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Abstract 

A simple way to calculate the number of  k-matchings, k ~< 5, in hexagonal systems is pre- 
sented. Some relations between the coefficients of  the characteristic polynomial of the adjacency 
matrix of  a hexagonal system and the number of  matchings are obtained. (~) 1998 Elsevier 
Science B.V. All rights reserved 

1. Introduction 

A hexagonal system is a 2-connected plane graph G such that every interior face 
of G is a regular hexagon. A k-matching (or a matching of order k) of a graph G is 
a set of k pairwise nonadjacent edges of G. 

A hexagonal system has only vertices of degree 2 or 3. Note also that each hexagonal 
system H is a bipartite graph. It is also easy to see that H does not contain cycles of 
lengths 4, 8. 

Let G be a hexagonal system. Throughout the paper, n will denote the number of 
vertices whereas m will stand for the number of edges of G. By A = {aij}~,j=l we will 
denote the adjacency matrix of G, that is 

0, i j~E(G),  
aij= 1, ijEE(G). 

Since every hexagonal system is bipartite, coefficients of the characteristic polynomial 
of A at x n-l ,  xn-3, . . ,  are zero. 

The following result is also well known (cf. [2]) and easily follows from the per- 
mutation expansion of the determinant det ( x I -  A). 
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Fig. 1. Situations of types X1,X2, and A. 

Lemma 1.1. Let G be a hexagonal system. Then its characteristic polynomial is o f  

the form 

det(xI - A )  =x  n - a2 x n - 2  -]- an x n - 4  - a6 x n - 6  ~- . . . ,  

where a2, an, a6 . . . .  are all nonnegative. I f  H is a subgraph o f  G, whose components 
are either cycles or edges, then we define ~(H)  as 2 e(H), where c(H) is the number 

o f  cycles in H. Then for each k, 1 <<, k <<, Ln/2J, azk is equal to the sum of  ~(H) over 
all subgraphs H of  G with exactly 2k vertices such that each component o f  H is 
either a cycle or an edge. 

Let mk denote the number of k-matchings in a hexagonal system G. It is well known 
that in case when n is even 

mn/2 = V/-~n. 

This is the connection between the number of perfect matchings and the determinant 
of the adjacency matrix in hexagonal systems (see, for example [2] or [6]). 

In Sections 1, 2, and 3 some further relations will be obtained among the coefficients 
a2, a4, a6 and ml, m2, m3, respectively. In Proposition 2.2, and Theorems 3.1, 4.1, 5.1 we 
get simple formulas expressing m2, m3, m4, m5, respectively, in terms of simple param- 
eters of the hexagonal system. Theorems 2.3, 3.2, 4.2 show how to compute a4, a6, a8. 
Also, a linear time algorithm for computing mk, k = 2, 3,4, 5 is presented. The reader 
is referred to [1,5-7] for some further results on matchings in hexagonal systems. 

We will need some additional notation. Let G be a hexagonal system. Let Hk be the 
number of paths in G that have exactly k edges. We will denote by )(l the number of 
edges of G whose both endpoints have degree 3. Let )(2 be the number of paths in G 
that have exactly two edges and their endpoints both have degree 3. Further, let A be 
the number of vertices of degree 3 whose all neighbors are of degree 3, see Fig. 1. All 
these quantities, except Hk, can be computed in linear time C(n) by a single search 
over all vertices of G. Hk can also be computed in linear time for k = 2, 3, 4, 5, 6. This 
can be done by starting the breadth-first search at each vertex and counting how many 
different vertices we have reached after 2, 3, 4, 5, 6 steps. Summing over all the vertices 
and dividing the sum by 2, gives us Hk for k = 2, 3, 4, 5, 6. 
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Fig. 2. A hexagonal system with 8 hexagons. 

We will also use the symbol ~ followed by a figure o f  a graph to denote the number 

of  subgraphs o f  G isomorphic to the graph shown. So, for example: 

o = i i 1 ,  

~ o o _ m2 ' 
o o 

o 
~ = I I2 ,  e t c .  
I 

0 

Example  1.1. Let G be the hexagonal system shown in Fig. 2. Then 

Xl = 15, X 2 = 2 4 ,  A - - 6 ,  

/I2 = 56, //3 = 92, / / 4  = 152, //5 = 246. 

Note that G has //1 = m  = 35 edges and n : 28 vertices. 

2. M a t c h i n g s  o f  order  two  

In counting the matchings of  order two we will derive some results valid for an 

arbitrary graph. Let G be a simple graph on n vertices and with m edges. Let G have 

n i vertices of  degree i, i = 1,2 . . . . .  n. Then 

n =  ~ ni and 2m= ~ ini. 
i = 1  i = 1  

First o f  all we note that a2 = m l - - - m  simply by applying Lemma 1.1. 

Proposi t ion 2.1. In an arbitrary simple graph with m edges, n vertices and ni vertices 
o f  degree i (i >~ 1) we have 

m 2 - -  

m(m+ 1) 1 n 
2 2 Z i 2 n i "  

i = 1  
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Proof. m2 = ('~) - / 1 2  since the first term is the number of  all subsets of  E (G) of 
order 2 and we subtract number of  subsets that do not represent a matching. (Two 
edges do not represent a matching if and only if they form a path.) 

Suppose that a vertex v has degree i. Then v is the mid-point vertex of exactly (~) 
paths of  length 2. Summing over all the vertices we obtain/ /2 = ~i~=, (~)ni. Hence, 

" 1 Z ini. (2.1) 1 Z  i2ni + 5 
m 2  = - -  9~ i=1 i=1 

The last sum is equal to m which yields the theorem. [] 

Corollary 2.1. Suppose that G has only vertices o f  degrees i and j .  Then 

m2 = l(m2 + m + ijn - 2im - 2jm). 

Proof. From n = n i -4-nj and 2m = in i q-jnj  we get 

2m -- in nj  -- 2m 
nj = j -- i and n i - -  J - - - - - ~  

Now we simply apply Proposition 2.1. [] 

From (2.1) we easily get the following corollary: 

Corollary 2.2. Let  G be a k-regular graph on n vertices. Then 

1 2 2 m2= ~(n k + 2 n k - 4 n k  2). 

From here on we will consider hexagonal systems only. Let G be an arbitrary 
hexagonal system with n vertices and m edges. The following theorem shows that n 
and m uniquely determine the number of  2-matchings. 

Proposition 2.2. m 2  = l ( m 2  - -  9m + 6n). 

Proof. In Corollary 2.1 put i = 3 and j = 2. [] 

Clearly, n2 + n3  = n ,  2nz + 3 n 3  = 2m, n2 q- 3 n 3  = / / 2 .  This implies 

Lemma 2.1. n2 =3n  - 2m, n3 = 2 m  - 2n,//2 = 4 m  - 3n. 

The number of  2-matchings is also related to the characteristic polynomial of  a 
hexagonal system. 

Observation 2.3. In a hexagonal system we have m2 = a4. 

Proof. Since hexagonal systems do not have cycles of length 4, subgraphs H 
from Lemma 1.1 correspond precisely to 2-matchings in G, and for them we have 
o¢(H) = 1. [] 
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3. Matchings of  order three 

Counting the number of 3-matchings is slightly more complicated. For each vertex i 
let/7k (i) denote the number of paths which have k edges and one of whose endpoints 
is the vertex i. We will refer to a path which has k edges as a k-path. Clearly, 

1 ~ / T k ( i ) = l (  ) 17k=~ ~ ~ Elk(i)+ ~ flk(i) . (3.l)  
i =  1 i, deg( i  )=3  i, d e g ( i ) = 2  

We also have 

Lemma 3.1. For 2 <~ k <~ 5, 

//k = 1 ( 2  - ~ Hk- l ( i )+ ~ /7k- , ( i ) ) .  
i, deg ( i )  = 3 i, deg( i )  = 2 

Proof.  k being smaller than the length of a shortest cycle in G, any (k - 1)-path P 
that has an end vertex v of degree i can be extended through v to exactly i -  1 k-paths. 
Using this observation and the fact that in such a way we have counted each k-path 
twice, the result of the lemma follows. [] 

L e m m a  3.2. /73 = 7m - 6n + X1. 

Proof.  Using (3.1) for k = 2  and Lemma 3.1 for k = 3 ,  we obtain 

l( ) 
M 3 = ~ 2/72 q- ~ /72(i) • (3.2) 

i, d e g ( i )  = 3 

Let i be a vertex of degree 3. Let ti be the number of its neighbors of degree 3. 
Clearly, /72(i) = ti + 3. Therefore, 

/72(i) = ~ (t i+3)=3n3+2Xl. (3.3) 
i, deg( i ) = 3 i, deg( i  ) = 3 

Now we only fill up the values for 172 and n3 from Lemma 2.1 into (3.2) and 
(3.3). [] 

The main result of this section is the following. 

1 3 Theorem 3.1. m3 = g(m - 27m 2 + 116m + 18mn - 96n + 6)(1 ), 

Proof.  We will use the formula 

m 3 = ( 3 ) - ( m - 2 ) / 7 2 + / 7 3 + 2 n 3  (3.4) 
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which is obtained as follows. From the number of all 3-subsets (the first term) we 

subtract the number of  those 3-subsets that do not represent 3-matchings. To each 

2-path we add an edge that does not lie on this path. Only such subsets do not represent 

3-matchings. This yields the second term. However, every 3-path i jkl has been counted 
twice: therefore, we have to add the third term. Moreover, each subset {i j ,  ik, il}, 

where i is a vertex of degree 3, has been counted thrice: therefore, we have to add the 

last term. 
Eventually, we insert into (3.4) the values for I/2 and n3 (Lemma 2.1) and for / /3  

(Lemma 3.2). [] 

Theorem 3.2. 

a6 --m3 +2h,  (3.5) 

where h = m -  n + 1 is the number o f  hexagons in G. 

Proof. We apply Lemma 1.1. A subgraph H of G from Lemma 1.1 can only be 

a hexagon or three pairwise disjoint edges. The former ones have ~(H)---2 and are 
therefore represented by the second term in (3.5) whereas the latter ones are pre- 
cisely the 3-matchings. Note that we have also used Euler's polyhedron formula, which 

implies that the number of  hexagons is m - n + 1. [] 

4. Matchings o f  order four 

To count the number of matchings of order four, we will use the same method as 
developed in the proof of  Theorem 3.1. Therefore, only equations will be written down 

and the arguments for their proof omitted. 

Theorem 4.1. m4 --m4/24 - 9m3/4 + 707m2/24 +)(1 m - 329m/4 - ) ( 2 - 1 0 X 1  + 9n2/2 + 
147n/2 - 59mn/2 + 3m2n/2. 

ProoL 

m ,  = - (m;2)n  + 2 n , +  
o o 6-0 
~-o "  +3 . I t  " + 

o o  o o  
,oo+~ 
O O (4.1) 

Note that the coefficient in front of each figure is equal to the number of  2-paths in 
that figure minus 1. This is because one pattern must remain in subtracting the second 
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term. Similarly we get 

o, 
0 - 0  ,Oo_ ° '  o 

o 0 

(4.2) 

? 
0 0 0 - 0  

o 0 o 

(4.3) 

o o  ? 0 - 0  

(m-3 )  rI3=  + + +2n,. 
? o 
o 

(4.4) 

From each of  (4 .2)- (4 .4)  we express the first term on the right hand side and use 

this in (4.1). We apply expressions for / /2 , / /3 , / /4 ,  and n3 from previous sections. 

I f  we also use 

? 
O - O  

+ = ~i,deg(i)=3 112 (i) -- 2X1 + 3nz, (4.5) 
o 

we get the claim. [] 

Theorem 4.2. a8 = m4 + 2m 2 - 26m - 2mn + 30n - 24. 

Proofl Applying Lemma 1.1 and observing that appropriate subgraphs H are only 

hexagons together with a disjoint edge (H = C6 UP2) or 4-matchings, we derive 

a8 = 2.  ~(C6 U P2) + m4. (4.6) 

The following relation holds: 

(m - 6)(m - n + 1) = (m - 6).  ~C 6 = ~(C 6 U P2) -~- g(Q), (4.7) 

where Q denotes a graph consisting o f  a hexagon plus one pendant edge attached to 

a vertex o f  the hexagon. 

To count ~(Q), we observe that it depends only on vertices o f  degree 3. Let s2 be 

the number o f  vertices o f  degree 3 belonging to 2 hexagons and similarly let s3 be 

the number of  vertices o f  degree 3 belonging to 3 hexagons. Observe that each vertex 

o f  degree 2 lies in exactly one hexagon. Recall that ni is the number of  vertices of  

degree i. Therefore we get the following system of  equations: 

n2 + 2s2 + 3s3 = 6(m - n + 1 ), 

$ 2  + S3  = n3, 

1"/2 +n3  = n .  
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Now, it easily follows that s3 = 4 m -  5n ÷ 6. If  a vertex of  degree 3 lies in 2 

or 3 hexagons, then such a vertex contributes 2, 3, respectively, to the number g(Q). 

Therefore, 

~(Q) = 2n3 + s3 = 2n3 + 4m - 5n + 6. (4.8) 

Putting (4 .6)- (4 .8)  together, we get the theorem. [] 

5. Matchings of order five 

For 5-matchings we can apply the same method as in the proof of  Theorem 4.1 but 

the task is more tedious. The proof is rather technical and, therefore, omitted. 

Theorem 5.1. 

m 5  - -  m 

m 5 3m 4 475m 3 677m 2 1661m 
~ - - -  - - + - -  

120 4 24 4 5 

9ran 2 nrn 3 
-- 48n 2 -- 308n + T + 2 - -  

43m2n 407nm 29mX1 m2X1 
+72xl 2 

+ 3nX1 + 10)(2 - mX2 + 2A + Hs. 

6. Concluding remarks 

Proposition 6.1. Let G be a hexagonal system. For k = 1 . . . . .  [n/2J we have a2k >>-mk. 

Proof. For a2k we have a suitable representation in Lemma 1.1. All the terms in the 

sum are nonnegative and some terms of  the sum represent k-matchings. Since each 

term is nonnegative, the theorem follows. [] 

In Section 5 we did not relate m5 and al0. It is 'difficult' to calculate the number 

o f  subgraphs isomorphic to the graph 

This number can still be expressed in terms of  

and ~ ~ ,  

where the two added edges in the last graph are allowed to be in any of  the six 
positions on the hexagon. 
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What about counting the number of  6-matchings? The methods used in this paper 

can be applied but the formulas become much more complicated. 

Example 6.1. Let us apply our results to the hexagonal system discussed in Exam- 

ple 1.1. All values required have already been determined (m = 35, n -- 28). Using 

theorems concerning matchings, we can easily compute 

ml = 35, m2 = 539, 
m 3 =4817 ,  m4 =27742,  ms--- 108104. 

According to our results expressing a2i with m i  (i = 1,2, 3, 4) we can in an easy way 
write down the first terms of  the characteristic polynomial, namely, x 28 - -35x 26 ÷ 539x 24 

- 4833x 22 ÷ 28138x 2° . . . .  

For some examples of  the matching polynomial 

m ( G ; x )  = x  n - m i x  n - 2  + m2 x n - 4  . . . .  

of  a hexagonal system G see [3,4]. 
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