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Abstract. Let K = C ∪ e1 ∪ e2 be a subgraph of G, consisting of a cycle C and disjoint paths
e1 and e2, connecting two interlacing pairs of vertices in C. Suppose that K is embedded in the
Möbius band in such a way that C lies on its boundary. An algorithm is presented which in linear
time extends the embedding of K to an embedding of G, if such an extension is possible, or finds
a “nice” obstruction for such embedding extensions. The structure of obtained obstructions is also
analysed in details.
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1. Introduction. Let K be a subgraph of a graph G. A K-bridge (or a K-
component) in G is a subgraph of G which is either an edge e ∈ E(G)\E(K) (together
with its endpoints) which has both endpoints in K, or it is a connected component of
G− V (K) together with all edges (and their endpoints) between this component and
K. Each edge of a K-bridge B having an endpoint in K is a foot of B. The vertices
of B ∩K are the vertices of attachment of B. A vertex of K of degree in K different
from 2 is a main vertex of K. For convenience, if a connected component of K is a
cycle, then we choose an arbitrary vertex of it and declare it to be a main vertex of
K as well. A branch of K is any path (possibly a closed path) in K whose endpoints
are main vertices but no internal vertex on this path is a main vertex. If a K-bridge
has all vertices of attachment on a single branch of K, it is said to be local .

This paper is part of a larger project [JMM, M4] which shows that there is a linear
time algorithm to construct embeddings of graphs in an arbitrary (fixed) surface,
generalizing the well-known Hopcroft-Tarjan algorithm [HT] for testing planarity in
linear time. Our algorithms rely on the theory of bridges: a subgraph K of G is
embedded in the surface and then this embedding is either extended to an embedding
of G, or an obstruction for such extensions is found. In this paper we solve and
analyse a particular case of this problem where the underlying surface is the Möbius
band dissected by K into two faces. It is shown that obstructions for extending
the embedding of K are either small, or have a very special (millipede) structure.
Moreover, finding an embedding extension or such an obstruction requires only linear
time (Theorem 5.3).

These results are used and extended in [JM] and [M1]. Related results are also
obtained in [M1, M2].

In our algorithms, we consider embeddings of graphs. In case of orientable sur-
faces, embeddings can be described combinatorially [GT] by specifying a rotation
system: for each vertex v of the graph G we have cyclic permutation πv of its neigh-
bors, representing their circular order around v on the surface. Although the Möbius
band is non-orientable, such a presentation suffices also in our case since it is enough
to specify rotation system in each of the faces of the chosen embedding of K. In order
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to make a clear presentation of our algorithm, we have decided to use this descrip-
tion only implicitly. Whenever we say that we have an embedding, we mean such a
combinatorial description.

Concerning the time complexity of our algorithms, we assume a random-access
machine (RAM) model with unit cost for basic operations. This model was introduced
by Cook and Reckhow [CR]. More precisely, our model is the unit-cost RAM where
operations on integers, whose value is O(n), need only constant time (n is the size of
the given graph).

2. Parallel computations with constant time overhead. We will need the
following simulation of parallelism performed on a unit-cost RAM. At certain steps of
our algorithm we will not be able to decide in advance between two possible choices.
In such a case we will continue computations simultaneously in both directions. This
will enable us to efficiently choose between the two alternatives. During such parallel
computations no new parallelism will be introduced.

Denote by P1 and P2 both parallel processes. During the parallel computation
exactly one of the following three cases will occur:

(i) The process P1 terminates successfully. This means that at the beginning of
the parallelism the decision for P1 would be the right one. In this case, we
say that the parallel computation terminates successfully. We also stop P2 (if
still active) and restore the memory to the state before starting parallelism,
choose the alternative P1 as the proper one and continue with (non-parallel)
computation from this point on.

(ii) If P2 terminates successfully, then we act as in the previous case, except that
we stop P1 and choose the second alternative as the right one.

(iii) If none of P1,P2 terminates successfully, then the parallel computation is said
to terminate non-successfully.

If one of the processes fails, we still continue to run the remaining one. If it succeeds,
case (i) or (ii) occurs; if also the other process fails, we have case (iii).

In our application of parallelism, the processes P1 and P2 will try to extend
a partial embedding of a graph in two different ways. If appropriate embedding
extension is found by one of them, this process will be termed as successful. Otherwise
an obstruction for a particular type of embedding extension problem will be found. In
case (iii) the “union” of both obstructions will give rise to a more general obstruction.

We want to ensure that the amount of time spent by both processes is proportional
to the work done by either of them. To reach this goal, the actual implementation
proceeds as follows. Each parallel process will have only read access to the memory
of the main process (global memory) and also its own “copy” of this memory (local
memory). Because of the restrictions on the time spent by the parallel computa-
tions we do not copy the data from the global memory to the process’ local memory.
Otherwise it might happen that the process performs only a small amount of work
and then terminates successfully, therefore the amount of work done at this parallel
session is small, while copying the whole graph and auxiliary structures to the local
memory could take time proportional to the size of the input. To avoid these time
consuming operations we propose the following simple memory management for local
memory. Each cell in the local memory is either empty or occupied . If it is empty, this
means that its corresponding cell in the global memory would still have the initial
contents if the current parallel process would be performed on the global memory.
If it is occupied, its new contents is stored in the local memory, so that the global
memory remains unchanged. When requiring contents of a cell, the current process
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first checks in the local memory if the cell is empty of occupied. If it is empty, it reads
the contents from the corresponding cell in the global memory. Otherwise it takes
data from the local memory. New cell contents is always stored in the process’ local
memory.

To be able to efficiently delete the contents of parallel process’ local memory after
the termination of the process (and so prepare it for another parallel session) each
parallel process is associated with a list of occupied cells in its local memory. When
deleting the contents of the local memory, only these cells need to be considered.
(Only the very first “cleaning” is done by the main process in the initialization phase
of the algorithm.) Initially, at the start of the parallel process, all cells in the local
memory are empty. Moreover, the list of occupied cells is also empty. When, during
the computation, an empty cell becomes occupied, the list is updated accordingly.

It is obvious that the above memory management adds only constant time over-
head to every operation performed by the parallel process. Moreover, the final “clean-
ing” of the local memory needs at most time proportional to the amount of work
performed by the process.

It can be shown that parallelism can be realized on the standard RAM although
we do not have access to the program counter. The time complexity increases by
a constant factor (depending on the length of the program) in order to maintain
parallelism.

Let us mention at the end that the above method of choosing among alternatives
by testing them in parallel could also be (equally efficiently) implemented when the
number of alternatives is constant (but possibly greater than two).

3. Obstructions. Let K be a fixed graph embedded in some surface. Embedding
extension problem asks if for a given graph G ⊇ K it is possible to extend the chosen
embedding of K to an embedding of G. A subgraph Ω of G−E(K) is an obstruction
(for embedding extensions of K to G) if there is no embedding of K ∪ Ω extending
the chosen embedding of K. Because of Lemma 4.1 we will be able to assume that all
obstruction we will work with contain only entireK-bridges. Moreover, we will be only
interested in minimal obstructions, i.e., obstructions in which no bridge is redundant.
It will turn out that for our particular case of embedding extension problem, minimal
obstructions can be precisely characterized. They are either small, i.e. composed of a
small number of bridges, or (although arbitrarily large) of a very special form which
will be introduced in the sequel.

Let K = C ∪ e1 ∪ e2 be a graph homeomorphic to K4, where C is a cycle and
e1, e2 are disjoint paths connecting pairs of interlacing vertices in C. Suppose that
K is 2-cell embedded in the Möbius band in such a way that C lies on its boundary.
Denote by F1 and F2 the faces of K under this embedding (cf. Figure 1). We say
that K-bridges B and B′ overlap in a face of K if they cannot be simultaneously
embedded in that face.

For the purpose of the following definitions we will assume that all bridges of K
in G are small (Lemma 4.1). If this were not the case, the bridges B◦

i appearing in
the definitions should be replaced by their H-subgraphs (cf. [M2, M3]).

A thin millipede in G based on e1 and with apex x ∈ V (e2) is a subgraph M of
G− E(K) which can be expressed as M = B◦

1 ∪ · · · ∪B◦
m (m ≥ 7) where:

(M1) Each of B◦
1 and B◦

m is a K-bridge in G. Moreover, B◦
1 ∪B◦

2 ∪B◦
3 is uniquely

embeddable in F1 ∪ F2. Let Fα be the face containing B◦
1 under this embed-

ding. Similarly, B◦
m−2 ∪ B◦

m−1 ∪ B◦
m is uniquely embeddable, and let Fβ be

the face containing B◦
m. If m is even, then α = β. If m is odd, then α 
= β.
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Fig. 1. Embedding of K in the Möbius band

(M2) B◦
2 , . . . , B

◦
m−1 are distinct K-bridges that are attached to e1 and to x and are

not attached to K elsewhere.
(M3) For each i = 1, 2, . . . ,m− 1, B◦

i and B◦
i+1 overlap in F1 and in F2.

(M4) For i > 1 and i+ 2 ≤ j < m, B◦
i and B◦

j can be simultaneously embedded in
F1 and in F2. The same holds when i = 1 and 3 ≤ j < m for the face Fα.
Similarly, B◦

i (1 < i ≤ m − 2) and B◦
m can be simultaneously embedded in

Fβ . Additionally, B◦
1 ∪B◦

m can be embedded in Fα ∪ Fβ .
It is clear by (M1) and (M3) that a thin millipede M obstructs embedding extensions
of K to G.

Our notion of millipedes slightly differs from the concept of millipedes introduced
in [M2]. The millipedes in [M2] can be shorter (i.e., m < 7 is allowed) and their
subgraphs B◦

i are allowed to be proper subgraphs of bridges in order that millipedes
become minimal obstruction (with respect to the graph inclusion). On the other
hand, after eliminating redundant branches in bridges B◦

i , we can get from our thin
millipedes a millipede in the sense of [M2].

We will also need skew millipedes based on e1. They are defined similarly as thin
millipedes. The apex of a thin millipede is replaced by a pair of vertices x, y ∈ V (e2)
where no K-bridge is attached to e2 on the (open) segment between x and y. The
bridges B◦

1 , B
◦
2 , . . . , B

◦
m satisfy (M1) and (M3), while (M2) and (M4) are replaced by:

(M2′) B◦
2 , . . . , B

◦
m−1 are distinct K-bridges. If i is even (1 < i < m), then B◦

i is
attached to e1 and to x (and not elsewhere). If i is odd (1 < i < m), then
B◦

i is attached to e1 and to y (and not elsewhere).
(M4′) For i > 1 and i + 2 ≤ j < m, B◦

i and B◦
j can be simultaneously embedded

in Fα if either i 
≡ α (mod 2), or j ≡ α (mod 2) (or both). They can be
simultaneously embedded in F3−α if either i ≡ α (mod 2), or j 
≡ α (mod 2)
(or both). For 3 ≤ j < m, B◦

1∪B◦
j can be embedded in Fα. For 1 < i ≤ m−2,

B◦
i ∪B◦

m can be embedded in Fβ . Additionally, B◦
1∪B◦

2∪B◦
3∪B◦

m−2∪B◦
m−1∪

B◦
m can be embedded in F1 ∪ F2.

Equivalent definition of a skew millipede is that (M2′) together with the last condition
in (M4′) holds and after contracting the (closed) segment on e2 between x and y, we
get a thin millipede.

In referring to a millipede, we mean either a thin or a skew millipede. It is
clear from the description that millipedes are obstructions for embedding extensions.
It follows from (M4) ((M4′), respectively) that they are also minimal (no bridge is
redundant).

An obstruction will be called nice if it is either composed of a small number
of bridges (at most 13), or it is a millipede. Millipedes based on e2 and with apex
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x ∈ V (e1) ({x, y} ⊆ V (e1), respectively) are defined analogously. If the numbering of
bridges in a millipede is reversed (i.e., B′

i = B◦
m−i+1), then B′

1, . . . , B
′
m also satisfy

(M1)–(M4) (or (M1)–(M4′)).

4. 2-Möbius band algorithm. Let G be a connected graph andK = C∪e1∪e2

a subgraph of G homeomorphic to K4, where C is a cycle and e1, e2 are disjoint paths
connecting interlacing pairs a0, b0 and c0, d0 (respectively) of vertices in C. Suppose
that K is embedded in the Möbius band with C on its boundary, and that F1 and
F2 are the faces of this embedding (cf. Figure 1). The problem of extending the
embedding of K to an embedding of G will be referred to as the 2-Möbius band
embedding extension problem [M1].

In this section we will outline a linear time algorithm for the 2-Möbius band
embedding extension problem which finds an embedding extension whenever possible.
We will show in Section 5 how to extend this algorithm in order to construct a nice
obstruction in case when embedding extensions do not exist.

Next result will enable us to replace every K-bridge B in G by a small subgraph
B̃ ⊆ B such that the embedding extension problem for the new graph is equivalent
to the original one.

If B is a bridge of K in G, denote by b(B) the number of branches of B ∪K that
are contained in B. The number b(B) is called the size of B.

Lemma 4.1. [M3] Let G, K be as above. Every K-bridge B in G contains a
subgraph B̃ with size at most 13 such that for an arbitrary set of non-local K-bridges
B1, ..., Bk, any embedding of K ∪ B̃1 ∪ ... ∪ B̃k in the Möbius band with C on the
boundary can be extended to an embedding of K ∪ B1 ∪ · · · ∪ Bk. Moreover, the
replacement of all K-bridges B by their subgraphs B̃ can be done in linear time.

Let B be the set of K-bridges in G. We assume that no bridge in B is local on e1

or on e2. Denote by B0 the subset of B containing exactly those bridges which have
no vertex of attachment in C− e1− e2. These bridges are candidates to be embedded
either in F1 or in F2. From now on we will also assume that the replacement of
all K-bridges B by their small subgraphs B̃ (Lemma 4.1) has already been made.
Moreover, we assume that every bridge can be embedded in at least one of the faces
F1, F2. Otherwise we get a small obstruction and stop immediately. In particular, if
some bridge is attached only to two vertices of K, the above replacement changes it
into a branch. Moreover, we will assume that multiple branches between the same
vertices of K have been replaced by a single one.

Suppose that B ∈ B0. For y ∈ {a, b}, let yB be the vertex of attachment of B on
e1 as close to y0 as possible. Define similarly cB and dB as “extreme” attachments of
B on e2. Since there are no local bridges, the quantities xB (x ∈ {a, b, c, d}) are well
defined for every B ∈ B0. We define a = d, b = c, c = b, d = a and ã = c, b̃ = d,
c̃ = a, and d̃ = b. Note that x0 and x0 are in the same side (left, or right) of F1 and
that x̃0 and x0 lie in the opposite corners of F1.

We will first construct four lists of bridges in B0. They will be denoted by Sx,
where x stands for either of a, b, c, or d. The list Sx corresponds to the (oriented)
branch e1, or e2 of K containing the vertex x0 oriented from x0 towards the other
endpoint (e.g., Sc corresponds to e2 oriented from c0 towards d0). Every list Sx

will link all bridges from B0. Their order in Sx will be consistent with the following
requirements:

(S1) If xQ is closer to x0 than xR, then the bridge Q precedes R in Sx.
(S2) If xQ = xR and xQ is closer to x0 than xR, then Q precedes R in Sx.
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(S3) If xQ = xR, xQ = xR, and Q is attached only to xQ and xQ and R has at
least 3 vertices of attachment, then Q precedes R in the list Sx.

If a pair of bridges from B0 does not fit any of (S1), (S2), or (S3), then their order in
Sx is irrelevant. If a set of bridges from B0 is embedded in F1, then their order in F1

from left to right is consistent with Sa and Sd and inverse to their order in Sb or Sc.
Suppose that ej is the branch containing x0. Let v1, v2, . . . , vk be the vertices of

ej in direction from x0 towards the other end. The list Sx is the concatenation of
lists Ss

x, s = 1, . . . , k, where each Ss
x links all bridges B ∈ B0 with xB = vs (in order

respecting (S2) and (S3)). The lists Ss
x are constructed simultaneously as follows:

Ss
x := ∅, s = 1, . . . , k

Label all bridges in B0.
for all u ∈ V (e3−j) do
{ The vertices u are taken in order as they appear on

e3−j from x0 towards the other end. }
for all edges f incident with u do

if f is a foot of a labeled bridge B then
if B is attached only to two vertices then
add B at the end of Ss

x, where s is such that vs = xB

unlabel B
endif

endfor
for all edges f incident with u do

if f is a foot of a labeled bridge B then
if B is attached to three or more vertices then
add B at the end of Ss

x, where s is such that vs = xB

unlabel B
endif

endfor
endfor
Link S1

x , . . . , S
k
x into Sx.

It is easy to realize the traversals in the above algorithm so that the overall
time spent by the algorithm is linear. Note that the double traversal of bridges with
xB = u assures that condition (S3) will be fulfilled. Condition (S2) is satisfied at the
end since the traversal of the “opposite” branch e3−j is performed in the direction
from x0 towards the other end. Clearly, (S1) is guaranteed by the use of sublists Ss

x

and their appropriate linking at the end.
We are now ready to discuss the main part of the algorithm. Roughly speaking, it

is based on the following idea. Suppose that a subset of bridges B′ ⊆ B is already em-
bedded in F1∪F2. Their presence in F1∪F2 blocks some embeddings of the remaining
bridges. Some of the bridges thus need to be embedded in F1, some others can only be
embedded in F2. We say that these bridges are forced in F1 (or F2, respectively). By
adding these blocked bridges to B′, we obtain additional bridges with only one face
left for their embeddings. By repeating this procedure, we either get stuck (which
proves that no embedding extension exists with the initial B′ embedded as given), or
no more bridges are blocked by the chosen embedding of B′. In the latter case, it
is clear that the bridges in B′ can be left embedded as they are without obstructing
any possible embeddings of the remaining bridges. The procedure described above is
called Forcing.

At the very beginning, the bridges from B \ B0 are uniquely embeddable and
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they are used as the starting set B′. If Forcing does not embed all of the bridges
(and does not get stuck), then the problem is how to re-start. (This cannot be
avoided if, for example, B0 = B.) This problem will be solved by using parallel
computations. We choose a bridge B and start two parallel processes: the first one
corresponds to embedding B in F1, the other process to the case when we embed
B in F2. The details how to perform such parallel computations without increasing
the overall time complexity are described in Section 2. Each of the two parallel
processes either finds an embedding for a set of bridges which does not interfere with
any embedding of the remaining bridges (successful termination), or it gets stuck
(non-successful termination). It has been described in Section 2 how the two parallel
processes react if one or the other stops successfully. To ensure linear time complexity
we have to choose the starting bridge B appropriately: it must be the initial bridge
in one of the lists Sx. Of course, these lists are updated during the algorithm by
removing the already embedded bridges.

For x being any of a, b, c, or d, we will use three vertices, x, x1, x2 on the branch
ej (j ∈ {1, 2}) containing the vertex x0. For u, v ∈ V (ej), denote by [u, v) the segment
of ej from u to v (including u but not including v), and similarly by [u, v] the closed
segment of ej from u to v (including both u and v). During the algorithm, all bridges
attached to [x0, x) are already embedded and all remaining bridges attached to [x, xi)
(i = 1, 2) are blocked in F3−i by already embedded bridges, so they will need to be
put in Fi. (In particular, if a bridge that has not yet been embedded is attached to
[x, x1) ∩ [x, x2), then we are in trouble.) In the algorithm we also use bridges Bx,1,
Bx,2. They are needed only for efficient construction of obstructions and their use is
described in more details in Section 5.

The main part of the algorithm is the following:

Determine lists Sx, x ∈ {a, b, c, d}, as explained above.
Determine B0. Let B′ := B \ B0.
Embed B′.
if no embedding exists then Obstruction

Determine initial values of x, x1, x2, Bx,1, Bx,2 for x ∈ {a, b, c, d}.
Forcing

if not successful then Obstruction

Initialize auxiliary variables for parallel computations.
while B0 
= ∅ do

B := the first bridge in Sa

for every embedding of B in F1 ∪ F2 do in parallel
Determine initial values of x, x1, x2, Bx,1, Bx,2 for x ∈ {a, b, c, d}.
Forcing

end parallel for
if not successful then Obstruction

endwhile
{ If we reach this point, all the bridges have been embedded. }
Return the obtained embedding extension.

Procedure Obstruction reports that no embedding extension exists, and ter-
minates. We will show in Section 5 that by extending this procedure, one can also
construct nice obstructions (cf. Section 3) for embedding extensions in linear time.
Procedure Forcing is described below:
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procedure Forcing

{ Some bridges are already embedded. They block some embeddings of
the remaining bridges. A bridge B ∈ B0 is blocked exactly when it is
attached to a segment [x, xi) for some x ∈ {a, b, c, d}, i ∈ {1, 2}.
In that case, it must be embedded in Fi. }
while ∃x ∈ {a, b, c, d} such that x 
= x1 or x 
= x2 do

if x 
= x1 and x 
= x2 then
y := min{x1, x2} (closer to x)
if ∃B ∈ B0 attached to [x, y) then Stop(not successful)
x := y

endif
if x 
= x1 then i := 1 else i := 2 endif
Bi := all bridges in B0 attached to [x, xi)
Embed Bi in Fi.
if no embedding exists then Stop(not successful)
x := xi

Update a3−i, b3−i, c3−i, d3−i, and Sx.
B0 := B0 \ Bi

Bx,i := extreme bridge in Bi

Let Bx,i point to Bx,3−i.
{ This will be needed in the construction of obstructions. }

endwhile
Return(successful)

end {Forcing}

The search for B ∈ B0 that is attached to [x, y) in the above procedure can be
easily implemented by advancing through the list Sx. Similarly, the embeddability of
Bi in Fi is checked by moving along the list Sx and comparing extreme vertices of
attachment of bridges with already blocked segments on e1 and e2. More precisely,
this is achieved as follows. Let B1, . . . , Bt be the bridges in Bi listed in the order as
they appear in Sx. Suppose that x0 ∈ V (ej) and denote by y0 the other endpoint of ej .
Obviously, each bridge Bk (1 ≤ k ≤ t) must have an embedding in Fi. Suppose first
that i = 1. Each Bk must also be attached to ej (entirely on the segment [x, y3−i]) and
to e3−j (entirely to the segment [x3−i, y3−i]; otherwise it overlaps with the already
embedded bridges). Moreover, for k = 1, . . . , t− 1 the bridge Bk+1 must be entirely
attached to the segment [yBk

, y0] of ej and to the segment [x̃Bk
, x̃0] of e3−j ; otherwise

it overlaps with Bk in Fi. If none of these tests fails, then the bridges in Bi can be
simultaneously embedded in Fi. When i = 2, some details in the above tests have to
be modified appropriately since the list Sx is constructed with respect to embeddings
in the face F1. In particular, x and y have to be replaced by x̃ and ỹ, respectively,
and vice-versa. Moreover, bridges B ∈ Bi with the same extreme attachment xB have
to be considered in the order that is opposite to their order in Sx. During the above
test we also change B0.

Initial values of a, a1, a2 (and similarly for other x, x1, x2, x ∈ {b, c, d}) are deter-
mined at the very beginning as follows. We take a = a0. The vertex a1 is equal to
the vertex of attachment on e1 closest to b0 of bridges in B \ B0 that are attached to
the open segment from c0 to a0 on C. The corresponding bridge is taken as Ba,2. If
there are no such bridges, then a1 = a0 (and Ba,2 is undefined). Similarly, a2 is the
attachment on e1 closest to b0 of bridges in B \ B0 attached to the open segment on
C from a0 to d0. The corresponding bridge is then Ba,1.
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There is a slight difference in determining the initial values of x, x1, x2 in the
parallel part. The values x remain unchanged. If B (the initial bridge in Sa) is
embedded in F1, then: x1 = x for x ∈ {a, b, c, d}, a2 = bB, b2 = b, c2 = c, and
d2 = cB. We take Ba,1 = Bd,1 = B. Other Bx,j are undefined.

If B is embedded in F2, the situation is more complex. In this case the process of
determining the initial values of x, x1, x2, Bx,1, Bx,2 (x ∈ {a, b, c, d}) will require some
additional preprocessing in order to decide between two possible choices:

(a) If all bridges attached to e1 only at a can be simultaneously embedded in
F2 (together with B), then they can go in F2 without loss of generality. All
other bridges attached to e2 on (dB, c] must be in F1, and after fixing these
embeddings, we change c to become the vertex dB and proceed in the same
way as in the above case when B was in F1. (We set a1 = bB, c = c1 = dB,
c2 = dR, b2 = aR, where R is the “leftmost” bridge among those which
were embedded in F1; if R is not attached to the segment [d, dB), we take
c2 = c; if there are no such bridges, then c2 = c, b2 = b. Also, Ba,2 = B,
Bb,1 = Bc,1 = R, or undefined, other Bx,j are always undefined.) If the
above bridges cannot be simultaneously embedded in F1, we terminate non-
successfully.

(b) Two bridges B′, B′′ attached to e1 only at a overlap in F2 or such a bridge
B′ overlaps with B in F2. Hence, one of B′, B′′ should be embedded in F1.
Then all bridges attached to e2 on [d, dB) must be in F2. Similarly, all bridges
attached to e2 only at dB and attached to (a, b] on e1 will necessarily go into
F2. After fixing these embeddings we let d = dB and change other values
x, x1, x2 (x ∈ {a, b, c, d}) as described below.

We need to make the decision about (a) or (b) in such a way that the time spent on
this is proportional to the number of bridges whose embedding is determined during
this process. (Otherwise, we can lose linearity.) This is achieved by traversing the list
Sc. Let B′ be the current bridge in the traversal. If bB′ 
= a, then we must embed B′

in F1; if it overlaps with already embedded bridges, call Obstruction. If not, embed
B′ in F1 and proceed with the next bridge in the list Sc. Otherwise (bB′ = aB′ = a)
we try to embed B′ in F2. If successful, we proceed with the next bridge in the list. If
B′ overlaps in F2 with some already embedded bridge, we have (b). If B′ overlaps in
F2 with an already embedded bridge B′′ 
= B, then B′′ is unique. Therefore, all other
bridges that have been embedded during our traversal, can retain their embeddings
without loss of generality. The same is true in the other case when B′ overlaps with
B. In the first case we set R = B′′ while in the latter case we take R = B′. In both
cases we will consider R as a non-embedded bridge in the sequel. Let Q be the last
bridge embedded in F1 during the traversal of Sc which has an attachment on [c, cR]
(possibly undefined). Next we embed in F2 all bridges attached to e2 on [d, dB) and all
bridges attached to dB and to (a, b]. (If this is not possible, call Obstruction.) After
these changes, the values x, x1, x2 are determined as follows: a, b remain unchanged,
a1 = a2 = a, b1 = a, b2 = aQ (or b if Q is undefined or attached to e2 only at (cR, c]),
c = c1 = cR, c2 = dQ (or c if Q is undefined), d = dB, d1 = cB, d2 = dB. Bridges Bx,i

are defined accordingly.
If none of the above stop cases occurs, we stop when reaching dB and then we

have case (a).

5. 2-Möbius band obstructions. Our algorithm can be extended in a rela-
tively simple way so that in case when no embedding extension exists, it returns a
nice obstruction. Procedure Obstruction takes care of this task if we modify it as
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explained in the sequel.
There are three places where the presence of an obstruction is discovered:
(i) when embedding bridges of B′,
(ii) in procedure Forcing,
(iii) when determining the initial values in the parallel part.
In case (i), we either get a K-bridge B ∈ B′ that cannot be embedded in any

of the faces, or we get two bridges B1, B2 ∈ B′ that are both embeddable only in Fi

(i ∈ {1, 2}) where they overlap. It is clear that this case leads to a small obstruction
which can be determined efficiently by applying the results of [M2].

Consider now (ii). In Forcing, there are two obstruction stops. The first possi-
bility is when a bridge B ∈ B is attached to [x, y). This means that possible embedding
of B in F1 is blocked by Bx,1 and its embedding in F2 is blocked by Bx,2. When Bx,1

was embedded, we remembered which bridge forced it to be in F1. Similarly for all
other embedded bridges. Thus we can reconstruct a chain

(B1, Fi1) → (B2, Fi2 ) → . . . → (Bp, Fip) ,(1)

where the notation (Q,F ) → (R,F ′) means that Q and R cannot be simultaneously
embedded in F (Q being embedded in F forces R being embedded in F ′), and where
B1 is one of the initial bridges with fixed embedding, and (Bp, Fip) = (B,F1). Let us
note that i1, . . . , ip ∈ {1, 2} and that any two consecutive ir, ir+1 are distinct. Also,
Bp−1 = Bx,1. Similarly, we have a chain forcing B to be in F2:

(B′
1, Fj1) → (B′

2, Fj2) → . . . → (B′
q, Fjq ) ,(2)

where (B′
q, Fjq ) = (B,F2). It is clear that (Q,Fi) → (R,F3−i) is equivalent to

(R,Fi) → (Q,F3−i). Therefore (2) is equivalent to

(B′
q, F3−jq) → (B′

q−1, F3−jq−1 ) → . . . → (B′
1, F3−j1) .(3)

Note that (B′
q, F3−jq ) = (Bp, Fip) = (B,F1). Now, (1) and (3) can be concatenated

and rewritten in the form:

(R1, Fs1) → (R2, Fs2) → . . . → (Rr , Fsr ) ,(4)

where (R1, Fs1) = (B1, Fi1 ) and (Rr, Fsr ) = (B′
1, F3−j1).

The second stop in Forcing occurs when Bi cannot be simultaneously embedded
in Fi. If B ∈ Bi overlaps in Fi with some of the already embedded bridges, we
have exactly the same situation as above — we get (4). (As explained, this can be
discovered by a simple comparison of the extreme attachments of bridges in Bi with
a3−i, b3−i, c3−i, d3−i.)

Next possibility is that a bridge B ∈ Bi cannot be embedded in Fi (i.e., its only
embedding is in F3−i). Then we have

(R1, Fs1) → (R2, Fs2) → . . . → (Rr , Fsr ) ,(5)

where (Rr, Fsr ) = (B,Fi). This chain is not only of the same form as (4) but also
obeys the same condition that will be used in producing nice obstructions: R1 is
embeddable only in Fs1 and Rr is embeddable only in F3−sr , the opposite face of Fsr .

Similarly, if two bridges from Bi overlap in Fi. We easily get a chain of form (4)
having the same properties as in the other cases.
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If procedure Obstruction is reached because of unsuccessful termination of
the parallel computation, we get two chains of the form (4), one from each parallel
process. The first one starts with (B,F1) and it is discovered in (ii). It satisfies the
chain condition (the first bridge uniquely embeddable, the last one assigned to the
wrong face) under assumption that B is embeddable only in F1. The second process
gives rise to a similar chain. However, in this case the situation is slightly different.
We either get a chain of the form (4) that is obtained in (ii) and starts with (B,F2),
or we get a small obstruction from (iii) which itself gives rise to a chain of the form
(4). More precisely, there are two possible calls to Obstruction in (iii). If there are
two bridges R′, R′′ that overlap in F2 and are forced in F2 by B, then

(B,F2) → (R′, F1) → (R′′, F2) → (B,F1)

is the required chain of the form (4). The second possibility is when the set of bridges

B′′ = {R ∈ B | dR ∈ [d, dB) or (dR = dB and bR ∈ (a, b])}
cannot be simultaneously embedded in F2. In this case, there is also a pair B′,
B̃ of bridges (where B̃ = B′′ or B) attached to e1 only at a and attached to e2

entirely on [c, dB] that overlap in (F1 and) F2. Suppose first that there are two
bridges R′, R′′ ∈ B′′ that overlap in F2. Then the bridges B′, B̃, R′, R′′ form a small
obstruction for the whole embedding extension problem. The remaining possibility
why the bridges from B′′ cannot be simultaneously embedded in F1 is that there is a
uniquely embeddable bridge R′ ∈ B′′ that has no embedding in F2. Then B′, B̃, and
R′ form a small obstruction and we are done.

If the chain of the first parallel process starts with (B,F1) and the chain of the
other process starts with (B,F2), we can concatenate one chain with “inverse” of the
other to get a chain of the form:

(R1, Fs1) → (R2, Fs2) → . . . → (Rr , Fsr ) .(6)

In general, there are three possibilities why the chain of form (6) (or (4)) leads to an
obstruction:

(A) As described before: R1 is embeddable only in Fs1 and Rr is embeddable
only in F3−sr . We allow that R1 = Rr.

(B) (R1, Fs1) = (Rr, Fsr ) = (B,F1) and (B,F2) appears somewhere in the chain.
(C) R1 is embeddable only in Fs1 and (B,F1), (B,F2) both appear somewhere in

the chain.
The last case (C) can be transformed into a chain of type (A) as follows. If

(B,F1) = (Ri, Fsi), (B,F2) = (Rj , Fsj ), i < j, then we get:

(R1, Fs1 ) → . . . → (Rj , Fsj ) → (Ri−1, F3−si−1) → . . . → (R1, F3−s1) .

We will show that the obstruction formed by the chain (6) (viewing (4) as case
(A) of (6)) can be efficiently transformed either into a small obstruction or into a (thin
or skew) millipede. This will be achieved through a series of successive reductions of
the chain (6). We will assume that r ≥ 14. Otherwise we have a small obstruction
formed by at most 13 bridges from our chain. If during the following reductions the
length of the chain drops below 14, we automatically stop because we have obtained
a small obstruction.

We say that bridges R and R′ are parallel in Fi (i ∈ {1, 2}) if they cannot be
simultaneously embedded in F3−i, i.e. (R,F3−i) → (R′, Fi).
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Lemma 5.1. Let bridges Ri and Ri+2 from (6) be parallel in Fsi . Then in every
embedding of Ri ∪Ri+1 ∪Ri+2, the bridge Ri+2 is embedded in Fsi .

Proof. Assume that there is an embedding of Ri ∪Ri+1 ∪Ri+2 such that Ri+2 is
embedded in F3−si . Since Ri is parallel with Ri+2 in Fsi , it is embedded in Fsi . By
(6), Ri+1 is embedded in F3−si and Ri+2 should be embedded in Fsi , a contradiction.

Similar arguments also show that if Ri and Ri+2j are parallel in Fsi , then in every
embedding of Ri ∪ · · · ∪ Ri+2j , the bridge Ri+2j is embedded in Fsi . In such a case
the bridge Ri+2j can be regarded as uniquely embeddable under the condition that
the final obstruction contains also the bridges Ri, . . . , Ri+2j−1. In the sequel, we will
need the above claim for j = 1 and j = 2.

If there is a pair (Ri, Fsi ) (1 < i < r) in the chain (6) such that Ri can be
embedded only in one face, then we act as follows. We may assume that Ri can be
embedded in Fsi , since otherwise we could look at the reversed chain

(Rr, F3−sr ) → . . . → (R2, F3−s2) → (R1, F3−s1) , (6′)

where Ri appears in the right face. If the chain is of type (A), then we can shorten
the obstruction by taking (Ri, Fsi) → . . . → (Rr, Fsr ). If chain is of type (B), then
we can change it into type (C). Let j (1 < j < r) be an index such that (Rj , Fsj ) =
(Rr, F3−sr ). We take the chain (Ri, Fsi) → . . . → (Rr, Fsr ), if i < j. Similarly if
i > j when we take (Ri, Fsi) → . . . → (Rr, Fsr ) → (R2, Fs2) → . . . → (Rj , Fsj ). The
obtained chain can be further reduced to type (A) as shown previously. It is easy to
see how to implement the above tests and reductions in linear time.

From now on we will assume that every bridge participating in the chain (6),
except the first and the last one when we have a chain of type (A), has (allowed)
embeddings in faces F1 and F2. If there is a pair (R,F ) which appears twice in the
chain of type (A) we leave out pairs between the two appearances. In chains of type
(B) this is performed only when the two appearances lie in the same segment of the
chain between R1 and its appearance in the other face. Again, this task can be easily
performed in linear time.

Suppose that we have a chain of type (B). Then we perform another checking
which will be needed in the proof of Lemma 5.2. Let (Rj , Fsj ) be the occurrence of
R1 in the other face. If (Rj−3, Fsj−3 ) → (Rj , Fsj ) or (Rj , Fsj ) → (Rj+3, Fsj+3), then
we can shorten our chain by leaving out the two superfluous pairs. We repeat this
change as long as possible. Under every embedding of R1 ∪ . . . ∪ Rj−1 in F1 ∪ F2,
the bridge R1 = Rj is embedded in Fsj . Therefore we may assume that j ≥ 6 since
otherwise we can transform our chain of type (B) into a chain of type (A) (with at
most four additional bridges which guarantee unique embeddability of R1 in Fsj ).
In this case we also repeat previous reductions on the new chain. Similarly, we may
assume that j ≤ r − 5. Note that all these changes can be done in linear time.

Next we check if there are pairs of parallel bridges which appear not far apart in
the chain. Suppose that we have a chain of type (B) with bridges Ri and Ri+2 being
parallel in Fk. By reversing the chain, if necessary, we may assume that Fk = Fsi .
There exists an index j, 1 < j < r, such that (Rj , Fsj ) = (R1, F3−s1 ). We will
regardRi+2 as uniquely embeddable in Fsi (Lemma 5.1). We will actually achieve this
property at the end by adding bridges Ri and Ri+1 into the final obstruction. If i+2 ≤
j, our chain can be shortened and transformed into type (C) by taking (Ri+2, Fsi+2) →
. . . → (Rr, Fsr ). If i + 2 > j, we transform our chain into (Ri+2, Fsi+2) → . . . →
(Rr, Fsr ) = (R1, Fs1 ) → . . . → (Rj , Fsj ) which can be viewed as a chain of type
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(C). In both cases, our chain of type (C) can be further changed into type (A). If
we have a pair of parallel bridges Ri, Ri+4, we take the same steps, except that in
this case the final obstruction will have to contain not only the bridges Ri, Ri+1 but
also bridges Ri+2, Ri+3. Obtaining the chain of type (A) we again perform the above
reductions (no intermediate bridge uniquely embeddable, no repetitions). Note that
this additional work can occur only once — when changing type (B) into type (A).

Let us now explain how to react regarding parallel bridges if we have a chain of
type (A). For j = r, r−1, . . . , 3 we check whether Rj is parallel with Rj−2 and whether
Rj+2 is parallel with Rj−2 (when j ≤ r − 2). If Rj and Rj−2 are parallel in Fsj , we
shorten the chain by removing the initial part (R1, Fs1) → . . . → (Rj−1, Fsj−1 ) and
stop. If they are parallel in F3−sj , then we remove the tail (Rj+1, Fsj+1 ) → . . . →
(Rr, Fsr ) and continue with work. Similarly when Rj−2 and Rj+2 are parallel.

Let us remark that if R1 is not embeddable in F3−s1 , then R1 and R3 are parallel
in Fs1 = Fs3 . Similarly, Rr−2 and Rr are usually parallel in F3−sr . It is obvious how
to perform the above tasks in linear time. By Lemma 5.1 the chain obtained after
this reduction (together with at most 4 + 4 = 8 additional bridges which guarantee
the unique embeddability of the first and the last bridge in the chain of type (A)) still
determines an obstruction. By the above remark, each bridge Ri (1 ≤ i ≤ r) can be
embedded in F1 and in F2 and no two bridges Ri, Ri+2 (1 ≤ i ≤ r − 2) or Ri, Ri+4

(1 ≤ i ≤ r − 4) are parallel in any of the faces.
Let R1 = {R2i−1 | 1 ≤ i ≤ �r/2�} and R2 = {R2i | 1 ≤ i ≤ �r/2�}.
Lemma 5.2. There exists j ∈ {1, 2} and a vertex x ∈ V (ej) such that every

bridge from R1 is attached to ej only at x. Similarly, there exists k ∈ {1, 2} and a
vertex y ∈ V (ek) such that every bridge from R2 is attached to ek only at y.

Proof. Since we have decided to stop whenever our obstructing family of bridges
contains 13 or fewer members, we have r ≥ 6. Consider the bridges Ri, Ri+2, Ri+4 ∈
R1. Since they are pairwise non-parallel in F1 and in F2, they can be simultaneously
embedded in any of the faces. Therefore their union cannot contain two disjoint paths
connecting branches e1 and e2. Note that not all three bridges can be equal to each
other. Hence there exists a vertex x in one of the branches, say ej , such that x is
the only vertex of attachment of Ri ∪Ri+2 ∪Ri+4 to ej . Moreover, Ri ∪Ri+2 ∪Ri+4

is attached to at least two vertices on the branch e3−j . Similarly, there is a vertex
x′ in the branch ej′ such that Ri+2 ∪ Ri+4 ∪ Ri+6 is attached to ej′ only at x′.
If Ri+2 
= Ri+4, then it easily follows that ej′ = ej and x′ = x. On the other
hand, Ri+2 = Ri+4 can only happen if our chain is of type (B) and (Ri+3, Fsi+3) =
(R1, F3−s1). Since in this case (Ri+2, Fsi+2) → (Ri+3, Fsi+3) and (Ri+3, Fsi+3) →
(Ri+4, Fsi+4) = (Ri+2, Fsi+2), bridges Ri+2 and Ri+3 must overlap on e1 or e2. If
they overlap on ej , then (Ri, Fsi) → (Ri+3, Fsi+3) which is not possible because of
previous reductions. Therefore Ri+2 and Ri+3 overlap on e3−j . Suppose that x′ 
= x.
Then also ej′ = e3−j. Since Ri+2 overlaps on e3−j = ej′ with Ri+3 and since Ri+6 is
attached on ej′ to the same vertex x′ as Ri+2, we have (Ri+3, Fsi+3) → (Ri+6, Fsi+6).
But this is a contradiction, since we have reduced such forcing at previous steps.
Consequently, x′ = x. By increasing i, we easily derive the claimed result.

The proof of the second part is almost identical.
Additionally, we claim that either x and y lie on the same branch, or there is a

small obstruction. For vertices u, v ∈ V (e1) we say that u is to the left of v (or v is
to the right of u) if u is closer to a0 than v. Similarly if u, v ∈ V (e2) we say that u
is to the left of v if it is closer to d0. Suppose now that r > 5 and that x ∈ V (e1),
y ∈ V (e2). We will distinguish between two possibilities:
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(i) If there is a bridge Ri ∈ R1 which is attached on e2 to the left and to the
right of y, then a small obstruction is obtained as follows. When the chain is
of type (A), pairs (R1, Fs1) → (R2, Fs2) → (Ri, Fsi) together with (Rr, Fsr )
if r is even, or together with (Rr−1, Fsr−1) → (Rr, Fsr ) if r is odd, form the
desired obstruction. If the chain is of type (B), then R1 is just the branch xy
since R1 ∈ R1 ∩ R2. Let (Rj , Fsj ) = (R1, F3−s1 ) be the occurrence of R1 in
the other face. Since R2 overlaps with R1 in Fs1 and R1, R2 are attached to
e2 only at y, R2 is attached to e1 to the left and to the right of x. Similarly,
Rj+1 is attached to the left and to the right of y on e2. Then R1 ∪R2 ∪Rj+1

is a small obstruction. The case when there is a bridge R ∈ R2 attached on
e1 to the left and to the right of x is similar.

(ii) There is no bridge attached on e1 to the left and to the right of x and also,
there is no bridge attached on e2 to both sides of y. In this case the chain
must be of type (A) since otherwise R1 ∈ R1 ∩R2 would be just the branch
xy and would not be obstructed by any of the bridges. It is easy to see that
under every embedding of R1∪R2∪R3 ∪R4∪Rr , the bridge Rr is embedded
in Fsr . Since this is wrong face for Rr, we have an obstruction.

In both cases the obtained small obstruction (together with bridges which assure the
unique embeddability of R1 and Rr) contains at most 13 bridges.

So far we have been able to restrict attachments of the bridges from the chain at
one of the branches to at most two vertices. It remains to find a millipede (or a small
obstruction) composed of some of these bridges. First we examine the case when
x = y. By a planarity testing we try to embed R1 ∪R2 in F1 ∪F2. (Planarity testing
can be used because R1 ∪ R2 is attached to one of e1, e2 just at a point.) If the test
fails, there will be a small obstruction composed of three mutually overlapping bridges.
Such bridges can be discovered in linear time by a traversal of the corresponding
branch ei (i ∈ {1, 2}) since bridges Rj , Rk overlap if and only if the interiors of their
attachment intervals on ei are not disjoint. This fact can also be used to prove that
we always get exactly three such bridges. The other case is when R1 ∪ R2 admits
an embedding in F1 ∪ F2. Then the chain is of type (A). In this case we must also
consider the additional bridges that assure the unique embeddability of R1 and Rr.
They either give rise to a small obstruction (together with R1, R2, Rr−1, Rr), or we get
a thin millipede after eliminating possible superfluous additional bridges (cf. Claims
2 and 3 below).

Suppose now that x 
= y. Then our chain is of type (A). Note that in this case
R1 ∩R2 = ∅. Without loss of generality we may assume that x, y ∈ V (e1) so that x
is to the left of y and that F1 = Fs1 . The main idea of the algorithm is to traverse
e2 from left to right and at each step embed those bridges from R1 ∪ R2 which are
forced in one of the faces by previously embedded bridges.

Bridges forming a millipede will be denoted by Q1, Q2, . . . . For i = 1, 2, . . . , we
will denote by li and ri the leftmost and the rightmost vertex of attachment of Qi on
e2, respectively. Let Q1 = R1. Since Q1 has to be embedded in F1, every bridge from
R2 with vertex of attachment (strictly) to the left of r1 should go in F2. Therefore
we embed these bridges in F2. (If they cannot be simultaneously embedded, then
we get a small obstruction and stop.) Denote by Q2 the rightmost (with respect to
attachments on e2) of these bridges. If r2 lies to the left of r1 (or r2 = r1), we can
find a small obstruction (for details see case (iii) below). Hence, every bridge from
R1 with vertex of attachment to the left of r1 is forced in F1 by Q2. We may assume
that all these bridges can be simultaneously embedded in F1. Otherwise a small
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obstruction can be found. Continuing this process we obtain a sequence of bridges
Q1, Q2, Q3, . . . such that for every i, bridge Qi overlaps on e2 with Qi+1. There are
several possibilities when we terminate this construction. Throughout the discussion
of each possibility we will assume that the last embedded bridge in the above sequence
is Qs and that it is embedded in F1. Note that in this case Q1, Q3, . . . , Qs ∈ R1 and
Q2, Q4, . . . , Qs−1 ∈ R2. Let B be the set of bridges from R2 that have an attachment
on [rs−1, rs).

(i) When trying to simultaneously embed in F2 all bridges from B, we encounter
a pair of overlapping bridges Q, Q′. Since Qs, Q,Q′ pairwise overlap on e2,
they form a small obstruction.

(ii) If Rr ∈ B, then we set Qs+1 = Rr and stop.
(iii) Embed in F2 all bridges from B and let Qs+1 be the rightmost among these

bridges. Assume that rs+1 is not strictly to the right of rs. If among the
remaining bridges there is no bridge attached to e2 entirely on the segment
[rs, c0], then Rr ∈ R1. Moreover, since (Rr−1, F2) → (Rr, F1) and since Rr−1

is already embedded, also (Qs+1, F2) forces (Rr, F1). Hence Qs, Qs+1 and
Rr (together with additional bridges guaranteeing unique embeddability of
Rr) form a small obstruction. Otherwise, let Ri be the first bridge from the
chain that is attached to e2 only at [rs, c0]. By minimality of i and since
(Ri−1, Fsi−1) → (Ri, Fsi), the bridge Ri−1 must be attached to the left and
to the right of rs (and also Fsi−1 = F1). Then Ri−2 ∈ R2 must be attached
on e2 entirely to the left of rs. Since Qs+1 is the rightmost among bridges
embedded in F2, Qs+1 and Ri−1 overlap on e2. Therefore, Qs, Qs+1 and Ri−1

form a small obstruction.
(iv) Now we have rs+1 strictly to the right of rs. Next we check if there is

a non-embedded bridge Q ∈ R1 attached to [rs−1, rs). If it exists, then
Qs−1, Qs, Qs+1 and Q form a small obstruction. Otherwise, every bridge at-
tached to the left of rs has been embedded, another memberQs+1 of a possible
millipede has been obtained and we can proceed with the next iteration.

If in the above steps a small obstruction has not been encountered, then we have
stopped in (ii) and the bridgesQ1 = R1, Q2, . . . , Qs, Qs+1 = Rr taken asB◦

2 , . . . , B
◦
m−1

(m = s + 3), respectively, satisfy (M2′), (M3) and (M4′) from the definition of skew
millipedes. We will obtain B◦

1 and B◦
m from the additional bridges (which guarantee

the unique embeddability of R1 and Rr, respectively) and either prove that the ob-
tained sequence B◦

1 , B
◦
2 , . . . , B

◦
m satisfies (M1)–(M4′), or obtain a small obstruction

from these bridges.
Denote by Q0 the additional bridges that guarantee the unique embeddability of

Q1. Define similarly Qs+2 (the corresponding bridges for Qs+1). Recall that each
of Q0 and Qs+2 is composed of one up to at most four bridges. In the following
paragraphs we are going to show how to change Q0 and Qs+2 to get a skew millipede.
In each claim we will either prove the desired property or a small obstruction will be
found.

Claim 0. Q̃ = Q0 ∪Q1 ∪Q2 ∪Qs ∪Qs+1 ∪Qs+2 has an embedding in F1 ∪F2. If
there is no such embedding, this is a small obstruction, and we are done. Note that
every embedding of Q̃ has Q1 in F1, Q2 in F2. Similarly we know the faces where Qs

and Qs+1 are embedded.
Claim 1. No bridge is attached to a vertex on (x, y) ⊂ e1. Suppose there is such

a bridge B. If Q̃ ∪ B is an obstruction, it contains at most 13 bridges, and we are
done. Otherwise, B is attached only to [x, y] and to [r1, ls+1] ⊆ e2. Since B is not
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local, it has an attachment z on e2. For some i, 2 ≤ i ≤ s, z ∈ (li, ri). It is easy to
see that B ∪Qi−1 ∪Qi ∪Qi+1 is an obstruction.

Claim 2. Q0 contains one bridge and l1 is strictly to the left of l2. Consider an
embedding of Q0∪Q1 induced by an embedding of Q̃. By definition of Q0, Q1 cannot
be re-embedded in F2 under this embedding. Since our embedding is induced by Q̃,
there is a bridge B ⊆ Q0 which is attached on (l1, r1). If there are more candidates,
we take the leftmost one. If B is attached out of e2 to a vertex different from y, then
B ∪Q1 ∪Q2 has unique embedding in F1 ∪ F2, and we can replace Q0 by the single
bridge B and still retaining the property (M1) (for B◦

j = Qj−1, j = 1, 2, 3). It is also
clear that in this case l1 is to the left of l2. The remaining case is when B is attached
to e1 only at y. In this case we extend the sequence Q1, . . . , Qs+1 by adding B at its
beginning and changing Q0 into Q0 \ B. Using similar arguments as above, one can
prove that every embedding of the new Q0 forces B to be embedded in F2. Then we
repeat the above reductions starting with Claim 0 (with the appropriate change of
roles of x, y, F1, F2, etc.). Note that this extension occurs at most three times.

Claim 3. Qs+2 contains one bridge and rs+1 is strictly to the right of rs. The
proof of this claim is analogous to the proof of the previous claim.

Having all of the above properties, we define m = s + 3 and B◦
j = Qj−1, j =

1, . . . ,m. Using above claims and properties of the sequence Q1, . . . , Qs+1, we see
that the bridges B◦

j (1 ≤ j ≤ m) satisfy conditions (M1)–(M4′) from the definition of
skew millipedes.

To summarize, we have proved the following result.
Theorem 5.3. Let K = C ∪ e1 ∪ e2 be a subgraph of a graph G for 2-Möbius

band embedding extension problem. Suppose that no K-bridge in G is local on one of
the branches e1, e2. There is a linear time algorithm that either finds an embedding
extension of K to G, or returns an obstruction Ω for embedding extendibility. In the
latter case, Ω is either small and contains at most 13 bridges, or it is a millipede based
on one of the branches e1, e2 and with apex on the other branch.

Let us recall that large bridges in the original graph have been replaced by small
bridges (b(B) ≤ 13). Moreover, when we have a millipede, all bridges except B◦

1 and
B◦

m can be replaced by triads (b(B) = 3).
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