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Abstract

It is proved that the choice number of every graph G embedded
on a surface of Euler genus € > 1 and € # 3 is at most the Heawood
number H(e) = |(7+ v/24e + 1)/2] and that the equality holds if and
only if G contains the complete graph Ky (.) as a subgraph.

1 Introduction

1.1 History and results

This paper is concerned with the choice number of graphs embedded on a
given (closed) surface. Surfaces can be classified according to their genus and
orientability. The orientable surfaces are the sphere with g handles ¥/, where
g > 0. The non-orientable surfaces are the surfaces II, (h > 1) obtained by
taking the sphere with A holes and attaching A Mobius bands along their
boundary to the boundaries of the holes. II; is the projective plane, Il is
the Klein bottle, etc. The Euler genus e(X) of the surface ¥ =3, is 2¢, and



the Euler genus of ¥ =11 is h. Then 2 — ¢(X) is the Euler characteristic of
X,

Consider a simple graph G with vertex set V' and edge set E that is
embedded on a surface ¥ of Euler genus ¢ = £(X). Euler’s Formula tells us
that |V| — |E| + |F| > 2 — ¢, where F' is the set of faces and with equality
holding if and only if every face is a 2-cell. Therefore, if |V| > 3, then
|E| < 3|V| —6+3e. For e > 1, this implies that G is (H (¢) — 1)-degenerate,
that is every subgraph of G has a vertex of degree at most H(¢) — 1, where

H(e) = {—7 * @J .

Consequently, if € > 1, then

where x(G) denotes the chromatic number of G and x;(G) denotes the choice
number of G. For every surface X distinct from the Klein bottle, the Hea-
wood number H(¢) is, in fact, the maximum chromatic number of graphs
embeddable on Y where the maximum is attained by the complete graph on
H(h) vertices. This landmark result, that was conjectured by Heawood [9],
is due to Ringel [13] and Ringel & Youngs [14]. Conversely, every graph with
chromatic number H (¢) embedded on ¥ contains a complete graph on H (¢)
vertices as a subgraph. This result was proved by Dirac [3, 5] for the torus
and ¢ > 4 and by Albertson and Hutchinson [1] for ¢ = 1, 3.

Franklin [7] proved that the coloring problem for the Klein bottle has
not the answer H(2) = 7 but 6. Furthermore, there are 6-chromatic graphs
on the Klein bottle without a K. One example of such a graph is given in
[1]. Brooks’ theorem for the choice number implies that if G is a graph on
the Klein bottle, then x;(G) < 6. For graphs on the sphere the maximum
chromatic number is 4, however the maximum choice number is 5. The last
statement follows from results of Thomassen [15] and Voigt [17].

The aim of this paper is to prove the following extension of Dirac’s result.

Theorem 1 Let 3 be a surface of Fuler genus € with ¢ > 1 and ¢ # 3. If
G is a graph embedded on X, then x,(G) < H(e) where equality holds if and
only if G contains a complete subgraph on H(e) vertices. O



The proof of Theorem 1 for ¢ = 2 and ¢ > 4 is given in Section 2 and
resembles the proof of Dirac’s result for the chromatic number. The proof
for e = 1, i.e. the projective plane, is given in Section 4.

1.2 Terminology

All graphs considered in this paper are finite, undirected and simple. For
a graph G, we denote by V(@) the verter set and by E(G) the edge set of
G. The subgraph of G induced by X C V(@) is denoted by G[X]; further,
G — X = G[V(G) — X]. The degree of a vertex x in G is denoted by dg(z).
As usual, let K,, denote the complete graph on n vertices.

Consider a graph G and assign to each vertex x of G a set ®(x) of colors
(positive integers). Such an assignment ® of sets to vertices in G is referred
to as a color scheme (or briefly, a list) for G. A ®-coloring of G is a mapping
¢ of V(@) into the set of colors such that p(z) € ®(z) for all x € V(G) and
o(x) # ¢(y) whenever zy € E(G). If G admits a ®-coloring, then G is called
®-colorable. In case of ®(x) = {1,...,k} for all z € V(G), we also use the
terms k-coloring and k-colorable, respectively. G is said to be k-choosable if
G is ®-colorable for every list @ for G satistying |®(z)| = k for all z € V(G).
The chromatic number x(G) (choice number x;(G)) of G is the least integer
k such that G is k-colorable (k-choosable). We say that G is ®-critical if G
is not ®-colorable but every proper subgraph of G is ®-colorable

1.3 Gallai trees and critical graphs

Let G be a graph. A vertex x of G is called a separating vertex of G if G —x
has more components than G'. By a block of G we mean a maximal connected
subgraph B of G such that no vertex of B is a separating vertex of B. Any
two blocks of G have at most one vertex in common and, clearly, a vertex of
G is a separating vertex of GG iff it is contained in more than one block of G.

A connected graph G all of whose blocks are complete graphs and/or
odd circuits is called a Gallai tree; a Gallai forest is a graph all of whose
components are Gallai trees.

By a bad pair we mean a pair (G,®) consisting of a connected graph G
and a list ® for G such that |®(z)| > dg(z) for all z € V(G) and G is not



®-colorable.
Lemma 2 If (G,®) is a bad pair, then the following statements hold.
(a) |®(z)| = dg(x) for all x € V(G).
(b) If G has no separating vertex, then ®(x) is the same for all x € V(G).

(¢) G is a Gallai tree. O

Lemma 2 was proved independently by Borodin [2] and Erdés, Rubin and
Taylor [6]. For a short proof of Lemma 2 based on the following simple re-
duction idea the reader is referred to [10].

Remark ([11]). Let G be a graph, ® a list for G, Y C V(G), and let ¢
be a ®—coloring of G[Y]. For the graph G' = G — Y, we define a list & by

'(z) = ®(x) — {oly) |y € Y and zy € E(G)}

for every € V(G'). In what follows, we denote ® by ®(Y, ). Then it is
straightforward to show that the following statements hold.

(a) If G’ is ®'-colorable, then G is ®-colorable.

(b) If |®(x)| = dg(z) + p for some z € V(G'), then |®'(x)| > de/(z) +p. O

Theorem 3 ([11]) Assume that k > 4 and G # Ky is a ®-critical graph
where ® is a list for G satisfying |®(x)| = k — 1 for every x € V(G). Let
H={y € V(G) | dg(y) > k} and L = V(G) — H. Then the following

statements hold.
(a) G[L] is empty or a Gallai forest and dg(x) =k — 1 for every x € L.
(b) G[L] does not contain a Kj.
(c) 21B(G)] = (k =1+ (k—=3)/(k* = 3)V(G)|.

Proof. For the proof of (a), consider the vertex set X of some component
of G[L] and let Y = V(G) — X. Since G is ®-critical, there is a ®-coloring ¢
of G[Y]. Let G' = G[X] =G —Y and &' = (Y, ). By the above remark,



(G',@') is a bad pair and, therefore, Lemma 2 implies that G’ is a Gallai tree
and dg(x) = k — 1 for all x € X. This proves (a).

To prove (b), suppose that G[L] contains a Kj. Then, because of (a), K
is a component of GG. Since every ®-critical graph is connected, this implies
that G = K, a contradiction.

Statement (c¢) follows from (a), (b) and a result of Gallai. He proved in
[8] that if G is a graph on n vertices and m edges such that the minimum
degree is at least £ — 1 (k > 4) and the subgraph of G induced by the set of

vertices of degree k — 1 is empty or a Gallai forest not containing a Ky, then
2m > (k— 1+ (k — 3)/(k* = 3))n.

2 Proof of Theorem 1 for ¢ =2 and ¢ > 4

Let X be a surface of Euler genus € where € = 2 or ¢ > 4 and let
k=H(e)=[(T+V24e+1)/2)]. (1)

Let G be an arbitrary graph embedded in . Since G is (k — 1)-degenerate,
x1(G) < k and we need only to show that x;(G) < k — 1 provided that G
does not contain a K.

Suppose that this is not true and let G be a minimal counterexample.
Then G does not contain a K}, and there is a list ® for G such that |®(z)| =
k —1 for all z € V(G) and G is ®-critical. Let n = |V (G)| and m = |E(G)|.
Then, by Euler’s Formula,

2m < 6n — 12 + 6e. (2)
Furthermore, n > k£ + 1 and, by Theorem 3,
kE—3

First, assume n > k + 4. Then it follows from (2) and (3) that

k—3

and, therefore,
(k—3)(k+4)

k* — 3k
Skt

< 6¢ + 16. (4)
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It can be verified that (4) leads to a contradiction for ¢ = 2 and 4 < ¢ < 10.
If £ > 11, then k£ > 11 and, therefore,

(k—3)(k+4)
k? —3

> 1.

Consequently, because of (4), k> — 3k — 15 — 6c < 0 implying that

< 3+ 24 + 69
5 .

k

On the other hand, because of (1),

k>5+\/246+1
—_— 2 .

Hence 2 + v/24e + 1 < v/24e 4+ 69. This implies that 41/24¢ + 1 < 64 and,

therefore, ¢ < 255/24 < 11, a contradiction.

Now, assume n < k+3. Thenn € {k+ 1,k +2,k+3}. Let H = {z €
V(G) | dg(x) > k} and L = {z € V(G) | dg(xz) = k — 1}. By Theorem 3,
V(G) = HUL and G' = G[L] is a Gallai forest.

If n = k41, then G is obtained from a K}, by deleting the edges of some
matching M. Obviously, L is the set of all vertices incident with some edge
of M. Since G[L] is a Gallai forest, this implies that |M| = 1 and, therefore,
|L| = 2. Then G contains a Ky, a contradiction.

If n € {k+2,k+ 3}, then we distinguish two cases. For the case when
2m > (k—1)n+k — 3 we can use the same argument as Dirac in [5] to arrive
at a contradiction. For the case when 2m < (k — 1)n + k — 4, we argue as
follows. First, we infer that

(a) |H|<k—4and |L| >6ifn=k+2o0r |L|>Tifn=Fk+ 3.

Next, suppose that G' = G[L] is a complete graph. By (a), every vertex of
H is adjacent to some vertex of L. Since dg(z) = k — 1 for all x € L, this
implies that there are vertices z € H and z,y € L satisfying zx € E(G)
and zy ¢ E(G). Because of (a) and |®(v)] = k£ — 1 for all v € V(G),
there are two ®-colorings ¢y, ¢, of G[H] such that ¢,(v) = @,(v) for all
v e H—{z} and p,(2) # @y(2). Fori=1,2, let &; = ®(H, ;) be the list



for G' = G[L] = G — H. Then, see the remark in Section 1.3, (G, ®;) is a
bad pair for ¢ = 1,2 and, moreover, either ®;(z) # ®;(y) or ®o(x) # Po(y),
a contradiction to statement (b) of Lemma 2.

Finally, assume that G' = G[L] is not a complete graph. Since G’ is a
Gallai forest and every vertex of L has degree k — 1 in G, we infer from (a)
that G’ has at least two blocks and, therefore, n = k + 3, |L| = 7 and &
consists of exactly two blocks By, B, that are both complete graphs on four
vertices and that have a vertex z in common. Consequently, |H| = k — 4
and, since 2m < (k — 1)n + k — 4, every vertex of H has degree k in G.
Moreover, since dg(y) = k — 1 for all y € L, every vertex of L — {z} is
adjacent to all vertices of H in G. Then there are two vertices z,u in H such
that zu ¢ E(G). Let y denote an arbitrary vertex of By — z. Because of (a)
and |®(v)| = k — 1 for all v € V(G), there is a ®-coloring ¢ of G[H] such
that either ¢(z) = ¢(u) or ¢(z) € ®(y) or p(u) € P(y). Let &' = ®(H, ¢)
be the list for G'. Then (G',®') is a bad pair and, since yz,yu € E(G) and
|®(y)| = da(y), |2 (y)| > de (y), a contradiction to Lemma 2(a).

Thus Theorem 1 is proved for e = 2 and ¢ > 4.

3 5-choosability of planar graphs

To prove Theorem 1 for the projective plane, some auxiliary results about
list colorings of planar graphs are needed. A graph G is said to be a near-
triangulation with outer cycle C'if G is a plane graph that consists of the cycle
C and vertices and edges inside C' such that each bounded face is bounded
by a triangle. Thomassen [15] proved that every planar graph is 5-choosable.
His proof is based on the following stronger result.

Theorem 4 Let G be a near-triangulation with outer cycle C' and let ® be
a list for G such that |®(v)| > 3 for all v € V(C) and |®(v)| > 5 for all
v e V(G) =V (C). Assume that xy is an edge of C, a € ®(x) and € P(y).
Then there is a ®-coloring ¢ of G such that p(x) = a and p(y) = [. O

The next result is an immediate consequence of Theorem 4, see also [16].

Theorem 5 (Thomassen [16]) Let G be a plane graph, let W be the set of
vertices on the outer face of G and let ® be a list for G such that |®(v)| > 3
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for allv e W and |®(v)| > 5 for allv € V(G) — W. Assume that zy is an
edge on the boundary of the outer face of G, a € ®(x) and § € ®(y). Then
there is a ®-coloring ¢ of G such that p(x) = a and p(y) = (. O

For the proof of Theorem 1 in case of ¢ = 1 we need the following extension
of Thomassen’s result.

Theorem 6 Let G be a plane graph and let W be the set of vertices on the
outer face of G. Let P = (vy,...,v;) be a path on the boundary of the outer
face. Assume that ® is a list for G satisfying |®(v)| > 5 if v € V(G) — W,
|®(v)| > 4 if v e V(P) —{v, v}, |®(v)] > 2 if v € {vy, v}, and |®(v)] > 3
ifve W —V(P). Then G is ®-colorable.

Proof (by induction on the number of vertices of G). For k < 2, Theorem 6
follows by Theorem 5. Now assume k > 3.

If G is the union of two non-trivial subgraphs G, G, such that |V(G;) N
V(Gy)| < 1 and P is contained in Gy, then we argue as follows. By the
induction hypothesis, there is a ®-coloring ¢, of Gy and, by Theorem 5, there
is a ®-coloring ¢, of Gy where ¢,(z) = ¢ (x) in case of V(G1)NV (G2) = {z}
(note that z is on the outer face of G3). Then ¢, U ¢, is a ®-coloring of G.

Otherwise, G is connected and every block of G is either an edge of P or
a 2-connected plane subgraph with an outer cycle C" such that C' N P is a
subpath of P with at least two vertices where for distinct 2-connected blocks
of G, these subpaths are edge-disjoint. Then there is a near-triangulation G’
with an outer cycle C such that V(G) = V(G'), E(G) C E(G"), W =V(C),
and P is a subpath of C. Then C = (vy,...,v,) with p > k > 3. If p =k,
then Theorem 5 implies that there is a ®-coloring of G’ and hence also of G.
If p> k+1, then we argue as follows.

First, we consider the case when C has a chord incident with v, say
v, If 1 < 4 < k — 2, then we apply the induction hypothesis to the

cycle (vi,...,v;, U, ...,vp) and its interior and then we apply Theorem 4
to the cycle (v;,viy1,...,v;) and its interior where wvyv; is the precolored
edge. If £ 4+ 2 <1 < p, then we apply the induction hypothesis to the cycle
(U1, Uk, Uiy Vig1 - - ., Up) and its interior and then we apply Theorem 4 to
the cycle (vg, Ug11,-..,v;) and its interior where vgv; is the precolored edge.

Now, we consider the case when C' has no chord incident with v,. Let
Vk—1, ULy - - -, U, Vg1 De the neighbors of v in that clockwise order around
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vg. As the interior of C'is triangulated, P' = (vg_1,u1, - .., Uy, Uks1) iS a path
and C' = P'U (C —vy,) is a cycle of G'. Let o, § be distinct colors in ®(uvy).
Define a list ® for G' — vy by ®'(v) = ®(v) —{a, B} if v € {vp_1, U1, ., U}
and ®'(v) = ®(v) otherwise. Then we apply the induction hypothesis to C”
and its interior with respect to the path P — v, and the list ®. We complete
the coloring by assigning « or [ to v such that v, and vi,; get distinct
colors. Thus Theorem 6 is proved. O

The next result is crucial for the proof of Theorem 1 restricted to the case
of the projective plane.

Theorem 7 Let G be a plane graph with outer cycle C of length p < 6.
Assume that @ is a list for G satisfying |®(v)| > 5 for all v € V(G) and
@ is a ®-coloring of G[V(C)]. Then ¢ can be extended to a P-coloring of
G unless p > 5 and the notation may be chosen such that C' = (v1,...,vp),
o(v;)) = oy for 1 < i < p and one of the following three conditions holds
where all indices are computed modulo p.

(a) There is a vertex u inside C such that u is adjacent to vy,...,vs and
(I)(U) = {ala ) 055}-

(b) p = 6 and there is an edge ugu; inside C' such that, for i =
0,1, the vertex u; is adjacent to vsiy1, Usir2, U3it3, V3ipa and P(u;) =
{asit1, @siv2, @343, @344, B}

(c) p = 6 and there is a triangle (ug,ui,us) inside C such that, for
i = 0,1,2, the verter u; is adjacent to vo;i1,Voiro, Uoirs and ®(u;) =
{agit1, aigo, oigs, 3,7}

Proof (by induction on the number of vertices of G). If one of the conditions
(a), (b) or (c) holds, we briefly say that (G, ®, ¢) is bad. For a subgraph H
of G and a vertex u € V(G), let d(u : H) denote the number of vertices in
H that are adjacent to u in G. We consider two cases.

Case 1: There is an edge vw of C such that d(u : C —v — w) < 2 for
all vertices u inside C. Then let X = V(C' — v — w) and define a list @' for
the plane graph G' = G — X by

O'(u) =@(u) —{p() | w' € E(G)&v € X}

9



if u is a vertex inside C' and ®'(u) = ®(u) for u € {v,w}. Theorem 5 implies
that there is a ®'-coloring ¢’ of G’ with ¢'(v) = ¢(v) and ¢'(w) = (w).
Hence ¢ can be extended to a ®-coloring of G.

Case 2: For every edge vw of C, we have d(u : C' — v —w) > 3 for some
vertex u inside C. Then p > 5.

First, assume that G has a separating cycle C' (i.e. there are vertices
inside and outside C’) of length at most four. Then C' # C. Let G’ be
the graph obtained from G by deleting all vertices inside C’. If ¢ can be
extended to a ®-coloring of G’, then, by Case 1, we can extend this coloring
to the vertices inside C" and, therefore, ¢ can be extended to a ®-coloring of
G. Otherwise, we conclude from the induction hypothesis that (G', @, ¢) is
bad and, therefore, (G, ®, ) is bad, too.

Now, assume that G is tough, that is G has no separating cycle of length
at most four. Let u denote a vertex inside C' such that d = d(u : C) is
maximum. Then 3 < d < 6. If d > 5, then u is the only vertex inside C,
since otherwise G' would not be tough. Then, clearly, ¢ can be extended to
a ®-coloring of G unless (a) holds.

If d = 4, then, since G is tough, the assumption of Case 2 implies that
p=06,C = (vq,...,06), u is adjacent to, say, vq,...,vs but not to vs and vg,
and all vertices of G —V(C) — {u} are inside the cycle C' = (vy, u, vy, vs, V).
Clearly, there is a color a € ®(u) — {p(v1), ¢(va), p(v3), p(vs)}. If there
is no vertex w inside C’ such that w is adjacent to all vertices of C' and
O (w) = {a, p(v1), p(v4), p(vs5), p(ve) }, then, by the induction hypothesis, ¢
can be extended to a ®-coloring of G with ¢(w) = .. Otherwise, because of
G is tough, this vertex w is the only vertex inside C' and we easily conclude
that ¢ can be extended to a ®-coloring of G' unless (b) holds.

Finally, consider the case d = 3. Since G is tough, we infer from the
assumption of Case 2 that if d(u : C') = 3 for some vertex u inside C, then u
has three consecutive neighbors on C'. Furthermore, we conclude that there
are at least three vertices ug, u1, us inside C' such that C' = (vq,...,vs) and,
for 1 = 0, 1, 2, the neighbors of U; on C are V2i+1, U242, V2i+3 with V7 = V1.
G being tough, all vertices of V(G) — V(C) — {ug, u1,us} are inside the
cycle C" = (vy,ug, v3, U1, V5, uz). If (ug,uy,us) is a triangle, then V(G) =
V(C) U {ug, ur,us} and, therefore, either ¢ can be extended to a ®-coloring
of G or, for 1 = 0,1,2, @(Uz) = {SO(UQH—I);SO(U%—&—Z);SO(UZH—?));ﬁ; ’)/}, that is
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(c) holds. Hence, we may assume that uyuy ¢ E(G). Let G' = G — vs.
The outer cycle of G’ is C" = (v, ug, vs, vs,v5,v6). Let ¢'(v) = ¢(v) for
v e V(C") —{ug}, and let ¢'(ug) be a color in ®(ug) — {¢(v1), @(ve), p(vs)}.
If (G, ®,¢") is not bad, then the induction hypothesis implies that ¢’ can be
extended to a ®-coloring of G’ and we are done. If (G',®,¢') is bad, then
there is a vertex inside C” distinct from u; and us which has two neighbors
in {vy,v3,v5} (since uy has only three neighbors in C”). Since G is tough,
no vertex inside C” except u; and us can have two neighbors in {v, v3,vs}.
This contradiction completes the proof. O

4 List colorings on the projective plane

In this section we prove Theorem 1 for the projective plane. Let G denote an
arbitrary graph embedded on the projective plane. Since G is 5-degenerate,
X1(G) < 6 and we need only to show that G is 5-choosable provided that G
does not contain a Kg.

In the sequel, let ® denote a list for G such that the following two condi-
tions hold.

(a) |®(x)| =5 for all x € V(G).

(b) If K is a complete subgraph on 6 vertices of G, then ®(z) # ®(y) for
two vertices z,y € V(K).

By induction on the number of vertices of GG, we prove that G is ®-colorable.

If G contains a vertex x of degree at most 4, then, by the induction
hypothesis, there is a ®-coloring ¢ of G — z. Clearly, because of (a), ¢ can
be extended to a ®-coloring of G.

Next, consider the case when G contains a contractible cycle C' of length
three such that C' is a nonfacial cycle of G. Let G denote the plane sub-
graph of G that consists of the cycle C and the vertices and edges inside
C. Moreover, let Go = G — (V(G;) — V(C)). Then Go has fewer vertices
than G. Hence, by the induction hypothesis, there is a ®-coloring ¢, of Go.
By Theorem 7, there is a ®-coloring ¢; of G such that ¢;(v) = ¢, (v) for
all v € V(C). Clearly, ¢; U ¢, is a ®-coloring of G. Therefore, we may
henceforth assume:
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(c) The minimum degree of G is at least 5 and each contractible cycle of
length three in GG is a facial cycle of G.

If all cycles of G are contractible, then G is planar and, by Theorem 4,
G is ®-colorable. Hence we may assume that GG contains a noncontractible
cycle. Let k£ > 3 be the length of a shortest noncontractible cycle of GG, and
let A/ denote the set of all noncontractible cycles of G having length k. Our
aim is to show that there is a cycle C' € N such that a certain ®-coloring of
C' can be extended to a ®-coloring of the plane graph G — V(C).

Consider a noncontractible cycle C' = (vq,...,v;) € N. Then C has no
chords and, by cutting II; along C', we obtain a plane graph G¢ with outer
cycle Oc = (v1,...,vg,0},...,v;). The graph G¢ can be considered as a
representation of G on a closed disc where antipodal points on the boundary
are identified. The plane graphs G — V(C) and G¢ — V(O¢) are identical
and, for y € V(G) — V(C), yv; € E(G) if and only if yv; or yv] belongs to
E(Ge¢), i € {1,...,k}. Furthermore, a path P = (v;,x1,...,2m,v}) of G¢
with z1,..., 2, € V(G) — V(C) corresponds to the noncontractible cycle
(vi,T1,...,x,) of G, implying that m + 1 > k. In particular, for every
y € V(G) — V(C), the edges yv; and yv} are not both in E(G¢). Let W¢
denote the set of all vertices of G — V(C') that are in G adjacent to some
vertex of C' and, for # € W, let No(z) denote the set of all neighbors of x
in G that belong to C.

First, assume k£ = 3. Let ¢ be a ®-coloring of some cycle C' = (v, vy, v3) €
N and let ¢’ be the ®-coloring of O¢ = (v1, ve, v3, v}, vh, vy) with ¢'(v;) =
¢'(v)) = p(v;) and @(v)) = ®(v;) fori = 1,2, 3. If ¢’ can be extended to some
®-coloring of G, then this coloring determines a ®-coloring of G. Otherwise,
we conclude from Theorem 7 that in the plane graph G there is a triangle
D inside O¢ such that each vertex of D is adjacent with three vertices that
are consecutive on O¢. Therefore, in G each vertex of D is adjacent to all
vertices of C' and thus G[V(C) UV (D)] is a complete graph on 6 vertices.
Since every noncontractible triangle of GG is a facial triangle of GG, this implies
that V(G) = V(C)U V(D) and, therefore, G = Kg. From (b) it then follows
that G is ®-colorable.

Now, assume k > 4. Let C = (vy,...,v;) € N. First, we claim that
|Ne(z)| < 3 for each © € We. If some vertex x € W is adjacent in G to v;
and v; with i < j, then exactly one of the two cycles (v;, vit1,...,v;,2) and
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(vj, 41, ..., v;, x) is noncontractible, where all indices are computed modulo
k. 1t follows that the claim is true in case £ > 5, since otherwise there would
exists a noncontractible cycle of length at most £ — 1, a contradiction. If
k = 4 and some vertex x is adjacent to all vertices of C, then all four
triangles (z, v, v;41), @ = 1,2, 3,4, are contractible and hence facial triangles
of G. Consequently, x is a vertex of degree four in G, a contradiction to (c).
This proves the claim. Let 1> denote the set of all vertices x € W such that
|Nc(x)| = 3 and, for v € V(C), let T¢ denote the set of all vertices = € T
such that zv € E(G).

Next, since C' is a shortest noncontractible cycle of G and (c¢) holds, we
conclude that the following holds:

(d) For each vertex = € Te, Neo(z) = {v;, viy1,vize} for some i and the
triangles (z, v;, viy1) and (2, v;41, v42) are contractible and hence facial
(all indices are modulo k). Moreover, No(y) # Neg(x) for all y €
Te — {z} (since otherwise v;1; would be a vertex of degree 4 in G,
contradicting (c)).

Consequently, |T%| < 3 for all v € V(C). Moreover, the three neighbors of
x in G¢ that belong to O¢ are consecutive on O, since otherwise either
(x,v4,vi11) or (x,v;11, viy2) would be noncontractible in G, a contradiction.

Two vertices z,u € T are said to be C-conform if there is a vertex in O¢
adjacent to z and u in G¢. If £ > 5 and |T}| = 3 for some vertex v € V(C),
then there are exactly two vertices z,u € T/ such that z,u are C-conform.

For a ®-coloring ¢ of C € N and a vertex z € W, let o(C : x) =
{¢() | v € Ne(z)}. Suppose that X C T such that | X| < 1 or k > 5,
X = {z,u}, and z,u are C-conform. A ®-coloring ¢ of C'is called X-good if
|®(x) — (C :2)| >3 forall z € Tp — X.

We claim that, if there is a cycle C € N, an appropriate X C Tg,
and a P-coloring ¢ of C that is X-good, then ¢ can be extended to a ®-
coloring of G. For the proof of this claim, define a list @' for the plane graph
G =G-V(C)=Gc—V(O¢) by ®'(z) = ®(z) — ¢(C : ) if z € W¢ and
®'(z) = ®(x) otherwise. We have to show that G’ is ®'-colorable. Since ¢ is
X-good and each vertex of W — T has in G at most two neighbors on C,
we have |®'(z)| > 3 for all x € We — X, |®'(x)] > 5 for all x € V(G") — We
and, because of X C T, |®'(z)| > 2 for all x € X. Furthermore, each
vertex of We belongs to the outer face of G'. If | X| < 1, then Theorem 5
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implies that G’ is ®'-colorable. Otherwise, k > 5, X = {z,u}, and z,u are C-
conform. Therefore, by (d), we conclude that the notation may be chosen so
that C' = (v1,...,v), No(2) = {v1,ve,v3}, Neo(u) = {vs,vy4,v5}, and in Ge
the neighbors of z and u on O¢ are vy, vy, v3 and vs, vy, vs, respectively. Let
2,21, -+, Tm,u be the neighbors of v3 in G¢ in that clockwise order around vs.
Then, by adding certain edges, we may assume that P = (z, 21, ..., Ty, u) is
a path on the boundary of the outer face of G' = G—V(O¢) where each vertex
of W still belongs to the outer face of G'. Since k > 5 and C' is a shortest
noncontractible cycle of G, we conclude that, for all x € V(P) — {z,u},
Ne(x) = {v3} and, therefore, |®'(z)| > 4. Now, Theorem 6 implies that G’
is ®'-colorable. This proves the claim.

Therefore, to complete the proof of Theorem 1, it suffices to prove that,
for some cycle C € N and an appropriate X C T, there is an X-good
®-coloring of C'. For the proof of this statement, we consider the following
procedure for a given cycle C € N. First, we choose a vertex v; = v of
C and a color a; € ®(vy). Next, we choose an orientation of C' such that
C = (v1,...,vp). Now, we choose a set X C T¢F such that |T7F — X| < 1.
Recall that |T%| < 3 for all v € V(C). Eventually, we define a mapping
o = ¢(C, vy, a1, v, X) from V(C) into the color set as follows. First, we set
©(v1) = a;. Now, assume that ¢(vy),...,¢(v; 1) are already defined where
2 < i < k. Because of (d) and |TgF — X| < 1, there is at most one vertex
x € T¢ — X such that N = Neo(z) — {v;} is a subset of {vy,...,v;_1}. Then,
because of (a) and [N| =2, M = ®(z) — {p(v) | v € N} is a set of at least
three colors and, therefore, there is a color @ € ®(v;) — {¢(v;—1)} such that
|M — {a}| > 3. We define ¢(v;) = a. Clearly, ¢ is a ®-coloring of C' — vy vy
and |®(z) — ¢(C : x)| > 3 for all x € T — X. Therefore, ¢ is an X-good
®-coloring of C' provided that p(vg) # a1 and | X| <1ork > 5, X = {z,u},
and z,u are C-conform. If [T < 1or k > 5, T¢F = {z,u} and z,u are
C-conform, then we choose X = T/F and, in the last step of our procedure,
we choose a color a € ®(vg) — {¢(v1), ¢(vg_1)} and define (vg) = a. This
leads to an X-good ®-coloring ¢ of C. Therefore, we assume henceforth that
for every cycle C' € N the following two conditions hold.

(1) T3] > 2 for every v € V(C).

(2) U TE = {z,u} for some v € V(C), then k =4 or k > 5 and z, u are not
C-conform.
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Now we distinguish two cases. First, we consider the case that there is a
cycle C' € N such that two vertices of C' have distinct lists. Then there is also
an edge vw of C such that ®(v) # ®(w). Because of (a), this implies that
there are two colors a,, € ®(w) — ®(v) and «, € P(v) — P(w). If for one of
the two vertices v, w, say v, we have T¢ = {z, y}, then ¢ = p(C,v1, a3, vk, X)
with vy = w, a1 = @y, vy = v and X = {z} is an X-good P-coloring of C.
Otherwise, because of (1) and (d), we have |T4| = |T¥| = 3 and, therefore,
k > 5 and there are two vertices u,z € T4 such that u,z are C-conform.
Then ¢ = ¢(C, vy, a1, v, X) with v; = w, @) = @, vy = v and X = {u, 2z}
is an X-good ®-coloring of C.

Finally, we consider the case when for every cycle C' € A there is a set
F of five colors such that ®(v) = F for all v € V(C). If k is even, then we
choose an arbitrary cycle C € N. By the assumption of this case, there is a
®-coloring ¢ of C such that ¢ uses only two colors. Then, for X = (), ¢ is
an X-good ®-coloring of C'. Now assume that £ is odd. In particular, £ > 5.
For a cycle C € N, let t(C') denote the number of all vertices v € V(C) such
that |T¢]| = 3. Consider a cycle C' € N such that ¢(C') is minimum.

If ¢(C') > 1, then there is a vertex v € V(C') such that T¢ is a set of
three vertices, say vy, z, u and, since k > 5, two of these three vertices, say
z,u, are C-conform. Therefore, because of (d), the notation may be chosen
so that C' = (vy,...,vx), where v; = v, No(2) = {vg_1, v, 01}, No(u) =
{v1,v9,v3} and N¢(y) = {vg, v1,v2} where all indices are computed modulo
k. Furthermore, there is a vertex © € W such that No(z) = {vg_o, vk_1, vr },
since otherwise C' = (vq,u,vs,...,v;) would be a noncontractible cycle of
length & in G such that T7f = {z}, a contradiction to (1). By symmetry,
there is also a vertex 2’ € W¢ such that Ng(2') = {vo,v3,v4}. But then

C = (y,vq,...,v;) is a noncontractible cycle of length k in G and, because
of (d), T¢ = {v1}, a contradiction to (1).
Now assume ¢(C) = 0 where C' = (vy,...,vt). Then we conclude from

(1), (2) and (d) that, for i = 1,...,k, |T¢| = 2 and, since k > 5, the two
vertices of T, are not C-conform. This implies that in the plane graph G¢
every vertex of the outer cycle O¢ = (vy,..., v, Vg1 = V], ..., Uy = v},) has
exactly one neighbor in 7. Consequently, 2k = 0(mod 3) and, therefore,
k = 0(mod 3). Furthermore, for every vertex x € T¢, the three neighbors of
x that belong to O¢ are consecutive on O¢. Since k = 0(mod 3), we now
see that if the vertices v;, v;11, ;12 have a common neighbor in G¢, then
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the vertices v;yx, Vitkt1, Virks2 (indices modulo 2k) have a common neighbor
in G¢, too. Consequently, in G there are two vertices x,y € T such that
Ne(x) = Ne(y), a contradiction to (d).

This shows that, for some cycle C' € N and some subset X of T¢, there
is an X-good ®-coloring of C. Theorem 1 is proved. O
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