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Abstract. Let G(m, n, k), m, n > 3, k-< min(m, n), be the graph obtained from the 
complete bipartite graph K , . .  by deleting an arbitrary set of k independent edges, 
and let 

f(m, n, k) =[(m - 2 ) ( n  - 2 ) -  k]/2. 

It is shown that the nonorientable genus ~(G(m, n, k)) of the graph G(m, n, k) is 
equal to the upper integer part off(m,  n, k), except in trivial cases where f(m, n, k) -< 
0 and possibly in some extreme cases, the graphs G(k,k,k) and G ( k + l ,  k, k). 
These cases are also discussed, obtaining some positive and some negative results. 
In particular, it is shown that G(5,4 ,4)  and G(5, 5, 5) have no nonorientable 
quadrilateral embedding. 

1. Introduction 

Let G(m, n, k) denote  the graph ob ta ined  f rom the comple te  b ipar t i t e  g raph  Km,. 
by  de le t ing  k i n d e p e n d e n t  edges,  where,  of  course,  k<-min(m,n).  Then 
G(m, n, 0) is Kin,. and  G(n, n, n) is " K . , .  minus  a l - fac tor . "  These graphs  are 
said to be nearly complete bipartite graphs, We are concerned  with the nonor ient -  
able  genus  o f  the g raphs  G(m, n, k) and,  to avoid  tr ivial i t ies,  we always assume 
bo th  m, n -> 3. Let 

f (m,  n, k) = ( (m - 2 ) ( n  - 2 )  - k)/2. 

An easy app l i ca t i on  o f  Euler ' s  fo rmula  implies  the lower b o u n d  on the nonor ient -  
able  genus:  

~,[G(m, n, k ) ] -  If(m, n, k)]. (1) 

* This work was supported in part by the Research Council of Slovenia, Yugoslavia. 
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It will be shown that equality holds in (1) in almost all cases, except in the trivial 
cases where f (m ,  n, k)<-O (in this case the nonorientable genus is equal to 1) 
and possibly in some exceptional cases, the graphs G ( k +  1, k, k) and G(k, k, k). 
Equality in (1) will be proved also for graphs G(4k, 4k, 4k) (see Section 3, 
Theorem 2 and Proposition 1), k >  1. For G(5,4 ,  4) and G(5, 5, 5) it is shown 
in Section 5 that in (1) strict inequality holds, i.e., 

"~[G(5, 4,4)]  = 2 and 33[G(5, 5, 5)] = 3. 

Besides these interesting nonexistence results, the main result of  this paper is: 

Theorem 1. Let m, n >- 3, k <- min ( m, n) and suppose that the triple ( m, n, k) does 
not fall into any of  the following cases: (k + 1, k, k), (k, k + 1, k) with k even, or 
( k, k, k) with k arbitrary. Then 

~,[G(m, n, k)] = max{ [f(rn, n, k)],  1}. 

Only some special cases of  Theorem 1 were known before. Ringel [6] deter- 
mined 3;(G(m, n, 0)) = ~(K,,, ,),  and Bouchet [2] constructed nonorientable genus 
embeddings of K,,~, by using surgery methods very similar to ours. Our paper 
continues the work of  Mohar et al. [5] where the (orientable) genus of all nearly 
complete bipartite graphs G(m, n, k) is determined. On the other hand, genus 
embeddings of  some more "general" bipartite graphs with many edges can also 
be obtained using similar methods as in this paper. 

For additional background on genus and embeddings of graphs, we refer to 
[1], [7], and [8]. 

2. Surgical Techniques 

We consider only connected spanning subgraphs of simple complete bipartite 
graphs. We regard the first (or left) half of  the bipartition as black vertices, and 
the second (or right) half as white vertices. A vertex is saturated if it is adjacent 
to all vertices of the opposite color; otherwise it is unsaturated. For example, 
G(6, 4, 4) has six black vertices (of which two are saturated) and four unsaturated 
white vertices. All embeddings of graphs will be cellular embeddings in closed 
surfaces. Usually the embeddings will be quadrilateral, that is every face (or 
"2-celr ' )  will be a 4-gon. The consecutive neighbors of a given vertex relative to 
an embedding will be the (cyclic) list of  all neighbors as they are encountered 
when one traverses clockwise (or counterclockwise) a small circle, around the 
given vertex, on the surface. For quadrilateral embeddings, two neighbors of a 
vertex v will be consecutive exactly when they lie in a common quadrilateral 
containing v. 

If we switch the two colors, we obtain an isomorphism of G(m, n, k) with 
G(n, m, k). Therefore we need only prove any results for one case; the other case 
will then follow by duality. 
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We shall use two surgical lemmas for constructing quadrilateral embeddings. 
The first is a special application of  a surgery method used previously by Bouchet 
[2], by Magajna et al. [4], and described in the same way as here by Mohar et 
al. [5]. Although definable in greater generality, the method will be stated as it 
applies to quadrilateral embeddings only, since we need only this special case. 

Suppose that X = G(m,  nl ,  kl) and Y =  G(m,  n2, k2) have quadrilateral 
embeddings in surfaces S, T and have saturated white vertices x of  X and y of  
Y (so, in particular, we must have kl < nl and k2 < n2) with the properties that 
their consecutive neighbors may be labeled as x l , . . . ,  x,, and yl . . . . .  y,, (respec- 
tively) such that for i = 1 , . . . ,  m, it is always the case that at least one of x~, yi 
is saturated. If  we introduce auxiliary edges x~x~+~ and y~v,+~ (i = 1 , . . . ,  rn and 
subscripts reduced mod m), we triangulate all the quadrilaterals containing x 
and y (see Fig. 1). I f  we then excise the disks containing x and y and bounded 
by the cycles x ~ x 2 . . . x , , x ~  and y ~ y 2 " " y m Y J  (respectively), and then sew the 
surfaces together along these boundaries so as to identify xi with y~ and x~x~+~ 
with y~y~+~ (i = 1 . . . .  , m and subscripts reduced mod m), and finally suppress 
the auxiliary edges, then we obtain a copy of the graph X # I  Y =  
G(m,  n~ + n 2 - 2 ,  kl + k2) quadrilaterally embedded in the connected sum S # T 
of the surfaces S, T. We refer to [5] for a detailed proof  of this. The embedding 
of X # ~ Y described above is orientable if and only if both S and T are orientable. 
To distinguish various possibilities of orientability of  embeddings we introduce 
the following notation: 

O(m,  n, k) is the graph G(m,  n, k) quadrilaterally embedded into an orientable 
surface, 

N ( m ,  n, k)  is G ( m ,  n, k )  quadrilaterally embedded into a nonorientable sur- 
face, and 

S(m,  n, k)  stands either for O(m,  n, k)  or for N ( m ,  n, k). 

Depending on the orientability of embeddings of  X and Y in the above 
construction, we write 

O( rn, nl + n2 - 2, kl + k2) = O( m, n~ , kt) # ~ O( m, n2, k2), 
N ( m ,  n~ + n2 - 2, kl + k2) = N ( m ,  nl,  kt) # 1 S(m,  n2, k2), 

N(rn,  nl + n 2 -  2, kl + k2) = S(ra, n~, kl) # ~ N ( m ,  n2, k2), 

N(m,  nl + n2 - 2, kl + k2) = N ( m ,  nl,  kl) # i O(m,  n2, k2), 
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etc., when two quadrilaterally embedded graphs can be combined to produce 
another as described above. The subscript 1 on # t is to distinguish it from the 
symmetrical construction 

S(ml+ m2-2,  n, k,+k~_)= S(,1,, n, k,) #2 S(m:,  n, k,) 

which arises from the two quadrilaterally embedded graphs G(m~, n, kt) and 
G(m2, n, ks) upon excising two saturated black vertices x, y whose consecutive 
neighbors can be labeled appropriately. Formally, we have: 

Lemma !. 

(1) lfk~<n~ ( i =  1,2) and klk2<m and both G(m, hi, k~) and G(m, n2, k2) 

have quadrilateral embeddings, then G = G(m, n~ + n2-2, k~ + k2) has a 
quadrilateral embedding. 

(2) l fk~< m~ ( i =  1,2) and k~k2< n and both G(ml, n, k~) and G(m,,  n, k2) 
have quadrilateral embeddings, then G = G(mt + m2- 2, n, k~ + k2) has a 
quadrilateral embedding. 

In each case, the embedding of G is nonorientable if and only if at least one of 
the initial embeddings is nonorientable. 

The full p roof  of  Lemma 1 can be found in [5]. We note only that the inequality 
ktk2< m (resp. k~k2< n) is used to show that consecutive neighbors of the two 
chosen saturated white (resp. black) vertices can be labeled so as to satisfy the 
constraint that for each i, either x~ or y~ is saturated. 

To produce embeddings, we shall also need another, more involved surgery 
lemma. 

Lemma 2. Let x, y ~ {1, 2}. Suppose that there exist quadrilateral embeddings of 
graphs G(ml, nl, kO, G(m2, n2, k2), G(m~, n2, x), and G(m~, nl, y), where kl >- 1, 
k2>_l,m~>_kl+x-l ,  n l>_k l+y - l ,  m2>_k2+y-l ,  andn2>_k2+x-1. Thenthere 
is a nonorientable quadrilateral embedding of the graph 

G( ml + m2 -2 ,  n~ + n2-2,  k~ + k: + x + y - 4 ) .  

Proof. Take the four graphs of  the lemma embedded quadrilaterally into corre- 
sponding surfaces. In each of  them choose a white and a black vertex which are 
not adjacent. Note that this is always possible since in none of the cases we do 
have a complete bipartite graph. Around each of the chosen vertices excise the 
disk just in the same way as we did in the construction of Lemma 1. Since we 
took pairs of  nonadjacent vertices of  different colors, in each case a surface with 
two (disjoint) holes is obtained. The graphs which are so far embedded into these 
surfaces with boundary, say $1, $2, Ss, $4, are G ( m l - l , n ~ - l ,  k t - l ) ,  
G(m2-1 ,  n2-1,  k2-1),  G ( m t - l ,  n2-1,  x - 1 ) ,  and G(m2-1 ,  n l - l , y - 1 ) ,  
respectively. Note that all the vertices (but no edge) lie on the boundaries. 
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Next orient the eight boundary cycles (two on each surface) as follows. I f  all 
surfaces St are orientable, orient seven of them coherently with the orientation, 
and one of them, say one on S~, in the noncoherent direction (see Fig. 2). 
Otherwise (if some St is nonorientable) orient the cycles in an arbitrary way. 
Next glue the surfaces together by identifying, in pairs, their boundaries as shown 
on Fig. 2, so that the chosen orientations on the boundaries are opposite in each 
of the four pairs, and so that each of the vertices on the boundary is identified 
with a vertex on the other surface. By performing the identifications we take care, 
as in Lemma 1, that at least one of the two vertices which are identified is 
saturated. Clearly, this is always possible since x -  1---1, and y -  1 -  1 and the 
four inequalities of  the lemma hold. 

Now it is just a matter of  routine to verify that we have obtained a nonorientable 
surface into which some graph G is quadrilaterally embedded. The graph G is 
easily seen to be bipartite, having mi - 1 + m ~ -  1 black vertices and n~ - 1 + n 2 - 1  
white vertices. It is easily computed that precisely k~ - 1 + y  - 1 + k 2 -  I + x -  1 
independent edges are missing up to the complete bipartite graph. This concludes 
the proof. [] 

3. Quadrilateral Embeddings 

The graph G(m, n, k) can have a quadrilateral embedding into a nonorientable 
surface only if mn =-- k (mod 2). Thus we assume throughout this section that 

mn=-k (mod2)  (2) 

and, to exclude trivial and nonexisting cases, that 

m->3,  n->3, and k-<-min(rn, n). (3) 

A graph G(m, n, k) is said to be admissible if the parameters m, n, k satisfy 
conditions (2) and (3) above. Ringel [6] proved: 

Lemma 3. Each admissible graph G(m, n, O) has a nonorientable quadrilateral 
embedding. 
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Using Lemmas 1 and 3, the following lemma is easily proved. 

Lemma 4. Let G = G( m, n, 1) be admissible. Then G has a nonorientable quadri- 
lateral embedding i f  and only i f  m > 3 or n > 3. 

Proof. G(3,  3, 1) has a quadrilateral embedding into the 2-sphere. Hence, it 
does not admit  a quadrilateral  embedding into a nonorientable surface. 

For  other  cases assume m -< n and n > 3. By (2), n is odd,  and n -> 5. Therefore 
G(m, n - 1, 0) is admissible, and by Lemma 3 it has a nonorientable quadrilateral 
embedding.  The graph G(m, 3, 1) also has a quadrilateral embedding,  for m = 3 
into the 2-sphere, and for m > 3 into some nonorientable  surface, since by Lemmas 
3 and 1, N ( m ,  3 , 1 ) = N ( m - l , 3 , 0 ) # 2 0 ( 3 , 3 , 1 ) .  Therefore,  by Lemma 1, 
N(m,  n, 1) = N(m,  n - I, O) # 1 S(m, 3, 1). [ ]  

Lemma 5. Suppose that G( m, n, k) is admissible, and that either m -= 1 (mod 2) 
and k < n ,  or n - l ( m o d 2 )  and k < m .  Then G ( m , n , k )  has a nonorientable 
quadrilateral embedding in all but the following cases: G(3 ,3 ,  1), G ( 3 , 4 , 2 ) ,  
G(4, 3, 2), G(3,  5, 3), and G(5, 3, 3). 

Proof All the exceptional cases are planar  graphs, and therefore have no 
quadrilateral  embeddings  into nonorientable surfaces. 

Without  loss of  generality we assume that  m - 1 (mod 2) and k < n. From (2) 
we get n -= k (mod 2). 

Case 1. n = k + 2. For m = 3 we get three exceptional  cases (k = 1, 2, 3). For  m > 3 
we use induct ion on k. For the base case G(m, 3, 1), we apply Lemma 4. In the 
induct ion step we use Lemma 1: 

N ( m ,  n, k ) =  N(m,  n - l ,  k - l )  # l  N(m,  3, 1), 

where N ( m ,  3, 1) is obtained by Lemma 4, while for N ( m ,  n - l ,  k - l )  the 
induct ion hypothesis  applies. 

Case 2. n > k + 2. For k = 0 we use Lemma 3, and, in general, we apply induct ion 
and Lemma 1: 

N ( m , n , k ) =  N ( m , n - l , k - 1 )  #~ S(m, 3,1). [] 

Lemma 6. Let G ( m , n , k )  be admissible, and m-=0,  n-=0,  k - - 0 ( m o d 2 ) ,  and 
suppose that k < n and k < m. Then G( m, n, k) has a nonorientable quadrilateral 
embedding. 

Proof. We use Lemma 1 and N(m,  n, k) = N(3,  n, 0) # 2 S(m - 1, n, k). The first 
term N(3 ,  n, 0) is obtained by Lemma 3, and S(m - 1, n, k) is obtained (either 
nonorientable,  or  orientable into the 2-sphere) by Lemma 5. []  



Nonorientable Genus of Nearly Complete Bipartite Graphs 143 

There are several remaining cases, admissible graphs G(m, n, k) for which we 
did not prove the equality of Theorem 1. These cases are: 

(a) G(k ,k ,k ) ,k ->5,  
(b) G(m, k, k), k =- 0 (rood 2), m arbitrary, and 
(c) G(k, m, k), k--- 0 (mod 2), m arbitrary (the dual case of  (b)). 

We are able to solve cases (b) and (c) with the exception ofgraphs G(k + 1, k, k) 
and G(k, k + 1, k) where k -= 0 (rood 2). 

Lemma 7. Let G(m ,k , k )  be admissible and k---0(mod2) ,  l f  m>_k+2 then 
G(m, k, k) has a nonorientable quadrilateral embedding. The same holds for the 
dual case G( k, m, k ). 

Proof. Induction on m. The basis m = k + 2 is settled using Lemma 2. Let m~ = k, 
h i = k - l ,  k l = k - 2 ,  m2=4, n2=3, k2=2, x = y = 2 .  Then, the four graphs 
G(k, k -  l, k - 2 ) ,  G(4, 3, 2), G(k, 3, 2), and G(4, k -  l, 2) have quadrilateral 
embeddings (by Lemma 5, or easily seen in trivial cases). The inequalities of 
Lemma 2 are also satisfied, thus by Lemma 2, G ( k + 2 ,  k, k) has a nonorientable 
quadrilateral embedding. 

The induction step is much easier. For m > k + 2, Lemma 1 applies: 

S ( m , k , k ) = S ( m - l , k , k )  #2  N(3, k, 0). [] 

Finally, we give some results for case (a), the graphs G(k, k, k). 

Theorem 2. For each k > 1, the graph G(4k, 4k, 4k) has a nonorientable quadri- 
lateral e~bedding. 

Proof Lemma2wil lbeused.  T a k e x = y = l  a n d m ~ = n 1 = k t = 4 k - 3 ,  m2=n2= 
k2=5. The graphs G(ml,  n~, kO and G(m2, n2, k2) have (orientable) quadri- 
lateral embeddings (see [3], [5], [8]), and so have G(ml,  n2, 1) and G(m2, n~, 1) 
by Lemma 4. Thus, by Lemma 2, the graph G(4k, 4k, 4k) has a nonorientable 
quadrilateral embedding. [] 

The same proof as that of Theorem 2, just taking m2 = n~ = k2 =7 instead of 
5, gives us the nonorientable quadrilateral embeddings of the graphs G(4k+2, 
4k+2 ,  4k+2) ,  k > l .  The only problem is that we do not know if G(7 ,7 ,7)  
has a quadrilateral embedding. 

Proposition 1. I f  G(7, 7, 7) has a (necessarily nonorientable ) quadrilateral embed- 
ding, then all graphs G(2k, 2k, 2k), k -> 4, have nonorientable quadrilateral embed- 
dings. 

4. Nonquadrilaterai Embeddings 

Let m, n->3 and k<-min (m, n) be natural numbers such that f (m,  n, k ) > 0 .  
Suppose that mn ~ k (mod 2), which means that the graph G(m, n, k) cannot 
have a (nonorientable) quadrilateral embedding. 
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If k = 0  then G(m, n, k) has genus If(m, n, k)] as shown by Ringel [6]. Now 
suppose that k > 0 .  We may add an edge to G(m, n, k), thus obtaining the 
admissible graph G(m, n, k -  1). From k <- rain (m, n) it follows that k -  1 < m 
and k -  1 < n. Thus, by the results of Section 3, G(m, n, k - l) has a nonorientable 
quadrilateral embedding. This means that ~(G(m, n, k - 1)) = f (m ,  n, k - 1). Now, 
removing the previously added edge from G(m, n, k - 1 ) ,  we get the graph 
G(m, n, k) embedded into the same surface. Thus 

#/( G(m, n, k)) = f (m ,  n, k - 1) = I f (m,  n, k)]. 

This result, together with the results of Section 3, implies our Theorem 1. 

5. Nonexistence of Embeddings 

In contrast to the orientable case [5] where all nearly complete bipartite graphs 
have quadrilateral or nearly quadrilateral embeddings, we shall see that there 
are admissible graphs G(5, 4, 4) and G(5, 5, 5) which do not have a nonorientable 
equadrilateral embedding. It is interesting to note that G(5, 5, 5) has an orientable 
quadrilateral embedding [5]. 

As far as we know, not many general methods are known, apart from the use 
of lengths of shortest cycles, the Euler formula, or forbidden subgraphs, for 
proving the nonexistence of embeddings of  graphs in certain surfaces. In our 
opinion, investigations in this direction are a very important part of the theory 
of graph embeddings. 

Theorem 3. The admissible graphs G(5, 4, 4) and G(5, 5, 5) have no nonorientable 
quadrilateral embedding and ~(G(5, 4, 4 ) ) = f ( 5 ,  4, 4)+ 1 = 2, and ~(G(5, 5, 5)) = 
f(5,  5, 5)+ 1 = 3. 

Proof Consider, first, G(5, 4, 4) and assume it has a nonorientable quadrilateral 
embedding. Since f (5 ,  4, 4) = 1, this embedding is into the projective plane. Let 
v be the (black) saturated vertex of G(5, 4, 4) and consider the neighborhood of  
v on the surface (see Fig. 3). First we show that the black vertices v, w, x, y, z 
are all different. Clearly, v cannot match with any of the others. It is also obvious 
that x ~ w and x ~ y since we have no multiple edges. If x = z, this vertex would 
be of degree (at least) 4, but this is impossible since v is the only black vertex 
of  G(5, 4, 4) of  degree 4. By symmetry we conclude that w ~ y, w ~ z, and y ~ z. 

In Fig. 3 all vertices of G(5, 4, 4) are drawn but the edges (without loss of 
generality) xb, yc, wa, and zd are missing. Consider any one of these edges, say 
xb. The cycle b, y, a, x, b cannot bound a region, since in such a case the edge 
wa could not be drawn on the surface. Therefore xb and wa (by symmetry) are 
embedded as shown on Fig. 3 by the dashed lines. Now, neither of the remaining 
two edges can be added without crossing the edges already drawn. 

It is easy to construct an embedding of  G(5, 4, 4) into the Klein bottle, thus 
showing that ,7(G(5, 4, 4)) = f (5 ,  4, 4) + 1 = 2. 
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Now take G = G(5,  5, 5). Denote the black vertices by w, x, y, z, v and the 
white vertices by a, b, c, d, e in such a way that the edges aw, bx, cy, dz, and ev 
are not present. Assume that G has a nonorientable quadrilateral embedding 
(into the surface of nonorientable genus f (5 ,  5, 5) = 2). Choose any black vertex, 
say v, and consider its neighborhood on the surface (see Fig. 3 and omit the 
dashed lines). As for G(5, 4, 4) we can verify that the black vertices around v 
are all different (now x = z would imply that this vertex has the same four 
neighbors as v). This property can be used to determine, uniquely, the universal 
cover of the embedded graph (see Fig. 4). The universal covering factors through 
the double orientable cover in which each vertex p of  G(5, 5, 5) has two preimages, 
say p~ and P2, such that the local rotation at p~ is reverse to the local rotation at 
P2 (when projected to the nonorientable base). Therefore the preimages of p in 
the universal cover must be of  two types, either having the local rotation as p~ 
or as P2. But from Fig. 4 it is evident that only one such rotation occurs, hence 
a contradiction. 

Since y ( G ) =  1 (see [5] or Fig. 4) and ~ ( G ) ~ 2 .  y ( G ) + l  [8], we conclude 
that ~(G(5,  5, 5)) = 3 = f (5 ,  5, 5) + 1. [] 

Remark. The above construction of the universal cover of  a quadrilaterally 
embedded graph G(5,  5, 5) also shows that the orientable embedding of  G(5, 5, 5) 
into the torus is combinatorially unique. 
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