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ABSTRACT

Gross and Rosen asked if the genus of a 2-dimensional complex K embeddable in
some (orientable) surface is equal to the genus of the graph of appropriate barycentric
subdivision of K. We answer the nonorientable genus and the Euler genus versions of
Gross and Rosen's question in affirmative. We show that this is not the case for the
orientable genus by proving that taking blog2 gcth barycentric subdivision is not sufficient,
where g is the genus of K. On the other hand, (1+dlog2(g+2)e)th subdivision is proved
to be sufficient. c© 1997 John Wiley & Sons, Inc.

1. INTRODUCTION

Let K be a 2-dimensional cell complex (or a CW-complex). We say that K is (surface) extendible
if K admits an embedding in some surface. It is easy to find local combinatorial conditions on K
characterizing extendible complexes [3, 5, 9]. If K is extendible, then we define its Euler genus
γE(K) as the number 2−χ where χ is the maximal Euler characteristic of a surface in which K
can be embedded. Similarly, K is orientably extendible if it has an embedding into an orientable
surface. Then we define its genus γ(K) as the smallest genus of an orientable surface into which
K can be embedded. In the same way we define nonorientably extendible complexes and their
nonorientable genus.

LetK ′ (respectivelyK(r)) denote the barycentric subdivision (respectively, the rth barycentric
subdivision) of K. The graph of a 2-complex K is defined as the 1-skeleton of K. The graph
of K(r) will be denoted by K(r). Gross and Rosen [3] have shown that an arbitrary 2-complex
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K is planar (has genus 0) if and only if K(3) is a planar graph. Moreover, if K is simplicial,
then already the first barycentric subdivision suffices. They asked if the same holds in general:
Is the genus of an arbitrary orientably extendible 2-complex equal to the genus of the graph of
its (third or some other) barycentric subdivision. In this note we prove that for each r there exist
orientably extendible 2-complexes K such that the difference between the genus of K and the
genus of the graph of K(r) is arbitrarily large. This settles the question of Gross and Rosen in
negative. On the other hand, we show that for every g and every orientably extendible 2-complex
K of genus g, the graph of the (1 + dlog2(g + 2)e)th barycentric subdivision has the same genus
as K. This result is best possible in the sense that blog2 gcth subdivisions do not suffice. This
settles the question of Gross and Rosen in affirmative. Moreover, the nonorientable genus and
the Euler genus behave differently. We prove that the Euler genus of an arbitrary 2-complex (or
CW-complex) K is equal to the genus of the graph of K(7). (In case of simplicial complexes,
already the fifth subdivision suffices.) A similar result holds for the nonorientable genus. As a
corollary we get that the genus problems for graphs and extendible 2-dimensional complexes are
polynomially equivalent from the computational complexity point of view.

2. EXTENDIBLE COMPLEXES AND 2-CELL EMBEDDINGS

2-cell embeddings of a connected graph can be defined in a purely combinatorial setting by
specifying:

(1) A rotation system π = (πv ; v ∈ V (G)); for each vertex v of the given graph G we have a
cyclic permutation πv of edges incident with v, representing their circular order around v
on the surface.

(2) A signature λ : E(G) → {−1, 1}. Suppose that e = uv. Following the edge e on the
surface, we see if the local rotations πv and πu are chosen consistently or not. If yes, then
we have λ(e) = 1, otherwise we have λ(e) = −1. We may assume that λ is positive on an
arbitrary spanning tree of G.

The reader is referred to [4] or [8] for more details. We will use this description as a definition:
An embedding of a connected graph G is a pair Π = (π, λ) where π is a rotation system and λ
is a signature. Having an embedding Π of G, we say that G is Π-embedded. Every embedding
determines a unique (up to homeomorphisms) topological 2-cell embedding in some closed sur-
face. We define the Π-facial walks as closed walks in the graph which correspond to faces of the
corresponding topological embedding.

Having a Π-embedded graph G, we shall use the prefix Π to refer to concepts depending on
the embedding. For example, we say that a cycle of G is Π-contractible if it bounds a disk on the
surface of Π; the Π-interior of a Π-contractible cycle C is defined as the subgraph of G contained
in the disk bounded by C, etc. A cycle of G with an odd number of edges e having λ(e) = −1
is Π-onesided.

A similar description can be given for 2-cell embeddings of 2-dimensional complexes in closed
surfaces where parts of the rotation system and partial signature are prescribed. This description
was already considered (in a slightly more general setting) by Širáň and Škoviera [9, 10].

If K is a simplicial 2-complex, its 0-simplices and 1-simplices are also called vertices and
edges of K, respectively. If v is a vertex of K, its link in K is a subcomplex consisting of all
vertices of K adjacent to v and all edges uw of K such that vuw is a 2-simplex in K.

The following results can be verified using the rotation system description, and we omit their
proofs.
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Lemma 2.1. A connected simplicial 2-complex K is extendible if and only if the link in K of
each vertex is either a simple cycle or union of disjoint paths in the graph of K.

Lemma 2.2. Suppose that a simplicial complexK is extendible. ThenK is orientably extendible
if and only if K does not contain a Möbius band.

To use Lemmas 2.1 and 2.2 on a nonsimplicial 2-complex K, we first triangulate K and then
apply the lemmas.

Lemma 2.3. Suppose that a 2-complex K is surface extendible. Then K is nonorientably
extendible if and only if K is not homeomorphic to an orientable closed surface.

If one is interested in 2-cell embeddings, then an extendible complex whose graph is 2-
connected has a nonorientable 2-cell embedding if and only if it is not homeomorphic to an
orientable (bordered) surface.

Given K, we shall also consider complexes M that can be (topologically) embedded in K
where M is not necessarily isomorphic to a subcomplex of K. It is clear that if K is (orientably
or nonorientably) extendible, so is M . Moreover, the (Euler) genus of K is always larger than or
equal to the (Euler) genus of M .

3. MÖBIUS OBSTRUCTIONS

In this section we will describe examples for which the graphs of rather fine subdivisions have
smaller genus than the complex itself.

Suppose that we have a subcomplex D of K that is homeomorphic to a disk. Let C be
its boundary cycle. Suppose that K \ intD contains disjoint paths P1, . . . , Pk (not necessarily
in its graph) whose ends ai, bi (respectively), i = 1, . . . , k, appear on the boundary of D in
interlaced order: a1, a2, . . . , ak, b1, b2, . . . , bk. Let M be the complex composed of D and the
paths P1, . . . , Pk. Then M can be embedded in K. We say that M is a Möbius obstruction of
order k in K.

Suppose thatG is a Π-embedded graph. The smallest integer k ≥ 1 such that there are Π-facial
walks F1, . . . , Fk whose union (as a subgraph of G) contains a Π-noncontractible cycle is called
the face-width (or representativity) of Π and is denoted by fw(Π).

Theorem 3.1. Let K be an orientably extendible 2-complex that contains a Möbius obstruction
of order k ≥ 3. Then the genus of K is at least bk/2c and the genus of the graph of its rth
barycentric subdivision (r ≥ 1) is at least min{bk/2c, 2r−1}.

Proof. Denote by M that Möbius obstruction in K. Then M (r) can be embedded in K(r).
Therefore it suffices to show that the genus of the graph G = M(r) is as claimed. Note that G
has a natural embedding in the projective plane. It is easy to see that the face-width ρ of the
embedding of G in the projective plane is at least min{k, 1 + 2r}. By a theorem of Fiedler,
Huneke, Richter, and Robertson [2], the genus of G is equal to bρ/2c (if ρ 6= 2 which clearly
holds in our case since k ≥ 3 and r ≥ 1). This proves the claim about the genus of G. Since the
genus of K cannot be smaller than the genus of any of its barycentric subdivisions, also the claim
about the genus of K is verified.

Graphs similar to the Möbius obstructions have been used by Auslander, Brown, and Youngs
[1] to show existence of projective planar graphs whose orientable genus is arbitrarily large.
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FIGURE 1. A Möbius obstruction of order 6.

The above proof gives more accurate result about the genus of M(r) than just a lower bound.
For any specific M , it yields exact formula for its genus in terms of the face-width. In particular,
we have:

Corollary 3.2. For every g > 0 there exists an orientably extendible 2-complex of genus g such
that the genus of the graph of its rth barycentric subdivision is equal to min{g, 2r−1}.

Proof. Let K be the Möbius obstruction of order 2g as represented in Figure 1 for order
6 (with shown triangles being 2-cells of the complex). Using the notation from the proof of
Theorem 3.1, the face-width of G is equal to ρ = min{2g, 1 + 2r}. By [2], the genus of G is
equal to bρ/2c = min{g, 2r−1} as claimed. By Theorem 3.1, the genus of K is g. The proof is
complete.

The bound of Theorem 3.1 and the examples of Corollary 3.2 show that there are 2-
complexes of genus g ≥ 2 such that the graph of the rth barycentric subdivision has genus strictly
smaller than g, r = 0, 1, . . . , blog2 gc. On the other hand, we shall prove in the last section
that this is the worst case, since the same cannot happen for the rth barycentric subdivision when
r ≥ 1 + log2(g + 2), g being the genus of K.

It is worth mentioning that the Möbius obstruction is no longer an obstruction if we minimize
the nonorientable or the Euler genus of K.

The Möbius obstruction can be generalized as follows. Suppose that we have an embedding
of a 2-complex K in a nonorientable surface S. A set {Q1, . . . , Qt} of simple closed curves in S
is a blocker if every 1-sided curve in S crosses at least one of the curves Qi, 1 ≤ i ≤ t. The order
of the blocker {Q1, . . . , Qt} is equal to

∑t
i=1 cr(Qi,K) where cr(Qi,K) denotes the number

of times Qi intersects K, i.e., cr(Qi,K) = |Qi ∩K|. The minimum order of a blocker and the
genus of K are closely related in the same way as the face-width of the Möbius obstructions in
the projective plane and the genus are related by [2]. This can be derived from results of Mohar
and Schrijver [7]. After replacing the complex K by the graph of its subdivision, one may get a
blocker with smaller order than in K since some curves can now pass through the former 2-cells
while intersecting the graph only finitely many times. In such a case we get another type of
obstruction: a 2-complex whose genus is larger than the genus of the graphs of its subdivisions.

The above generalization again uses nonorientability and does not give rise to obstructions for
the Euler or the nonorientable genus case. We shall see in the sequel what are the reasons for that.
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4. THE EULER GENUS

In this section we shall prove that the Euler genus behaves differently from the orientable genus
by proving that the Euler genus of an arbitrary 2-complex (or CW-complex) K is equal to the
genus of the graph of K(7).

We shall need three lemmas.

Lemma 4.1. Let G be a Π-embedded graph, let v ∈ V (G) be a vertex of degree three in G,
and let Π′ be the embedding of G obtained from Π by reversing the local rotation at v. If v is
contained in αΠ-facial and in β Π′-facial walks, then

γE(Π′) = γE(Π) + α− β.

In particular, γE(Π′) ≤ γE(Π) + 2.

Proof. Obvious by comparing the number of Π- and Π′-facial walks.

Lemma 4.2. Let C = v1v2 · · · vdv1 be a d-cycle in a Π-embedded graph G such that each
vertex vi, 1 ≤ i ≤ d, has degree three. Then G has an embedding Π′ whose restriction to G−C
is the same as the restriction of Π to G− C,C is a Π′-facial cycle, and

γE(Π′) ≤ γE(Π) + 2bd/2c − 1. (1)

Proof. We may assume that the signature λ of Π is positive on edges ei = vivi+1, i =
1, . . . , d − 1. By following C from v1 towards vd, we meet at most bd/2c edges on one of the
sides, say on the left. By reversing the local rotation at those vertices of C that have edges on
the left, the cycle C either becomes facial (if λ(v1vd) = 1) or a segment of a facial walk. In the
former case, Lemma 4.1 shows that the resulting embedding Π′ satisfies

γE(Π′) ≤ γE(Π) + 2bd/2c − 2 (2)

since after each reversal of a local rotation the Euler genus increases at most by 2, and at the very
last change we have a vertex contained in at most two facial walks (α ≤ 2) and in at least two
new facial walks (β ≥ 2). In the latter case (λ(v1vd) = −1), we can change the signature of the
edge v1vd to positive and the Euler genus will increase by 1. Lemma 4.1 now implies that the
resulting embedding Π′ satisfies (1).

Lemma 4.3. Suppose that a graph G can be written as G = G1 ∪∆ where ∆ is the graph from
Figure 2 (isomorphic to the Cartesian product C92P9) such that Q = G1 ∩∆ is the outer cycle
of ∆. If Π is a minimum Euler genus embedding of G, then G has an embedding Π′ such that:

(a) γE(Π′) = γE(Π).
(b) The restrictions of Π′ and of Π to G1 − E(Q) are the same.
(c) Every cycle of ∆ is Π′-contractible.

Proof. We may assume that γE(Π) > 0. (Otherwise we take Π′ = Π.) Let Q1 =
Q,Q2, . . . , Q9 be the ‘‘nested’’ 9-cycles of ∆. Suppose that for some i, 2 ≤ i ≤ 9, Qi is
Π-contractible. Then Qi either bounds a face, or contains in its interior the cycles Qi+1, . . . , Q9.
By contracting the paths from each vertex of Q1 to the corresponding vertex of Qi and replac-
ing the embedded cycle Qi by Q, we get an embedding Π1 of G1 such that Q is a Π1-facial
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FIGURE 2. The graph ∆ = C92P9 .

cycle. Now we can draw ∆ inside the Π1-face bounded by Q. The resulting embedding Π′ of G
satisfies (a)–(c).

A similar approach works if a subset C of {Q2, . . . , Q9} separates the surface of the embedding
Π. In that case we take asQi the cycle from C with the minimal index i. If no subset of C separates,
then the induced embedding Π′′ of G′′ = G− (Q3 ∪ · · · ∪Q9) satisfies γE(Π′′) ≤ γE(Π) − 7.
(A more detailed treatment of these facts can be found in [6].) By Lemma 4.2, Π′′ can be
changed to an embedding Π′′′ of G′′ such that the cycle Q2 is Π′′′-facial and such that γE(Π′′′) ≤
γE(Π′′) + 7 ≤ γE(Π). Clearly, Π′′′ can be extended to an embedding of G of the same Euler
genus such that Q2 is contractible. By the above, we get an embedding Π′ satisfying (a)–(c).

The reader is referred to Section 6 for a discussion on how to use the similar approach in the
orientable case. In that case, ∆ is replaced by other products Cm2Pk.

Now we are able to prove the main result of this section.

Theorem 4.4. Suppose that K is a surface extendible simplicial 2-complex. Let G be the graph
obtained from K by replacing each 2-simplex T = uvw and its edges by a copy of the graph ∆
from Figure 2 such that u, v, w are identified with vertices u1, v1, w1 of ∆ (respectively) and such
that for any pair of 2-simplices sharing an edge uv, the paths u1u

′
1v

′
1v1 of the corresponding

copies of ∆ are identified. Then the Euler genus of the complex K is equal to the Euler genus of
the graph G.

Proof. If T is a 2-simplex of K, we denote by ∆(T ) the corresponding copy of ∆ in G. Also,
letQ2(T ) be the cycleQ2 of ∆(T ) (the outer cycle in ∆−Q1). Let Π0 be a minimum Euler genus
embedding of G. By Lemma 4.3 and since the cycles Q2(T ) are pairwise disjoint for distinct
2-simplices T , we may assume that for each 2-simplex T , the cycle Q2(T ) is Π0-contractable
and that the inner cycles Q3(T ), . . . , Q9(T ) are embedded in the Π0-interior of the cycle Q2(T ).

LetT, T ′ be distinct 2-simplices ofK sharing an edgeuv. LetG′ be the subgraph ofG obtained
by removing the common edges of ∆(T ) and ∆(T ′). Denote by Π′ the induced embedding of
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FIGURE 3. A part of the graph G′.

G′. Consider the subgraph of G′ ‘‘between’’Q2(T ) and Q2(T
′) as shown in Figure 3. We shall

suppress the two vertices of degree two and shall consider rr′ and qq′ as being edges of G′. Our
goal is to change the embedding Π′ (without increasing the Euler genus) to an embedding where
the cycles upqq′p′u, qrr′q′q, and vs′r′rsv are all facial. After doing so, we shall be able to embed
the omitted edges of ∆(T )∩∆(T ′) into these faces. If we succeed to perform the same changes
everywhere, the resulting embedding of G gives rise to an embedding of K in the same surface,
and we are done. So, we shall assume that for several pairs T, T ′, the above change was already
made, and by performing the next one, we shall try not to spoil our previous work.

Returning to Figure 3, we may assume that the local rotations at vertices p, q, r, s, p′, q′, r′, s′

are as shown in the figure. The signature λ of Π′ is then positive on each of Q2(T ) and Q2(T
′),

while we cannot tell its values on edges between Q2(T ) and Q2(T
′). If λ is negative on one or

both edges qq′ and rr′, we change it to positive. After this change, the cycle qrr′q′q becomes
facial, and it is easy to see that the number of facial walks does not decrease. Therefore, the Euler
genus does not increase. Now, there is a facial walk F containing the segment W = upqq′p′u as
a subwalk. If F = W , our goal of making W facial is achieved. Otherwise we change the local
rotation at u as described below.

We may assume that λ is positive on the edge up. To make W facial, it is (necessary and)
sufficient that the embedding is locally changed at u so that the signature is positive also on up′

and such that up is followed by up′ in the local rotation at u. Let us first assume that λ(up′) = 1.
Suppose that πu = (e1e2 · · · ed) is the local rotation at u where e1 = up, et = up′, 2 ≤ t ≤ d.
Denote by Fi the facial walk using consecutive edges ei, ei+1 (indices modulo d). Observe that
F1 = Ft−1 = F . Since K is surface extendible, there is an index i, t ≤ i ≤ d, such that the face
Fi is not one of the previously fixed faces (or else we have t = 2 in which case we are done).
Now we replace πu by π′

u = (e1etet+1 · · · eie2 · · · et−1ei+1 · · · ed). The only facial walks that
are changed are F1 (=Ft−1) and Fi. Clearly, W becomes a new facial cycle, and we get another
one (or possibly two if F1 = Fi) by concatenating Fi and a part of F1. Hence the Euler genus of
the new embedding does not increase.

The other possibility is that λ(up′) = −1. In that case we replace πu by π′
u = (e1etet−1 · · ·

e2et+1 · · · ed) and for j = 2, . . . , t, we replace λ(ej) by −λ(ej). Then W becomes a facial cycle
and the only Π′-facial walks that are changed are F1 and Ft (=F1). Hence the Euler genus does
not increase. (In fact, it is decreased by 1 which shows that this case indeed does not occur.)
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The same procedure is then applied to the other cycle W ′ = vs′r′rsv. Our goal is then
achieved, and the proof is complete.

Theorem 4.4 implies a result on barycentric subdivisions.

Corollary 4.5. If K is a surface extendible simplicial 2-complex, then the Euler genus γE(K)
is equal to the Euler genus of the graph K(5) of its f ifth barycentric subdivision. If K is an
arbitrary surface extendible 2-complex (or CW-complex), then the Euler genus γE(K) is equal
to the Euler genus of K(7).

Proof. By Theorem 4.4, it suffices to prove that every subdivided 2-simplex of K contains a
graph homeomorphic to ∆ in the subdivision graph K(5) of K. Denote by ∆q the graph C92Pq

(so that ∆9 = ∆). Then it is easy to see that a subdivided 2-simplex in K(2) contains ∆2, in
K(3) it contains ∆4, in K(4) we have ∆8, and in K(5) there is ∆16 (and so also ∆9), where the
outer cycle of ∆q always corresponds to the boundary of the simplex.

The second part of the corollary follows from the above since K(2) is simplicial.

It is very likely that a slightly more detailed proof would allow us to replace K(5) in Corollary
4.5 by the graph of the fourth subdivision.

5. THE NONORIENTABLE GENUS

By using some additional nested cycles in ∆, e.g., by taking ∆ = C122P14, Lemma 4.3 can be
formulated for the nonorientable genus instead of the Euler genus. Let us note that we may need to
work with embeddings that are not 2-cell. (IfK has a nonorientable 2-cell embedding, this trouble
can be superseded.) Also, the proof of Theorem 4.4 works. In Figure 3 we now have three edges
instead of two between Q2(T ) and Q2(T

′). This makes it possible to maintain nonorientable
embeddings. Since a subdivision ofC122P14 is also contained in the fifth barycentric subdivision
of a 2-simplex, we get:

Corollary 5.1. If K is a nonorientably extendible simplicial 2-complex, then the nonorientable
genus ofK is equal to the nonorientable genus of the graphK(5) of its f ifth barycentric subdivision.
If K is an arbitrary nonorientably extendible 2-complex (or CW-complex), then its nonorientable
genus is equal to the nonorientable genus of K(7).

6. THE ORIENTABLE GENUS

We have shown in Section 3 that no fixed depth (barycentric) subdivision yields the same statement
for the orientable genus as we have for the Euler or the nonorientable genera (Theorem 4.4 and
Corollaries 4.5 and 5.1). The proof of Corollary 3.2 also shows that by choosing ∆ = C3p2Ps

with either p < 2g or s < g, where g is the genus of K, will not suffice. On the other hand, we
shall prove that taking ∆ = C6g+62Pg+2 is sufficient to get the same statement as for the Euler
and the nonorientable genera.

Theorem 6.1. Suppose that K is an orientably extendible simplicial 2-complex of genus g. Let
G be the graph obtained from K by replacing each 2-simplex T = uvw and its edges by a copy
of the graph ∆ = C6g+62Pg+2 as in Theorem 4.4. Then the genus of the graph G is equal to the
genus of the complex K.
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Proof. The proof is basically the same as the proof of Theorem 4.4, and we shall use the
notation introduced in that proof. First observe that the orientable genus of an embedding Π is
equal to one half of the Euler genus. Lemma 4.3 holds also for orientable embeddings if we replace
C92P9 by ∆ = C6g+62Pg+2. Its proof in this case is even simpler (cf. [6]) since we can exclude
the case where Lemma 4.2 is applied. All cycles Q2(T ) (T a 2-simplex) are Π0-contractible. We
define G′ as before except that now we have 2g + 1 edges q1q′1, q2q

′
2, . . . , q2g+1q

′
2g+1 (instead

of the two edges qq′ and rr′) between Q2(T ) and Q2(T
′). If all cycles Qi = qiqi+1q

′
i+1q

′
iqi are

Π0-facial, we can make W and W ′ facial and conclude the proof in the same way as we did in
the proof of Theorem 4.4.

Suppose now that some Qi is not Π0-facial. Then none of Q1, . . . , Q2g is facial. Assuming
that Π0 has local rotations as shown in Figure 3, the signature λ of Π0 is negative on qiq

′
i, i =

1, . . . , 2g + 1, and we may also assume, since Π0 is orientable, that λ(up) = λ(vs) = 1 and
λ(up′) = λ(vs′) = −1. By changing the signature on the edges qiq′i to positive, i = 1, . . . , 2g+1,
an easy Euler characteristic count shows that the resulting embedding Π′ is an embedding in the
projective plane. However, the cycles upq1q

′
1p

′u and vs′q′2g+1q2g+1sv are disjoint and both
Π′-onesided. This is a contradiction, and the proof is complete.

Corollary 6.2. LetK be an orientably extendible simplicial 2-complex and r ≥ 1+log2(γ(K)+
2). Then the genus γ(K) is equal to the genus of the graphK(r) of its rth barycentric subdivision.
If K is an arbitrary surface extendible 2-complex (or CW-complex), then the genus γ(K) is equal
to the genus of K(r+2).

Proof. By Theorem 6.1, it suffices to see that the graph of the rth barycentric subdivision of
a 2-simplex contains a subdivision of the graph C6g+62Pg+2 (g = γ(K)) as a subgraph. The
verification of this fact is left to the reader.

The results obtained above yield the following interesting corollary about the computational
complexity of the minimal genus problem for extendible 2-dimensional complexes.

Corollary 6.3. The problem of determining the orientable (respectively nonorientable or Euler)
genus of a graph and the problem of determining the orientable (respectively the nonorientable
or the Euler) genus of a 2-complex are polynomially equivalent.

Proof. The genus problem for complexes contains the graph genus problem as a special case.
Conversely, a 2-complex K with m edges has the genus bounded by m. Let G be the graph
obtained from the simplicial complex K(2) by replacing each simplex with ∆ = C6m+62Pm+2

as in Theorem 6.1. By Theorem 6.1, the genus of G and the genus of K coincide. The same
reduction works for the nonorientable and for the Euler genus.

Let us recall that Thomassen proved that the genus and the nonorientable genus problems for
graphs are NP-complete [11, 12].

References

[1] L. Auslander, I. A. Brown, and J. W. T. Youngs, The imbedding of graphs in manifolds, J. Math.
Mech. 12 (1963), 629–634.

[2] J. R. Fiedler, J. P. Huneke, R. B. Richter, and N. Robertson, Computing the orientable genus of
projective graphs, J. Graph Theory 20 (1995), 297–308.

[3] J. L. Gross and R. H. Rosen, A combinatorial characterization of planar 2-complexes, Colloq. Math.
44 (1981), 241–247.



290 JOURNAL OF GRAPH THEORY

[4] J. L. Gross and T. W. Tucker, Topological graph theory, Wiley-Interscience, New York (1987).

[5] K. Kuratowski, Sur le problème des courbes gauches en topologie, Fund. Math. 15 (1930), 271–283.

[6] B. Mohar, Combinatorial local planarity and the width of graph embeddings, Canad. J. Math. 44(1992),
1272–1288.

[7] B. Mohar and A. Schrijver, Möbius blockers, in preparation.
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