck, Shalev. Recently Liebeck and
Shalev also proved that one of the two elements may be required to have order
2. Various results of similar flavour are now known for certain infinite families
of finite simple groups. For example confirming a conjecture of Lubotzky the
present author proved the following: Let G and H be two fixed non-trivial fi-
nite groups not both of order two.Then a pair of random subgroups of Sym(n)
isomorphic to G and H respectively generates either Alt(n) or Sym(n).

Such results open up the possibility of applying probabilistic ideas to solving
some classical problems in group theory. Very recently using a probabilistic ar-
gument Dixon, Pyber, Seress and Shalev gave a new concise proof of (a stronger
version of) the following deep result of Weigel: Let S be an infinite family of sim-
ple groups. Then F2 the free group of rank 2 is residually S (i.e. the intersection
of all normal subgroups of F2 with factor-groups in S is trivial).

33



Some Commutators Generated by Shift
Operators

Marko Razpet

Inspired by the article Lawrence H. Riddle: An Occurrence of the Ballot Num-
bers in Operator Theory, Amer. Math. Monthly, 98 (1991), 613–616, we can
make some generalizations as follows.

Let H be a nontrivial separable Hilbert space over the field C of com-
plex numbers and e0, e1, . . . a fixed complete orthonormal basis in H. Let
w0, w1, w2, . . . be a sequence of real numbers – weights. A unilateral weighted
shift operator S maps each basis vector ek into a scalar multiple of its suc-
cessor: Sek = wk ek+1 , k = 0, 1, . . .. Extending S to the whole space H
we get a linear operator on H. For the adjoint operator S∗ of S we get
S∗ek = wk−1ek−1 , k = 1, 2, . . . but S∗e0 = 0. We define the commutator
[P,Q] of two linear operators P and Q on H by

[P,Q] = QP − PQ ,

and the sequence of linear operators Cn in the following way:

C0 = [S, S∗] and Cn+1 = [[Cn, S], S∗] for n = 0, 1, 2, . . . .

The operators Cn are diagonal with weights a(n, k). The operator Tn = [Cn, S]
is a unilateral weighted shift operator with the weights b(n, k). We find the
recurrence formulas and the initial conditions for the double sequences a(n, k)
and b(n, k). We try to solve the obtained recurrences for suitable weights wn.
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Contractible and Noncontractible Cycles in
Embedded Graphs

Bruce Richter

Recent work in graphs in surfaces have dealt with finding specific types of cycles
in embedded graphs. For example, if G is a 6-representative embedding in an
orientable surface of genus 2 or more, then G contains a noncontractible cycle
that separates the surface. Also, if G is a 4-representative embedding and F
and F ′ are faces of G, then there is a cycle in G that bounds a closed disc in
the surface so that the disc contains both F and F ′.

Some Recent Results About Graphs on Surfaces

Neil Robertson

∗No abstract received.

The Combinohedron

J.L. Raḿirez-Alfonśin David Romero

Let e1, . . . , en be n different elements, let r1 ≥ . . . ≥ rn be positive integers, and
let m =

∑n
i=1 ri. The combinohedron, denoted by Cm(r1, . . . , rn), is the loopless

graph whose vertices are the m-tuples in which the element ei appears exactly ri
times, and where an edge joins two vertices if and only if one can be transformed
into the other by interchanging two adjacent coordinates. The graph known as
permutohedron is a particular case of the combinohedron. Here, we extend
to the combinohedron some results on embeddability and hamiltonicity of the
permutohedron.
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Infinite Graphs Determined by Locally Maximal
Clones

I. G. Rosenberg

∗No abstract received.

Partitions of Graphs into Simpler Graphs

Guoli Ding Bogdan Oporowski

Daniel P. Sanders Dirk Vertigan

Let an edge partition of a graph G be a set {A1, . . . , Ak} of subgraphs of G
such that

⋃k
i=1E(Ai) = E(G). Let a vertex partition of a graph G be a set

{A1, . . . , Ak} of induced subgraphs of G such that
⋃k
i=1 V (Ai) = V (G).

A conjecture is presented:
For n ≥ m ≥ 2, every graph with no Kn-minor has a vertex partition into
n−m+ 1 graphs with no Km-minor.

Note that this contains Hadwiger’s conjecture as the special case when m =
2. Hadwiger’s conjecture has been verified for n ≤ 6. The authors verify the
remaining cases of the above conjecture for n ≤ 5. The parallel conjecture for
edge partitions is shown to be false for small m and large n, but the following
is conjectured:
For n ≥ 4, every graph with no Kn-minor has an edge partition into two graphs
with no Kn−1-minor.

The authors also verify this for n ≤ 5.
There is a related problem for graphs on surfaces. Robertson and Seymour

showed that even planar graphs can have arbitrarily large tree-width. But
it turns out that every graph embedded on an arbitrary surface has a vertex
partition into two graphs of bounded tree-width. A proof is presented which
makes use of the Discharging Method, the method that was used to prove the
Four Color Theorem. The same result is not known for edge partitions, but it
is verified for the plane, projective plane, torus, and Klein bottle.
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Generalized Orbital Graphs

Raffaele Scapellato Walter Pacco

Let V be a n-set, let G be a subgroup of Sn × Sn. If (a, b) is any ordered
pair of elements of V , the generalized orbital graph Γ = G(a, b) is the digraph
with vertex set V and arc set {(ga, hb)|(g, h) ∈ G}. Unlike standard orbital
graphs, the generalised ones are not necessarily regular, and may have loops.
Some sufficient condition are established in order to have no loops in such a
graph. We study also the link of G with Aut(Γ̃), where Γ̃ is the canonical
double covering of Γ.

Some Non-Cayley Graphs on pqr Points

Ákos Seress

About ten years ago, Marusic proposed the determination of the set of non-
Cayley numbers. A number n belongs to this set if there exists a vertex-
transitive, non-Cayley graph of order n. The status of all non-square-free num-
bers and numbers of the form pq, 2pq was settled recently. We present some
non-Cayley graphs in the smallest unsolved case, when the order is the product
of three distinct primes.

Planar Cayley Graphs

Hermann Servatius

∗No abstract received.
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Tutte’s 3-Edge-colouring Conjecture

Paul Seymour

In 1966, Tutte conjectured that any cubic bridgeless graph not containing the
Petersen graph as a minor is 3-edge-colourable. This implies the four-colour
theorem, and has remained open even though the four-colour theorem has been
proved. In joint work with Neil Robertson and Robin Thomas, we showed
that to prove the conjecture, it is enough to prove it for two special kinds of
graphs, “apex” and “doublecross” graphs. (G is “apex” if G \ v is planar for
some vertex v; and G is “doublecross” if it can be drawn in the plane with
only two crossings, both on the infinite region.) Thus, Tutte’s conjecture is now
in a form where it may be provable by some modification of the proof of the
four-colour theorem.

This was proved by finding all “internally 6-connected” cubic graphs that
do not contain the Petersen graph. (Any minimal counterexample to Tutte’s
conjecture must be internally 6-connected.) We showed that any such graph is
“almost” either apex or doublecross. More generally, we obtained a structural
characterization of all the cyclically 5-connected graphs that do not contain the
Petersen graph.

Face 2-Colourable Triangular Embeddings of
Complete Graphs

M. J. Grannell T. S. Griggs Jozef Širáň

A face 2-colourable triangulation of an orientable surface by a complete graph
Kn can exist only if n ≡ 3 or 7 (mod 12). Their existence for n ≡ 3 (mod 12)
was established in the course of proving the famous Heawood conjecture, but
apart from the trivial case n = 7 and the very recently discovered case n = 19,
no other face 2-colourable orientable triangulations of Kn have been known for
n ≡ 7 (mod 12). In this paper we fill 1/3 of the gap by proving that such
triangulations exist also for each n ≡ 7 (mod 36). The construction is based on
surface surgery and lifting embedded graphs via voltage assignments.

The above result can be rephrased in terms of Steiner triple systems. A
Steiner triple system of order n (STS(n)) is said to be embeddable in an ori-
entable surface if there is an orientable embedding of the complete graph Kn
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whose faces can be properly 2-coloured (say, black and white) in such way that
all black faces are triangles and these are precisely the blocks of the STS(n). If,
in addition, also all white faces are triangular, then they form another STS(n);
the pair of such STS(n) is then said to have an (orientable) bi-embedding. We
study several questions related to embeddings and bi-embeddings of STS. As
an interesting aside, we give an alternative proof of the case n ≡ 3 (mod 12)
of Heawood conjecture, based solely on bi-embedded STS obtained by the Bose
construction.

Nonorientable versions of these results are discussed as well.

Dense Regular Maps

Martin Škoviera

Let M be a map, i.e., a 2-cell embedding of a connected graph G in a surface
S. The face-width of M is the minimum |C ∩G| taken over all non-contractible
simple closed curves on S. This invariant measures how well G represents S, or
how densely it is embedded in S.

A map M is said to be regular if its automorphism group acts regularly
(and hence transitively) on the mutually incident (vertex,edge,face)-triples, the
flags of M . Regularity is, in a sense, the highest level of symmetry a map on a
surface can have. In a regular map all the vertex valencies must be equal, say
to a number q, and all the face-sizes must be equal, say to a number p. The
pair {p, q} is said to be the type of M .

So far, the concepts of face-width and regularity of maps have been studied
separately. In this talk we will discuss maps which are both regular and have
large face-width. We show, in particular, that for any hyperbolic type {p, q}
(that is to say, 1/p + 1/q < 1/2) and for any w ≥ 2 there exists a regular map
of type {p, q} with face-width at least w. As a corollary we obtain the fact
conjectured by Grünbaum (1976) and later proved by Vince (1983) that there
are infinitely many regular maps of each hyperbolic type.

This is a joint research with Roman Nedela (Matej Bel University, Banská
Bystrica, Slovakia).
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Triangulations and Locally Hamiltonian Graphs

Zdzis law Skupień

A finite graph G which is CLH (connected locally Hamiltonian) is ready to be
a simple triangulation graph of a closed surface M . If the LH assumption on
G is dropped, the corresponding decision problem for G is known (due to C.
Thomassen ’93) to be NP-complete. Also a CLH graph G of order n and size
m need not triangulate an M with Euler characteristic χ(M) even if G has
m = 3n − 3χ(M) edges, the case χ(M) = 2 (or M = S0, the sphere) being a
striking exception. In fact, among graphs of any fixed order n ≥ 4, maximal
planar graphs are precisely CLH graphs of the smallest possible size. Hence, as
a by-product, one gets that there is no CLH graph of order n and size less than
3n− 6.

Furthermore, a Kuratowski type planarity criterion involving only K5 is
true for LH graphs. At the other extreme, K3,3 is clearly sufficient for deciding
planarity of cubic graphs. The corresponding embeddability criterion for cubic
graphs and the projective plane N1 involves only 6 (cubic) graphs out of the
known list of 103 homeomorphically irreducible non-projective-planar graphs.
What about the corresponding smallest list(s?) for LH graphs (and M = N1)?
What is the complexity of deciding whether a given LH graph G is embeddable
as a triangulation graph?

Generating some triangulation graphs will be dealt with.

Tutte’s 5-Flow Conjecture for Graphs of
Nonorientable Genus 5

Eckhard Steffen

We develop constructions for nowhere-zero 5-flows of 3-regular graphs which sat-
isfy special structural conditions. Using these constructions we show a minimal
counter-example to Tutte’s 5-Flow Conjecture is of order ≥ 44 and therefore
every bridgeless graph of nonorientable genus ≤ 5 has a nowhere-zero 5-flow.

One of the structural properties is formulated in terms of the structure of
the multigraph G(F) obtained from a given 3-regular graph G by contracting
the cycles of a 2-factor F in G.
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Unit Distance Graphs in Minkowski Planes

K. J. Swanepoel

Given a Minkowski plane N (i.e. a two-dimensional Banach space), let f(n,N )
(respectively fM (n,N ), fm(n,N )) be the maximum number of unit distances
(respectively largest distances, smallest distances) that can occur between n
points in the plane.

We determine f(n,N ) for all non-strictly convex N , and fM (n,N ) for all N .
We also determine fm(n,N ) for all planes except those having a parallellogram
as unit circle, where we find a lower bound (which we conjecture to be exact)
and a (non-strict) upper bound. For non-strictly convex N these functions only
depend on the length of the longest line segment on the unit circle of N .

We do not find good upper bounds for f(n,N ) where N is strictly convex.
This seems to be very difficult: the Euclidean case being a long-standing open
problem of Erdös.

A van der Waerden Theorem for Trees

C.J. Swanepoel L.M. Pretorius

We consider a Ramsey property of finite trees (viewed as representations of
certain posets). Nešetřil, Rödl and Fouché showed that for various partitions of
finite posets an obvious lower bound on the height of the structure, which has
the required preservation of structure under partitions, is attainable. When one
considers linear embeddings the obvious lower bound K is expressible in terms
of the van der Waerden number. For point-partitions we find a bound on the
arity of a tree while restricting the height to the lower bound K:

For natural numbers n, k, and r there exists a complete tree T of height K
and arity rK(n − 1) + 1 such that for an arbitrary r-colouring of the elements
of T a linear level-preserving monochromatically embedded copy of a complete
tree of height k and arity n can be found in T .
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Linkless Embeddings, the Four-Color Theorem,
and Conjectures of Hadwiger and Tutte:

A Survey.

Robin Thomas

We will survey the following results pertaining to the Four-Color theorem and
its generalizations:

(i) A uniqueness theorem for linkless embeddings, and a characterization of
linklessly embeddable graphs,

(ii) A new and simpler proof of the Four-Color theorem,
(iii) A proof of Hadwiger’s conjecture for K6-free graphs,
(iv) A structural characterization of cyclically 5-connected cubic graphs that

do not contain a homeomorphic copy of the Petersen graph,
(v) A reduction of Tutte’s 3-edge-coloring conjecture to ”apex” and “double-

cros” graphs.
This is joint work with Neil Robertson and Paul Seymour; (ii) is also

joint with Daniel P. Sanders.

Sachs Triangulations, Generated by Dessins
d’Enfant, and Regular Maps

Heinz-Juergen Voss

∗See the extended abstract at the end.
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Solvable Symmetric Graphs of Order 6p

Ru-Ji Wang

This paper is only a step of the work of classifying symmetric graphs of order
6p.

Let X be a simple undirected graph and G a subgroup of the full automor-
phism group Aut(X) of X. X is said to be G-symmetric if G acts transitively
on the set of arcs of X (i.e., ordered adjacent pairs of vertices of X). X is said
to be symmetric if it is AutX-symmetric. X is said to be solvable symmetric if
Aut(X) contains a solvable subgroup G such that X is G-symmetric.

In this paper we show that, except for the lexicographic products X[2K1],
Y [3K1], and the deleted lexicographic products X[2K1] − 2X, Y [3K1] − 3Y
where X and Y are solvable symmetric graphs of order 3p and 2p respectively,
there exist only two families of solvable symmetric graphs of order 6p, p a prime
number.

Two Studies in the Method of Transfer Matrices

Herbert S. Wilf

We will briefly discuss what the transfer matrix is, in general, and then will
give two applications of it, one to combinatorics and the other to graph theory.
The combinatorial application is to the question of counting the arrangements
of nonattacking kings on a rectangular chessboard. The graph-theoretical ap-
plication concerns the number of independent sets in a rectangular grid graph.
In both cases we find exact formulas, as generating functions, and asymptotic
behavior. Some unsolved problems will be stated.
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Isomorphisms and Automorphism Groups of
Cayley Graphs

Ming-Yao Xu

Let G be a finite group and S a subset of G not containing the identity element
1. We define the Cayley (di)graph X = Cay(G,S) of G with respect to S by

V (X) = G,
E(X) = {(g, sg)

∣∣ g ∈ G, s ∈ S}.
If S is inverse-closed, that is S−1 = S, then X is undirected. Obviously, the
full automorphism group Aut(X) of X contains the right regular representation
R(G) of G.

In my talk two problems about Cayley graphs are considered.

1. Normal Cayley Graphs
It is very difficult to determine the full automorphism group of a Cayley graph
in general, and it is also difficult to determine if the Cayley graph is edge-
transitive or arc-transitive and so on. However, it will be much easier to do this
for a special kind of Cayley graphs — so-called normal Cayley graphs. This is
the reason of introducing the following concept.
Definition: The Cayley (di)graph X = Cay(G,S) is called normal if R(G) is
normal in A = Aut(X).
Of course, to characterize normal Cayley graphs completely is a hard job. How-
ever, we may first to try this for some special classes of groups and graphs.
In this talk I shall present some results we obtained, and propose some open
problems. A typical result is
Theorem: (1) Every finite group has at least one normal Cayley digraph;

(2) With the following exceptions, every finite group has at least one normal
Cayley graph: Z4 × Z2, Q8 × Zm2 , for any non-negative integer m.

2. A Problem on Isomorphisms of Cayley Graphs
Let X = Cay(G,S) be a Cayley digraph of G with respect to S. We call S
a CI-subset of G, (CI stands for “Cayley Invariant”), if for any isomorphism
Cay(G,S) ∼= Cay(G,T ) of Cayley digraphs there is an α ∈ AutG such that
Sα = T . I would like to propose the following
Problem: Let S be a minimal generating subset for a finite group G. Are S
and S ∪ S−1 CI-subsets?
I think this problem is rather difficult, and there are very few results available
so far. In this talk I shall survey some results I know, with some applications.
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Boundary Graphs: The Limit Case of a Spectral
Property (II)

M.A. Fiol E. Garriga J.L.A. Yebra

A subject that presently arouses much interest is that of bounding the diameter
of a graph in terms of its eigenvalues. A general formulation of most results
obtained is: Let λ0 > λ1 > · · · > λd be the d + 1 distinct eigenvalues of a
regular graph of order n and diameter D, and let P be a polynomial. Then,
P (λ0) > ‖P‖∞(n− 1) ⇒ D ≤ dgrP , where ‖P‖∞ = max1≤i≤d{|P (λi)|}.

The best results are obtained when P is the alternating polynomial of degree
k ≤ d − 1, thus called because it takes alternating values ±1 at k + 1 points
∈ {λ1, . . . , λd}. For not necessarily regular graphs, the above condition reads
P (λ0) > ‖P‖∞(‖v‖2 − 1) ⇒ D ≤ dgrP, where v is the positive eigenvector
with minimum component equal to 1.

To measure the acuracy of this result it is interesting to analyze those graphs
which satisfy P (λ0) = ‖P‖∞(‖v‖2 − 1). This has already been done by the
authors when dgrP = d− 1, and is undertaken in this paper for dgrP < d− 1.

Disjoint Paths and the Rooted K4-Problem

Xingxing Yu

Given four vertices w, x, y, z in a 4-connected graph G, we will study the rooted
K4-problem: when does G contain a K4-subdivision with w, x, y, z as the degree
three vertices. Some related problems about disjoint paths will also be discussed.
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Recognizing Cartesian Graph Bundles

Wilfried Imrich Tomaž Pisanski Janez Žerovnik

Graph bundles [2] generalize the notion of covering graphs and graph products.
In this paper we extend some of the methods for recognizing Cartesian product
graphs [1] to graph bundles. Two main notions are used. The first one is the
well-known equivalence relation δ∗ defined on the edge-set of a graph. The
second one is the concept of k-convex subgraphs. A subgraph H is k-convex in
G, if for any two vertices x and y of distance d, d ≤ k, each shortest path from
x to y in G is contained entirely in H. The main result is an algorithm that
finds a representation as a nontrivial Cartesian graph bundle for all graphs that
are Cartesian graph bundles over a triangle-free simple base. The problem of
recognizing graph bundles over a base containing triangles remains open.

References
1. W.Imrich and J.Žerovnik: Factoring Cartesian-product Graphs, Journal of
Graph Theory 18 (1994) 557-567.
2. T.Pisanski, J. Shawe–Taylor and J.Vrabec, Edge–colorability of graph bun-
dles, J. Combin. Theory Ser. B 35 (1983) 12-19.

Homomorphisms of Digraphs

X. Zhu

∗No abstract received.
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Orientable Closed 2-cell Embeddings of
Projective Planar Graphs

X. Zha

A closed 2-cell embedding of a graph is an embedding that each face is bounded
by a cycle in the graph. The orientable strong embedding conjecture says that
every 2-connected graph has a closed 2-cell embedding in some orientable sur-
face. This conjecture is probably the strongest conjecture along the line of the
Cycle Double Cover Conjecture and the Strong Embedding Conjecture. In this
paper we introduce some reductions and surgeries to construct orientable closed
2-cell embeddings from nonorientable closed 2-cell embeddings. Applying these
surgeries we prove that every 2-connected cubic projective planar graph has an
orientable closed 2-cell embedding.

Isomorphic Components of Kronecker Product
of Bipartite Graphs

P.J. Jha S. Klavžar B. Zmazek

Weichsel (Proc. Amer. Math. Soc. 13 (1962), 47-52) proved that the Kro-
necker product of two connected bipartite graphs consists of two connected
components. A bipartite graph G = (V0

⋃
V1, E) is said to have a property π

if G admits of an automorphism ϕ such that x ∈ V0 if and only if ϕ(x) ∈ V1.
It is proved, that the two components of G × H are isomorphic, if G and H
are bipartite graphs one of which has property π. It is demonstrated that sev-
eral familiar and easily constructible graphs are amenable to that condition. A
partial converse is proved for the above condition and it is conjectured that the
converse is true in general.
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