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1. Introduction

Recently some important results have been proved showing that the gap between
the largest eigenvalue & of a finite regular graph of valency & and its second eigenvalue
is related to expansion properties of the graph [1]. In this paper we investigate infinite
graphs and show that in this case the expansion properties are related to the spectral
radius of the graph.

First we introduce necessary notions for the spectrum of an infinite graph
following the definitions of [7]. For an infinite graph I" with vertex set ¥ and finitely
bounded valency, the adjacency operator A is well-defined on /%(V) and is bounded
and self-adjoint. The spectrum of I' is the approximate point spectrum of A4 in the
space /%(V'); that is 1€ Spec 4 if and only if there is a sequence of unit vectors x" such

that (A= AD)x"| =0, asn— oo.
The spectral radius of T, p(T") is given by
p(T) = sup{[<x, 4x>| | x| = 1,

which is also the maximum of the spectrum of A.

For a general graph I" and a subset X of the vertices of I', we define 0X to be the
subset of edges of I' incident with exactly one vertex of X. The usual distance between
two vertices u and v of a graph will be denoted by d(u,v). We can now define a
measure of expansion in a graph, the isoperimetric constant, as

. .~ |0X]
M= inf —.
) X finite IX]

Xcvl

2. The euclidean case

We begin by considering the case when the isoperimetric number is zero.

THEOREM 2.1. If T is an infinite, connected, k-valent graph such that I") = 0,
then p(I') = k.

Proof. Since i(I') = 0, we can choose a sequence of subsets X,, n=1,2,..., of
vertices of I" such that 10X, .

X

Let x™ be the normalised characteristic vector of the subset X, for each n. Consider
the vector y® = (4 —kI) x". It has a non-zero entry in coordinate i only if vertex i is

0, asn- oo.
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incident with an edge of dX,. Note that each such incidence contributes 1/+/|X,| to
the coordinate and that the total number of all contributions is exactly 2|0X,|. Hence
the sequence of unit vectors satisfies

(4 —kI)x™||® = Z e

(l

\/IX | i
IaX,.I
| Xl

since each vertex can receive at most k contributions. Equation (2.1) tells us that k is
in the spectrum of the operator A4, and since ||4|| = &, we conclude that p(I") =

=2k

-0, asn— o0, 2.1)

In any graph I" and vertex ve VT, let B,(v) (i = 0, 1,2, ...) denote the set of vertices
w such that d(v, w) < i, and let

S,v) = B(wW\B,_,(v), (i=12,..).

The next theorem shows that when the spectral radius is strictly less than the valency,
the sets B,(v) grow exponentially with i.

THEOREM 2.2. If T is a regular graph of valency k and p(I') < k then there is a
constant q > 1 such that |Bv)| > ¢, for all ve VT and i > 0.

Proof. By the previous theorem, i(I") > 0. Consider the set of edges dB,(v), for
any fixed vertex ve V'T. Since there are at most k such edges incident with a vertex in

S,,1(v) we have |
(Sea(e) > 2205 (DB

Hence
|Bt+1(v)| = IB (v)l + |St+1(v)|

>( +40 )) 1B.))

Putting ¢ = (1+i(T')/k) and observing that |By(v)| = 1, we obtain the result.

Let d be a non-negative real number. Godsil and McKay [5] define a graph I to
have dimension d if for some vertex (and hence for all vertices) ve VT, there are
positive real constants C,, C, such that

P <|BW) < C, %, forie{0,1,2,...}.
In their paper they show that if I" is periodic in d independent directions (as in

physical ‘lattices’), then I" has dimension d in the above sense.

THEOREM 2.3. If T is a regular graph of valency k with dimension d, then
p) =

Proof. By the definition, if I has dimension d, there is no ¢ > 1 for which
|B,(v)| > ¢' for all i. Hence the result follows from Theorem 2.2.
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3. The expanding case

In this section we investigate the case when the isoperimetric constant is not zero.
This corresponds to the non-euclidean geometry of riemannian manifolds, as studied
for example by Gromov [6). We prove analogous results to those proved by Alon and
Milman [1] in the finite case, except that in the place of the second largest eigenvalue
we find the spectral radius of the graph. We consider first a graph I" with spectral
radius given.

THEOREM 3.1. Let I be an infinite, connected, k-valent graph with spectral radius
p. Then the isoperimetric number of T is bounded by the inequality
4k—p)

P

Proof. Consider any finite subset X of the vertices ¥ of " and let xe/*(V) be
given by x, = |, for ie X, x, = }, for i¢ X but incident with an edge of X and x, =0
otherwise. Clearly | x| > |X|. Give each edge of I an arbitrary orientation, so that
its ‘positive’ and ‘negative’ ends are the vertices e*,e” respectively. Let D be the
incidence operator [2, Chapter 4] from oriented edges to vertices. Then we have

IDxF= ) (x4+—x-)%

ecEl

() =

The only edges giving a non-zero contribution are those incident with a vertex i with
x, = %, and there are at most k|dX| such edges, so

ID'x|* < {oX| k.
We can use this equality to give a lower bound for (x, Ax):
{x, Ax) = {x,(kI— DD") x)
= kllx||*— | D'x||®
> kllx||* —Zkl0X]

1 19X

> k| x|I*— llx1I%.
X

Hence we have a bound for p:

10X]
> K=

for all finite X. This in turn gives us the required bound for i(I"):

. 17).4

()= inf 24

X finite IX’
4(k—p)
-

We now investigate the opposite situation, that is when the isoperimetric
number is known to be positive. It turns out that in this case there is a result about
the spectral radius analogous to Cheeger’s inequality [3]. A similar result in a different
context is given by Dodziuk [4].

=

THEOREM 3.2. Let T be an infinite, connected, regular graph of valency k with
2

isoperimetric number i = iI"). Then ;

p(0) < k=77



THE SPECTRAL RADIUS OF INFINITE GRAPHS 119

Proof. It sufficies to prove the inequality for finite induced subgraphs of T, since
by [7] the spectral radius of an infinite graph is equal to the supremum of the spectral
radii of finite subgraphs.

Let H be any finite induced subgraph of I" and B be the adjacency matrix of H.
Let A be the maximal eigenvalue of H and let x = (x,),.,, be a positive unit
eigenvector for 4, so that (Bx, x) = A. Extend x to (V), where V is the set of vertices
of T, by setting x, =0 for v¢ VH. For each edge e = uv, let 6*(e): = |x2—x2|. We
have

A= (T 5%e))?

=( Z lxu+xu| 'xu_xu|)2

uveEl

< L +x) Y (x—x,)

uveEl uve El
< Y 2+ Y (S+xD-2 ¥ xx,
uveEl uveEl uveEl
=2 Y x2(k Y x2—(Bx,x)
veV vev
= 2k(k— 2).

It follows that A < k—A?/2k. Our next step is to show that A > i = i(T") giving the
required upper bound for the spectral radius of H and so also of I'.

Since edges whose end vertices have the same coordinates in x have no influence
on A, and there are only finitely many different coordinate values, it makes sense to
denote all the values by a strict sequence 0 = y, < y, <y, < ... <y,. Let F be the
subgraph of T induced on the vertices ¥, = {v|x, = y,}. Let the edges be oriented so
that the value at the initial vertex is greater than or equal to the value at the terminal
vertex and set S, = {ee ET"| x,+ = y,}. We can estimate A as follows:

A=Y Ixp—xZ|

ecEl

= (F (h-x2)

k=1 eesS,

=Y (Y 0i—xi).
k=1 e€dV,
Note that in the last line the value (x2 — x2-) has been split into parts (y2—yZ_)), for
k=p+1,...,q, where x,+ = y and x,- = y,, that is for k such that e d¥,. Hence since

the isoperimetric number is i, we have |0V, = i|V,| and
n

A=Y 1oV i —Yi-)

k=1
S AT
k=1
n n-1
- i(Z: WGI=Y ¥ le)
k=1 l=0
=i =) (asy,=0)

k=1
=iy x2
Zz,#0

_l’
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where we take V., = (J. The last inequality is the required bound on A and so the
result follows.

Theorem 3.2 has as a corollary the converse of Theorem 2.1.

CoROLLARY 3.3. Let I' be an infinite, connected, regular graph of valency k, for
which p(I') = k. Then i(T") = 0.

Proof. Set p(I') = k in the inequality of the theorem and the result follows.

Theorem 3.2 can be generalised to non-regular infinite graphs with bounded
valency. The same method of proof can be used by replacing k& throughout by the
maximum valency of T".

It is natural to ask whether the results are in any sense best possible. This is
certainly not the case for all graphs as for example the infinite k-regular tree has
spectral radius 24/(k—1) and isoperimetric number k—2. Hence for this graph
neither inequality is tight provided k& > 2. On the other hand it may well be that there
are graphs which make one or other of the inequalities tight. It would be interesting
to know for which values of k£ and p (if any) such examples exist.
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