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Abstract

It is proved that the decision problem about the existence of an
embedding of face-width 3 of a given graph is NP-complete. A simi-
lar result is proved for some related decision problems. This solves a
problem raised by Neil Robertson.

1 Introduction

Let C and C ′ be cycles in a graph G. We say that C and C ′ meet properly
if the intersection of C and C ′ is either empty, a single vertex or an edge.

Let G be a 3-connected graph. A 2-cell embedding of G in some surface
is polyhedral if every facial walk is a cycle and any two facial cycles meet
properly. Equivalently, we require that the graph is 3-connected and that the
embedding has face-width at least three [8] (cf. also [1, 5, 6]). Let us recall
that the face-width (also called the representativity) of a (2-cell) embedded
graph G is the minimum integer r such that G has r facial walks whose
union contains a cycle which is noncontractible on the surface. (In the case
when there are no noncontractible cycles, we let the face-width be ∞.)

At the Seventh Vermont Summer Workshop on Combinatorics and Graph
Theory in 1995, Neil Robertson asked how difficult it is to see whether a
given 3-connected graph admits a polyhedral embedding. In this note we
answer his question by proving that the decision problem about the ex-
istence of polyhedral embeddings is NP-complete. The problem remains
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NP-complete even if we ask about polyhedral embeddings in orientable sur-
faces and require that the given graph is 6-connected. A similar problem
where we ask about embeddings of face-width exactly 3 is also NP-complete.
However, it is not known if existence of embeddings of face-width 4 or more
is still NP-complete.

An indication that there is some nontriviality in polyhedral embeddings
is that for a complete graph Kn (n ≥ 5), a polyhedral embedding is nec-
essarily a triangulation, and a significant part of Ringel and Youngs’ Map
Color Theorem [7] was to determine which complete graphs have such em-
beddings. Our result is not that much of interest from the computational
complexity point of view. Its main message is that any theory on polyhedral
embeddings is rich and interesting.

It is worth mentioning that a similar problem concerning embeddings of
face-width at least two may be polynomially solvable. This problem is easily
reduced to 2-connected graphs (cf. [6, 8]), and there are two long standing
conjectures which are closely related to the Cycle Double Cover Conjecture
(cf. [4, 10]), and whose affirmative solution would give a trivial answer about
existence of embeddings of face-width at least 2.

Conjecture 1.1 (Haggard [3]) Every 2-connected graph has an embed-
ding of face-width 2 or more.

Conjecture 1.2 (Jaeger [4]) Every 2-connected graph has an orientable
embedding of face-width 2 or more.

2 Embeddings and compatible cycles

Our treatment of graph embeddings follows essentially [6]. All graphs are
simple, so there are no loops or multiple edges. We only consider 2-cell
embeddings into closed surfaces which can be defined combinatorially as
follows. An embedding of a connected graph G is a pair Π = (π, λ) where
π = {πv | v ∈ V (G)} is a collection of local clockwise rotations, i.e., πv
is a cyclic permutation of the edges incident with v (v ∈ V (G)), and λ :
E(G)→ {+1,−1} is a signature. The local rotation πv describes the cyclic
clockwise order of edges incident with v on the surface, and the signature
λ(uv) of the edge uv is positive if and only if the local rotations πu and
πv both correspond to the clockwise (or both to anticlockwise) rotations
when traversing the edge uv on the surface. An embedding of a graph G
is nonorientable if G contains a cycle whose number of edges with negative
signature is odd.
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The embedding Π determines a set of Π-facial walks. If a Π-facial walk
is a cycle, it is also called a Π-facial cycle. The underlying surface of the
embedding Π is obtained by pasting discs along the Π-facial walks in G.

Let G be a graph. Two subgraphs H1,H2 of G are said to be compatible
if E(H1) ∩ E(H2) is a matching in G. Equivalently, no two edges of H1

incident with the same vertex are both contained in H2.
Let G be a Π-embedded graph and let v ∈ V (G). Let H be the subgraph

of G consisting of all neighbors of v and all edges uw such that vuw is a
Π-facial cycle. Then H is called the link of v, and is denoted by link(v,G,Π).

Lemma 2.1 Let G be a Π-embedded graph and let u, v be distinct vertices
of G. If no vertex adjacent to v is of degree 4 in G, then link(u,G,Π)
and link(v,G,Π) are compatible subgraphs of G whose maximum degree is
at most 2.

Proof. Each edge vw is contained in at most two facial triangles. Therefore,
the maximum degree in the link of v does not exceed 2. If link(u,G,Π) and
link(v,G,Π) share two edges aw, bw incident with the same vertex w, then
the link of w is the cycle avbu and w is of degree 4. This completes the
proof.

Thomassen [9] proved:

Theorem 2.2 (Thomassen [9]) The decision problem whether a given cu-
bic bipartite graph contains two compatible Hamilton cycles is NP-complete.

The cubic bipartite graphs G in Thomassen’s proof of Theorem 2.2 in
[9] are 2-connected and contain many edges which are contained in any
Hamilton cycle of G. Such edges are easily discovered in G. This shows that
the same problem is NP-complete also when the input graph is 2-connected
and has three prescribed edges which are contained in every Hamilton cycle
of G.

Let T be a tree of maximum degree d, and suppose that G0 is a graph
and e1, . . . , ed are edges of G0. Take a distinct copy Gt of G0 for each vertex
t ∈ V (T ). Label each oriented edge tt′ of T by a number in {1, . . . , d} so
that the edges emanating from the same vertex receive distinct labels. Now,
for each edge tt′ ∈ E(T ), repeat the following operation. Let a and b be the
labels of tt′ and t′t, respectively. Remove the edge ea = xy from Gt, remove
eb = x′y′ from Gt′ , and add the edges xx′ and yy′. Let G be any graph
resulting from this operation.
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Lemma 2.3 Let G0 be a graph and let T be a tree of maximum degree d. Let
G be a graph constructed as described above, and let e1, . . . , ed be the edges
of G0 used in the construction. Then G contains two compatible Hamilton
cycles if and only if G0 contains two compatible Hamilton cycles each of
which contains all edges e1, . . . , ed.

Proof. Suppose first that G contains two compatible Hamilton cycles
H1,H2. We shall use the notation introduced in the definition of G. Suppose
that t is a vertex of degree d in T . The removal of the edges xx′ and yy′

disconnects the graph G. Let G′ be the component of G− xx′ − yy′ which
contains V (Gt). Clearly, xx′ and yy′ are both contained in H1 and in H2.
Therefore, H ′1 = (H1 ∩ G′) + xy and H ′2 = (H2 ∩ G′) + xy are compatible
Hamilton cycles of G′ + xy. By repeating such a reduction for all edges
incident with t in T , we obtain two compatible Hamilton cycles of Gt (and
hence of G0) which contain all edges e1, . . . , ed.

Suppose now that G0 contains two compatible Hamilton cycles H◦1 and
H◦2 each of which contains all edges e1, . . . , ed. We shall prove by induction
on |V (T )| that G admits two compatible Hamilton cycles H1,H2 such that
all edges e1, . . . , ed in each copy Gt (t ∈ V (T )) which remain in G are
contained inH1 and inH2. (Here we allow that d is larger than the maximum
degree in T .) This is clear if |V (T )| = 1. Otherwise, let t be a leaf of T , and
let t′ be the neighbor of t in T . Let G′ = (G − V (Gt)) + x′y′. Then G′ is
obtained from G0 and T − t in the same way as described before the lemma.
By the induction hypothesis, G′ has two compatible Hamilton cycles H ′1,H

′
2

which contain eb = x′y′ (and all other edges e1, . . . , ed in each copy Gs,
s ∈ V (T−t), which remain inG′). LetHj = (H ′j−x′y′)∪(H◦j−xy)+xx′+yy′,
j = 1, 2. Then H1 and H2 are compatible Hamilton cycles in G with the
desired property.

Lemma 2.4 Let G0, T , and G be as in Lemma 2.3. Suppose that T has
more than 4k leaves where k is a positive integer. If G contains two compat-
ible spanning subgraphs H1,H2 such that for i = 1, 2, the maximum degree
in Hi is at most two and such that the number of connected components of
Hi is ≤ k, then G0 contains two compatible Hamilton cycles.

Proof. Note that both H1 and H2 are disjoint unions of isolated vertices,
paths, and cycles. Let U be the vertex set of G containing all vertices of
degree less than 2 in H1 or in H2, and containing one vertex of each cycle
in H1 or in H2. Then |U | ≤ 4k, and hence there is a leaf t of T such that

4



U ∩ V (Gt) = ∅. Then H1 ∩ Gt and H2 ∩ Gt give rise to two compatible
Hamilton cycles in G0.

3 Reduction

Theorem 3.1 The decision problem “Does a given graph G have a polyhe-
dral embedding” is NP-complete. The problem remains NP-complete also
if we ask about polyhedral embeddings in orientable surfaces and require that
G is 6-connected.

Proof. Let G0 be an arbitrary 2-connected cubic bipartite graph, and let
e1, e2, e3 ∈ E(G0) be distinct edges of G0 such that every Hamilton cycle of
G0 contains each of them. By Theorem 2.2 (and the remark following it), it
is NP-complete to decide if G0 has two compatible Hamilton cycles. Thus,
Theorem 3.1 will follow if we prove that one can construct in polynomial time
a 6-connected graph G1 which has a polyhedral embedding if and only if G0

has two compatible Hamilton cycles and, moreover, if G1 has a polyhedral
embedding, then it also has an orientable polyhedral embedding.

Let T be a cubic tree (i.e., each vertex of T is of degree 3 or 1) of
order 104, so that T has 53 leaves. Construct the graph G as described
before Lemma 2.3. Clearly, G is cubic, bipartite and 2-connected. Let
V (G) = V1 ∪ V2 be the bipartition of G. Now, define the graph G1 which
is obtained from G as follows. First, replace each vertex v ∈ V2 by two
mutually adjacent vertices v′, v′′ which are both adjacent to the same three
vertices in V1 as v. Let V ′ = {v′ | v ∈ V2} and V ′′ = {v′′ | v ∈ V2}. Finally,
add four new vertices a′, b′, a′′, b′′ where a′ and b′ are adjacent to all vertices
in V1 ∪ V ′, and a′′, b′′ are adjacent to all vertices in V1 ∪ V ′′.

The resulting graph G1 is 6-connected. To see this, one considers each
pair x, y of vertices and shows that there are 6 internally disjoint paths
joining x and y. The details are rather straightforward and are left to the
reader.

We claim that G0 contains two compatible Hamilton cycles if and only if
G1 has a polyhedral embedding. First, assume that G0 admits two compat-
ible Hamilton cycles. Since every Hamilton cycle of G0 contains e1, e2, and
e3, Lemma 2.3 shows that G has two compatible Hamilton cycles, say H1

and H2. For i = 1, 2, let H ′i (resp. H ′′i ) be the cycle in G1 obtained from Hi

by replacing each vertex v ∈ V2 by the vertex v′ ∈ V ′ (resp. v′′ ∈ V ′′). It is
easy to see that G1 has (a unique) embedding in which all facial cycles are
triangles such that the link of a′ (resp. b′, a′′, b′′) is H ′1 (resp. H ′2,H

′′
1 ,H

′′
2 ).
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This embedding is clearly polyhedral. It is also orientable. To see this, ori-
ent the facial triangles as follows: a′v′v1 (if v′v1 ∈ E(H ′1)\E(H ′2)), a′v1v

′ (if
v′v1 ∈ E(H ′1)∩E(H ′2)), similarly around b′, v1v

′v′′ (if v′v1 ∈ E(H ′1)), v1v
′′v′

(if v′v1 ∈ E(H ′2)), where v1 ∈ V1, v′ ∈ V ′, and v′′ ∈ V ′′. Similarly we orient
the triangles containing the edges of H ′′1 and H ′′2 . The details are left to the
reader.

Conversely, let Π be a polyhedral embedding of G1. Let us consider the
Π-facial cycles containing a′. Each such facial cycle C = a′v1v2 . . . vk is an
induced cycle in G1. (If C had a chord e, then a facial cycle containing e
would meet improperly with C.) We say that C is exceptional if k > 2. It is
strongly exceptional if V (C) contains at least one of the vertices b′, a′′, b′′, and
weakly exceptional otherwise. There are at most three strongly exceptional
faces containing a′ since no two strongly exceptional faces contain the same
pair of (nonconsecutive) vertices {a′, x}, x ∈ {b′, a′′, b′′}.

An exceptional face C = a′v1 . . . vk is induced. Therefore, v1, vk ∈ V1∪V ′
and v2, . . . , vk−1 /∈ V1∪V ′. Similar conclusions hold for the exceptional faces
at the vertices b′, a′′, and b′′. This implies that at most 10 vertices of V ′′

belong to strongly exceptional faces at the vertices a′, b′, a′′, b′′.
Suppose now that C is weakly exceptional. Then k = 3 since v2 ∈ V ′′,

and hence v3 is a neighbor of a′. Let v ∈ V2 be the vertex such that
v2 = v′′. If v1 ∈ V ′, then v1 = v′ and thus v1v3 ∈ E(G1), a contradiction.
Hence v1, v3 ∈ V1. As mentioned above, there are at most 10 vertices in V ′′

contained in a strongly exceptional face. Therefore, there are at most 10
weakly exceptional facial cycles containing a′ such that v2 is contained in
some strongly exceptional facial cycle.

Suppose now that C is not such a face. Consider the Π-clockwise order-
ing around v′′. If the edges v′′a′′ and v′′v′ are consecutive in that ordering,
the facial cycle containing these two edges is not induced (as we just proved
above when considering the possibility that v1 ∈ V ′). Similarly, v′′b′′ and
v′′v′ are not consecutive around v′′. In particular, v2 = v′′ belongs to a
strongly exceptional face containing a′′ and b′′, a contradiction. This im-
plies that there are at most 10 weakly exceptional and at most 3 strongly
exceptional faces containing a′. This shows that link(a′, G1,Π) is a subgraph
of G1 of maximum degree at most 2 and with at most 13 connected com-
ponents. The same holds for link(b′, G1,Π). By Lemma 2.1, these links are
compatible subgraphs of G1. Clearly, they give rise to compatible subgraphs
in G. Since T has 53 leaves, Lemma 2.4 implies that G0 (and hence also G by
Lemma 2.3) contains two compatible Hamilton cycles. Additionally, as the
previous paragraph shows, G1 admits an orientable polyhedral embedding
determined by two compatible Hamilton cycles of G.
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We reduced, in polynomial time, the NP-complete problem of Theorem
2.2 to the existence of polyhedral embeddings of 6-connected graphs. Since
the embedding of G1 obtained from two compatible Hamilton cycles in G0

(and in G) is orientable, this completes the proof.

The proof of Theorem 3.1 shows that in every embedding Π of G1 of
face-width at least 3, the link of a′ determines a Hamilton path in one of
the subgraphs Gt of G where t is some leaf of T . This can be used to show
that G1 has no embeddings of face-width 4 or more. Hence, the same proof
also shows:

Corollary 3.2 The decision problem “Does a given 6-connected graph G
have an (orientable) embedding of face-width exactly 3” is NP-complete.
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