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Abstract

Let K be a subgraph of G. It is shown that if G is 3–connected
moduloK then it is possible to replace branches ofK by other branches
joining same pairs of main vertices of K such that G has no local
bridges with respect to the new subgraph K. A linear time algorithm
is presented that either performs such a task, or finds a Kuratowski
subgraph K5 or K3,3 in a subgraph of G formed by a branch e and
local bridges on e. This result is needed in linear time algorithms for
embedding graphs in surfaces.
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1 Introduction

Let K be a subgraph of a simple graph G. A relative K-component or
a K-bridge is a subgraph of G which is either an edge e ∈ E(G)\E(K)
(together with its endpoints) with both endpoints in K, or it is a connected
component of G−V (K) together with all edges (and their endpoints) between
this component and K. Each edge of a relative K-component R having an
endpoint in K is a foot of R. The vertices of R ∩ K are the vertices of
attachment of R. A vertex of K of degree in K different from 2 is a main
vertex of K. For convenience, if a connected component of K is a cycle, then
we choose an arbitrary vertex of it and declare it to be a main vertex of K
as well. A branch of K is any path (possibly a closed path) in K whose
endpoints are main vertices but no internal vertex on this path is a main
vertex. If a relative K-component is attached at a single branch of K, it is
said to be local. Otherwise, it is global.

G is 3-connected modulo K if for every vertex set X ⊂ V (G) with at most
2 elements, every connected component of G−X contains a main vertex of
K. This is obviously equivalent to the following condition: If G+(K) is the
graph obtained from G by adding three mutually adjacent new vertices whose
additional neighbours are the main vertices of K, then G+(K) is 3-connected.
On the other hand, if K is homeomorphic to a 3-connected graph, then G is
3-connected modulo K if and only if it is 3-connected.

This paper is part of a larger project [8, 9] which shows that there is a lin-
ear time algorithm to construct embeddings of graphs in an arbitrary (fixed)
surface, generalizing the well–known Hopcroft–Tarjan algorithm [6] testing
planarity in linear time. These algorithms rely on the theory of bridges: a
subgraph K of G is embedded in the surface and then this embedding is
either extended to an embedding of G, or an obstruction for such extensions
is found. One of the difficulties in this approach are local bridges. In this
paper it is shown how to overcome this problem.

We believe that our results can also be used in some other problems
involving bridges (see, e.g., [12]).

In our algorithm, we need plane embeddings of graphs. These can be
described combinatorially [5] by specifying a rotation system: for each ver-
tex v of the graph G we have the cyclic permutation πv of its neighbours,
representing their circular order around v on the surface. In order to make a
clear presentation of our algorithm, we have decided to use this description
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only implicitly. Whenever we say that we have an embedding, we mean such
a combinatorial description.

There are very efficient (linear time) algorithms which for a given graph
determine whether the graph is planar or not. The first such algorithm was
obtained by Hopcroft and Tarjan [6] back in 1974. There are several other
linear time planarity algorithms (Booth and Lueker [1], Fraysseix and Rosen-
stiehl [4], Williamson [13, 14]). The extensions of original algorithms produce
also an embedding (rotation system) whenever the given graph is found to
be planar [2], or find a small obstruction — a subgraph homeomorphic to K5

or K3,3 — if the graph is non-planar [13, 14].
Concerning the time complexity of our algorithms, we assume a random-

access machine (RAM) model with unit cost for basic operations. This model
was introduced by Cook and Reckhow [3]. More precisely, our model is the
unit-cost RAM where operations on integers, whose value is O(n), need only
constant time (n is the size of the given graph).

2 Elimination of local bridges

In many cases, it is useful to know that a subgraph K of G has no local
bridges. There are 2–connected graphs G, K ⊆ G, such that it is not pos-
sible to find a subgraph K ′ ⊆ G homeomorphic to K without local bridges.
Suppose, for example, that K contains a branch e with at least one local
bridge and no global bridge attached to it. Then it is not possible to elimi-
nate local bridges on e by replacing e with another branch. However, if G is
3–connected, such an anomaly can not appear. A strengthening of this fact
is exposed by the next result.

Proposition 2.1 Let K ⊆ G and let e be a branch of K joining main ver-
tices x, y of K. Suppose that G is 3–connected modulo K. Then e can be
replaced by a branch e′ joining x and y, which is internally disjoint from K−e
such that there are no local bridges of K−e+e′ attached to e′. Consequently,
it is possible to replace K by a subgraph K ′ of G homeomorphic to K having
the same set of main vertices and such that there are no local K ′-bridges.

Proof. Traversing e from x toward y induces a linear order ≤, with p ≤ q
iff in the above traversal, p is encountered before q.
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Let B1, . . . , Bk be all the K-bridges local on e. For every bridge Bi,
let pi and qi be its endmost vertices of attachment, i.e. closest to x and y,
respectively. Let H be the graph consisting of the branch e together with B1,
. . . , Bk. Our proof is based on induction on the number of edges |E(H)|.

The base case is |E(H)| = |E(e)|. Since H is connected and e ⊆ H, it
follows that H = e and there are no local bridges on e.

Otherwise, suppose that |E(H)| > |E(e)|. We select a subsequence Bj1 ,
. . . , Bjm of bridges B1, . . . , Bk in the following way. Let j1be such that pj1 is
the minimal element of the set {p1, . . . , pk} and let Bj1 be the corresponding
bridge. Among all bridges Bi with pj1 ≤ pi < qj1 , select one with the
maximal qi. If qi ≤ qj1 , let m := 1 and stop. If qi > qj1 , let j2 := i and
proceed, looking for the maximal qi of the bridges Bi with pj1 ≤ pi < qj2 ,
and so forth. If, after the selection of m bridges, the maximal vertex qi equals
to qjm , we stop. Since G is 3-connected mod K, it follows that there must
be a vertex of attachment r ∈ V (e) of a global bridge B strictly between pj1
and qjm , or those two vertices would be cutvertices in the graph G yielding
a component with no main vertices of K. From the above construction of the
subsequence Bj1 , . . . , Bjm it follows that there is a bridge Bjs , 1 ≤ s ≤ m,
such that pjs < r < qjs . Now we construct a new path e′. We take e′ to be the
part of e between x and pjs and the part of e between qjs and y (one or both
possibly trivial), joined together with a path from pjs to qjs in Bjs , internally
disjoint from e. Let B′1, . . . , B′` be the local bridges on e′, and H ′ be the
graph consisting of e′ together with all the bridges B′1, . . . , B′`. The new
local bridges are either ones local on e (attached to e∩e′), or are parts of the
local bridge Bjs . It follows that H ′ ⊆ H. However, the part of e between pjs
and qjs becomes a part of a global bridge B′ containing B. Note that the
local bridges with a vertex of attachment strictly between pjs and qjs are
merged into the global bridge B′. The part of e between pjs and r contains
at least one edge, since pjs < r. Similarly, the part between r and qjs also
contains at least one edge. Therefore, those two edges are not the part of H ′

and it follows that |E(H ′)| < |E(H)|.
We can repeat the above steps several times and since the original H

contains only finitely many edges, it follows that the procedure reaches the
base case. Finally we replace the original path e with the path e′ from the
last step.
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3 A linear time algorithm

Unfortunately, the proof of Proposition 2.1 yields a quadratic time algorithm
for the local bridges elimination. It is possible to improve it into anO(n log n)
algorithm by some additional more sophisticated methods [7]. However, in
various applications (e.g., [8, 9]), a linear time procedure is desired. A so-
lution that is suitable for the applications in surface embedding algorithms
is presented in this section. If L is a subgraph of G homeomorphic to K5

or to K3,3, we say that L is a Kuratowski subgraph of G. If H is a graph
and x, y ∈ V (H), denote by H + xy the graph obtained from H by adding
a new edge between x and y.

Lemma 3.1 Let K ⊆ G and let e be a branch of K joining main vertices x,
y of K. Suppose that G is 3–connected modulo K. There is a linear time
algorithm that performs one of the following:

(1) Replaces e by a branch e′ joining x and y which is internally disjoint
from K − e such that there are no local bridges of K − e+ e′ attached
to e′.

(2) Finds a subgraph L of G which is a Kuratowski subgraph of G+xy such
that L ∩K ⊆ e.

Proof. Let N be the graph obtained from the branch e by adding all
local bridges attached to it. If the graph N +xy is planar, consider one of its
plane embeddings. Let W be the facial walk of one of the faces containing xy.
Since G is 3–connected modulo K it follows easily that N+xy is 2–connected
and hence W is a (simple) cycle. Now we replace e by e′′ := W −xy. The set
of local bridges is modified accordingly. Some of the previous local bridges
might merge together into a new local bridge, others might become global
with respect to the changed subgraph K of G (and are therefore removed
from consideration). But since the graph G is 3–connected modulo K, no
new local bridges arise. Let N ′ be the modified graph of local bridges. By
the above, N ′+xy ⊆ N+xy. Using the induced plane embedding of N ′+xy,
we repeat the above procedure by selecting the “other” facial walk W ′ of the
face containing xy on its boundary. Let e′ := W ′ − xy be the new branch
replacing e′. One can show that e′ has no local bridges attached to it (see
[11] for details).
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Otherwise, let L be a Kuratowski subgraph from the planarity test forN+
xy. Note that L′ can be obtained in linear time by the algorithm of Williamson
[13, 14]. It is clear that L fits (2).

Now we are ready for our main result.

Theorem 3.2 Let K ⊆ G and let e be a branch of K joining main vertices x,
y of K. Suppose that G is 3–connected modulo K. There is a linear time
algorithm that either replaces e by a branch e′ joining x and y such that e′

is internally disjoint from K − e and there are no local bridges of K − e+ e′

attached to e′, or finds a Kuratowski subgraph L of G such that L ∩K ⊆ e.

Proof. Let N be the graph obtained from the branch e by adding all
local bridges attached to it. If N is not planar, its Kuratowski subgraph L,
obtained by the algorithm of [13, 14] in linear time, has the property stated
in the theorem.

Suppose now that N is planar. Traversing e from x towards y we get the
first vertex x1 with a local bridge attached to it. (If there is no such vertex,
then we can stop.) Among all local bridges at x1 we select a subset containing
those bridges whose “rightmost” attachment on e is as close to y as possible.
Denote this other extreme attachment by y1. If among the selected bridges
there is an edge x1y1, then let B1 be this edge. Otherwise, let B1 be any of
the selected bridges.

Suppose now that we have constructed the sequence B1, . . . , Bk of local
bridges at e with the following property. If xj and yj are the “leftmost”
(i.e., closest to x) and the “rightmost” (i.e., closest to y) attachments of Bj

(1 ≤ j ≤ i), then x1 < x2 < y1 ≤ x3 < y2 ≤ · · · ≤ xi < yi−1 < yi, where
the relation < (and ≤) stands for “being closer to x on e”. Moreover, every
bridge of K attached strictly between x1 and yi−1 has all its attachments on
the closed segment [x1, yi] of e. (Case i = 1 with B1, x1, y1 defined as above is
assumed to fulfil these conditions.) If some global bridge is attached strictly
between xi and yi, then we terminate the construction of the sequence B1,
B2, . . . , Bi. The obtained sequence will be used later. Let us remark that we
reach this point sooner or later for G is 3–connected modulo K. Suppose now
that no global bridge is attached between xi and yi. By the 3–connectivity
modulo K of the graph G and the properties of B1, . . . , Bi, there is a local
bridge attached strictly between xi and yi which has an attachment closer to y
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than yi. Among all such bridges, let Bi+1 be the bridge attached between xi
and yi obtained as follows. We first determine the “rightmost” vertex yi+1

that is an attachment of such a bridge, among the candidates attached at yi+1

we select those which have an attachment xi+1 as close as possible to x, and
in the obtained subset we choose as Bi+1 the edge xi+1yi+1 if possible, and
otherwise we choose as Bi+1 any of these candidates. By the properties of
the sequence B1, . . . , Bi, xi+1 cannot precede yi−1 on e. Now it is easy to
see that the bridges B1, . . . , Bi+1 fulfil the “inductive” requirements for the
sequence B1, . . . , Bi+1.

Upon terminating, the time spent in the above procedure is proportional
to the number of edges of G in the segment of e from x1 to the last vertex,
say yk, plus the number of edges in the local bridges attached to this segment.
After changing the segment from x1 to the last vertex yk, we will not use the
new segment in the above procedure any more. Therefore the overall time
spent by this part of the algorithm is linear.

Suppose that we obtained the sequence B1, . . . , Bk by the above proce-
dure. Our goal is to replace the segment from x1 to yk by a path in B1∪· · ·∪
Bk ∪ e such that the new segment will have no local bridges attached to it.
This will be done in two steps. In the first step we define a path f from x1

to yk and replace the corresponding segment of e by f . In the second step
we remove the remaining local bridges by applying the algorithm of Lemma
3.1.

For i = 1, . . . , k, let fi be a path in Bi from xi to yi which is internally
disjoint from e. Let f be the path composed of fk, fk−2, fk−4, . . . together
with segments on e between yk−2 and xk, yk−4 and xk−2, etc. (together with
the segment of e from x1 to x2 if k is even). Recall that there is a global
bridge B attached between yk−1 and yk (possibly at yk−1). By the property
of our sequence B1, . . . , Bk it follows that after the above replacement of the
segment of e from x1 to yk by f , the bridges Bk−1, Bk−3, Bk−5, . . . are all
merged with B into a single global bridge.

Consider the local bridges with respect to the new graph that are attached
to f . Since f and all considered local bridges are contained in N , we can take
the induced plane embedding of the graph H consisting of f together with its
local bridges. We claim that there exists a plane embedding of H such that
every local bridge at f is attached to f from one side only (with respect to our
embedding). The local bridges are of two types. They are either local at e
as well (in which case they are attached to some of the segments of e ∩ f),
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or they emerge as subgraphs of bridges Bk, Bk−2, Bk−4,. . . By our choice
of Bi+1, when constructing the sequence B1, . . . , Bk, a local bridge attached
at the segment from yi−2 to xi (i ≡ k (mod 2)) has all its attachments on
this segment and it is easy to see that under the plane embedding of N ,
all the attachments are on the same side of e (otherwise, the path fi−1 in
Bi−1 and the local bridge would intersect). The new local bridges that are
contained in Bi(i ≡ k (mod 2)) may attach to f from both sides. But if
this is the case, then either i = k, or i = 1, and the other sides can be
attained only in x1 or yk. (To see this, consider the simple closed curveC
consisting of a path P in our bridge Q joining the feet q1, q2 of Q attached
at different sides of f together with the corresponding segment on f . This
curve either separates in the plane xi−1 and yi−1, or separates xi+1 and yi+1.)
Therefore these bridges can be re-embedded in such a way that each of them
attaches to f from one side only. The obtained plane embeddings of local
bridges at f enable us to use Lemma 3.1 (since the addition of the edge x1yk
will not destroy the plane embedding) to replace f by a path f ′ without local
bridges. Note that the actual re–embeddings will be done automatically by
the planarity testing of the corresponding graph in the algorithm of Lemma
3.1. Again, the overall time spent for this purpose is linear.

If there are additional local bridges attached to e at the segment from yk
to y, we repeat the whole procedure.

Corollary 3.3 Let K ⊂ G and suppose that G is 3–connected modulo K.
There is a linear time algorithm that either replaces every branch of K by
another branch joining the same pair of main vertices and such that G has no
local bridges in respect to the new subgraph, or finds a Kuratowski subgraph L
of G such that L ∩K is contained in a single branch of K.

Proof. Apply Theorem 3.2 to every branch of K separately. After changing
one of the branches, the local bridges attached to other branches do not
change. Therefore, the total time is linear.

8



References

[1] K. S. Booth, G. S. Lueker, Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-trees, J. Comput. System Sci. 13 (1976)
335–379.

[2] N. Chiba, T. Nishizeki, S. Abe, T. Ozawa, A linear algorithm for embedding
planar graphs using PQ-trees, J. Comput. System Sci. 30 (1985) 54–76.

[3] S. A. Cook, R. A. Reckhow, Time bounded random access machines, J. Com-
put. Syst. Sci. 7 (1976) 354–375.

[4] H. de Fraysseix, P. Rosenstiehl, A depth-first search characterization of pla-
narity, Ann. Discr. Math. 13 (1982) 75–80.

[5] J. L. Gross, T. W. Tucker, Topological graph theory, Wiley-Interscience, New
York, 1987.

[6] J. E. Hopcroft, R. E. Tarjan, Efficient planarity testing, J. ACM 21 (1974)
549–568.
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[9] M. Juvan, J. Marinček, B. Mohar, Efficient algorithm for embedding graphs
in arbitrary surfaces, in preparation.

[10] A. Karabeg, Classification and detection of obstructions to planarity, Lin.
Multilin. Algebra 26 (1990) 15–38.

[11] B. Mohar, Projective planarity in linear time, J. Algorithms, in press.

[12] H.–J. Voss, Cycles and bridges in graphs, Kluwer, 1991.

[13] S. G. Williamson, Embedding graphs in the plane — algorithmic aspects,
Ann. Discrete Math. 6 (1980) 349–384.

[14] S. G. Williamson, Depth-first search and Kuratowski subgraphs, J. ACM 31
(1984) 681–693.

9


