Distance-related invariants on polygraphs
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Abstract

Let M (™ be a graph which is obtained from a path P, or a cycle C,, by replacing
each vertex by a fixed graph M and replacing each edge by a fixed set of edges
joining the corresponding copies of M. A matrix approach to the computation
of distance related invariants in such graphs is presented. This approach gives a
general procedure to obtain closed formulas (depending on n) for such invariants of
M. As an example, the Wiener index is treated in more details.

1 Introduction

The notion of a polygraph was introduced in chemical graph theory as a formalization
of the chemical notion of polymers [2]. Fasciagraphs and rotagraphs form an important
class of polygraphs. They describe polymers with open ends and polymers that are
closed upon themselves, respectively. Their special structure makes it possible to design
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efficient procedures for computing several graph invariants [10]. It was shown in [9] how
the structure of fasciagraphs and rotagraphs can be used to obtain efficient algorithms
for computing the Wiener index of such graphs (under some additional constraints).

In this paper we use the same approach to study a general class of distance re-
lated graph invariants. We initiate development of a general theory of such invariants
on infinite chain graphs. The results are illustrated on a well-known distance-related
graph invariant, the Wiener index, for which general formulas for rotagraphs and fasci-
agraphs are derived. Similar approach can be used also for other distance-related graph
invariants.

The structure of the paper is as follows. In Section 2 we study infinite chain graphs
which can be viewed as host graphs or coverings of fascia and rotagraphs, respectively.
The main result of Section 2 is Theorem 2.3 which shows that the connectivity of the
infinite chain graph is a “local property”. The derived bound on “locality” is shown
to be best possible. In Section 3 we relate fascia and rotagraphs to the infinite chain
graphs, and in Sections 4 and 5 we conclude by showing how one obtains closed formulas
for the Wiener index (and more general distance-related graph invariants) of polygraphs.

2 Distances in infinite chain graphs

In this section we introduce infinite chain graphs and prove some general results on
connectivity and (partial) distance matrices in such graphs (Proposition 2.2, Theorem
2.3, and Proposition 2.4). The key observation is Proposition 2.4 which is the main
ingredient of efficient computational procedures presented in later sections.

Let M be a fixed graph (also called monograph) with k vertices and let X C V(M) x
V(M) be a nonempty binary relation on the vertices of M. Denote by Z the set of
integers. The infinite chain graph E = Z(M, X) based on M and X is defined as follows:
V(E) = V(M) xZand E(Z) = U, 7(E;UX;) where E; = {(u,7)(v,i) | uv € E(M)} and
Xi ={(u,i)(v,i +1) | (u,v) € X}, i € Z. By M; (i € Z) we will denote the subgraph
induced on V(M) x {i}. Clearly, each M; is just a copy of M.

Given a graph G, we denote by A = A(G) and D = D(G) its adjacency and its
distance matriz, respectively. The entry a,, of A is equal to 1 if uv € E(G), and 0
otherwise. By A we denote the matrix with entries Qyy = Gy 1f ayy # 0 or u = v, and
dyy = 00 otherwise. The entry dy, of D is equal to distg(u,v), the length of a shortest
path in G from u to v. If 4 and v are in distinct connected components of G, then
dyy = 00.

When considering distance problems in graphs, it is useful to introduce a semiring
over the extended non-negative integers Nj = Ny U {oo} with operations min (as the
addition) and + (as the multiplication). The matrix product over this semiring will be



denoted by o. If A, B are square matrices of the same order k£ with entries in N§, then

(Ao B)yy = 1r£i1£k(Am + Byy) . (1)

For an extensive survey of results and applications concerning the above matrix
product the interested reader is invited to consult [3, 4, 5, 13].

The distance matrix D of the graph G can be obtained from the matrix A by com-
puting its powers using the above product:

D=AoAo---0A=A""! (2)
—_—_
n—1

where n is the number of vertices of G. Instead of the power n — 1, it suffices to take
only diam(G) factors in (2).

Let Z(M, X) be an infinite chain graph based on M where |V (M)| = k. Define the
k x k transition matriz T(X) = [tuv]u,pev(ar) in the following way:

{ 1, (u,v)eX
tuy =

oo, otherwise.

The following lemma, a reformulation of a result from [9], presents basic properties
of partial distance matrices in infinite chain graphs.

Lemma 2.1 Let E = E(M, X) be an infinite chain graph and k = |V (M)|. Let Dy be
the k x k matriz with entries (Dg)yy = distz((u,0), (v,0)). Fori > 0, define D; = D;_;0
T(X) o Dy. Then for each j € Z, the matriz D; (i = 0,1,...) contains distances in =
between all pairs of vertices (u, ), (v,j+1). More formally, (D;)y, = dist=((u, j), (v,j+
i)). Furthermore,

DH_]':DZ'OD]', 7,,]20

Proof. Observe first that it is enough to prove the claim for j = 0. The proof is by
induction on 7. The base i = 0 is true by the definition of Dy. Suppose now that the
claim holds for 4 — 1, 4 > 0, and consider the equality

(Di)uw = lgnu%rglk((Di—l)uw + (T'(X) © Do)uwy) -
By the induction hypothesis, (D;_1)yy is the length of a shortest path between (u,0)
and (w,i—1). Observe, finally, that (T'(X) o Dy)yy is the length of a shortest path from
(w,i — 1) to (v,4) such that the first edge of this path is of the form (v,i — 1)(v',1),
where (v,v') € X. Since every shortest path from (u,0) to (v,%) uses such an edge, this
implies the first part of the lemma.



The equality D;;; = D; o D; follows from Dy = Dy o Dy. O
Let us remark that idempotency of Dy also implies that
D; = (Dy)", i>0.

With each infinite chain graph = = Z(M, X)) we associate a mized graph Mx con-
taining directed and undirected edges. The graph My is defined as follows. The vertex
set of Mx is the same as for M, V(Mx) = V(M), while the edge set E(Mx) consists
of undirected edges E(M) and directed edges X. Let @ be a walk in Mx where also
the directed edges can be traversed in each direction. By |Q| we denote the length of Q,
i.e., the number of edges in Q). For each edge e in Q, its weight w(e) (with respect to
Q) is defined as 0 if e is undirected, 1 if e is traversed by @ in the direction consistent
with its orientation, and —1 otherwise. The weight w(Q) of @ is defined as

ecq

It is easy to see that dist=((u,1),(v,7)) equals the length of a shortest uv-walk in Mx
whose weight is equal to j — 1.

—_

Proposition 2.2 Let E = Z(M,X) be a connected infinite chain graph and k =
|[V(M)| > 1. Then there exist a spanning subgraph M' of M and a subset X' C X
such that the infinite chain graph E(M', X") is connected and

|E(MYy)| = |E(M")| +|X'| <k+logyk .

Proof. It is easy to see that = is connected if and only if the directed graph Mx
is weakly connected and there exists a closed walk @ in My of weight w(Q) = 1.
Let T be a spanning tree in Mx and let » € V(T) be an arbitrary fixed vertex of
T. For e = wv € E(Mx)\E(T), denote by C, the closed walk in T + e (called the
fundamental closed walk of e) which consists of the path from 7 to u, followed by e
and by the path from v to r in 7. Clearly, |w(Ce)| < k. Since the fundamental walks
generate the fundamental group of Mx (with base vertex r), () can be expressed as
a concatenation of several fundamental closed walks. Therefore the greatest common
divisor of the set of the weights of all fundamental walks equals 1. Let C be a minimal
set of fundamental walks with the above property. To prove the lemma, it suffices to see
that |C| < logy k + 1. Choose Cj € C such that |w(Cp)| is as small as possible and let
P be the set of primes dividing |w(Cp)|. Since ged{w(C) | C € C} = 1, for each prime
p € P there exists C(p) € C such that w(C(p)) is not divisible by p. By minimality of C,
it follows that C = {C(p) | p € P} U{Cy}. Since |w(Ch)| < k and the product of primes



in P is at least 2!”, but not greater than |w(Cp)|, we have |P| < logy k. Therefore
IC| <|P|+1<logyk+1.

Let F C E(Mx)\E(T) be the set of edges that corresponds to the walks in C. The
above arguments show that one can take the undirected edges of E(T) U F as E(M'),
while the directed edges in E(T) U F determine X'. O

Let us remark that we can always achieve |E(M")| < k, while | X'| < logy k does not
hold in general. Moreover, since the product of the first p primes grows much faster than
2P (even faster than p!), the above proof in fact shows that |E(MY,)| = k + o(log k).

Theorem 2.3 Let = = E(M, X) be a connected infinite chain graph and k = |V (M)].
Then for any i,j € Z and u,v € V(M) we have

dist=((u, ), (v, 7)) < k- (4k +[i —j]). (3)

Proof. Without loss of generality we may assume that ¢ < j. Let T be a spanning tree
in Mx and ey, ...,e; the edges in E(Mx)\E(T'). Denote by Cs the fundamental closed
walk with respect to 7" and a root v € V(T') that is determined by es and let wg = w(Cy).
Clearly, |ws| < k. Let P be the path in T' from u to v. Since ged(wy, ..., w;) = 1, there
exists a uv-walk @ of weight 7 — ¢ that is composed of P and some of the closed walks C
(where each Cy can appear in @) several times in one or the other direction). Denote by
Q: (1 <t <|Q]) the subwalk of () consisting of the first ¢ edges in Q). Since w(Q) = j—1,
|lw(P)| < k, and |ws| <k (1 < s <), we may achieve by possible rearrangement of the
order of the walks Cs in @) that for each ¢

2k <w(Q) <j—i+2k.

This implies that there exists a path from (u,7) to (v,7) in E that contains only vertices
of H = M; 941 U---U Mj 0. Since the subgraph of Z induced by H has at most
k- (4k + j — 1) vertices, (3) holds. O

Roughly speaking, Theorem 2.3 states that
diste((u,4), (v,§)) = Ok + k- |i = ). (4)

Let us now show by an example that the order of magnitude in (4) cannot be improved.

Example 1. Choose a positive integer k congruent 1 modulo 4, K =4[ + 1. Let M be
the graph with V(M) = {1,...,k} and E(M) = (. Define

X = {(Gi+1)|[1<i<2+1 U{(i,i—1)|20+3<i<3l+1}
U{(,i+1) |3l +2<i<AlyU{(l+1,3+1),(+1,3+2)}



4+1

Figure 1: The mixed graph My of Z(M, X).

and set = = Z(M, X). The associated mixed graph My is shown in Figure 1.
Since the weight of the cycle in Mx is equal to £1, it is easy to see that

-1 1
dist=((1,0), (k, 1)) = kT "71 2 —k+ 1
and k-1 k+1
dist=((1,0), (0 +1,)) = = + % i —k+1].

Finally, observe that for each k and i, the larger of the above distances is of the same
order of magnitude as the upper bound in (4).

The above construction can be extended to the cases when k is not congruent to 1
modulo 4. O

It can be shown that for large enough indices [ matrices D; have a special structure
that enables us to compute them efficiently. The following proposition is a variant of
the “cyclicity” theorem for the “tropical” semiring (N, min, +), see, e.g., [3, Theorem
3.112]. By a constant matrix we mean a matrix with all entries equal.

Proposition 2.4 Let 2 = E(M, X) be a connected infinite chain graph, k = |V(M)|,

and K = max{(Dg)yy | u,v € V(M)}. Then there is an indez q < (2K 4+ 1)** such that
D, = D, + C for some index p < g and some constant matriz C. Let P = q—p. Then
for every ¢ > p and every 7 > 0 we have

D;yjp=D; + jC.

Proof. For! >0, let D; = D; — (D;)11J where J is the matrix with all entries equal
to 1. Since the difference between any two elements of D; cannot be greater than 2K,
there are indices p < ¢ < (2K + 1)* ¥ such that D;, = Dy. This proves the first part of
the proposition.

The equality D;yjp = D; + jC follows from the fact that for arbitrary matrices A,
B and a constant matrix C' we have (A+C)oB =AoB +C. O



Let us remark that the matrix C' of Proposition 2.4 can be interpreted in terms of
“eigenvalues” of D; with respect to the matrix product over the semiring (Nj, min, +).
The reader is referred to [3, 5] for more details.

The bound on ¢ in Proposition 2.4 is far from being optimal. Our examples in
Section 5 show that p and P are usually much smaller.

3 Fasciagraphs and rotagraphs

A subgraph of Z(M, X) induced on V(M) x{1,...,n} is called a fasciagraph and denoted
by E,(M, X). The rotagraph Z;, (M, X) is obtained from E(M, X) by identifying vertices
(v,4) and (v, +n) (i € Z,v € V(M)). Alternatively, the fasciagraph =, (M, X) can be
obtained by taking n disjoint copies M1, ..., M, of the graph M, and fori=1,...,n—1
and for each (u,v) € X, adding the edge u;v;11 where u; € V(M;), vi11 € V(M;41) are
copies of u and v, respectively. We can think of a rotagraph E9 (M, X) in the same way
except that we also add edges u,v; between M,, and My, (u,v) € X.

Notice that the Cartesian product of M and the path P, (M and the cycle C,,) is
a special case of the fasciagraph (rotagraph) where X = id. Similarly, the direct, the
strong, and several other products [1, 6] of M and P, or C,, are special cases of fascia
and rotagraphs.

We obtain partial distance matrices D; ; and Dy ; containing distances in E;, and =7
(respectively) between vertices of M; and M; (1 <i <n,1 < j <n) similarly as for the
infinite chain graph. Because of circular symmetry of =, it is clear that D}, depends

n?’

only on (5 —7) mod n. (The same property does not hold for fasciagraphs.) Also,

J— T o __ o T
D],Z —_— Di,j aand D],i e Di,j .

Most of the partial distance matrices D;; and Dj; can be obtained from the matrices

Dy of the corresponding infinite chain graph as follows:

Proposition 3.1 Suppose that the infinite chain graph 2 = Z(M, X) is connected. Let
k = |V(M)| and n € N. Denote by K the mazimum element of Dy. Then K < 4k2.
Moreover:

(a) IfK/2 <1 <] <TL—K/2+1, then Di,j :Dj—i-

(b) If n> K and 0 < j —i <n, then D;; = min{D;_;, D_;.;} where the minimum
is taken elementwise. If also j —i <n/2 — K, then D}; = Dj_;.

Proof. Theorem 2.3 implies that K < 4k?. By the definition of K, for every pair of
vertices (u,1),(v,7) € V(E), i < j, all shortest paths between (u,7) and (v,7) contain



only vertices of M;_|k/9|,-..,Mji|k/2)- This implies (a). To justify (b), observe that
in a rotagraph E7 = = (M, X)) where n > K, there is always a shortest path between
(u,i) and (v,7) in EY that corresponds to either a path between (u,7) and (v,j) in E,
or a path between (u,7) and (v,j —n) in 2. (Note that when n < K, all shortest
paths between (u,7) and (v,7) in EJ could correspond to paths between (u,7) and, e.g.,
(v,7 +n) in E.) The length of a shortest path of the first type is equal to (D;_;)uo,
while a shortest path of the second type has length (Dj_j1;)py,. This proves the first
part of (b). If also j —i < § — K, then (n — j +4) — (j —¢) > 2K, which finally gives
(Dj—i)uv < (Dn—j-i-i)vu- [

One can apply Proposition 3.1 in problems related to distances in polygraphs. An
example of such an approach is presented in the next section.

In [9] we treated the isometric case when (each copy of) M is an isometric subgraph
of E(M, X), i.e., the distance matrix of M is equal to Dy. (More generally, a subgraph
H of G is an isometric subgraph if for any two vertices u,v € V(H), the distance from
u to v in H is equal to their distance in G.) In the isometric case we have

Di;j=Dj-i

forall 1 <14 < j < n. Similarly,
Di;j = Dj-i

forall 1 <i<j<mnsuchthat j —i<|5|—k+1

If < and j are not within the intervals requested in Proposition 3.1, the matrices D; ;
and D; ; do not always coincide. Next we prove that their entries cannot differ too
much.

Lemma 3.2 Suppose that Z(M, X) is an infinite chain graph and let K be the mazi-
mum. element of Dy. Suppose that =, = E,(M, X) is connected. If 1 <i < j <n and
u,v € V(M), then

(Dj—i)uv < (Di,j)uv < (Dj—i)uv + K(k + 2) .
Proof. The first inequality is obvious. For the second one, we may assume that n > K.
Let Ly = |[K/2|+1 and Ly = n— | K/2]. Suppose first that 1 <7 < L; and Ly < j < n.
Let P be a shortest path in (M, X) from (u,i) to (v,j). Let P’ be a segment of P
from a vertex (u',Ly) to (v, Ly). Since n > K, P’ exists. Let P; be a shortest path in
E, from (u,i) to some vertex (u”, L1). Then |P;| < kK/2. Similarly, if P, is a shortest
path in E,, from a vertex (v”, La) to (v,7), then |Py| < kK/2. Since there is a path P| in
E(M, X) from (u”, L1) to (u', L) of length at most K, such a path exists also in E,, by



Proposition 3.1(a). Similarly we get a path Pj from (v, Lg) to (v', Ly). Paths Py, P],
P', P}, P, show that the distance in =, from (u,7) to (v, ) is at most K (k + 2) + |P)|.

The cases where 1 < i < Ly and 1 < j < Ly (or L1 < j < Lg) are proved similarly.
(One even gains a factor of 2 since |P|+|P2| < kK/2 and only one path between vertices
of My, is needed.) In cases when i > Ly we get the same bounds by symmetry. In all
other cases, Proposition 3.1(a) applies. O

It may happen that =7 (M, X) is connected and that (M, X) is disconnected. For
example, if M = Ky, X = {(1,2),(2,1)}, and n is odd. On the other hand, the
connectivity of E(M, X) always implies the connectivity of Z5 (M, X). It is interesting
that for fasciagraphs, the reverse statements hold: =, (M, X) being connected for some
n > 1 implies that =Z(M, X) is connected (recall that X # (), while the connectivity of
E(M, X) does not yield connectivity of =, (M, X). Hence, the connectivity of Z(M, X)
and E,(M, X) is a local property (by Theorem 2.3), but the connectivity of Z° (M, X)
is not a local property.

4 The Wiener index

The Wiener index W (G) of G is the sum of all distances in G:

WE =5 Y Y du )

weV(G) veV(G)

This index was introduced in 1947 [15], when Wiener observed a good correlation be-
tween the boiling points of paraffins and W (G) of the corresponding molecular graphs.

Although it was the first topological index studied, even today it is a widely employed
graph theoretical descriptor [14]. For more information on the applicability of the Wiener
index the reader is advised to consult other articles in this volume. The Wiener index of
polymer molecular graphs that correspond to our notion of polygraphs has been studied
in [7, 11]. Regarding the computation of the Wiener index see [8, 12].

In [9], an observation that the distance matrices of polygraphs blocks which can be
computed efficiently, was used to give algorithms for computing the Wiener index of
polygraphs. In particular, if the polygraph is a fascia or rotagraph, formulas for the
Wiener index of infinite families Z,(M, X) and =7 (M, X) can be derived. In [9], an
explicit formula for the Wiener index of fasciagraphs (and rotagraphs) is given in case
when M is an isometric subgraph of the polygraph.

In the sequel, we shall express the Wiener index by using the sums of distances



between all pairs of vertices in My and M;. Hence we set for each integer 7 > 0:

S; = Z Z (Dz)uv

u€V (M) veV (M)

and

80:% Z Z (DO)uv-

u€V(M)veV (M)

Given a connected infinite chain graph =(M, X), denote by p and ¢, 0 < p < g, the
smallest integers such that D, = D, 4 C, where C' is a constant matrix. Recall that
Proposition 2.4 guarantees that such integers do exist. The numbers p and P =g —p
are called the preperiod and the period of Z(M, X), respectively.

Theorem 4.1 [9] Let M be a connected graph with k vertices and suppose that each
copy of M is an isometric subgraph of E,(M,X). Let p, P, and C be defined as above
and let all entries of C be equal to c. Set m = |(n —p)/P] and letr =n—1—mP. If
n > p, then

r P o
W(EL (M, X)) = Z(n—i)si—i-mz:(n—r—w—i)s,ﬂ
i=0 i=1
k*c(m — 1)mP 2m-1)P P+1
— (n—r— 3 -3 )

Let us remark that for n > p, Theorem 4.1 implies that for each congruence class
modulo the period P, the Wiener index W (E,(M, X)) is a cubic polynomial in n.
More precisely, one can show that all these polynomials for distinct congruence classes
differ only in the constant term, all other coefficients are independent of n mod P (see

Example 3).
Theorem 4.1 also shows that in order to obtain the Wiener index of a given fascia-
graph with isometric monographs, it suffices to compute only the matrices Dy, ..., D,1p,

where P and r are defined above. Recall that » and P cannot be too large, i.e., there is
an upper bound on r and P that is independent of the number of monographs n.

The results of Theorem 4.1 can also be extended to the case when monographs are
not isometric subgraphs of the fasciagraph. In such a case the first and the last L%J
monographs have to be considered separately (where K is the maximum element of
Dy), and this additional requirement increases the complexity of the obtained formula.
Therefore we decided to present only asymptotic results.

10



Corollary 4.2 Let =,(M, X) be a connected fasciagraph. Let k, p, P, ¢, m, and r be
defined as in Theorem 4.1 and let K be the mazimum element of Dy. Then

r P _
W(E=,(M, X)) = Z(n —1i)8; + mz (n —r— w — i)Sr—i—i
i=0 i=1
klc(m — 1)mP (2m—1)P P+1
— )
+ O(K?K*n).

Proof. Denote by W,, the sum of all distances in Z(M, X') between distinct vertices of
My U---UM, and set W = W(Z,(M, X)). A calculation used in obtaining the proof
of Theorem 4.1 in [9] shows that for n > p, the sum in Theorem 4.1 is equal to W,,.
Therefore it remains to show that
W — W, = O(K?kn).
Given i and 7, 1 <7 < j < m, let
Ai,j = Z ((Di,j)uv - (Dj—i)uv) .
u,weV (M)
Note that A; ; > 0. By the definition,
n n
w-w, < ZZAM'
i=1 j=i

For K/2 <i < j <n—K/2+1, Proposition 3.1(a) implies that A; ; = 0. On the other
hand, when i < K/2 or j > n— K/2+1, Lemma 3.2 gives A; ; < Kk?(k +2). Therefore

LK/2] n n j
W-W,< > > Ajj+ Y > A <KXk +2)n,
i=1 j=i j=n—|K/2)+1i=|K/2|+1
which proves the corollary. O

A companion of Theorem 4.1 for rotagraphs proved in [9] for isometric monographs
yields a similar result for the Wiener index of rotagraphs.

Corollary 4.3 Suppose that Z(M, X) is a connected infinite chain graph and let k, p,
P, and c be defined as in Theorem 4.1. Set N = [2] — K, m = |[(N + 1 —p)/P],
r=N —mP, and let K be the mazimum element of Dy. If N +1 > p, then

r P n—N-—1
W(E (M, X)) = g . (223i + 2str+i + E%c(m — 1)mP + Z sf) ,
i=0 i=1 i=N+1

where s denotes the sum of all elements in the matriz Dg ;.

11



Observe that the entries of Dg ; can be efficiently computed since Dg ; = min{D;, D;;_;}.
Similarly to the case of fasciagraphs one can show that n large enough for each con-
gruence class modulo 2P, the Wiener index of a rotagraph is a cubic polynomial in
n.

5 Examples

We conclude by four examples which should serve as a demonstration of the method
from Section 4.

3
4
2
1 5
G)
3
4
2
1 5

(b)
Figure 2: The graphs of Examples 2 and 3.
Example 2. Consider a fasciagraph obtained by taking n 5-cycles C5 as the mono-

graphs and connected as in Figure 2(a) for the case n = 4. The matrices Dy = D(G)
and T(X) are

01 2 21 00 00 00 00 00
1 01 2 2 00 00 00 00 X0
21 01 2 and 0O 00 00 00 0 |,
2 21 01 oo 1 oo oo o
1 2 2 10 1 oo o0 00 o

while the matrices D, and D+ are equal to
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3 and Dy are equal to

S~ 00 o0

and
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Therefore we have k =5, p=3,¢q=4,P=1,c=2,m=n—-3,r =2, 50 =15, 81 =73,
sg = 131, and s3 = 185. Applying Theorem 4.1 we get

w

nso+ (n —1)s1 + (n —2)sy + %(n —3)(n —2)s3

25

+—mn—4)(n—-3)(n—2)

3

1
6(50n3 + 105n% — 161n 4 120) .

|

Example 3. Take a fasciagraph obtained by taking n 5-cycles Cs as the monographs
which are connected as in Figure 2(b) for the case n = 4. In this case X = {(4,1),(5,2)}.
The matrices Dy = D(G) and D; are

0

NN =

NN = O =

2

1
0
1
2

_— O = NN

O = NN

while the matrices Dy a

= ks Ot S

NGO N3

6

U =~ Ot O

SO

6

(W2 G2 B PN |

and

nd D3 are

and

N — N W W

~N S

N W W N

S O N 0o

N W W

equal to

~N ~J 0 © ©

W W = O

Ne)

—
o]

co oo ©

W N W s

o g 0 © ©



The matrix Dy is equal to Dy + C, where C has all entries equal to 5. Hence we have
k=5p=2qg=4P=2c=5m=|5]—-1,r=1+nmod?2, so =15, s; = 73,
s9 = 131, and s3 = 194. By Theorem 4.1 we get

| 26(250n% +750% +134n — 99), n odd
= | (25003 + 75n% + 134n — 96), n even.

N
w

Figure 3: The graph of Example 4.

Example 4. As our next example, consider first the fasciagraphs obtained by taking
6-cycles Cg as the monographs and connected as in Figure 3 for the case n = 4. Here
X ={(4,1),(5,6)}. The matrices Dy = D(G) and D; are

0123 21 456 5 4 37
10123 2 3456 5 4
2101 2 3 2 3 45 4 3
521012 ™ |1923 432/
232101 2 3 43 21
12321 0] '3 45 4 3 2]
while the matrices Do and D3 are equal to
6 7 8 7 6 5] 8 9 10 9 8 7]
789 876 9 10 11 10 9 8
6 78 76 5 8 9 10 9 8 7
567605 4| ™ |78 9 8 76
456 5 4 3 6 7 8 7 65
5 6 7 6 5 4| 7 8 9 8 7 6|

As D3—Dy=2J,wehave k=6,p=2,q=3, P=1,c=2,m=n—-2,r=1, sg = 27,
s1 =126, and s9 = 216. By Theorem 4.1 we get

W(E,(M, X)) = 12n> 4 36n> — 39n + 18.

14



To compute the Wiener index of the rotagraphs E (M, X), some additional work is
needed. Since D; = Dy + 2(i — 2)J, i > 1, and the absolute value of the largest element
of Dy — D%F is equal to 2, we have

Dj; = min{D;, D} ;} =min{Dy+2(i —2)J,D3 +2(n—i—2)J}

D;, 1<i< %
= < min{D;, D'}, i=12
DI . L<i<n-—1
In particular,
72i + 72, 1<i<?
s = { T2 +54, i=1n

2(n—14i)+72, §<i<n-—Ll
Finally, for n > 8, Corollary 4.3 implies that
W(ES (M, X)) = 9n® + 36n? — 36n. (6)
Let us remark that (6) is in fact true for all n > 3. O

Example 5. Let M = P, be a path of order k. Label the vertices of M by 1,...,k in
order as they appear on M and set X = {(1,1),(k,1)}. Observe that in this case the
monographs are not isometric subgraphs of Z(M, X). Since 1 is the only vertex of M
that has a neighbor in the previous monograph, we have

(Di)uy = min{u,k +1—u} +i— 1 +min{v — 1,k +2 — v}
for ¢+ > 0. Moreover, for u < v,
(Do)yy = min{v —u,k+1— (v —u)}.

Therefore p =1, ¢ =2, P =1, and ¢ = 1. Let x = |(k + 1)2/4]. A short calculation
shows that so = (k — 1)x/2 and s; = k(25 — 1) + k%(i — 1), i > 0. Since our example
has a very simple structure, D; ; = D;_; for 1 <14 < j < n and (D;y)uy = min{u,k +
l—u}+(n—i)+v—2for 0<i<nandu,v € V(M). Hence, the Wiener index of the
fasciagraphs =, (M, X) can be expressed as

n—1 n—1 -
R R I S

=1 =1 yweV (M)

|
= - (k2n3 + (65 — 3k — 3)kn2 + (3K3 — 9kk — k% — 3k + 9k)n + 3kk — 23 + 32 + 3k — 7k)

B 3 (4k*n? + 6k (k? — 1)n? + (3k® — 25k% + 21k — 3)n — 5k® + 21k — 19k + 3), n odd
- 52 (4k%n3 + 6k(k* — 2)n® + (3k3 — 25k? + 30k)n — k3 + 21k? — 22k), n even.

15



Comparing W to the expression

1
W =2 (k2n3 + (65 — 3k — 3)kn? + (—3kk + 2k* — 3k + 3k)n)

from Theorem 4.1 we see that the order of magnitude of the difference

1
W — W, = 6(3(k2 — 26— k + 2)kn — 2k° + 3kx + 3k% + 35 — Tk) = O(k*n)

is as claimed by Corollary 4.2. O

Acknowledgement. The authors gratefully acknowledge the constructive criticism of
the referees that helped to considerably improve the quality of the paper.

References

[1]

[10]

[11]

L. Babai, Automorphism groups, isomorphism, reconstruction, in Handbook of Combi-
natorics (edited by R. L. Graham, M. Grotschel, L. Lovész), pp. 1447-1540 (Elsevier,
Amsterdam, 1995).

D. Babié¢, A. Graovac, B. Mohar, T. Pisanski, The matching polynomial of a polygraph,
Discrete Appl. Math. 15 (1986) 11-24.

F. Baccelli, G. Cohen, G. J. Olsder, J. P. Quadrat, Synchronization and Linearity (Wiley,
1992).

B. Carré, Graphs and Networks (Clarendon Press, Oxford, 1979).

R. Cuninghame-Green, Minimax Algebra (Lecture Notes in Economics and Mathematical
Systems 166, Springer-Verlag, Berlin, Heidelberg, 1979).

W. Imrich, Graph products: a survey, unpublished.

P. E. John, Die Berechnung des Wiener Index fiir einfache Polybdume, MATCH 31 (1994)
123-132.

M. Juvan, B. Mohar, Bond contributions to the Wiener index, J. Chem. Inf. Comput. Sci.
35 (1995) 217-219.

M. Juvan, B. Mohar, A. Graovac, S. Klavzar, J. Zerovnik, Fast computation of the Wiener
index of fasciagraphs and rotagraphs, J. Chem. Inf. Comput. Sci. 35 (1995) 834-840.

S. Klavzar, J. Zerovnik, Algebraic approach to fasciagraphs and rotagraphs, Discrete Appl.
Math. 68 (1996) 93-100.

O. Mekenyan, S. Dimitrov, D. Bonchev, Graph-theoretical approach to the calculation of
physico-chemical properties of polymers, Eur. Polym. J. 19 (1983) 1185-1193.

16



[12] B. Mohar, T. Pisanski, How to compute the Wiener index of a graph, J. Math. Chem. 2
(1988) 267-277.

[13] G. Rote, Path problems in graphs, Computing Suppl. 7 (1990) 155-189.

[14] N. Trinajsti¢, Chemical Graph Theory, 2nd revised ed. (CRC Press, Boca Raton, FL,
1992).

[15] H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69
(1947) 17-20.

17



