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Abstract

The model of the torus as a parallelogram in the plane with oppo-
site sides identified enables us to define two families of parallel lines
and to tessellate the torus, then to associate to each tessellation a
toroidal map with an upward drawing. It is proved that a toroidal
map has a tessellation representation if and only if its universal cover
is 2-connected. Those graphs that admit such an embedding in the
torus are characterized.

1 Introduction

Given a graph G, let V(G) be the set of vertices of G, E(G) the set of edges
of G. For A C V(G) we denote by E(A) the set of edges of G with both
ends in A.

A map M on a surface ¥ is a connected graph G together with a 2-cell
embedding of G in 3. Two maps are equivalent if there is a homeomorphism
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of ¥ mapping the graph of the first map onto the graph of the second. It
is well-known that the equivalence classes of maps on orientable surfaces
correspond naturally to rotation systems on the underlying graphs [4]. Let
us recall that a rotation system on a graph G is a set of cyclic permutations
m (v € V(G)) where 7, cyclically permutes edges emanating from v; m,
corresponds to the cyclic order of these edges around v on the surface. A
similar combinatorial representation can be given for maps on nonorientable
surfaces (cf., e.g., [4] or [10]). The rotation system around the faces of M
defines the dual map M*. A map M and its dual M* can be simultaneously
drawn in X such that each vertex of M™ corresponds to an interior point of
the corresponding face of M (and wice versa), and such that precisely dual
pairs of edges cross each other.

If M is a map in X whose underlying graph has n vertices, e edges and
f faces, then n —e+ f = x(X) where x(X) is the Euler characteristic of the
surface .

In this paper we only consider maps on closed surfaces (i.e. compact
surfaces without boundary) and maps in the plane. Most attention is given
to the torus which can be represented by a parallelogram Q in the plane
whose opposite sides are pairwise identified. This representation of the torus
carries the local geometry of the plane and hence we call it the flat torus.

From now on we shall assume that ¥ is a closed surface, M a map on
¥, and G the underlying graph of M. An angle of M (respectively, M*) is
a pair of consecutive arcs at a vertex v of M (respectively, a face f of M).
The angle map of M is a map A on X whose vertices are the vertices of
M plus the vertices of M* (i.e., the faces of M), and whose edges are the
angles of M, each angle being incident with the corresponding vertex and
face of M [12]. The set of angles incident with a vertex v of M has a local
rotation determined by M, and the set of angles incident with a face of M
inherits the local rotation from M*. The angle map A is bipartite and each
face of A is a quadrangle whose diagonals are a pair of dual edges of M and
M*. An example is shown in Figure 1(b) where the dotted lines represent
the edges of M and they are not part of A. The dual map of A is known as
the medial map of M.

An important concept related to drawings of graphs in the plane is the
notion of upward drawings where each edge of a graph is oriented and drawn
in the plane R? so that the ordinate monotonically increases when we tra-
verse the edge according to its orientation. In order to define an upward
drawing of a graph G on the torus, we first need a definition of a mono-
tone arc. Consider, without loss of generality, the flat torus obtained from
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Figure 1: A toroidal map and its angle map

a parallelogram Q in the plane. The lines parallel to the sides of Q ori-
ented according to the usual axes determine horizontal and wvertical circuits
on the torus. At each point of the torus two circuits cross, the vertical one
being crossed always by the horizontal one, for instance, from left to right.
A (polygonal) arc on the torus is monotone if it can be oriented such that
by traversing the arc in the chosen direction, one crosses horizontal circles
only from bottom to top. In particular, the vertical circuits are examples of
monotone arcs. Let us observe that a monotone arc may cross a horizontal
circuit more than once by “winding” around two or more times. The defini-
tion of horizontal circles is easily extended to the case when the horizontal
direction is not necessarily parallel to a side of Q. Monotone arcs are defined
accordingly. An wpward drawing of a toroidal map M is a map equivalent
to M drawn on the torus with monotone (polygonal) arcs such that at each
vertex v of M, at least one edge incident to v enters v from below (with re-
spect to the chosen horizontal direction) and at least one edge enters v from
above (see Figure 1(a)). The authors have shown in [9] by using network
flow techniques that every toroidal map with 2-connected universal cover
admits a drawing in the flat torus that is an upward drawing and, moreover,
the corresponding drawing of the dual map is upward at the same time (with
respect to the vertical circuits instead of the horizontal ones).

A stronger concept than upward drawings is the tessellation representa-
tion of a map. This concept was investigated in case of planar graphs by
Tamassia and Tollis [14]. Given horizontal and vertical directions A and
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Figure 2: A tessellation representation of a toroidal map

A’ of the flat torus (possibly distinct from the directions of the sides of the
fundamental parallelogram Q), we consider a family of horizontal line seg-
ments called the vertices, and a family of vertical line segments called the
faces, all disjoint except that each segment of one family touches at each
end a segment of the other family at one of its internal points. A map is
associated with a tessellation in the following way. Horizontal segments are
the vertices, vertical segments the faces. Each of the obtained quadrangular
regions determines an edge of the map; it is, by definition, incident with two
vertices by its two horizontal sides, and with two faces by its two vertical
sides. The local rotation 7, around the vertex v is determined by the order
of edges obtained by traversing the boundary of a small neighborhood of
the vertical segment corresponding to v in the clockwise direction. This rule
determines the map up to equivalence. A tessellation of the torus is then
a representation of a toroidal map defined by its vertices, faces and edges
as introduced above. An example of a tessellation and the corresponding
map is shown in Figure 2 and a tessellation representation of the map from
Figure 1(a) is presented in Figure 3. Our main result is that a toroidal
map admits a tessellation representation if and only if it is essentially 2-
connected. This, in particular, implies the above mentioned result of [9]
about the simultaneous upward drawings of the map M and its dual M*.
In Section 2 we present several characterizations of essentially 2-connected
maps on the torus and show that they can be obtained from two minimal
maps by vertex splitting and creating digons. Section 3 contains the proof of
the main theorem about existence of tessellation representations. Part 4 is
devoted to the visibility representation and grid contact graphs as corollaries



Figure 3: A tessellation representation of the map from Figure 1

of the main theorem. In Part 5, a characterization of those graphs that can
be embedded as an essentially 2-connected map on the torus is presented.

Similar questions as addressed in this paper for the flat torus have been
considered in the case of the plane by Fraysseix, O. de Mendez, and Pach
[3], and for the torus by Kratochvil and Przytycka [6].

2 Essentially 2-connected maps

The universal cover of the surface ¥ is the simply connected surface 3
together with a covering projection p : ¥ — X. We refer to [7] for the gen-
eral theory of covering spaces and for basic properties of universal covering
spaces. If G is the graph of a map on X, then p~'(G) defines a map in 3.
By the homotopy lifting property of covering maps [7], a lifting of a closed
walk W of G into the cover X is a closed walk in p~!(G) if and only if W is
contractible in . In particular, every facial walk of G (i.e., the walk in G
corresponding to the traversal of the boundary of a face) is lifted to facial
walks in the covering map.

The universal cover of the flat torus represented by the parallelogram Q
is the plane paved with replicates of ), and the lifting of a map in the torus
is an infinite plane graph. A part of such a pavement is shown in Figure 4.

A map is essentially 2-connected if the graph of its universal cover map
is 2-connected. Figure 4 shows an example (of a part) of the universal cover
of an essentially 2-connected toroidal map whose graph is not 2-connected.



Essentially 2-connected maps can be characterized in several other ways.

Figure 4: A part of the universal cover of a toroidal map

Lemma 2.1 Given a map M of a graph G on a surface ¥ whose Euler
characteristic x(X) is not positive, the following conditions are equivalent:

(i) M is essentially 2-connected.

(11) No facial walk f of M contains a proper closed subwalk which is con-
tractible on X.

(iii) There are no planar separations in the graph G of M, i.e., if G1 and
G+ are graphs each having at least one edge, and such that G = G1UG>
and G1 NGy = {v}, where v is a vertez, then Gy and Ga each contain
a circuit that is non-contractible on X.

(iv) The angle map A of M has no homotopic pair of parallel edges, i.e.,
a pair of edges bounding a disk.

(v) For every subset S of the vertices of the angle map A of M we have:

25| = |E(S)] = 2x(%). (1)



Proof. (i) < (ii): Since x(X) < 0, the underlying surface of the universal
covering map M of M is the plane. It is well known that a (possibly infinite)
graph in the plane is 2-connected if and only if every facial walk is a simple
cycle (not meeting the same vertex twice). Since every facial walk (and
every contractible subwalk of a facial walk) in M lifts into M to a facial
walk of the same length (a subwalk of a facial walk, respectively), (i) and
(ii) are easily seen to be equivalent.

(ii) = (iii): Suppose that G admits a planar separation G = G1UG3, G1N
G2 = {v}, and suppose that G contains only circuits that are contractible
on Y. Consider a facial walk f of M which is not contained entirely in E(G)
or in E(G2). Then f is the union of nonempty closed segments from FE(G1)
and from E(G2). By our choice, Gy contains only contractible circuits.
Therefore, any closed segment of f in G is contractible. This contradicts
(ii).

(iii) = (iv): Suppose that the angle map A of M has a pair of parallel
edges bounding an open disk D. Let the endpoints of these edges of A be
v, a vertex of M, and f, a face of M. Note that 9D NG = {v} where 0D is
the boundary of the closure of D in 3. Since A contains only quadrangular
faces, D is not a face of A. Therefore the subgraph G; = GND of G contains
at least one edge. If Gy = GN(X\D), then also G5 is nontrivial by the same
reason. Since (31 is contained in a disk, it only contains contractible circuits,
so the decomposition G = G1 U Gy is a planar separation which contradicts
(iii).

(iv) = (v): Pick S C V(A). The angle graph A being bipartite, so is the
subgraph A(S) of A induced on S. To prove the inequality 2|S| — |E(S)| >
2x(X), it suffices to consider the case when .A(S) is connected and when
|S| > 3 since x(X) < 0. (Let us note that condition x(X) < 0 is really
needed only in cases when A(S) is just a vertex or an edge.) Consider
the induced embedding of A(S) in ¥. By (iv), and our assumptions on
connectivity and |S| > 3, A(S) contains no digonal faces. Then it is easy to
see by using the Euler’s formula and the bipartiteness of A(S), that we get
the required inequality.

(v) = (ii): Suppose that a proper closed subwalk @ of a facial walk f
of M is contractible on X. Let x be the endvertex of Q C f, and let oy, a9
be the angles in f corresponding to the appearances of z as an end of Q.
Let e1, e2 be the edges in A corresponding to ar; and aw, respectively. Note
that e; and es are parallel edges, joining = and f in A. They determine a
closed curve C on ¥ which is homotopic to () since it can be “pushed” by
a homotopy within f onto (). Since @) is contractible, so is C, and thus C



bounds an open disk D in 3. Let S be the set of vertices of A that do not lie
in D, and consider the corresponding submap A(S) of A. Since D is a disk,
the underlying surface of A(S) is also ¥. The faces of A(S) coincide with
faces of A except for the digonal face D. Thus 2|E(S)| equals four times the
number of faces of A(S) minus 2 (due to the digon). Euler’s formula then
shows that 2|S| — |E(S)| = 2x(X) — 1. This contradicts (v). O

Note that, since a map M and its dual map M* have the same angle
map, if one of M, M* is essentially 2-connected, so is the other. The essential
2-connectivity of toroidal maps appears to be an appropriate generalization
of the 2-connectivity planar maps.

Let M be an essentially 2-connected map on the torus. An edge e of
M is contractible (resp. removable), if M/e (resp. M — e) is an essentially
2-connected map. Note that if e is contractible (resp. removable), then its
dual edge e* is removable (resp. contractible) in the dual map M*.

Lemma 2.2 Let M be an essentially 2-connected map on the torus and let
e € E(M). Then:

(a) If e is incident with a vertex of degree 2, then e is contractible.
(b) If e is on a digonal face, then e is removable.

(¢c) If M has no digonal faces and has at least two vertices, then M has a
contractible edge.

(d) If M has no vertices of degree 2 and has at least two faces, then M
has a removable edge.

Proof. Statements (a) and (b) are obvious, and (c) and (d) are dual to
each other. So it suffices to prove (c). By (a) we may assume that M has
no vertices of degree 2.

Since M has two or more vertices, there are non-loop edges in M. Con-
sider e being one of them. If e is not contractible, its contraction results in
a map that is not essentially 2-connected. According to Lemma 2.1(iv), the
corresponding angle map contains a digon bounding a disk D. Suppose that
the contracted edge e was chosen in such a way that the number of vertices
in D is as small as possible. By our assumptions (no degree 2 vertices, no
digons), D contains an edge of the map M. This edge is then contractible
with respect to M since its contraction yielding a digon in the corresponding
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Figure 5: Minimal essentially 2-connected maps My and M;

Lemma 2.2 shows that the only minimal essentially 2-connected map
(with neither contractible nor removable edges) on the torus is the map
My of Figure 5. Lemma 2.2 also implies that every essentially 2-connected
toroidal map M can be reduced to one of the two maps My and M; from
Figure 5 after a sequence of edge contractions and deletions of digon edges
such that all intermediate maps are essentially 2-connected. Keeping track
of that sequence, we may reconstruct M from the map My or My obtained
at the end by using the sequence backwards: a deletion being replaced by
the addition of a homotopic parallel edge, a contraction being replaced by
a vertex splitting. In other words:

Corollary 2.3 FEvery essentially 2-connected toroidal map can be obtained
from one of the maps My and My by a sequence of homotopic parallel edge
additions and vertex splittings such that all intermediate maps are essentially
2-connected.

3 Tessellation representations

From now on we shall only consider maps on the torus. In this section we
shall prove that a toroidal map admits a tessellation representation on the
torus if and only if it is essentially 2-connected.

Suppose that we have a tessellation representation of a map M. This
defines an orientation of edges of M: each edge e is oriented from the vertex



corresponding to the base of the rectangle R representing e towards the end
of e corresponding to the upper side of R. For an arbitrary given orientation
of the edges of a map M, an angle at a vertex v is lateral if one of its arcs is
incoming and the other is outgoing at v. Otherwise, if both arcs of an angle
are incoming or both are outgoing at v, then the angle is extremal. Having
an orientation of edges of a map M, we get an orientation of the angle map
A as follows. Given an angle « incident with a vertex v and a face f of M,
the angle « as an edge of A is oriented from f to v if « is lateral, and from
v to f if « is extremal. We say that an orientation of edges of M has the
upward property at v (resp. at f) if there are exactly two lateral angles at
v (resp. two extremal angles at f). Equivalently, in the oriented angle map
A, the indegree of every vertex (either v or f) is equal to two (see Figure
1(b)). Cf. also [11]. An orientation of M, which has the upward property at
every vertex and every face, is called an upward orientation. By the above
remark, an upward orientation induces an indegree-two orientation of the
angle map A. (It is an easy corollary of Euler’s formula that only maps with
Euler characteristic zero admit upward orientations.) Having indegree-two
orientation of A, we can use the following lemma:

Lemma 3.1 Let k be an integer. A graph G admits an orientation of its
edges such that each vertex has indegree at most k if and only if the average
degree of the vertices of any subgraph of G is at most 2k.

Proof. Let H be an arbitrary subgraph of G and let d~(v) denote the
indegree of v € V(G) with respect to an orientation Q of edges of G. If
d~ (v) < k for every vertex v, then

|B(H)| < Y. d (v) <k[V(H),
veV(H)
so the average degree in H is at most 2k.

Conversely, suppose that |[E(H)| < k|V(H)| for every subgraph H of G.
Let © be an orientation of edges of G such that the number

S@= Y (@@ -h
d=(v)>k

is minimal. If S(2) = 0, we are done. So, assume that vy is a vertex with
d~(vg) > k, and let H be the subgraph induced by the vertices v such that
there exists a directed path from v to vy. Then

|B(H)|= . d (v) <k[V(H).

vEV(H)

10



Since d~ (vg) > k, there is a vertex v; € V(H) such that d~(v;) < k. By
reversing the arcs on a directed path from v to vy we get an orientation Q'

satisfying S(Q') = S(Q) — 1, a contradiction. O
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Figure 6: Tessellation representations of maps My and M,
Now we state the main result of this section.

Theorem 3.2 A toroidal map admits a tessellation representation if and
only if it is essentially 2-connected.

Proof. Suppose that we have a tessellation representation of a map M.
Then we easily get an upward drawing of M which induces an upward ori-
entation of edges of M. This in turn defines an orientation of edges of the
angle map A such that every vertex of A has indegree exactly 2 (cf. the
introduction). By Lemma 3.1, every subgraph of A has average degree at
most 4. In our case this means that for every subset S of the vertices of A
we have

2|5| = [E(S)] = 0. (2)

By Lemma 2.1(v), M is essentially 2-connected.

To prove the converse, we have to construct a tessellation representing
an arbitrary given essentially 2-connected map M. This is done step by
step as M can be obtained (according to Lemma 2.2) from M, and M; by
a sequence of parallel edge additions and vertex splittings. We start with a
tessellation representation of My or My shown in Figure 6.

11
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Figure 7: Extending a tessellation after a vertex splitting

Let us now consider the two types of generating rules. Adding a parallel
edge is simple: the rectangle corresponding to the edge e splits into two by
adding a vertical line in the middle. Of course, the new vertical segment
corresponds to the digonal face.

The vertex splitting operation is slightly more involved. Up to symme-
tries, we have to consider four cases as displayed in Figure 7. Note that in
the first vertex-splitting rule, the orientation of the edge e depends on the
relative position of the two faces involved in the splitting. These rules give
the procedure how to obtain a tessellation representation of M starting from
My or Mj. The proof is complete. O

The proof of Theorem 3.2 also yields a polynomial time algorithm for
constructing tessellation representations of essentially 2-connected toroidal
maps. Since a tessellation representation determines an upward orientation,
we also get a polynomial time algorithm for upward orientations.

12



There are other possibilities for tessellation representations of My and
M. However, in none of them is any direction A or A’ of the tessellating
rectangles parallel to the sides of the fundamental parallelogram Q of the
flet torus. It would be interesting to know which toroidal maps have a tes-
sellation representation in the square model of the torus with the directions
A and A’ parallel to the sides of the fundamental square.

4 Some corollaries on graph drawing

4.1 Upward drawing

A tessellation representation of a toroidal map M determines an upward
drawing and an upward orientation of M. In proving that the maps which
admit tessellation representations are essentially 2-connected, we used Lemma,
3.1 where only their upward orientation was needed. Therefore we also have:

Corollary 4.1 A toroidal map admits an upward orientation if and only if
it 15 essentially 2-connected.

4.2 Visibility representations

Let M be an essentially 2-connected toroidal map. By Theorem 3.2 it has
a tessellation representation. Let us consider the horizontal segments H,,
v € V(M). A vertex v is adjacent to a vertex w in M if and only if H,
contains a segment S of positive length such that by shifting S in the vertical
direction A’ we bump into H, (or vice versa). We say that the segment H,
is e-visible from H,. The intervals H,, v € V(M ), thus uniquely determine
M. Such a representation of M is called an e-visibility representation of
M. For the e-visibility it is not important whether H, are open or closed
segments. If we take as H, half-open segments (without their left endpoints,
say), then the tessellation of M yields a visibility representation for M
where a point of H, can see a point of H, in the vertical direction if and
only if uv € E(M). Such notion of visibility (in the plane) was considered
by Melnikov [8]. Tamassia and Tollis [13] and independently Wismath [15]
characterized which graphs have such a visibility representation in the plane.
Corollary 4.3 below gives a toroidal analogue of that result.

Tessellation representation is a stronger concept than e-visibility repre-
sentation since it gives simultaneous e-visibility representations for M and

13



its dual map M*. However, our next lemma shows that an e-visibility repre-
sentation of a map M can be transformed into a tessellation representation
of M.

Lemma 4.2 FEvery e-visibility representation of a toroidal map M without
digonal faces can be transformed into a tessellation representation of M.

Proof. Let H,, v € V(M), be the horizontal segments of an e-visibility
representation of M. For each edge uv € E(M), let @y, be a quadrangle
determined by e-visibility of H, and H,. The base of Q, is a segment
S(u,v) C H, (say), and the upper side of @, is a segment S(v,u) C H,.
Suppose that the quadrangles @, are chosen such that the segments S(u, v)
and S(v,u) are maximal. Now, the vertical sides of the quadrangles @y,
wv € E(M), give rise to vertical segments in the torus. None of these
segments can become a closed circle since what we started with was an e-
visibility representation of a 2-cell embedded graph. Now it is easy to see
that we got a tessellation representation of M. O

Theorem 3.2 and Lemma 4.2 yield:

Corollary 4.3 A toroidal map admits an e-visibility representation in the
flat torus (or has a wvisibility representation with half-open horizontal seg-
ments) if and only if it is essentially 2-connected.

4.3 Toroidal grid contact graphs

Two families of horizontal and vertical segments of the grid of the flat torus,
each one being disjoint from the others except for some contact points be-
tween two segments of different families, define a bipartite toroidal graph,
called a grid contact graph. Relying on our tessellation theorem we get a
characterization of the graphs which can be represented as toroidal grid
contact graphs on the flat torus.

Theorem 4.4 A graph H can be represented as the contact graph of straight
line segments on the flat torus where all segments corresponding to the same
bipartition class of H are mutually parallel if and only if H is a bipartite
graph that can be embedded in the torus in such a way that no pair of parallel
edges bounds a disk.

14



Proof. A toroidal grid contact graph representation of H on the torus
determines an embedding in the torus without parallel edges bounding discs.
Conversely, let us embed H in the torus without homotopic parallel edges.
By repeatedly adding paths of length 2 or 3 between vertices of the graph
it is possible to get an embedded graph H such that:

(a) H is an induced subgraph of H.

(b) H is bipartite.

(¢) H is 2-cell embedded (and thus also connected).

(d) H has no homotopic parallel edges.

(e) No face of H has repeated vertices.

Now, beside the white bipartition class W and the black class B of
vertices of H , consider a third class R of red vertices: add a new vertex
r € R in every face f of H, and join r by red edges to every white vertex
of f. The resulting map H has bipartition (W, B U R) and also satisfies
(a)-(e). By Lemma 2.1 (equivalence of conditions (i) and (iv)), H is the
angle graph of an essentially 2-connected map G, and by Theorem 3.2 we
can get a tessellation representation of G. It is clear that the tessellation
representation yields the required grid contact representation of H. By (a),
the restriction to the segments corresponding to vertices of H yields the
required representation for H. O

It is worth pointing out that Theorem 4.4 is closely related to results of
Bellantoni et al. [2] who considered the grid dimension of graphs. By taking
a parallel to results of [2], Theorem 4.4 characterizes graphs whose “toroidal
grid dimension” is at most two.

5 Graphs of essentially 2-connected maps

It is of some interest to know which abstract graphs can be obtained as
graphs of essentially 2-connected toroidal maps. It is easy to find some
sufficient conditions for a graph G to have a representation as an essentially
2-connected toroidal map. For example, if G is 2-connected, then every
2-cell embedding of G in the torus yields an essentially 2-connected map.
We claim that every 2-connected graph (except graphs C,,n > 3) with
genus at most 1 has a 2-cell embedding in the torus. This is clear if the
graph G has genus 1. On the other hand, if G is planar, consider one of
its plane embeddings. Let e = uv be an arbitrary edge of G with one of
its endvertices, say u, having degree at least 3. Such an edge exists if and

15



only if G is not a cycle. Let Fi, F5 be the two faces in the plane containing
e on the boundary. By replacing the unbounded face by a disk and adding
a “handle” joining F} and Fo we get an embedding of G in the torus. If
f =wuw € JF; is an edge at u distinct from e, we can re-embed it by using
the handle so that it attaches u from “inside” of F5. It is clear that this
gives rise to a 2-cell embedding of G in the torus.

Recall that a graph is non-separable if it is either a vertex, a loop, a
bond (p > 1 parallel edges), or a 2-connected graph.

Let G1,...,Gj (k > 2) be non-separable graphs, each containing at least
one edge and such that at least one of G; (1 < i < k) is not isomorphic to K.
A graph G is a cyclic amalgamation of G, . .., Gy, if there are vertices u;, v; €
V(G;) (possibly u; = v; if G; # Ks), i = 1,...,k, and G is isomorphic to
the graph obtained from the (disjoint) union of Gy, ..., Gy after identifying
u; with v;11 (index modulo k), 1 =1,...,k.

Theorem 5.1 A graph G can be represented as an essentially 2-connected
toroidal map if and only if it satisfies one of the following conditions:

(a) G is 2-connected, it has an embedding in the torus, and it is not a
cycle Cy, for somen > 3.

(b) G is a cyclic amalgamation of non-separable planar graphs Gy, ...,Gyg
where k > 2, G1 # Ky, and each of Gy, ..., Gy contains at least one
edge.

Proof. We have already demonstrated sufficiency of (a). Let us now
prove that graphs satisfying (b) have an essentially 2-connected toroidal
representation. For ¢ = 1,...,k where G; # K, embed G; in the (closed)
cylinder @; in such a way that 0Q); is in two distinct faces, say Fi, Fy,
G;NoQ; =0, and u; € OF;, v; € OF,. Such embeddings always exist. For
that purpose take distinct faces F|, Fy of a planar embedding of G; such that
u; € OF] and v; € OFy. Since G; is non-separable and G; # K1, Ko, such
faces exist. After removing an open disk from each of F| and Fj, we get a
required cylinder embedding. By cyclically identifying boundaries of these
cylinders we get a torus embedding of G U...UG| with vertices that need to
be identified in common faces. If at least one pair u;, v; are distinct vertices,
then it is obvious that we can get a 2-cell embedding of G in the torus (after
adding the remaining graphs G'; that are isomorphic to K3, and making the
appropriate identifications of vertices). If u; = vi,us = vo,...,ur = Vg,
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Figure 8: The case of a single cutvertex

then we get a 2-cell embedding as indicated in Figure 8. It is easy to see by
using Lemma 2.1(ii) that the resulting maps are essentially 2-connected.

We will now show that conditions (a), (b) are also necessary. Let G be
the graph of a given essentially 2-connected map. If G is 2-connected, we
have (a). If G is not 2-connected, let By, ..., B, (a > 1) be its blocks. Since
the map is essentially 2-connected, each endblock B; contains a cycle C;
that is non-contractible on the surface.

Suppose first that G has two distinct cutvertices. Then distinct cutver-
tices v,v’ of G can be chosen such that an endblock, say Bp, contains v
and another endblock, say B, contains v'. Then C; and C5 are disjoint
non-contractible cycles. Therefore they cut the torus into two cylinders, say
Q,Q". Any other block of G intersects C; U Cy only at v or v'. Since the
map is 2-cell, there is a path P C G in @ joining v and v’. There is a similar
path P’ in Q'. Let By be the block of G containing the cycle Cy = P U P'.
Now, each remaining block of G is embedded entirely in @ or in @’. Since
each endblock B; (i > 3) contains a noncontractible cycle, it must intersect
Cy in a cutvertex of G. Now it is easy to see that G fits case (b) with each
of the graphs G1,..., G} being either one of By,..., B,, or a part of By
“between” consecutive vertices of G on P U P’ that are either cutvertices of
G or cutvertices of By N Q or cutvertices of By N Q.

The remaining possibility is when G has exactly one cutvertex v. Then
all blocks are endblocks. If one of them contains a non-contractible cycle
which does not pass through v, then the proof is similar to the above. Thus,
we may assume that every non-contractible cycle of G passes through v.
Then G — v consists of several components corresponding to the blocks of G.
Each of such components D is plane embedded (contains only contractible
circuits) and all edges from D to v attach D at the boundary of the “outer”
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face. Therefore all blocks of G are planar graphs. Their identification at v
can also be interpreted as a special case of a cyclic amalgamation (u; = v;
for every 7). Hence we have (b). O

It is worth mentioning that recognizing graphs satisfying (a) or (b) can
be done in linear time. For (a), testing 2-connectivity is easy by a depth-first
search [1], while checking if G has genus at most 1 can be performed in linear
time by a recent algorithm of Juvan, Marincek, and Mohar [5]. To test if G
satisfies (b) we first determine all blocks of G and test their planarity. There
must be a block By containing all cutvertices (otherwise (b) is not satisfied)
and such that all blocks distinct from By are planar. Blocks distinct from
By will appear in the cyclic amalgamation with u; = v;, while By itself is
a cyclic amalgamation of (at least 1) planar graphs. If there are 2 or more
cutvertices, it is easy to see how to get the corresponding decomposition.
Having just one cutvertex, we simply apply the algorithm of [5].

Acknowledgement. We are greatly indebted to Jan Kratochvil and Hu-
bert de Fraysseix for pointing out a possibility in applying Theorem 3.2
towards Theorem 4.4.
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