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Abstract

Several results concerning existence of k-paths, for which the sum
of their vertex degrees is small, are presented.

1 Introduction

It is well known that every planar graph contains a vertex of degree at most
5. Kotzig [13, 14] strengthened this result by proving that every 3-connected
planar graph contains an edge whose degree sum is at most 13. This result
was further extended in various directions and used in deriving many prop-
erties of 3-connected planar graphs; see, e.g., Grünbaum and Shephard [7],
Ivančo [9], Zaks [19], Jendrol’ [10, 11], Fabrici and Jendrol’ [4, 5], Harant,
Jendrol’, and Tkáč [8] and references therein.

In generalizing Kotzig’s theorem, there are several natural directions.
Two possibilities are as follows. Let k ≥ 1 be an integer.
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(A) Find the smallest integer w = w(k) such that whenever a 3-connected
planar graph G contains a k-path, there is a k-path for which the sum
of degrees of its vertices is at most w. (By a k-path we mean a path on
k vertices.)

(B) Find the smallest integer f = f(k) such that whenever a 3-connected
planar graph G contains at least k vertices, there is a connected sub-
graph of G of order k whose degree sum in G is at most f .

Instead of the degree sum, one may ask about similar bounds on the max-
imum degree of a k-path, or a connected subgraph of order k, respectively.

Each of these problems can be formulated with further restrictions on the
minimum degree, minimum face size, or the connectivity, and one may also
ask about possible generalizations to graphs on more general surfaces. Several
cases of such problems have been solved; cf. [5, 8, 3] and their references.
We also refer to a recent survey [12] on light subgraphs.

In this note we resolve some of the open cases. First we show that a lower
bound on w(k) from (A) is of order k log k, even if we restrict the minimum
degree to be at least 4 or 5, respectively. (Such examples were constructed
in the case of minimum degree 3 by Fabrici and Jendrol’ [5].) Next we show
that by restricting to 4-connected graphs instead of limiting the minimum
degree to 4, the answer is totally different. In this case w(k) = 6k − 1. A
similar result and its strengthening are then derived for 4-connected graphs
on general surfaces. It is also shown that no connected graph other than
a path occurs with bounded degrees in 4-connected planar graphs, a result
which was asked by Fabrici and Jendrol’ [4]. Moreover, it is proved that
this result no longer holds if we exclude arbitrarily long paths of vertices of
degree 4 (cf. Theorem 2.4). Finally, problem (B) is considered for 3-connected
graphs embedded on general surfaces with large face-width.

2 Planar graphs

When further restricting the class of graphs in problems (A) or (B), we
shall write w(k, restrictions) and f(k, restrictions), respectively, to denote the
smallest upper bound on the degree sum of the restricted class of 3-connected
graphs. In particular, we shall consider the following two restrictions: min-
imum degree at least d and d-connectivity. Then we write w(k, δ ≥ d) and
w(k, κ ≥ d), respectively.
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Fabrici and Jendrol’ [5] proved that

k log2 k ≤ w(k) ≤ 5k2.

They asked if the same lower bound applies if we restrict ourselves to graphs
of minimum degree 4 or 5. The following examples show that the answer is
positive.

Let T1 = K4 be the complete graph on 4 vertices. For i ≥ 1, let Ti+1 be the
plane triangulation obtained from Ti by adding a vertex of degree 3 in each
of the facial triangles (including the outer one) of Ti. Let ki be the number
of vertices on a longest path in Ti. Then k1 = 4, k2 = 8, and ki+1 = 2ki + 1
(i ≥ 2). Let wi be the minimum degree sum in Ti on a ki-path. It is easy to
see that each path attaining this minimum starts and ends with a vertex of
degree 3 (if i ≥ 3) and that w1 = 12, w2 = 36, and wi+1 = 2wi+3(ki+1) for
i ≥ 2. Solving the recurrences, we get ki = 9 ·2i−2−1 and wi = 9(3i+2) 2

i−3,
i ≥ 2.

Figure 1: Adding the octahedron

Now, let T ′
i (respectively T ′′

i ) be obtained from Ti by replacing each facial
triangle by a copy of the octahedron graph (respectively, icosahedron); see
Figure 1. Let k′

i, k
′′
i , w

′
i, w

′′
i be the corresponding values in these graphs.

For i ≥ 2, we have k′
i = 4ki + 3 = 9 · 2i − 1 and w′

i = 3wi + 12(ki + 1) =
27(3i+10) 2i−3. Similarly, k′′

i = 10ki+9 = 45·2i−1−1 and w′′
i = 9(6i+49) 2

i−2.
This shows that w(k′

i, δ ≥ 4) ≥ 9
8
k′

i log2 k
′
i + O(k′

i). If k
′
i ≤ k < k′

i+1, then
w(k, δ ≥ 4) ≥ w(k′

i, δ ≥ 4) and k ≤ 2k′
i. This implies that

w(k, δ ≥ 4) ≥ 9

16
k log2 k +O(k).

Similarly, we get from T ′′
i that

w(k, δ ≥ 5) ≥ 3

10
k log2 k +O(k).
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It is interesting that the restriction to 4-connected graphs brings a differ-
ent behavior.

Proposition 2.1 Every 4-connected planar graph on at least k vertices con-
tains a k-path whose degree sum is at most 6k − 1. Consequently,

w(k, κ ≥ 4) = w(k, κ ≥ 5) = 6k − 1.
Proof. Tutte [17] proved that every 4-connected planar graph contains a
Hamilton cycle. Let C = v1v2 . . . vn be a Hamilton cycle of G. For i =
1, . . . , n, let Ri be the k-path vivi+1 . . . vi+k−1 (indices modulo n). Let w(Ri)
denote the sum of degrees of vertices of Ri. Then

n∑
i=1

w(Ri) = k
∑

v∈V (G)

deg(v) = 2k|E(G)| ≤ 2k(3n− 6).

The last inequality is a well known corollary of Euler’s formula. Hence, one
of the paths, say Ri, has its degree sum at most 2k(3n − 6)/n < 6k. This
shows that w(k, κ ≥ 5) ≤ w(k, κ ≥ 4) ≤ 6k − 1.

Finally, there are 5-connected triangulations of the plane which contain
precisely 12 vertices of degree 5, and all other vertices are of degree 6 (cf.,
e.g., [6, 2]). Moreover, the vertices of degree 5 are as far away from each
other as we like. This shows that w(k, κ ≥ 5) ≥ 6k − 1 and completes the
proof.

Fabrici and Jendrol’ [4] proved that ifH is a connected planar graph which
is not a path, then for every integer r there exists a planar 3-connected graph
G containing H as a subgraph, and every subgraph of G isomorphic to H
contains a vertex of degree at least r. They asked [4, Problem 4] if there
is an analogue of this result for 4-connected graphs. Below we answer their
question in the affirmative. Let us remark that not every planar graph is
a subgraph of a 4-connected planar graph (e.g., a 3-connected planar graph
with a separating triangle), and that the only 4-connected planar graph that
contains a 4-connected triangulation H of the sphere is H itself.

Theorem 2.2 Let r be an arbitrary integer and let H be a planar graph
which is not a triangulation but is a subgraph of some 4-connected planar
graph. If H contains a cycle or a vertex of degree more than 2, then there
is a 4-connected planar graph G which contains H as a subgraph such that
every subgraph of G isomorphic to H contains a vertex of degree at least r
in G.
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Proof. Let e be an edge of a 4-connected planar triangulation and let v, u
be the vertices in the two triangles containing e which are not the ends of
e. If we subdivide e by inserting r new vertices v1, . . . , vr and join each vi

with v and u (i = 1, . . . , r), we get a new 4-connected triangulation. We
call this operation the r-subdivision of e. Next, we make r-subdivisions of
the new edges v1u, v2v, v3u, v4v, . . ., and call the entire procedure the dense
r-subdivision of e; see Figure 2. We also say that the endvertices of e and
u, v are involved in the dense subdivision. Observe that all these vertices and
v1, . . . , vr have degree greater than r.

Figure 2: The dense 3-subdivision of e

Let H̃ be a 4-connected planar graph which contains H as a subgraph.
Since adding edges does not decrease connectivity, we may assume that H̃ is a
triangulation, and then there is at least one edge e0 ∈ E(H̃)\E(H). Now, we
successively make dense r-subdivisions in the obtained triangulations to each
edge e ∈ E(H̃)\E(H). Denote by G the 4-connected planar triangulation
obtained in this way. Then G contains H as a subgraph. Suppose that H ′

1

is a subgraph of G isomorphic to H with all vertices of degree in G less than
r. Let H1 be a connected component of H

′
1 which is not a path. Then H1

contains none of the edges added in r-subdivisions and none of the vertices
which were involved in dense subdivisions. This shows that each cycle of H1

and each vertex of H1 of degree at least 3 in H1 are contained in H . But only
those vertices x of H , for which all triangles in H̃ containing x are entirely in
H , were not involved in dense subdivisions. Since H is not a triangulation,
this implies that a vertex of H1 has been involved in subdivisions and hence
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it is of degree more than r. This contradiction shows that H ′
1 does not exist.

Observe that all vertices on the paths corresponding to r-subdivisions in
Theorem 2.2 have degree 4. Theorem 2.4 below shows that such long paths of
vertices of degree 4 are necessary for such a result. In particular, Theorem 2.2
does not extend to 5-connected graphs (or even 4-connected graphs without
long paths of vertices of degree 4). We will need the following lemma.

Lemma 2.3 Let G1 be a 2-connected outerplanar graph with outer cycle C.
Suppose that each vertex of G1 is adjacent to at most two vertices of degree 3
distinct from its neighbors on C. Let C be the outer cycle of G1. If G1 �= C,
then there is an edge uv ∈ E(G1)\E(C) such that deg(u) + deg(v) ≤ 12.

Proof. We may assume that no two vertices of degree 2 are adjacent and
that for each vertex of degree 2, its neighbors are adjacent. (Otherwise we
may contract an edge incident with such a vertex.) Suppose that each edge in
E(G1)\E(C) has the sum of degrees at least 13. We will apply the discharging
method. For each vertex v ∈ V (G1) we define φv = 4 − deg(v). Euler’s
formula implies that

∑
v∈V (G1) deg(v) ≤ 4n − 6, and hence

∑
v∈V (G1) φv ≥ 6.

We shall now change φ by redistributing the “charges” φv so that the total
sum remain the same. The redistribution rules are repeated for each vertex
v of degree 2 or 3 as follows:

(a) If deg(v) = 2, then we first set φv = 0. Let u, w be the neighbors
of v, where deg(u) ≥ deg(w). By our assumptions, uw ∈ E(G1)\E(C). If
deg(u) ≥ 8, then we increase the value of φu by 2. If deg(u) ≤ 7, then
deg(u) = 7 and deg(w) is either 6 or 7. In that case we increase the values
of φu and φw by 1.

(b) If deg(v) = 3, let uv be the edge incident with v which is not on C.
Then we set φv to 0 and increase the value φu by 1.

Let u ∈ V (G1). If deg(u) ≥ 10, its initial φ-value is at most −6, and
it is increased by at most 6 (Rule (a) twice and Rule (b) twice). Hence it
cannot become positive. If 8 ≤ deg(u) ≤ 9, then it is increased by at most 4
(Rule (a) twice), and if the degree is 6 or 7, φu increases by at most 2 (Rule
(a) twice). This shows that the total sum of values cannot be positive, a
contradiction.
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Theorem 2.4 Let r ≥ 0 and k ≥ 4 be integers, and let Tk be the graph of
order k obtained from K1,3 by replacing one of its edges by a (k − 2)-path.
If G is a 4-connected planar graph which contains Tk as a subgraph and has
no r-path all of whose vertices have degree 4, then G contains a subgraph
isomorphic to Tk whose degree sum is less than 96rk.

Proof. Let C = v1v2 . . . vn be a Hamilton cycle in G. By considering the
r-paths on C, we deduce that at least 
n/r� vertices have degree 5 or more.
(Let us observe that we need n ≥ r in order to have r-paths in C, which
we may assume since otherwise w(Tk) ≤ 6n ≤ 6r.) Let B1 be the set of
vertices which have two (or more) incident edges in the interior of C. We
may assume that p := |B1| ≥ 1

2

n/r�. (Otherwise we would consider the

exterior of C instead.) Let G1 ⊆ G be the outerplanar graph obtained from
C by adding, for each v ∈ B1, two of the edges of G in the interior of C
that are incident with v. Then G1 has p vertices of degree 4 or more, and it
satisfies conditions of Lemma 2.3. By the lemma, G1 has an edge e1 = vj1vl1

with degree sum at most 12. Let B2 = B1 \Q where Q consists of vj1 , vl1 and
all vertices v such that vj1v ∈ E(G1)\E(C) or vl1v ∈ E(G1)\E(C). Since
degG1

(vj1) + degG1
(vl1) ≤ 12, |B2| ≥ |B1| − 8. Now we define a subgraph

G2 ⊆ G which is obtained from C by adding, for each v ∈ B2, two of the
edges of G in the interior of C that are incident with v. By Lemma 2.3
we get another edge e2 = vj2vl2 whose degree sum in G2 is at most 12, and
we repeat the process. In this way we get a matching e1, . . . , eq consisting
of q = 
p/8� ≥ n

16r
edges inside C. We may choose the notation so that

ei = vji
vli where the distance from vji

to vli along the cycle C (in its positive
direction v1v2 . . .) is at most n/2, i = 1, . . . , q.

If k ≥ n/2, then every subgraph T of G has w(T ) ≤ w(G) ≤ 6n ≤ 12k.
Hence we may assume that k > n/2. For i = 1, . . . , q, let Ri be a copy of
Tk composed of the path vji−k+3vji−k+4 . . . vji

and the edges vji
vji+1 and ei.

Each vertex of G appears in at most k of these subgraphs. Therefore,

q∑
i=1

w(Ri) ≤ k
n∑

i=1

deg(vi) < 6kn.

One of the subgraphs, say Ri, has

w(Ri) < 6kn/q ≤ 96rk.

This completes the proof.
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Theorem 2.4 can be extended to several other examples of graphs playing
the role of Tk. Theorems 2.2 and 2.4 also extend to 4-connected graphs on
general surfaces in the same way as shown in the next section for existence
of light paths.

3 Graphs on a fixed surface

For embeddings of graphs on surfaces we refer to [16] (cf. also [15]). We
consider only 2-cell embeddings in closed surfaces. If G is an embedded graph
and r is the number of facial walks of this embedding, then the number

g = 2− |V (G)|+ |E(G)| − r

is called the Euler genus of the embedding. Since 3r ≤ 2|E(G)|, we get the
following bound on the number of edges in terms of the number of vertices
and g:

|E(G)| ≤ 3|V (G)| − 6 + 3g.
The face-width of the embedded graph, denoted by fw(G), is the minimum

integer k such that there exist facial walks F1, . . . , Fk whose union contains
a noncontractible cycle. The following results show that for graphs of large
face-width there exist light paths of similar weight as in the case of planar
graphs.

Theorem 3.1 For every positive integer g and real number ε, 0 < ε ≤
1/2, there is a number a(g, ε) such that the following holds. Let G be a 4-
connected graph embedded in a surface of Euler genus g, and let k ≥ 1 be an
integer. If the face-width of the embedding is at least a(g, ε) and k ≤ (1−ε)n,
n = |V (G)|, then there exists a k-path in G whose degree sum is at most

(6 + 2ε
1−ε
)k + 6(g−2)

(1−ε)n
k.

Proof. Böhme, Mohar, and Thomassen [1] proved that there is a constant
a(g, ε) (which is proportional to 2g/ε) such that G contains a cycle C of
length n′ ≥ (1 − ε)n if the face-width is at least a(g, ε). Now, using the
notation of the proof of Proposition 2.1, we have:

n′∑
i=1

w(Ri) = k
∑

v∈V (C)

deg(v) ≤ 2k|E(G)| − 4k(n− n′)

≤ 2k(3n− 6 + 3g)− 4k(n− n′) = 2kn+ 4kn′ + 6k(g − 2).
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Since k ≤ n′, Ri is a path for i = 1, . . . , n′. The above inequality implies
that one of the paths Ri has

w(Ri) ≤ 2kn

n′ + 4k +
6k(g − 2)

n′ ≤
(
6 +

2ε

1− ε

)
k +

6(g − 2)
(1− ε)n

k.

For general 4-connected graphs on a fixed surface we may apply another
result of Böhme, Mohar, and Thomassen [1] which states that for each surface
S, there is a constant cS > 0 such that every 4-connected graph of order n
embedded in S contains a cycle of length at least cSn. This result implies:

Theorem 3.2 For every positive integer g, there is a constant c = c(g) such
that for every integer k ≥ 1 and every 4-connected graph G embedded in
a surface of Euler genus g, if G contains a k-path, then G also contains a
k-path whose degree sum is at most ck.

Proof. Let cS be the constant mentioned above. If G has less than k/cS

vertices, then every k-path in G has degree sum at most 2|E(G)| ≤ 2(3n−6+
3g) ≤ (6/cS)k+6g ≤ (6/cS +6g)k. If n ≥ k/cS, then by the aforementioned
result of [1], G contains a cycle of length at least cSn ≥ k. Now, the method
similar to that in the proof of Theorem 3.1 completes the proof.

We believe that a stronger result, where the constant c is independent of
g, must be true.

Conjecture 3.3 There is a constant c, and for every positive integer g,
there is a constant c′ = c′(g) such that for every integer k ≥ 1 and every
4-connected graph G embedded in a surface of Euler genus g, if G contains
a k-path, then G also contains a k-path whose degree sum is at most ck+ c′.

4 Light connected subgraphs

Let r ≥ 1 be an integer. A walk W in a graph G is called an r-walk if each
vertex of G appears on W at least once and at most r times. Yu [18] proved
that a 3-connected graph G embedded in a surface of Euler genus g with
face-width at least 48(2g − 1) contains a 3-walk. This implies:
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Theorem 4.1 Let G be a 3-connected graph embedded in a surface of Euler
genus g with fw(G) ≥ 48(2g − 1). If G has n ≥ k vertices, then G contains
a connected subgraph of order k whose degree sum in G is at most 18k +
18k(k − 3 + g)/(n− k + 1).

Proof. Let W = u1u2 . . . um be a 3-walk in G. The vertices of G can be
enumerated, v1, . . . , vn, such that there are indices 1 ≤ j(1) < j(2) < · · · <
j(n) ≤ m such that uj(i) = vi for i = 1, . . . , n. Let Ri be the shortest subwalk
of W starting at uj(i) such that it visits precisely k distinct vertices (some of
them possibly more than once), i = 1, . . . , n−k+1. Then R1, Rk+1, R2k+1, . . .
are nonoverlapping subwalks ofW (but may use the same vertices), and hence

�n/k�−1∑
j=0

w(Rjk+1) ≤ 3
n∑

i=1

deg(vi) = 6|E(G)|

≤ 6(3n− 6 + 3g).
Let i (1 ≤ i ≤ n − k + 1) be an index with minimum w(Ri). The above
inequality implies that

w(Ri) ≤ 18(n− 2 + g)

�n/k� ≤ 18(n− 2 + g)

n− k + 1
k.

The induced subgraph Gi of G on vertices of Ri is connected, of order k, and
w(Gi) ≤ w(Ri). This completes the proof.

A special case of Theorem 4.1 restricted to planar graphs (but with a
better bound) was recently obtained by Enomoto and Ota [3].

Acknowledgment. We are grateful to E. Hexel and to the referees for
several comments on the first version of the paper.
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