
An algorithm for embedding graphs in the torus∗

Martin Juvan† and Bojan Mohar‡

Department of Mathematics, University of Ljubljana
1111 Ljubljana, Slovenia

Abstract

An efficient algorithm for embedding graphs in the torus is presented. Given a graph G, the
algorithm either returns an embedding ofG in the torus or a subgraph ofG which is a subdivision
of a minimal nontoroidal graph. The algorithm based on [13] avoids the most complicated step
of [13] by applying a recent result of Fiedler, Huneke, Richter, and Robertson [5] about the
genus of graphs in the projective plane, and simplifies other steps on the expense of losing linear
time complexity.

1 Introduction

There are several efficient (linear time) algorithms for testing planarity of a given graph (Hopcroft
and Tarjan [12], Booth and Lueker [2], Fraysseix and Rosenstiehl [8], Shih and Hsu [27]). Some
of these algorithms have been implemented and used in diverse applications. It is not difficult to
extend original planarity testing algorithms to yield an embedding in the plane if the graph G is
planar [3] (see also [24] or [8]). They can also be extended so that they discover a Kuratowski
subgraph of G if G is not planar [30, 31]. These algorithms have been implemented, for example,
in LEDA [19], but with the detection of Kuratowski subgraphs several troubles have been reported
[17]. This led the authors of LEDA to decide to implement the following simple quadratic time
algorithm instead [18]: Given a linear time planarity testing algorithm, an edge-by-edge elimination
procedure can be applied to find a Kuratowski subgraph in quadratic time; given a nonplanar graph
G and an edge e ∈ E(G), test planarity of G− e. If G− e is nonplanar, remove e and proceed with
the graph G− e since there must be a Kuratowski subgraph avoiding e. Otherwise, e is contained
in every Kuratowski subgraph of G. Now, repeat the procedure for the remaining edges of the
(reduced) graph. The same approach can also be used for other surfaces.

Embeddings in the torus also have a long history. Filotti [6] presented a polynomial time
algorithm for embedding cubic graphs in the torus. Filotti, Miller, and Reif [7] extended that
technique to obtain, for an arbitrary surface of genus g > 0, a polynomial time algorithm of
complexity O(ncg), where c is a constant. Next, Robertson and Seymour proved that each surface
has a finite list of forbidden minors [25]. This result implies that for each surface Σ there is a
finite list of minimal forbidden subgraphs. (A graph K is a minimal forbidden subgraph for Σ if
K has no vertices of degree less than 3, cannot be embedded in Σ, and for every edge e ∈ E(K),
K − e can be embedded in Σ.) A graph G cannot be embedded in Σ if and only if it contains
a subdivision of a minimal forbidden subgraph for Σ. Kuratowski’s theorem states that K5 and

∗Supported in part by the Ministry of Science and Technology of Slovenia, Research Project J1-0502-0101-98.
†e-mail: martin.juvan@fmf.uni-lj.si
‡e-mail: bojan.mohar@uni-lj.si

1

K3,3 are the only minimal forbidden subgraphs for the plane. The only other surface for which
the complete list of minimal forbidden subgraphs is known is the projective plane. The list for
the projective plane contains 103 graphs [9, 1]. The result of Robertson and Seymour also yields
an algorithm of cubic complexity for testing embeddability in any fixed surface since the presence
of a minor can be tested in cubic time [26]. Djidjev and Reif [4] improved the algorithm of [7]
by presenting a polynomial time algorithm, for each fixed orientable surface, where the degree of
the polynomial is fixed, and Mohar [21] recently presented a linear time embedding algorithm for
embedding graphs in an arbitrary fixed surface. All these algorithms are more of theoretical than
of practical value since it is not clear how to implement them efficiently and their analysis involves
very large constants. Let us recall that the general problem of determining the genus [28], or the
non-orientable genus [29] of graphs is NP-hard.

In 1994, Juvan, Marinček, and Mohar [13] presented a linear time algorithm for embedding
graphs in the torus. That algorithm uses a complicated step which is explained (with a proof of
correctness) in [15]. The torus embedding algorithm presented in this paper has a great advantage
to bypass that step by using a recent result of Fiedler, Huneke, Richter, and Robertson [5] about
the genus of graphs in the projective plane (see Section 5).

Previous polynomial time algorithms for embeddability in the torus have not been implemented.
In our present work we explain the main steps of such an algorithm so that it can be implemented
in a reasonable amount of time. In order to achieve this, we sacrifice an order or two in the
computational complexity which increases from linear to cubic (or even to n4 if we want to exhibit
a minimal forbidden subgraph for the torus by the edge-by-edge elimination). Our motivation
was to describe an algorithm which could be implemented and added to the LEDA package [19].
Let us observe that several people seeking for torus embedding algorithms have even considered
“practical” exponential algorithms. One such attempt is reported in [23].

2 Basic definitions

The 2-cell embeddings in orientable surfaces can be described combinatorially by specifying the
local rotations: for each vertex v of the graph G we list its neighbors (or incident edges) in a cyclic
order, πv = (v1v2 . . . vd), which corresponds to the cyclic order of edges emanating from v on the
surface (taken in the clockwise direction around v as determined by the specified orientation of the
surface). The collection of local rotations (πv | v ∈ V (G)) determines the set of facial walks (or
faces) which correspond to the combinatorial boundaries of the faces of the embedding. We refer
to [10, 22] for more details.

Embeddings in nonorientable surfaces admit a similar description. Since nonorientable surfaces
do not admit a global orientation, a local orientation is chosen in a small neighborhood of each
vertex. Each edge e = uv ∈ E(G) is then associated with a signature 1 or −1, depending on whether
the chosen local orientations at u and v agree along e or not (cf. [10, 22]). In the algorithms of this
paper we shall only use embeddings in the projective plane where an embedding of a subgraph K
of G in the projective plane is given by Figure 1. The rest of the graph is embedded in the faces
of K, and the subgraph in each of the faces can be described as an (orientable!) embedding in the
plane.

The face-width fw(G,Π) of a nonplanar embedding Π of G is the minimum integer k such that
there is a sequence v1, F1, v2, F2,. . . ,vk, Fk of distinct vertices and facial walks of G and there is
a noncontractible simple closed curve in the surface of the embedding intersecting G in v1, . . . , vk

only and passing through the elements of that sequence (so vi ∈ Fi−1 ∩ Fi, i = 1, . . . , k, where
indices are taken modulo k).

2

Figure 1: An embedding of K3,3 in the projective plane.

Let K be a subgraph of G. A K-bridge in G is a subgraph B of G which is either an edge
e ∈ E(G)\E(K) with both endpoints in K, or a connected component of G− V (K) together with
all edges (and their endpoints) between this component and K. The vertices of B ∩ K are the
vertices of attachment of B, and B is attached to each of these vertices. A vertex of K of degree
different from 2 is a branch vertex of K. A branch of K is a path in K whose endpoints are branch
vertices but no internal vertex on this path is a branch vertex. If a K-bridge is attached to a single
branch e of K, it is said to be local (on e).

A graph G is 3-connected modulo K if for every vertex set X ⊂ V (G) with at most 2 elements,
every connected component of G−X contains a branch vertex of K.

3 Basic algorithms

Our algorithm for embedding graphs in the torus uses the subroutines listed below. In all of them,
G is a graph and K is a subgraph of G.
2-connected components(G): Returns the 2-connected components (blocks) of G. This algo-
rithm can be easily implemented to run in linear time by using a simple extension of DFS.
3-connected components(G): Returns the 3-connected components of G (see [11] for definitions
and a linear time algorithm; let us remark that it is rather complicated to implement this algorithm
correctly).
Planar(G): Returns true if and only if G is planar.
Planar embed(G): If G is planar, a call to this subroutine returns an embedding of G in the
plane.
Kuratowski subgraph(G): If G is nonplanar, a call to this subroutine returns a subgraph K
of G which is a subdivision of K5 or K3,3. If G is 3-connected and distinct from K5, then K is a
subdivision of K3,3.
Efficient algorithms for the above tasks have been mentioned in the introduction ([12, 3, 31]). The
additional requirement that K is a subdivision of K3,3 if G 	= K5 is 3-connected can be achieved
in linear time as follows: Suppose that K is a subdivision of K5. If K has a branch e which is not
just an edge, then there is a vertex v in the interior of e and a path P from v to a vertex u of K
which does not belong to e such that P ∩K = {u, v}. The other possibility is that K = K5. Then
there are 3 paths P1, P2, P3 joining V (K) and a vertex v ∈ V (G)\V (K). Now it is easy to see that
K ∪ P or K ∪ P1 ∪ P2 ∪ P3 (respectively) contains a subdivision of K3,3.
Projective planar(G): Returns true if and only if G is projective planar. This routine and its
derived versions below assume that G is 3-connected.
Projective planar embed(G): Returns an embedding of G in the projective plane if G can be
embedded there.
Projective planar obstruction(G): If G cannot be embedded in the projective plane, the

3

subroutine returns a subgraph K of G which is obtained from a minimal forbidden subgraph for
the projective plane by subdividing edges and adding at most 2 branches. Moreover, if K can be
embedded in the torus, then K is a subdivision of a 3-connected graph. See Section 5.
Face width(G,Π): Given an embedding Π of G in the projective plane, this routine returns the
face-width of Π.
Embedding extension(G, K, Π): If the embedding Π of K can be extended to an embedding Π̃
of G in the same surface, then this routine returns such an extension Π̃; otherwise it returns ∅. Its
implementation is needed only in a few special cases described in Section 4.

4 Embedding extension problems

Suppose that a subgraph K of G is Π-embedded in some surface. The embedding extension problem
asks if it is possible to extend Π to an embedding of the whole graph G in the same surface. This
problem is rather complicated in general (see [16, 21] for more details) but we need to solve only
some special cases.

As a preprocessing to any of the embedding extension problems we first change K so that local
K-bridges disappear. Formally, we need G to be 3-connected modulo K. Then we construct a
subgraph K ′ of G which is obtained from K by replacing some branches of K by other branches
(so that K ′ is homeomorphic to K) such that there are no local K ′-bridges in G (cf. [14]). A linear
time algorithm for this task is given in [20]. Next, we determine all K-bridges in G (by a simple
modification of DFS) and determine for every K-bridge in which faces of K it can be embedded
(cf. Subsection 4.1).

4.1 Disk embedding extension

Suppose that F is a Π-facial cycle and B is a set of K-bridges in G whose vertices of attachment
are all on F . To check if all bridges of B can be (simultaneously) embedded in the face F , we form
an auxiliary graph K̃ obtained from F ∪ B by adding a new vertex w joined to all vertices in F .
Then we just check planarity of K̃. This test is also used separately for every K-bridge to see in
which faces of K it can be embedded. With appropriate bookkeeping this can be performed in
linear time.

4.2 2-restricted embedding extensions

This type of embedding extension problems occurs when each K-bridge in G is restricted to have
at most two admissible embeddings in the Π-faces of K. This problem can be reduced to 2-SAT
and can be easily solved in time O(n2) as discovered by Filotti, Miller, and Reif [7]. (It can also
be solved in linear time by more complicated “geometric” approach as shown in [16].)

It may happen that some K-bridges have embeddings in more than two faces. If the number of
such bridges and their distinct embeddings is bounded, then we may run the 2-restricted embedding
extension algorithm for all combinations of embeddings of these exceptional bridges and hence solve
the problem by solving bounded number of 2-restricted embedding extension problems. It can be
shown that this approach works, in particular, if Π is a closed 2-cell embedding.

In one of the cases which occur in 4.3 below, we have to solve a 2-restricted embedding extension
problem where some bridges have more embeddings (in the same face) but we only consider such
extension where bridges use only one or two of these possibilities. Such restrictions are considered
to be part of the input for Embedding extension(G, K, Π).

4

4.3 1-singular face embedding extension in the torus

Suppose that G is 3-connected and that K is a subgraph of G such that K is 2-connected, cannot
be embedded in the projective plane, and that it contains a Kuratowski subgraph K0 such that no
K0-bridge in K is local.

Proposition 4.1 Let G and K be as above. If Π is an embedding of K in the torus, then:

(a) All facial walks, except possibly one, are cycles.

(b) If F is a facial walk which is not a cycle, then F is of the form F = AeBe− or F = AxBx
where e is a branch of K and x is a branch vertex of K, and A, B are disjoint simple paths
in G. If F ′ is a facial cycle distinct from F which contains an endvertex v of e or contains
v = x (respectively), then F ′ cannot intersect both A and B in vertices distinct from v.

(c) If U is a set of vertices that are not all contained in the same branch of K, then there are at
most two facial walks that contain all vertices of U .

Let G, K, and Π be as in Proposition 4.1. We would like to check if Π can be extended to
an embedding of G. To test the extendibility of Π we distinguish four cases and in each of them
we transform the embedding extension problem in question to one or two 2-restricted embedding
extension problems.

(1) If all facial walks are cycles, then the embedding is 2-restricted (by Proposition 4.1(c)), and
we apply the results of Subsection 4.2.

Otherwise, there is a facial walk C which is not a cycle. Let C = AeBe− (respectively, C = AxBx)
be as in Proposition 4.1. Now we distinguish the following three possibilities:

(2) There is a K-bridge R in G which is attached to (the interiors of) A and B and to a vertex
on e (respectively to x): Let P be a path in R connecting the interiors of A and B. Embed
P in C. The obtained embedding of K ∪ P is a closed 2-cell embedding and the results of
Subsection 4.2 apply.

(3) There are K-bridges R1, R2 attached to A and B (respectively) and attached to vertices x1,
x2 on e (respectively) such that x1 is closer to B on e than x2. In this case, let Pi be a path
in Ri from A (if i = 1) or B (if i = 2) to xi, i = 1, 2. Embed P1 and P2 in C. Again, the
obtained embedding of K ∪ P1 ∪ P2 is closed 2-cell and the results of Subsection 4.2 can be
used. Note that there are two possibilities how to embed P1 ∪ P2 in C and that we have to
test the extendibility of each of them.

(4) Otherwise: there is a vertex y on e (or y = x) such that no K-bridge in G attached to A has
an attachment on e closer to B than to y, and similarly for bridges attached to B and e. Let
K ′ be the graph obtained from K by cutting e at y so that y gives rise to two new vertices y1,
y2 and the edges of K incident to y become incident either to y1, y2 so that the embedding
Π gives rise to an embedding of K ′ in the plane. Similarly we form a graph G′ obtained from
G by cutting at y. This operation is such that G has an embedding in the torus extending
Π if G′ is planar. On the other hand, if G′ is not planar, then in every extension of Π, there
is a path in the face C joining the interiors of A and B. In this case, extendibility of Π can
again be checked by the algorithm of Subsection 4.2.

5

5 Embeddings in the projective plane

In this section we study embeddings of 3-connected graphs in the projective plane. The aim of the
projective plane phase of the toroidal algorithm is to find an appropriate subgraph of G that has
only “nice” embeddings in the torus (cf. Proposition 4.1). By searching for such a subgraph, it
may happen that we find an embedding of the graph in the torus or a minimal forbidden subgraph
for the torus, in which case we may stop.

Let G be a 3-connected nonplanar graph. We would like to decide efficiently whether G can
be embedded in the projective plane. If yes, we would like to construct an embedding scheme
describing such an embedding. If no, we would like to exhibit a subgraph of G homeomorphic to a
minimal forbidden subgraph for the projective plane. The algorithm performing this task is based
on the embedding extension algorithm of Subsection 4.2.

The algorithm works as follows. Let K0 be a Kuratowski subgraph of G (homeomorphic to
K3,3). Note that every embedding of K0 in the projective plane is a closed 2-cell embedding.
Moreover, no K0-bridge in G can be embedded in more than two faces of K0. This implies that
given an embedding of K0 in the projective plane, the question whether the given embedding can
be extended to an embedding of the whole graph is in fact a 2-restricted embedding extension
problem (cf. Subsection 4.2). We therefore try to extend every embedding of K0 in the projective
plane (there are precisely 6 such embeddings) to an embedding of G.

Algorithm Projective planar(G)
{ Determine if a nonplanar graph G can be embedded in the projective plane. If it can, the
obtained embeding can be retrieved via Projective planar embed. }
K0 := Kuratowski subgraph(G);
for every embedding Π of K0 in the projective plane do

Π′ := Embedding extension(G, K0, Π);
if Π′ 	= ∅ then { We have found an embedding. }

Projective planar embed := Π′;
return true;

return false; { G cannot be embedded in the projective plane. }
There are two possible outcomes of Algorithm Projective planar. If the graph is not em-

beddable in the projective plane, we first apply edge-by-edge elimination procedure to obtain a
subgraph K homeomorphic to a minimal forbidden subgraph for the projective plane. If K is not
2-connected, then it is also a minimal forbidden subgraph for the torus. If it is homeomorphic to a
3-connected graph, then it is possible to eliminate local K0-bridges in K (where K0 is a Kuratowski
subgraph of K). Then the pair G, K satisfies assumptions of Proposition 4.1. Therefore K has
only “nice” embeddings in the torus (see Proposition 4.1).

The remaining possibility is that K is 2-connected, but not homeomorphic to a 3-connected
graph. Then K = K1 ∪ K2 where K1 ∩ K2 = {x, y} ⊆ V (G) and where K2 contains all branch
vertices of K0. Change K such that there are no local K-bridges in G. Let P be a path in G−x−y
from K1 − x − y to K2 − x− y. If K ∪ P is not a subdivision of a 3-connected graph, then there
is a branch e of K0 such that x, y lie on e. In this case we assume that P lands on e as close as
possible to the ends of e. (There may be two candidates for P , one on each side). Finally, there
is a path Q joining a vertex of e “covered” by P with a vertex on a different branch of K. Then
K ∪P ∪Q is a graph obtained from K by adding one or two branches and either has no embedding
in the torus, or it is homeomorphic to a 3-connected graph.

Algorithm Projective planar obstruction(G)

6

{ Returns a subgraph K of G homeomorphic to a minimal forbidden subgraph for the projective
plane plus at most 2 branches such that K is either homeomorphic to a 3-connected graph, or it
cannot be embedded in the torus. }
K := G;
for all e ∈ E(G) do

if not Projective planar(K − e) then
K := K − e;

Extend K as described above;
return K;

The second possible outcome of Projective planar is that we obtain an embedding Π of G
in the projective plane. In this case, the face-width of Π determines if G can be embedded in the
torus or not.

Theorem 5.1 ([5]) Let G be a nonplanar graph and Π an embedding of G in the projective plane.
Then genus(G) = �fw(G,Π)/2� .

From Theorem 5.1 we conclude, that a nonplanar graph embedded in the projective plane can
be embedded in the torus if and only if the face-width of its projective plane embedding is equal
to 2 or 3.

To determine the face-width of Π we first construct its vertex-face incidence graph G(Π). This
is a bipartite graph whose bipartition classes are the vertex set of G and the faces of Π. A vertex
is adjacent to a face if it is lies on the boundary of the face. Note that G(Π) is also embedded in
the projective plane in a natural way (all faces are quadrangles). It is easy to see that twice the
face-width of Π is equal to the edge-width of G(Π), i.e., the length of a shortest noncontractible
cycle in G(Π). When embeddings in the projective plane are presented by local rotations and
signatures, a closed walk is noncontractible if and only if it contains an odd number of edges with
signature −1.

To find the edge-width of an embedded graph, for every vertex v ∈ V (G) the length of a
shortest noncontractible closed walk containing v is determined. This is done by a breadth-first
search starting at v. Denote by Tv the obtained tree. For every vertex u ∈ V (G) we also determine
the distance from v and the number of edges with signature −1 on the path between v and u in Tv.
It is easy to see that there is always a shortest noncontractible closed walk through v that contains
exactly one edge not in Tv. Using the precomputed information it is easy to check which edges
from E(G)\E(Tv) determine noncontractible closed walks and to compute the length of a shortest
one. The above task can obviously be accomplished in linear time. Algorithm Face width takes
the minimum over all vertices v ∈ V (G) divided by 2 and hence determines the face-width of G in
quadratic time. If we are interested only in checking if the face-width of the embedding is at most
some constant k (in our case k = 3), the time complexity can be reduced to O(k · |V (G)|) by a
slight modification of the algorithm described above.

If the face-width of G is greater than 3, then the edge-by-edge elimination procedure (where we
keep the originally obtained embedding Π) gives us a subgraph K of G such that its face-width is
4 and every proper subgraph of K has smaller face-width. By Theorem 5.1 K is a subdivision of
a minimal forbidden subgraph for the torus. This subgraph can be found in cubic (or quadratic, if
we use the improved face-width computation) time.

On the other hand, if k := fw(G,Π) ∈ {2, 3}, let v1, F1, v2, F2,. . . ,vk, Fk be a sequence
of distinct vertices and faces of G determining the face-width. By changing local rotations and
signatures at vertices v1, . . . , vk only one obtains an embedding of G in the torus [5].

7

6 Embedding graphs in the torus

The main algorithm of this paper either finds an embedding of the given graph G in the torus or
finds a subgraph K of G which is a subdivision of a minimal forbidden subgraph for the torus. This
algorithm can be implemented so that its time complexity is linear. However, we describe some of
its steps with quadratic (or even cubic) time complexity to gain in simplicity and transparency.

By a preprocessing of the given input graph G of order n, we may assume that |E(G)| ≤ 3n+1
since the graph with more than 3n edges cannot be embedded in the torus. (This is a well known
consequence of Euler’s formula.)

6.1 2-separable embeddings

The algorithm first finds a “suitable” subgraph K of the input graph G and by possibly reducing
G ensures that G is 3-connected modulo K (or K itself has no embedding in the torus). This is
achieved as follows. First we check for the 2-connectivity of G. There must be exactly 1 nonplanar
block in G (if there is none, G is planar, if there are 2 or more, G is nontoroidal). Next we
compute the 3-connected components of G. Here, the situation is more involved. The 3-connected
components of G are structured in a “tree-like” manner. Let H1 be a 3-connected component of G
that corresponds to a leaf in this tree. This means that G = H ′

1∪H ′
2 whereH

′
1∩H ′

2 = {x, y} ⊆ V (G)
is the corresponding 2-separator. Then H1 = H ′

1+xy (where xy is the corresponding virtual edge),
and let H2 = H ′

2 + xy. If H1 is planar, then every embedding of H2 in the torus can be extended
to an embedding of G by replacing e by H ′

1. Therefore we may assume that H1 is not planar. Next
we test planarity of H2. If it is planar, we have reduced the problem of toroidality of G to that
of H1 (which is 3-connected). Otherwise, we distinguish two possibilities. If both H ′

1 and H ′
2 are

planar, then their embeddings can be combined to an embedding of G in the torus. Otherwise,
let K1 and K2 be Kuratowski subgraphs in H1 and H2, respectively, and let K̃1 and K̃2 be the
corresponding Kuratowski subgraphs in G in which the possible occurrence of e is replaced by a
path in H ′

2 and H ′
1, respectively. It can be achieved that K̃1 ∩ K̃2 is either empty or contained in

a closed branch of K̃1 (since H ′
1 or H

′
2 is nonplanar). Let K := K̃1 ∪ K̃2. Then every embedding

of K in the torus is a closed 2-cell embedding. It remains to achieve that G is 3-connected modulo
K. If K is not 2-connected, then K has no embedding in the torus. Otherwise, we construct an
auxiliary graph G+ by adding to G a new vertex w adjacent to every branch vertex of K. Then
there is a 3-connected component H of G+ containing K. If there exists another nonplanar 3-
connected component of G+, then K plus a Kuratowski subgraph in this component determine a
nontoroidal graph. Otherwise, the problem of toroidality of G is reduced to the same problem for
G′ := H − w (which is 3-connected modulo K). Finally, to find an embedding of G′ in the torus,
we repeat, for every embedding of K in the torus, the 2-restricted embedding extension algorithm
of Subsection 4.2. If there is no embedding in the torus, we find a minimal forbidden subgraph by
the edge-by-edge elimination. If there was more than one nonplanar 3-connected component of G,
then this whole process (which we call 2-separable embed) either finds an embedding of G in
the torus or finds a minimal forbidden subgraph. Note that each of these two outcomes can occur
at two different stages.

6.2 The algorithm

Subsection 6.1 describes reduction to 3-connected case. Having a nonplanar 3-connected graph, the
results of Section 5 are applied. They either give an embedding, a minimal forbidden subgraph for
the torus, or a subgraph K which satisfies assumptions of Proposition 4.1. Embedding extensions
of K can be determined by applying results of Section 4.

8

Algorithm Torus embed(G)
{ This algorithm returns an embedding Π of genus ≤ 1 or a subgraph K̃ of G that is a minimal
forbidden subgraph for the torus. }
{ G is a simple graph of order n with at most 3n+ 1 edges }
Let {G1, . . . , Gp} be the 2-connected components(G);
s := 0;
for i := 1 to p do if not Planar(Gi) then

s := s+ 1; t := i; Hs := Kuratowski subgraph(Gi);
if s = 0 then Π := Planar embed(G); return(Π);
if s ≥ 2 then K̃ := H1 ∪H2; return(K̃);
{ Otherwise s = 1 }
Let Q := Gt be the nonplanar block of G.
Let {Q1, . . . , Qr} be the 3-connected components(Q);
if more than one graph Qi (i = 1, . . . , r) is nonplanar then 2-separable embed(G);
{ Otherwise precisely one Qi is nonplanar. }
Let Q′ be the nonplanar 3-connected component;
if Projective planar(Q′) then

Π′ := Projective planar embed(Q′);
if Face width(Q′, Π′) ≥ 4 then

K̃ := minimal subgraph of Q′ of face-width ≥ 4; return(K̃);
else Π′ determines an embedding of Q′ in the torus;

else { Q′ is not projective planar }
K := Projective planar obstruction(Q′);
for every embedding Π of K in the torus do

Π′ := Embedding extension(G, K, Π);
if Π′ 	= ∅ then break;

if Π′ = ∅ then { Q′ is nontoroidal }
Let K̃ be a minimal forbidden subgraph for the torus in Q′;
return(K̃);

Combine Π′ with planar embeddings of {Q1, . . . , Qr}\{Q′} and {G1, . . . , Gp}\{Gt} to an
embedding Π of G in the torus;
return(Π);

References

[1] D. Archdeacon, A Kuratowski theorem for the projective plane, J. Graph Theory 5 (1981)
243–246.

[2] K. S. Booth, G. S. Lueker, Testing for the consecutive ones property, interval graphs, and
graph planarity using PQ-trees, J. Comput. System Sci. 13 (1976) 335–379.

[3] N. Chiba, T. Nishizeki, S. Abe, T. Ozawa, A linear algorithm for embedding planar graphs
using PQ-trees, J. Comput. System Sci. 30 (1985) 54–76.

[4] H. Djidjev, J. H. Reif, An efficient algorithm for the genus problem with explicit construction
of forbidden subgraphs, 23rd Ann. ACM STOC, New Orleans, LA, 1991, pp. 337–347.

[5] J. R. Fiedler, J. P. Huneke, R. B. Richter, N. Robertson, Computing the orientable genus of
projective graphs, J. Graph Theory 20 (1995) 297–308.

[6] I. S. Filotti, An algorithm for imbedding cubic graphs in the torus, J. Comput. System Sci.
20 (1980) 255–276.

9

[7] I. S. Filotti, G. L. Miller, J. Reif, On determining the genus of a graph in O(vO(g)) steps,
11th Ann. ACM STOC, Atlanta, GA, 1979, pp. 27–37.

[8] H. de Fraysseix, P. Rosenstiehl, A depth-first search characterization of planarity, Ann. Dis-
crete Math. 13 (1982) 75–80.

[9] H. Glover, J. P. Huneke, C. S. Wang, 103 graphs that are irreducible for the projective plane,
J. Combin. Theory Ser. B 27 (1979) 332–370.

[10] J. L. Gross, T. W. Tucker, Topological Graph Theory, Wiley-Interscience, New York, 1987.
[11] J. E. Hopcroft, R. E. Tarjan, Dividing a graph into triconnected components, SIAM J. Com-

put. 2 (1973) 135–158.
[12] J. E. Hopcroft, R. E. Tarjan, Efficient planarity testing, J. ACM 21 (1974) 549–568.
[13] M. Juvan, J. Marinček, B. Mohar, Embedding graphs in the torus in linear time, Lect. Notes

Comput. Sci. 920 (1995) 360–363.
[14] M. Juvan, J. Marinček, B. Mohar, Elimination of local bridges, Math. Slovaca 47 (1997)

85–92.
[15] M. Juvan, J. Marinček, B. Mohar, Obstructions for simple embeddings, submitted.
[16] M. Juvan, B. Mohar, 2-restricted extensions of partial embeddings of graphs, submitted.
[17] K. Mehlhorn, Private communication.
[18] K. Mehlhorn, P. Mutzel, S. Näher, An implementation of the Hopcroft and Tarjan planarity

test and embedding algorithm, Technical Report Max-Planck-Institut für Informatik, No.
MPI-I-93-151, 1993.

[19] K. Mehlhorn, S. Näher, Leda: A Platform for Combinatorial and Geometric Computing,
Cambridge University Press, 1999.

[20] B. Mishra, R. E. Tarjan, A linear-time algorithm for finding an ambitus, Algorithmica 7
(1992) 521–554.

[21] B. Mohar, A linear time algorithm for embedding graphs in an arbitrary surface, SIAM J.
Discrete Math. 12 (1999) 6–26.

[22] B. Mohar, C. Thomassen, Graphs on Surfaces, Johns Hopkins University Press, to appear.
[23] E. Neufeld, W. Myrvold, Practical toroidality testing, Proc. 8th Ann. ACM-SIAM SODA,

New Orleans, LA, 1997, pp. 574–580.
[24] T. Nishizeki, N. Chiba, Planar graphs: theory and algorithms, Annals of Discrete Mathemat-

ics, 32, North-Holland Publishing Co., Amsterdam-New York, 1988.
[25] N. Robertson, P. D. Seymour, Graph minors. VIII. A Kuratowski theorem for general surfaces,

J. Combin. Theory Ser. B 48 (1990) 227–254.
[26] N. Robertson, P. D. Seymour, Graph minors. XIII. The disjoint paths problem, J. Combin.

Theory Ser. B 63 (1995) 65–110.
[27] W. K. Shih, W. L. Hsu, A simple test for planar graphs, manuscript.
[28] C. Thomassen, The graph genus problem is NP-complete, J. Algorithms 10 (1989) 568–576.
[29] C. Thomassen, Triangulating a surface with a prescribed graph, J. Combin. Theory Ser. B

57 (1993) 196–206.
[30] S. G. Williamson, Embedding graphs in the plane – algorithmic aspects, Ann. Discrete Math.

6 (1980) 349–384.
[31] S. G. Williamson, Depth-first search and Kuratowski subgraphs, J. ACM 31 (1984) 681–693.

10

