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ABSTRACT. In an earlier work, the author extended the Andreev- 
Koebe-Thurston circle packing theorem. Additionally, a polynomial 
time algorithm for constructing primal-dual circle packings of arbi- 
trary (essentially) 3-connected maps was found. In this note, addi- 
tional details concerning surfaces of constant curvature 0 (with spe- 
cial emphasis on planar graphs where a slightly different treatment 
is necessary) are presented. 

1 Introduction 

Let X be a surface .  A mapon Z is a pair  (G, Z) where  G is a connec ted  g r a p h  
tha t  is 2-cell e m b e d d e d  in Z. Given a m a p  M = (G, X), a circle packing of  M 
is a set  of  c losed bal ls  (called circles) Cv, v ~ V(G), in a R iemannian  sur face  
X' o f  cons t an t  cu rva tu re  +1, 0, or - 1  that  is h o m e o m o r p h i c  to 7. such  that  
the following cond i t ions  are fulfilled: 

(i) Each circle Cv is a ball of  rad ius  rv wi th  r e s p e c t  to the geodes ic  dis- 
tance in y.', and  the in te r iors  o f  these  circles are  pa i rwi sed i s jo in t  o p e n  
disks.  

(ii) For each  edge  u v  ~ E(G), the circles Cu and Cv touch.  

(iii) By pu t t ing  a ver tex  v ~ in the cen te r  of  each  circle Cv and joining v ~ 
by  geodes ics  wi th  all po in t s  on  the b o u n d a r y  of  Cv where  the o the r  
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circles touch Cv (or where Cv touches itself), we get a map on Y.' which 
is isomorphic to M. 

Because of (iii) we also say to have a circle packing representation of M. 
Simultaneous circle packing representations of a map M and its dual map 
M* are called a primal-dual circle packing representation of M if 

(iv) For any two edges e = u v  ~ E(M) and e* = u ' v *  ~ E(M*) which 
are dual to each other, the circles Cu, Cv corresponding to e touch at 
the same point as the circles Cu., Cv, of e*, and Cu, Cu. cross each 
other at that point at the right angle. 

Having a primal-dual circle packing representation, each pair of dual edges 
intersects at the right angle. 

It was proved by Koebe [7], Andreev [1, 2], and Thurston [13] that if M 
is a triangulation of the sphere, then it admits a circle packing represen- 
tation. The proofs of Andreev and Thurston are existential (using a fixed 
point  theorem) but  Colin de Verdi~re [4, 5] found a constructive proof  by  
means of a convergent process  (also for more general surfaces). PuUey- 
blank and Rote (private communication) and BrightweU and Scheinerman 
[3] proved existence of primal-dual circle packings of 3-connected planar 
graphs. The author [10] extended these results by characterizing maps  on 
general surfaces that admit primal-dual circle packing representation. In 
particular, every map (on an arbitrary closed surface) with a 3-connected 
graph has a primal-dual circle packing representation. 

The presentation in [10] focused on the hyperbolic case, the constant  
negative curvature. The proofs  for the Euclidean case (curvature O) were 
omitted, and in this note related to the Colloquium talk of the author, we 
give more detailed presentat ion of the Euclidean case. In fact, we concen- 
trate on the case of primal-dual circle packing representation of planar 
graphs in the Euclidean plane since that case needs slightly different treat- 
ment  than circle packings on closed surfaces. We present a polynomial time 
algorithm which gets as the input an essentially 3-connected map M on a 
flat surface (the toms,  the Klein bottle, or the plane) and a rational number  
E > O, and finds an , -approximation for a circle packing of M into a surface 
of constant  curvature 0. The time used by this algorithm is polynomial in 
the size of the input (which is defined as IE(M)I + max{l,  [log(I/E)1}). 

The proofs establishing existence and uniqueness of primal-dual circle 
packings are elementary. The basic idea relies on the interpretation (due to 
Lovasz) of Thurston's proof, a version of which was also used by Brightweli 
and Scheinerman [3]. It is the details in the algorithm that require more  
work in order to show that the worst case nmning time is polynomial. A 
new result in this note is the extension of  the primal-dual circle packing 
theorem to a more general class of plane graphs if we do not insist to have 
the circle corresponding to the unbounded face; see Theorem 3.9. 
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There are many applications of circle packing representations in com- 
putational geometry, graph drawing, computer graphics (cf., e.g., [6, 8, 9]), 
as well as in complex analysis (cf., e.g., [12]). 

2 Primal-dual circle packings 

Let ~ be a surface of constant curvature 0 which is isomorphic to the torus, 
the Klein bottle, or the Euclidean plane. Let M0 = (Go, ~) be a map on 
Z. Define a new map M = (G, Y.) whose vertices are the vertices of Go 
together with the faces of Mo, and whose edges correspond to the vertex- 
face incidence in Mo. The embedding of G is obtained simply by putting a 
vertex in each face F of Mo and joining it to all the vertices on the boundary 
of F. If a vertex of Go appears more than once on the boundary of the face, 
then we get multiple edges at F but their order around F is determined by 
the order of the vertices on the boundary of F. The map M and the graph 
G are called the vertex-face map and the vertex-face graph, respectively. 
(Sometimes also the name angle map and angle graph is used.) Note that 
G is bipartite and that every face of M is bounded by precisely four edges 
of G. 

From now on we assume that M0 is a given map on ~ and that M and 
G are its vertex-face map and vertex-face graph, respectively. We will use 
the notation V = V(G), and will denote by n and m the number of vertices 
and edges of G, respectively. If ~ is the torus or the Klein bottle, then by 
Euler's formula 

m = 2n. (1) 

Similarly, if Z is the plane, then 

m = 2n - 4. (2) 

If S, T c V(G), then E(S) denotes the set of edges with both endpoints in 
S, and E(S, T) is the set of edges with one endpoint in S and the other in 
T. Although E(S, T) = E(T,S),  we emphasize that, in order to simplify the 
notation, u v  E E(S, T) will not only mean the membership but will also 
implicitly assume that u E S, v E T. 

If Z is the plane, then one of the vertices of the vertex-face graph corre- 
sponds to the unbounded face, and we refer to it as the vertex at infinity. It 
is convenient to consider circle packings in the extended plane (the plane 
together with a point oo which we call infinity). Then we allow that one of 
the circles of a circle packing, denoted by Coo, behaves differently. Instead 
of (i), we require that none of the circles intersects the exterior of Coo. We 
call Coo a circle centered at infinity. To get the corresponding circle packing 
representation in (iii), each edge from a vertex v to the vertex of Coo is rep- 
resented by the half-line from the center of Cv through Cv n Coo (towards 
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Figure 1: A CP with a circle centered at infinity 

infinity). See Figure 1 for an example of a CP representat ion with a circle 
centered at infinity. 

Similarly we extend the notion of primal-dual circle packings in the 
plane to allow the circle at infinity, and we assume that the vertex at infinity 
is the vertex of G corresponding to the unbounded  face of Go. Lemma 2.1 
below shows that the last assumption may as well be omitted. 

Let us view R 2 as the complex plane C, and the extended plane as C* = 
C u {co}. Consider t ransformations w : C* - C* of  the following form: 

a z  + b  
w(z )  - a d  - bc ~ O, 

c z + d  ' 

where w(oo) = a / c  if c & 0 and w(oo) = oo if c = O. Also, w ( - d / c )  = oo. 
These maps are called fractional linear transformations or M~bius trans- 
formations.  They map circles and lines to circles and lines in C* (lines 
in C* correspond to usual lines in the plane together with the point oo). 
In particular, they map (primal-dual) circle packings to (primal-dual) circle 
packings. Now, it is easy to see the following: 

[ ,emma 2.1 I f  a graph G has a circle packing in the plane and v is a vertex 
o f  G, then there is a circle packing representation o f  G such that the circle 
corresponding to v is centered at  infinity. 

Let us now return to the general case. Having a primal-dual circle pack- 
ing representat ion of M0 in Y., we have a circle for each vertex v of G. Let 
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Figure 2: A basic quadrangle 
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rv be the radius of that circle. Clearly, the primal-dual circle packing repre- 
sentation m z gives rise to a straight-line representation of M. Consider a 
vertex v of M. It is surrounded by quadrilaterals (called basic quadrangles).  
If v u v ' u '  is one of them (cf. Figure 2), then its diagonals are perpendicular 
and have length rv + rv, and ru + ru,, respectively. The angle r shown in 
Figure 2 is equal to: 

= arc tg ( ru / rv ) .  (3) 

Since the total sum of the angles around a vertex is 2re, we have a necessary 
condition for a set of radii r = (rv I v ~ V(G))  to be the radii of a primal- 
dual circle packing: 

~. arc tg ( ru / rv )  = rr, v E V(G) (4) 
vuEE(G)  

where the sum is taken over all edges v u  that are incident to v in G. It is im- 
portant that (4) is also sufficient, as shown by Brightwell and Scheinerman 
[3] in the planar case and by Mohar [10] in the closed surface case. 

Proposi~on 2.2 Let M be the vertex-face m a p  o f  a m a p  Mo on a surface Z 
o f  constant  curvature  O. Let G be the vertex-face graph o f  M. Then r = ( rv I 
v E V(G))  are the radii o f  a primal-dual  circle packing representation o f  M 
if  and  only i f  rv > O, v E V(G),  and  the angle condition (4) /s satisfied. 

3 Planar graphs 

Let Go be a given 2-connected plane graph. In this section we let G be the 
graph which is obtained from the vertex-face graph of Go by deleting the 
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vertex corresponding to the unbounded face of Go. Suppose that the un- 
bounded face of Go contains k vertices vn . . . . .  vk on its boundary. Denote 
by n, m,  f the number  of vertices, edges, and faces of G, respectively. Then 
(2) implies 

m = 2 n - k - 2  and f = n - k .  

(Observe that (2) refers to the vertex face graph G + to which has n + 1 
vertices and m + k edges in the current notation.) Note that G is a bipartite 
plane graph and that G is simple (since Go is 2-connected), al though we do 
not require Go be a simple graph. 

Given a function r = (rv [ v ~ V), where each rv > 0, we define 

q~,, = Z arctg r,, 
u ~  v ~'v 

where the sum is taken over all vertices u that are adjacent to v in G. 
Clearly, ~Pv is equal to one half of the total angle of basic quadrangles 
around v. To measure the difference from the expected value rr (or - ~  rr 
if v = vi), we introduce 

( cpv - Tr, f l y  f~ {v~ . . . . .  Vk} 
9v (5) 

Denote by O(r) = (gv; v E V). 

Lemma 3.1 ~.v~v ~v = O. 

Proof .  We will use here and in later proofs the well known identity 

1 rr 
arctg(x) + a rc tg(~)  = ~-. 

It follows easily: 

vEV 

= ~ cpv - n ( n  - k) - k ~ - ~ - r r  
v ~ V  

Tr  Tr  
= - - e - ( 2 n - 2 k + k - 2 ) = = 0 .  

2 2 

[]  

The following lemma is obvious. 

Lamina 3.2 The functions ~v = ~v (r)  are continuous and differentiable. 
Moreover, 39v /3 rv  < O, 39v /3ru  > O, i f  u is adjacent to v in G, and 
39v /3ru  = O, otherwise. 
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L e m m a 3 . 3  L e t s  c_ V , S  ~ O , S  ~ {vi} (1 <_ i < k),  and let t = IS n 
{Vl . . . .  Vk} I. I f  E(S) denotes the set o f  edges o f  G with both ends in S, then 

21SI - IE(S)I > t + 2. (6) 

If  t = k and either the graph Gs = (S ,E(S) )  induced on S is disconnected, 
or at least one bounded face of  Gs is not a quadrilateral, or the unbounded 
face o f  Gs is not o f  size 2k, then 

2lSI - IE(S)I > t + 3. (7) 

Proof .  Let us  first a s s u m e  tha t  Gs is connec ted .  T h e n  we obviously  have  
the  following.  If t = 0 and  IS[ = 1 t hen  

21SI - [E(S)I = 2 = t + 2.  (8) 

If t =  l a n d I S l =  1 t h e n  

2 1 S I -  IE(S)I = 2. (9) 

If ISI = 2, then  t < 1. Hence  

2IS[ - IE(S)l > 3 > t + 2.  (10) 

If IS[ > 3 then  cons ide r  Gs as the p lane  graph.  Since Gs is b ipar t i te  and  
s imple ,  all i ts faces  are  of  s ize 4 or  more .  Moreover,  the  u n b o u n d e d  face 
con ta ins  the  t ver t ices  of  S n {Vl . . . . .  Vk}, and  is t he re fo re  of  s ize at leas t  
2t .  (We do  not  insis t  tha t  the u n b o u n d e d  face is s imple!)  Consequent ly ,  
coun t ing  the n u m b e r  of  edges  on  the b o u n d a r i e s  of  faces  of  Gs yields: 

4(IF(Gs)l  - 1) + 2t _< 2[E(S)[ (11) 

where  F(Gs) d e n o t e s  the set  of  faces  of  Gs. By Euler 's  fo rmula  for  Gs and 
(11), we ge t  (6). In the  case  w h e n  Gs is connec ted ,  t = k, and  at least  one  
of  the b o u n d e d  faces  of  Gs is not  a quadr i la tera l ,  or  the  u n b o u n d e d  face is 
of  s ize g rea t e r  t han  2k, (11) can  easi ly be  i m p r o v e d  to (7). 

It fo l lows  by  (8)-(10) that  in the case when  Gs is no t  connec ted  the  
inequal i ty  (7) holds .  Clearly, this  impl ies  (6). [ ]  

L e m m a  3.4 Let r = (ru; v ~ V), S c V, S ~ ~ ,  and ct > 0 be given. Define 
t t t 

r '  b y r  v = Ctrv if v E S, a n d r  v = rv otherwise. Let (gv;  v E V) = O(r ' ) ,  
and l e t f ( c t )  = ~ v ~ s ( g v  - 9~).  Then 

t 

(a) I f  ot > 1 then g'v < 9v if v c S, a n d 9  v > 9v i f  v ~ S. 

Oa) 
f ( o t )  = Z ~.  (arctg r---~u - a r c t g  ru ) .  

v~S u~S,vuEE ~'v O~?'u 

In particular, f ( ot) is monotone increasing. 
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(c) l f M = l J m a _ ~ f ( a ) t h e n  

Tr 
Z g v  <_M < ~ I E ( S , V \ S ) I .  

yES 

(d) I f  ct >_ 2 + m a x u e s  r u / m i n v ~ s  rv ,  t h e n  

M 
f ( a )  ~ - - .  2 

Proof .  The asser t ion (a) is obvious.  By (a) it is clear that  the limit M is well 
def ined and  that it is equal to 

T/" 
M = ~ arctg ru  <_ _ IE(S,  V \ S ) l  

vu~E(S,V\S) rv  2 
(12) 

To get  the  lower b o u n d  on  M, we use the fact that  9v = q~v - rr, or 9v = 

q~v - ~-~Tr > cPv - Tr, but  the latter happens  only for the t _< k vert ices of  
S n { v l  . . . . .  Vk}.  We will write s = ISI and es  = IE(S)I. Then  

k - 2  
9v = Z 

v~S v~S  

- -  z z 
v ~ S v u ~ E  r v  

= - ~ e s + M -  s - t + t  rt  

= M -  (2s - es  - t - k t ) T r .  (13) 

By app ly ing  (6) in the above inequali ty we get  the requi red  bound.  There  is 
the case when  t = 1 and  s = 1 which is not  covered by (6). But in this case 
2s - e s  - t - 2 t / k  = 1 - 2 / k  > 0 which yields the same conclusion.  

To prove  (c) we use  (a) and  (12). It suffices to see that  

arctg ru arctg ru 1 
- -  - > - arctg r u  (14) 
rv a r v  - 2 r v  

for every  v ~ S, u ~ S. Let x = r u l r v  and y = x/or.  Then  (14) is equivalent  
2 to arc tg  x >_ 2 arctg y .  Since 0 < y < 1, we have 2 arctg  y = arctg lZ--:~y, and  

the p rev ious  inequali ty reduces  to x >_ 2 3 , / ( 1  - y 2 ) .  This is equivalent  to 
ot >_ v/x -2 + 1 + 1. But this is t rue since ot _> x + 2 by assumption. [ ]  

Given r ,  define 

vEV 
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Order  the ver t ices  of  G such that  9ut  >- 9u2 >- �9 �9 �9 >- 9 u , .  Let 

o-(r )  = m a x  (gu, - 9 u , ~ ) ,  (15) 
l ~ i < n  

and  let t be  the sma l l e s t  index i where  the  m a x i m u m  in (15) is a t ta ined.  Set 
S = S ( r )  = {ul . . . . .  u t } ,  and let r '  be  de f ined  b y  r,~ = otrv i f  v ~ S,  and  

! ! 

r~ = rv  otherwise .  Let (gv; v ~ V) = O ( r ' ) ,  a n d l e t  f ( o t )  = ~ . v e s ( g v  - g v ) .  
Call ot su i tab le  if  

I I (a) 9 v > 9~, for  all v ~ S and u r S, and  

Oa) f ( e t )  > � 8 9  

Lemma 3.4(c) shows  tha t  a sui table  ot a lways  exists .  
Next we desc r ibe  an  a lgor i thm for  the fo l lowing p rob lem:  

Ins tance :  A 2 -connec ted  p lane  g r a p h  Go, e > O. 

Task :  Find pos i t ive  n u m b e r s  r = (rv;  v E V) for  the c o r r e s p o n d i n g  g r a p h  
G such  t h a t / ~ ( r )  < e. 

ALGORITHM A: 

1. Cons t ruc t  the ver tex-face  g r a p h  and  r e m o v e  its ver tex  at infinity 
to f o r m  the  g r aph  G. 

2. S e t r v  = 1, v E V. 

3. whi le  ~ ( r )  > e do  

3.1 De te rmine  o- = o- ( r )  and  the se t  S c V. 

3.2 Find a sui table  ot by bisect ion.  Since all the c o m p u t a t i o n s  are 
only  app rox i m a t i ve  (p b ina ry  digits), we p e r f o r m  the bisec- 
t-ion as follows: 

ao  := 1, cq := 2(maxu~s  ru + 2) 

C o m m e n t :  Note that  m i n v ~ v  rv  = 1. 

r e p e a t  
ag+c~ 1 

OC:= 2 

C o m p u t e  r ' ,  O ( r ' )  = (9~ I v  ~ V). 
r r 1 i f g v  < ~ u + T  ~  

t h e n  a l  := a e l s e  a0 := a 

unt i l  ~x is suitable. 
! t 3.3 p := minv~v  r v and  rv  := r v / p ,  v ~ V. 

4. O u t p u t  r and  O( r ) .  

This a lgo r i thm needs  some  c o m m e n t s :  
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All the arithmetic in Algorithm A should be performed with "large" 
precision. Lemma 3.8 below can be used to show that p = I0n  log 2 n + 
[log( 1/e) ] significant binary digits will suffice for that purpose.  How- 
ever, for most  practical issues and applications, the built-in computer  
arithmetic should suffice. 

Instead of the bisection in Step 3 of Algorithm A, one can use Newton's 
iteration. It is clear that this change would improve the performance. 
We have not used it in Step 3 since the formal proof needs an addi- 
tional argument in that case. 

�9 The computat ion of 9v and 9~ (to the required precision p) is also 
polynomial since the Taylor series of  arctg(x) converge fast enough. 

The following two lemmas show that the number of repetitions of  Step 
3 In Algorithm A is bounded by a polynomial in n and [log(1/e)] .  

Lamina 3.5 
I, then 

I f  rv = 1 for each v ~ V an d  G has no vertices o f  degree 0 or 

/J(Y) < T1"2/l 2. 

Tt  ~r Proof. In this case we have (p,, = deg(v)-~ >_ ~. It follows that 19,,I < 
deg(v) .  Finally: 

rt 2 n 2 ( ~  )2  
p ( r )  <_ ~-~ ~.  deg(v)  2 < ~ deg(v)  

v ~ V  \ v E V  

1T 2 
= --4-1E(G)I 2 . 

Now (2) completes the proof. [ ]  

Lemma 3.6 I f  r '  is the new value for the function r obtained by  the algo- 
rithm, then 

1 ) p ( r ) .  <_ ( 1  - 

Proof. Using the notation of the Algorithm, let tt = m m v ~ s  9v,  t2 = 
maxv~s 9v.  Then t~ - t2 > o-. Since ot is suitable, there is a number  ta 

t t between t2 and t~, such that for every v 6 S, u r S, 9 v > ta >- 9 u. Since 
r t ct > 1 we have 9v >- 9v  for v 6 S, and 9u <- 9u  for u ~ S. Finally, 

p ( r )  - H(r ' )  = y - 

vEV 

E ' ' Y ' ' = (gv + 9 v ) ( g v  - 9 v )  + (9,, + 9 u ) ( g u  - 9 u) 
y e S  ur 

t 
>_ ~'. ( t ,  + t3 ) tav  - a'~) + ~.  (tz + t3) tau  - a, ,)  

v~S  u~S 
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= Z (tl - t2)(gv - ~ )  (by Lemma 3.1) 
y ES  

2 ' ~ o" (9~, - I~,) = 0.f(oO 
yES  

or 0 .2 

- 3 - 6" 
y E S  

In the last inequality we used the fact that ~..ves 9~, >- 0./2 which is left to 
be verified by the reader as an exercise. 

To prove the inequality of the lemma we combine the above bound with 
the following one: 

1 
0. > - ( m a x g v - m i n ~ v )  

n 1 ~ vev vev " 

1 ~  11 1 ~ 92:n_3/2~p(r)" 

[] 

Suppose that G satisfies the following property. If S is a proper subset 
of vertices of G, which contains all vertices {vl . . . . .  Vk }, then the graph Gs 
induced on S is either disconnected, or contains a bounded face which is 
not a quadrilateral, or the unbounded face contains more than 2k edges 
on its boundary (counted twice if an edge appears twice on its boundary). 
Then G is said to be almost 3-connected. It is easy to see that ff Go is 
3-connected then G is almost 3-connected. But there are other examples 
of graphs Go which give rise to almost 3-connected G. For example, 2- 
connected outerplanar graphs. Their combinatorial characterization is as 
follows. Let G be a 3-connected plane graph, and let C be a cycle of G. If 
Go is the plane subgraph of G which consists of C and and all edges in the 
interior of the disk bounded by C, then we say that Go is a cycle graph. 

Proposition 3.7 Let Go be a 2-connected plane graph, and let G be the sub- 
graph of the vertex-face graph of Go obtained by removing the vertex at the 
infinity. Then the following are equivalent: 

(a) Go is a cycle graph. 

(b) The graph G obtained from Go by adding a new vertex joined to all 
vertices on the outer face of Go is 3-connected. 

(c) G is almost 3-connected. 

Proof. Equivalence of (a) and (lo) is easy to see and is left to the reader. Let 
w be the vertex that was added to Go, and let G' be the vertex-face graph of 
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G. If S c V(G),  we deno te  by  S' the set  of  ver t ices  o f  G' consis t ing of  S, w, 
and  all faces of  G conta in ing  w.  If G is n o t  a lmos t  3-connected,  t h e n  there  
is a set  S c V(G) such  that  v l  . . . . .  vk E S, an d  the co r re spond ing  subgraph  
G~, o f  G' is a quadrangula t ion .  It was p r o v e d  in [3] that  this impl ies  tha t  
is no t  3-connected.  This shows that  (b) impl ies  (c). 
To show the converse ,  suppose  tha t  ver t ices  x ,  y fo rm a ver tex  2-separa t ion  
of  G. Then,  clearly, w r { x , y } .  There  are  dis t inct  faces v,7- o f  G which  
conta in  edges  in d is t inc t  c o m p o n e n t s  of  G - x - y .  Then  X V y T  is a 4-cycle 
of  G such  tha t  the set  T of  vert ices of  G ins ide  this 4-cycle is n o n e m p t y .  
Let S = V ( G ) \ T .  This  set shows that  G is n o t  a lmost  3-coimected.  This 
p roves  tha t  (c) impl ies  (b). [ ]  

For our  p u r p o s e  the fol lowing l emma  is impor tan t .  

Lemma 3.8 Let G be an almost  3-connected graph.  Suppose tha t  p ( r )  < 
71" 2 

< ~ a n d t h a t m i n v ~ v r v  = 1. Then 

m a x r v  <_ (2n2)  n-1 . 
v E V  

Proof .  It sut~ces  to  show tha t  for  an  a rb i t ra ry  n o n e m p t y  p r o p e r  subse t  
S c V of  ver t ices  we have 

m i n r v  < 2 n  2 m a x r u .  (16) 
v ~ S  u ~ S  

Assume tha t  (16) does  no t  ho ld  for  S. Let a = minv~s rv and  let  b = 
maxu~sru .  Also deno t e  by  s = ISI and  t = IS n {vt . . . . .  vk}l. By (13) we 
have: 

~. ~v = ~. a r c t g r u - ( 2 s - l E ( S ) [ - t - 2 - ~ ) r r  
v ~ S  v u ~ E ( S , V \ S )  Y v  

b b 
-< IE(S,V\S)I  - -  7-rr <_ 2 n - -  - Trr 

a 12 

where  7 - = 2 s  . . . .  I E(S)I t ~ . I f t _ < l a n d s _ < 2 ,  t h e n w e h a v e  

1 
7- >_ - (17) 

3 

since k >__ 3 ho lds  by  the a lmost  3 -connec tedness  of  G. If t _< k - 1, t h en  
Lemma 3.3 and  (6) yield: 

2 
T >_ - - .  (18) 

(Note tha t  (18) cou ld  be  improved  to 7- > 1 if  Go is 3-connected.)  If t = k 
then  a lmost  3-connect ivi ty  allows us  to  use  the  inequal i ty  (7) of  l e m m a  3.3, 
which implies tha t  in this case 

7- > I .  (19) 
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Finally, (17)-(19) toge ther  with n > 3 yield: 

b 1 1 I 
2n  - > ~ , g v  + - - ~ ' > - - r r +  I ~ "gv " (20) 

a ;1 i t  
y e S  y e S  

By the Cauchy-Schwarz inequality and the assumptions of the lemma we 
get: 

~/ /-~-p 1 

y e S  u e S  v ~ S  

4t l  2 
From (20) and (21) we easily get a _< -wb  which implies  (16). []  

The last l emma shows that  ou r  a lgor i thm works  for  arbi t rary  a lmost  
3 -connec ted  graphs,  and  hence  p roves  exis tence (cf. [10]) o f  a pr imal-dual  
circle packing (except for  the circle at infinity) for  a more  general  class of  
g raphs  than  the 3-connec ted  ones.  Al though we fixed the angles at the 

ou te r  facial cycle C = u l v 2 . . ,  uk to be all equal  to ~ rr, we may  choose  
for these  angles any values  o<i, 0 < oq < Tr, whose  total  su m  is (k - 2)rr; 
cf. [11, Chapter  2]. 

T h e o r e m  3.9 A plane graph Go admits a primal-dual circle packing repre- 
sentation in the plane with the circle corresponding to the unbounded face 
missing if  and only if Go is a cycle graph. The angles ~xi, 0 < ai < rr, whose 
total sum is (k - 2 ) rr, at the vertices v~ ( i = 1 . . . . .  k) o f  the outer face of  the 
cycle graph Go can be chosen arbitrarily, and then the corresponding circle 
packing is unique up to a multiplicative factor and isometries of  the plane. 

At the ertd, let us  s u m m a r i z e  the entire algori thm. We are given a 3- 
c onne c t e d  plane g raph  Go and  the admissible  e r ror  E > O. Const ruc t  the 
ver tex-face  graph G. Let co be a ver tex  of degree  3 in G, and let G = G - co. 
(It is a s imple consequence  o f  Euler 's fo rmula  that  such a vertex always 
exists.) Then  k = 3 and our  goal  is to find the radii r = (rv I u ~ V(G)) 
for  the g raph  G such  that  there  is a pr imal-dual  circle packing of Go with 
radii r ~ = ( r  v I v E V) and for  each ver tex u of  G we have Ir v - rvl < E. 
For this pu rpose  we use  Algor i thm A descr ibed  above. After  comput ing  the 
radii, one  can de t e rmine  coord ina te s  of  the centers  of  the circles in R 2 as 
desc r ibed  below. Since k = 3, (5) implies  that  the angles at the three vert ices 
of the ver tex-face g raph  ad jacen t  to co are equal  to Tr/3, and this implies 
that  the radii at these  ver t ices  are all equal to each other.  This shows that  
one can define also the circle co r re spond ing  to the ver tex co at infinity. 
Finally, Lemma 2.1 can be used  to t r ans fo rm the ob ta ined  circle packing 
into a pr imal-dual  circle packing where  the circle at infinity co r r e sponds  to 
the u n b o u n d e d  face of  Go. 

The centers  Pv of  circles Cv in a pr imal-dual  circle packing with given 
radii rv (u E V(G)) can be c o m p u t e d  as follows. Choose an arbi t rary  ver tex  
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v0 ~ V and put it in the origin of the plane. By using elementary geometry 
we can calculate the coordinates Pv for all vertices v that are adjacent to 
v0 in G. We may think of this as tiling the neighborhood of v0 by the basic 
quadrangles (cf. Figure 2) containing v0. For each neighbor v of Vo In G 
we repeat the process. Since one of the basic quadrangles containing v 
is already placed In the plane, other basic quadrangles have precisely one 
possibility to be placed around v. By repeating the procedure we exhaust 
the entire graph and obtain a primal-dual circle packing representation. 
The angle condition (4) and simple connectivity of the plane can be used to 
show that  different ways of reaching the same basic quadrilateral Q yield 
the same position of Q in the plane. The reader is referred to [3, 10, 11] 
for additional details omitted in the above presentation. 

4 The  torus and the Klein bott le  

In the case of closed surfaces of constant curvature 0, we may undertake 
the same way as described for the plane except that we do not need to 
treat a special vertex at the infinity. Now G is the whole vertex-face graph, 
and we use the same iteration procedure as described in Section 3 which 
finds appropriate radii satisfying (4). (The same procedure In the case of 
constant negative curvature is presented In details In [10].) 

Vertices x,  y E V(Go) (with the possibility x = y )  are said to be a planar 
2-separation if there are Internally disjoint simple paths rrl, Tr2 from x to 
y on Z such that: 

(i) Trl, Tl" 2 meet Go c Z only at their endpoints x,  y .  

(ii) The closed walk ~l rr21 bounds an open disk D c Z. 

(iii) D contains a vertex or a face of M0. 

The map Mo is reduced if it contains no planar 2-separations. Maps with 3- 
connected graphs are reduced but we can have a reduced map whose graph 
is not 3-connected, or even not simple. 

Theorem 4.1 (Mohar [10]) A map on the torus or the Klein bottle admits a 
primal-dual circle packing representation if and only if it is reduced. The 
radii o f  such a representation are uniquely determined if  we require that 
the min imum radius is equal to I. 

A simple but interesting consequence of Theorem 4.1 is a characteriza- 
tion of maps that admit circle packings. 

Corollary 4.2 For a map M on the torus or the Klein bottle the following 
conditions are equivalent: 

(a) M admits a circle packing representation. 
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(b) M admits a straight-line representation on a surface with constant cur- 
vature O. 

(c) M does not contain contractible loops or pairs o f  edges (possibly loops) 
with the same endpoint(s) that are homotopic relative their endpoint(s). 

To show equivalence of (a)-(c), one should note that by properly trian- 
gulating every face of a map satisfying (c), a reduced map is obtained. On 
the other hand, ff a map does not satisfy (c), then it has no straight-line rep- 
resentation on a surface with constant curvature 0 by an easy application 
of the Gauss-Bonnet Theorem. 

Theorem 4.1 shows the important role played by reduced maps. They 
have other characterizations as shown by the next result. 

Proposit ion 4.3 ([10]) Let M0 = (Go, Z) be a map on the torus or the Klein 
bottle. Then the following conditions are equivalent: 

(a) The map Mo is reduced. 

(b) The graph of  the universal cover of  Mo is 3-connected. 

(c) The graph Go has no vertices of  degree less than 3, no faces of  size less 
than 3 and does not contain vertices x ,  y and two internally disjoint 
paths P1, P2 from x to y such that the closed walk Pl P21 bounds a disk 
D on Y. and the only vertices on P1 u P2 that have a neighbor out o f  D 
are x and y .  

(d) If  there is a closed walk of  length at most 4 in the vertex-face graph G 
that bounds a disk D in Z, then D is a face o f  M. 

(e) For every proper non-empty subset S c V (G) of  vertices of  G we have: 

2 I S [ -  IE(S)l > 1. (22) 

Since the property (d) of Proposition 4.3 is the same for Mo as for its 
dual map M(~, equivalence of Ca) and (d) shows: 

Corollary 4.4 The dual map  M~ of  Mo is reduced if  and only ifMo is reduced. 
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