Apex graphs with embeddings of face-width three

Bojan Mohar*

Department of Mathematics
University of Ljubljana
Jadranska 19, 61111 Ljubljana
Slovenia
bojan.mohar@uni-1j.si

Abstract

Aa apex graph is a graph which has a vertex whose removal makes
the resulting graph planar. Embeddings of apex graphs having face-
width three are characterized. Surprisingly, there are such embeddings
of arbitrarily large genus. This solves a problem of Robertson and
Vitray. We also give an elementary proof of a result of Robertson,
Seymour, and Thomas [5] that any embedding of an apex graph in a
nonorientable surface has face-width at most two.

1 Introduction

We follow standard graph theory terminology as used, for example, in [1].
Let II be a (2-cell) embedding of a graph G into a nonplanar surface S,
i.e. a closed surface distinct from the 2-sphere. Then we define the face-width
fw(II) (also called the representativity) of the embedding IT as the smallest
number of (closed) faces of G in S whose union contains a noncontractible
curve. It is not difficult to see (cf. [6, 7]) that a planar graph embedded
in a nonplanar surface has face-width at most two. Robertson and Vitray
asked [6] which apex graphs can be embedded in some surface with face-
width three (or more). (A graph G is an apez graph if it contains a vertex
v such that the vertex-deleted subgraph G — v is planar.) Vitray proved
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[8] that this cannot happen on the projective plane (cf. also [2]) and the
results of Robertson, Seymour, and Thomas [5] on linkless embeddings of
graphs in the 3-space imply that the same is true for every non-orientable
surface. Vitray conjectured that the Cartesian product C3 x C'5 embedded
in the torus (see Figure 1(a)) is a “generic” example. For instance, let G be
a graph embedded in the torus as shown in Figure 1(b) where the shaded
parts contain any plane graph. If v is the central vertex, then G — v is
planar, and if the shaded parts are “dense” enough, then the face-width is
equal to 3. Clearly, this example generalizes C5 x C}.

Figure 1: (5 x (3 and a generalization

In this paper we obtain a simple description of the general structure
of apex graphs embedded with face-width 3. It turns out that the genus of
such embeddings can be arbitrarily large. This disproves Vitray’s conjecture.
We also provide an elementary proof of the result of Robertson, Seymour,
and Thomas [5] that every embedding of an apex graph in a nonorientable
surface has face-width at most two.

2 Basic definitions

Let GG be a connected graph. 2-cell embeddings of G in closed surfaces can
be described in a purely combinatorial way by specifying:

(1) A rotation system m = (m,; v € V(G)), where for each vertex v of G,
7y 18 a cyclic permutation of edges incident with v. It represents the
circular order of edges around v on the surface. The cyclic sequence
e, my(e), 2 (e), w2 (e), . .. is called II-clockwise ordering around v.



(2) A signature X\ : E(G) — {—1,1} whose meaning is as follows. By
traversing an edge e = uwv on the surface, we see if the local rotations
m, and m, are chosen consistently or not. If yes, then we have A(e) = 1,
otherwise we have A(e) = —1.

The reader is referred to [3] for more details. We will use this description
as a definition: An embedding of a connected graph G is a pair I = (m, A)
where 7 is a rotation system and A is a signature. Having an embedding
IT of G, we say that G is [I-embedded. The embedding II is nonorientable
if there is a cycle with an odd number of edges e having A(e) = —1. We
define II-facial walks as closed walks in the graph that correspond to face
boundaries of the corresponding topological embedding. If W is a walk, any
subwalk of W is a segment of W.

If IT is an embedding of a graph G and H is a subgraph of G, then the
restriction of 11 to H is the embedding of H that is obtained from that of
G by ignoring all edges in E(G)\E(H) and by restricting A to E(H). More
precisely, if e = uv € E(H), then the successor of e in the clockwise ordering

around v is the first edge of H in the sequence m,(e), 72(e),. . ..

Figure 2: Filling up common faces

Let G be a 2-connected planar graph. Suppose that we have a fixed
embedding IT of G into a nonplanar surface S such that fw(II) > 2. Let
IT" be an embedding of G in the 2-sphere. If W is a Il-facial walk that is
also II'-facial, then we replace W by the graph W as shown in Figure 2.
Similarly, if W is a maximal common segment of a Il-facial walk and a IT'-
facial walk, then we replace W by W as shown in Figure 3. (As a special
case, when W is just a path consisting of a single edge e of G, this operation
is just a subdivision of e obtained by inserting five vertices of degree 2 on e.)
When we do such replacements for all possible common facial walks and all



maximal common facial segments W, we obtain a graph G containing the
(subdivided) graph G as a subgraph. Among all planar embeddings IT" of
G we choose one such that IT and II' are as close as possible. (This means
that the number of common maximal segments of IT and II' is as small as
possible.) Then we say that Gis a patch extension of the embedding IT of
G.

Figure 3: Filling up common facial segments

It is clear that embeddings IT" and IT can be extended to embeddings
in the same surfaces, respectively, such that all triangles and quadrangles
shown in Figures 2 and 3, respectively, are facial. In particular, G is a
planar graph. It is also easy to see that if G is 2-connected (3-connected,
respectively), then so is G.

Let G be the patch extension of a 2-connected IT-embedded planar graph
G. Denote by II = (m, 5\) the corresponding embedding of G. The II-facial
walks that are not facial walks of the plane embedding of G are the patch
facial walks and the corresponding faces are called the patch faces. Vertices
of G of degree different from 2 that belong to two or more patch facial walks
are patch vertices. Segments of patch facial walks joining patch vertices are
also segments of facial walks of G embedded in the plane. They are called
patch edges. The patch degree of a patch vertex v is the number of patch
facial walks that contain v.

Edges e and f of G are similar if they both lie on the same patch edge
or if they both lie on the same II-facial walk that is not a patch facial walk.
The smallest equivalence relation on E(G) containing the similarity relation
is called the patch equivalence. Patch equivalence determines a partition of
edges of G into subgraphs of G. They are called patches of G (with respect
to the embedding IT). It is convenient to view patches together with all



[I-facial and non-patch facial walks that they contain. Then patches can be
viewed as subsets of the surface S with pairwise disjoint interiors. For more
information on patches see [4].

Suppose that II is an embedding of a graph G in a surface S such that
fw(II) = 2. Then there are faces Fj, F» whose union contains a noncon-
tractible closed curve < in S that intersects the graph in exactly two points.
Such a (noncontractible) curve is called a 2-curve. It is clear that no 2-curve
passes through a face of a patch. However, the following result was obtained
by Mohar and Robertson [4].

Theorem 2.1 Let G be a 2-connected planar graph that is Il-embedded in
a nonplanar surface such that fw(I1) = 2. Then for every patch face ® and
every patch vertex v incident with ® there is a 2-curve through ® and v.

3 Apex graphs with face-width three

Suppose that G is a 3-connected apex graph with an embedding I1y such
that fw(Ily) > 3. Let v be a vertex of Gy such that G = Gy — v is planar.
Denote by II the restriction of Il to G. Clearly, G is 2-connected and 11
is an embedding in the same surface as I1y. Also, fw(II) > fw(Ily) — 1, and
since G is planar, we have fw(Ily) = 3 and fw(II) = 2. Consequently, every
[T-facial walk is a cycle of G. We shall denote by Fj the Il-facial cycle that
is not Ily-facial. Fj is uniquely determined, and it contains, in particular,
all neighbors of v.

Consider the patches of TI. Denote by G the patch extension of @,
and let II be the corresponding extension of the embedding II. Since Gy is
nonplanar, there is a patch face ®( corresponding to Fy. Since fw(Ily) = 3,
every 2-curve (with respect to II) passes through Fj. Thus, every 2-curve
with respect to IT passes through ®;. Theorem 2.1 implies that every patch
vertex lies on the boundary of the patch face ®3. Moreover, for every patch
face ® # & and a patch vertex v on the boundary of ®, there is a 2-curve
through @, v, and ®.

Lemma 3.1 Fwvery patch of 11 is either just a path or a disk bounded by a
cycle of G.

Proof. Every patch edge is a segment of a facial walk in a plane embedding
of G. Since G is 2-connected, each patch edge is a path. Let P be a patch
that is not just a path. It follows from the definition of patches that the



interior (on the surface) of P is homeomorphic to an open connected subset
of the plane that is bounded by patch edges. Let C' be the cycle bounding
®(. Since every patch vertex is contained in C' and since C' does not enter
the interior of P, the boundary walk of P is connected. If the boundary
walk of P is not a cycle, it has a repeated patch vertex g. Since the patch
vertices of P appear on C in the same order as in the planar embedding of
é, there is a patch edge € of P joining two appearances of ¢ on the boundary
of P. Since G is 2-connected, ¢ is a facial cycle in the plane embedding of
G. Since the angle at ¢ between the two appearances of ¢ is not filled up by
a patch, this implies that the face-width of II is at most 1, a contradiction.

|

Patch faces are bounded by cycles since G is 2-connected and has face-
width 2. If two patch faces distinct from ®( intersect in more than just
a vertex, then their intersection is an edge since Gy is 3-connected and

In the proof of Theorem 3.3 below, we will use the following lemma.

Lemma 3.2 Let C be a circle in the plane. Suppose that in the inside of C
we have closed curves ®q,..., D (s > 2) each of which is composed of chords
of C. (A chord is a straight line segment joining two points on C.) Suppose
that only consecutive chords of the same curve can have an endpoint on the
circle C in common. Let CyUCy be a partition of chords in ®1,..., @4 such
that, for i =1,...,s, no two chords of ®; from the same set Cy or Cy cross
inside C. Then the number of pairs of chords from C4 that cross inside C
has the same parity as the number of intersecting pairs of chords from Csy.

Proof. If two consecutive chords v,7' of some ®; are in the same set, say
in Cy, we split ®; at the common point z of v and 4’ and insert a new
chord " joining the two copies of z. We can do this change so that " does
not cross with any other chord and that other crossings remain the same
as before. By putting 4" in Cy and repeating the procedure for all other
cases, we get a system of curves satisfying the same conditions and having
the same number of self-intersections of C7 and of Cy. Therefore we may
assume that, for ¢ = 1,...,s, no two consecutive chords of ®; are in the
same set.

The proof proceeds by induction on the number of chords. The basic
case is when s = 2 and each of ®1, ®5 is composed of four chords. This case
is easily verified by considering all possibilities for the mutual placement of
®; and @, (up to symmetries, there are 8 cases).



If s > 2, we just apply induction on each pair ®;,®;, 1 < i < j < s.
Suppose now that s = 2 and that ®9 is composed of consecutive chords
Y1,---,%, where £ > 4. Suppose that o is the shortest chord of ®5. Let «
and @ be the ends of ; and 3, respectively, that are distinct from the ends
of 2. Denote by « the chord joining @ and 8. Let &, = v Uy Uy U3
and let ®4 be the closed curve composed of v and 74, ...,7. Suppose that
71 € Cy. Since 7, is the shortest chord of @9, @), has no self-intersections
and no chord of @4 that is in Cy intersects the interior of v (such a chord
would either cross y; € Cq, v3 € C1, or 79; in the latter case we would get
a shorter chord than 7,). Therefore we can apply the induction to @, ®)
(with y in C3) and to @1, P4 (with v in C;). Each intersection of v with
chords of ®; is counted either in the first or in the second subproblem, but
not both. The lemma now follows easily since v intersects with an even
number of chords from the closed curve ®;. O

The patches of GG are divided in two classes. Those that are embedded
(in the plane embedding of G) in the interior of the facial cycle of ®q are
the interior patches. All others are the exterior patches. Now we present
an elementary proof of a result of Robertson, Seymour, and Thomas [5].

Theorem 3.3 Let Gy be an apex graph embedded in a nmonorientable sur-
face. Then the face-width of the embedding is at most 2.

Proof. Let Gy be a IIy-embedded graph where fw(Ily) > 3. By [6], every 3-
connected component of Gy, except one, is planar and Il restricted to that
3-connected component has the same face-width as I1y. Il restricted to any
other 3-connected component H is an embedding of genus 0. Thus we may
assume that Gq is 3-connected. Hence, the discussion from the beginning of
this section can be applied.

Suppose that Iy is a nonorientable embedding of G having face-width
3. Then also the embedding II of G is nonorientable. We may assume that
the signature X\ is trivial (i.e., equal to 1) on all edges of ®; and on all edges
that are not incident with patch vertices. Since all patch vertices are on ®g
and the embedding is nonorientable, there is a patch facial walk ®; that has
a patch edge € joining patch vertices 7 and v, say, with negative signature.
Let P be the patch containing € on its boundary. Since G is planar, another
patch edge § of P incident with one of 7 or v, say v, does not lie on ®j. Let
®, be the patch face using §. See Figure 4. Since fw(Ily) = 3, &1 # §,.
Moreover, ®; and @, intersect at v (and at 7 if P = ¢), and they are disjoint
elsewhere. We will show that this leads to a contradiction.



Figure 4: Patch faces ®; and ®5 meet at v

@, and @, use patch edges of interior and exterior patches. They can be
interpreted as curves composed of chords of a circle in the plane (correspond-
ing to ®g) as used in Lemma 3.2 with a partition C; U Cy corresponding to
the patch edges of the interior and exterior patches, respectively. The only
thing that we need to change in order to apply the lemma is that we split
the patch vertex v (and 7 if P = €) so that € and ¢ give rise to disjoint
crossing chords. Since G is planar, the only intersection of two chords from
C1 (or two chords from Cy) is between the two chords corresponding to e
and §. This contradicts Lemma 3.2, and we are done. O
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Figure 5: An example

On the other hand, there are orientable embeddings of apex graphs with



face-width three that have arbitrarily large genera. Very general class of
such embeddings is constructed as follows. Let H be a planar graph and Fjy
a cycle of H such that vertices of C are of degree 3 and such that H —V (C)
consists of isolated vertices. Consider the orientable embedding of H such
that C is a facial cycle, and such that all vertices of H lying inside C have
the same rotation as in the plane and the vertices of H in the exterior of
C have opposite rotation as in the plane. Let G be the patch extension of
H, and let GGy be obtained from G by adding a vertex v and joining it to
some of the vertices on C. Let IIj be the corresponding embedding of Gg
extending the embedding of G such that the local rotation at v is determined
be the sequence of its neighbors on C. If v is joined to at least one vertex
in the interior of each of the segments of C' shared with the patches, then
this embedding has face-width three. More generally, we can replace every
patch of G by a (dense) planar graph. Then we get many other examples.
It is clear that these examples can be of arbitrarily large genus. A similar
example is represented in Figure 5 where the pending outside edges all lead
to the vertex v.

The above examples are not surprising. Less obvious is the fact that these
examples are “generic” in the sense that any other embedding of an apex
graph with face-width three can be described in the same way, except that
the patches are not necessarily that “dense” as assumed above. In particular,
some of the patches can be just edges or they may have just three patch
vertices. Patches are not necessarily 2-connected. The arguments from the
beginning of this section show that this is indeed the case: If we replace every
patch P of the embedding of G by a vertex joined to all segments of &y N P
(possibly just patch vertices of P), we get a planar graph H that is similar
to the graph H used above, except that its vertices on the cycle C need not
be cubic. This determines the patch structure of (orientable) embeddings
of apex graphs having face-width 3. This description can be turned into
a characterization of such embeddings by adding appropriate conditions on
the structure of patches (in order to get face-width 3). Assuming that Gy is
3-connected, these conditions can be formulated as follows:

(a) All Il-facial walks are cycles.

(b) If &1, ®5 are patch facial walks distinct from @, the IIj-facial walks
of Gy corresponding to ®; and P9 are either disjoint, they intersect in
a single vertex, or they have a single edge in common.

(c¢) If F is a TIy-facial walk corresponding to a patch facial walk distinct



from @y and z,y are nonconsecutive vertices on F', then each of the
two open segments from z to y on Fy contains a neighbor of v.

Theorem 3.4 There are orientable embeddings of apex graphs having face-
width three and arbitrarily large genus. All such embeddings have the struc-
ture described above.
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