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Whitney’s theorem states that 3-connected planar graphs admit essentially
unique embeddings in the plane. We generalize this result to embeddings of
graphs in arbitrary surfaces by showing that there is a function ξ : N0 → N0

such that every 3-connected graph admits at most ξ(g) combinatorially distinct
embeddings of face-width ≥ 3 into surfaces whose Euler genus is at most g.
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1. INTRODUCTION

Whitney proved [15] that every 3-connected planar graph has an essen-
tially unique embedding in the plane. This means that face boundaries
and local rotations are uniquely determined. This result was obtained as a
corollary of a stronger statement that any two embeddings of a 2-connected
planar graph are Whitney equivalent, i.e., one can be obtained from the
other by a sequence of simple local re-embeddings. (See, e.g., [9] for more
details on Whitney equivalence.) Robertson and Vitray [13] extended that
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result to an arbitrary surface of genus g by assuming that the face-width of
the embedding is at least 2g+3. Seymour and Thomas [14] and Mohar [8]
improved the bound on the face-width to O(log g/ log log g). Archdeacon
[1] proved that an assumption on large face-width is necessary by showing
that, for each integer k, there are graphs which admit distinct embeddings
of face-width at least k. On the other hand, it has been noted in [5] that the
finiteness of the number of irreducible triangulations for each fixed surface
S implies that there is a bound b = b(S) such that every graph admits at
most b triangular embeddings in S. Thomassen [12] extended Whitney’s
uniqueness theorem under a hypothesis of large edge-width. Let us observe
that the edge-width and the face-width are the same in the special case of
triangulations.
In this paper we show that for each surface S, there is a constant ξ = ξ(S)

such that every 3-connected graph admits at most ξ embeddings of face-
width ≥ 3 in S. The assumption on 3-connectivity is clearly necessary for
such a result, and the following example shows that also the bound on the
face-width cannot be weakened.
Let H0 be a 4-connected plane graph whose outer face is a 4-cycle

v1v2v3v4. For n ≥ 3, let Gn be the graph obtained by taking n copies
H1, . . . , Hn of H0 and, for i = 1, . . . , n, identifying the edge v1v2 of Hi with
the edge v4v3 of Hi+1 (indices modulo n). The graph Gn is 4-connected
and planar and has 2n−1 − 1 embeddings of face-width 2 in the torus ob-
tained by “flipping” one or more copies Hi “up or down” as shown by
an example in Figure 1. Each such embedding is determined by a subset
A ⊆ {1, . . . , n}, and the embedding corresponding to the complementary
subset A has the same set of facial walks as A. If A = ∅ or A = {1, . . . , n},
the face-width is zero.

FIG. 1. An embedding of G6 in the torus

This example can be easily transformed into a similar one where the
graph Gn is nonplanar.
The following example shows that also increasing connectivity to 6 does

not help to get bounded flexibility. Let us observe that increasing con-
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FIG. 2. A 6-connected triangulation of the torus

nectivity to 7 or more does not make sense since for each surface S, there
is only a finite number of 7-connected graphs that can be embedded in
S. (This can be easily seen by bounding the average degree of the graph
by using Euler’s formula.) Let Tn be the 6-connected triangulation of the
torus represented in Figure 2. If we replace the 8 triangular faces between
the 4-cycles 1234 and abcd with the following four facial cycles: 12b34d,
23c41a, ab3cd1, and bc4da2, we get an embedding of face-width 2 in the
orientable surface S3 of genus 3. Since such a change can be performed
between any two consecutive vertical 4-cycles, this example gives rise to 6-
connected graphs which admit arbitrarily many embeddings of face-width
2 in S3.

2. PRELIMINARIES

All graphs in this paper are undirected, finite and simple. We follow
standard terminology as used, for example, in [2]. A subgraph C of a graph
G is induced if every pair of non-adjacent vertices in C is also non-adjacent
in G. It is non-separating if G− V (C) is connected.
Let H be a subgraph of G. An H-bridge in G is a subgraph of G which is

either an edge not inH but with both ends inH , or a connected component
of G−V (H) together with all edges which have one end in this component
and the other end in H . Let B be an H-bridge. The vertices of B ∩H are
vertices of attachment of B, and each edge of B incident with a vertex of
attachment is a foot of B.
Our treatment of graph embeddings follows essentially [9]. An embedding

of a connected graph G is a pair Π = (π, λ) where π = {πv | v ∈ V (G)} is
a collection of local rotations , i.e., πv is a cyclic permutation of the edges
incident with v (v ∈ V (G)), and λ : E(G) → {+1,−1} is a signature.
The local rotation πv describes the cyclic clockwise order of edges incident
with v on the surface, and the signature λ(uv) of the edge uv is positive if
and only if the local rotations πu and πv both correspond to the clockwise
(or both to anticlockwise) rotations when traversing the edge uv on the
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surface. If we consider the graph G together with its embedding Π, we
say that G is Π-embedded . The embedding Π determines a set of Π-facial
walks . Facial walks are closed and are not distinguished if they differ only
by choice of the initial vertex or by reversal of order of traversal. Each edge
is either contained in two Π-facial walks or it appears twice in the same
facial walk. If a Π-facial walk is a cycle, it is also called a Π-facial cycle.
Two embeddings of G are equivalent if they have the same set of facial
walks. A (contiguous, possibly closed) subwalk with at least one edge of a
facial walk is called a facial segment .
The surface S of an embedding Π is given by attaching open discs (the

faces) to the graph along the Π-facial walks.
The Euler genus of Π (or the Π-genus of G) is the integer g = eg(G,Π)

defined by Euler’s formula, g = 2 − |V (G)| + |E(G)| − f where f denotes
the number of Π-facial walks of G. The Euler genus eg(G) of the graph G
is the minimum of Euler genera over all embeddings of G.
If G is a Π-embedded graph and H is a connected subgraph of G, then Π

induces an embedding of H which is also denoted by Π and called the Π-
embedding of H . Note that eg(H,Π) ≤ eg(G,Π) and that strict inequality
may occur.
Let G be a Π-embedded graph, and let C = x1 . . . xk be a k-cycle of G. C

is said to be Π-onesided if the number of edges of C with negative signature
is odd. Otherwise, C is Π-twosided. By passing to an equivalent embedding
(for example, by reversing the clockwise local rotations to anticlockwise at
some of the vertices xi and changing the signature of all edges incident
with xi), we may assume that all edges of C except possibly x1xk have
positive signature. Let e = xixi+1 (1 ≤ i ≤ k) be an edge of C, and let
d = degG(xi). Then there is an l such that 1 ≤ l < d and πl

xi
(e) ∈ E(C).

We say that the edges πxi(e), . . . , π
l−1
xi
(e) are incident with C on its right

side and the edges πl+1
xi
(e), . . . , πd−1

xi
(e) are incident with C on its left side.

By cutting G along C, a new Π′-embedded graph G′ is obtained from G as
follows: If C is Π-twosided, we delete C and add instead two disjoint cycles
C′ = x′

1 . . . x
′
k and C′′ = x′′

1 . . . x′′
k . If C is Π-onesided, we replace C by a

single 2k-cycle C′ = x′
1 . . . x

′
kx

′′
1 . . . x′′

k . In each case, the vertex x′
i (resp.,

x′′
i ) is adjacent to a vertex y ∈ V (G) \ V (C) if and only if xiy ∈ E(G) and
the edge xiy is incident with C on its left side (resp., right side). We let
Π′ be the same as Π except that G′ has no edges incident with C′ (resp.,
C′′) on its right side (resp., left side), i = 1, . . . , k. We say that the cycles
C′ and C′′ correspond to C. Clearly, C′ and C′′ are Π′-facial cycles of G′.
Let W ′ be a Π′-facial walk of G′ different from C′ and C′′. If W ′ contains
no point in V (C′) ∪ V (C′′), then W ′ is a Π-facial walk of G. Otherwise,
the walk W obtained from W ′ by replacing x′

i and x′′
i by xi is a Π-facial

walk of G. Conversely, if W is a Π-facial walk of G, then there is a Π′-
facial walk W ′ of G′ such that W is obtained from W ′ by replacing x′

i
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and x′′
i by xi. If G′ is connected, then eg(G′,Π) < eg(G,Π). Otherwise,

G′ = G′
1 ∪ G′

2 where G′
1 ∩ G′

2 = ∅ and C′ ⊆ G′
1, C

′′ ⊆ G′
2. In this case,

eg(G,Π) = eg(G′
1,Π′) + eg(G′

2,Π′). If min{eg(G′
1,Π′), eg(G′

2,Π′)} = 0,
then C is said to be Π-contractible. If eg(G′

1,Π
′) = 0, then we write

G′
1 = Int(C,Π) and G′

2 = Ext(C,Π).
Disjoint cycles C,C′ of G are (freely) Π-homotopic if either C and C′ are

both Π-contractible, or C and C′ are Π-twosided and cutting along C and
C′ results in a graph which has a component D which contains precisely
one copy of C and one copy of C′ and whose Π-genus is zero. In the latter
case we write D = Int(C,C′,Π), and we denote by Ext(C,C′,Π) the other
component(s) containing copies of C and C′.
If a, b are distinct vertices of G and P1, P2 are internally disjoint paths

from a to b in G, then P1 and P2 are said to be Π-homotopic if the cycle
C = P1 ∪ P2 is Π-contractible. This definition extends to the case when
P1, P2 are cycles with the common vertex a = b or even cycles with an edge
or a path in common (cf. [9]). In all these cases, we define Int(P1, P2,Π)
to be the disk bounded by C.

Lemma 2.1. Let G be a Π-embedded graph and let C be a set of non-
contractible Π-homotopic cycles. Suppose that there is a path P (possibly
P = ∅) such that C ∩ C′ = P for any distinct cycles C,C′ ∈ C. Then the
cycles in C can be enumerated, C = {C1, . . . , Cr}, such that for each i and
j (1 ≤ i < j ≤ r), Int(Ci, Cj ,Π) = ∪j−1

t=i Int(Ct, Ct+1,Π).

Proof. We assume that P �= ∅; the case of pairwise disjoint cycles has
similar proof and we leave the details to the reader. By contracting P to a
point, we may assume that P = {v} is just a vertex.
The proof is by induction on r = |C|. There is nothing to prove if r ≤ 2,

so assume r ≥ 3. By removing an arbitrary cycle C ∈ C, the remaining
cycles can be enumerated, by the induction hypothesis, as C′

1, . . . , C
′
r−1 to

satisfy the conclusion of the lemma. If C ⊆ Int(C′
t, C

′
t+1,Π) for some t, 1 ≤

t < r− 1, then we insert C between C′
t and C′

t+1 in the ordering for C, and
use the fact that Int(C′

t, C
′
t+1,Π) = Int(C′

t, C,Π) ∪ Int(C,C′
t+1,Π) to com-

plete the proof. Otherwise, C ⊆ Ext(C′
1, C

′
r−1,Π). If Int(C,C

′
r−1,Π) does

not contain C′
1, then Int(C

′
1, C,Π) = Int(C

′
1, C

′
r−1,Π)∪Int(C′

r−1, C,Π) and
we set Ct = C′

t for 1 ≤ t < r, and Cr = C. If C′
1 ⊆ Int(C,C′

r−1,Π), then
Int(C′

1, C
′
r−1,Π) ⊆ Int(C,C′

r−1,Π). Now, we set C1 = C and Ct = C′
t−1 for

1 < t ≤ r.

We will refer to the natural ordering of C as in Lemma 2.1 or in Corollary
2.1 below as the linear nesting of homotopic cycles.

Corollary 2.1. Let G be a Π-embedded graph and let C be a set of
noncontractible Π-homotopic cycles such that the intersection of any two
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of them is either empty or a path. If the cycles in C are Π-twosided, then
they can be enumerated, C = {C1, . . . , Cr}, such that for each i and j
(1 ≤ i < j ≤ r), Int(Ci, Cj ,Π) = ∪j−1

t=i Int(Ct, Ct+1,Π).

Proof. Since the cycles in C are Π-twosided, they can be separated by
splitting vertices of their intersection. It is easy to see that by appropri-
ate splitting of vertices, we can get a graph H that is Π′-embedded in the
same surface and such that C gives rise to a set of pairwise disjoint ho-
motopic cycles. Now we apply Lemma 2.1 and observe that the Π-interior
is obtained from the Π′-interior by contractions of edges in E(H)\E(G).
We will make use of the following lemma which is a special case of the

main theorem in [6].

Lemma 2.2 (Juvan, Malnič, Mohar [6]). For each Euler genus g there
is a positive integer c1 = c1(g) such that for every Π-embedded graph G
where eg(G,Π) = g, and for every family of r cycles (paths) of G which
pairwise intersect in at most two common segments, there is a subset of at
least �r/c1� pairwise Π-homotopic cycles (paths).

In the proof of Theorem 5.1 we shall use the following lemma of Fisk
and Mohar [4]. We add its proof since in [4] it is formulated only for paths
while here we allow walks.

Lemma 2.3. Let k ≥ 1 and r ≥ 1 be integers. There exists an integer
ϕ(k, r) such that the following holds: If a multigraph H contains ϕ(k, r)
walks of length at most k joining vertices v1 and v2, such that the initial
edges of the walks incident with v1 are all distinct, then there is a vertex
v �= v1 of H such that v1 and v are joined by r internally disjoint subwalks
of the given walks.

Proof. It suffices to give the proof for simple graphs since H has a
subdivision which is simple and such that each walk has length at most 3k.
For simple graphs we prove the lemma by induction on k + r and with

ϕ(k, r) = rk−1(k − 1)!. For r = 1, there is nothing to prove. For k ≤ 2, all
the walks are disjoint paths, so we proceed to the induction step. Now, let
H be a graph that has ϕ(k + 1, r) walks from v1 to v2 of length at most
k + 1 and with distinct initial edges. Pick a walk P . If there are at least
kϕ(k, r) walks intersecting P − {v1, v2}, then some ϕ(k, r) of these walks
meet the same vertex of P −{v1, v2}, and so we obtain the desired walks by
induction. Otherwise, let P1, . . . , Pq be a maximal collection of internally
disjoint walks from v1 to v2 (taken from the ϕ(k + 1, r) walks). As each
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of the ϕ(k + 1, r) walks (which is not the edge v1v2) has an intermediate
vertex in P1∪· · · ∪Pq, we have ϕ(k+1, r) ≤ qkϕ(k, r), and hence q ≥ r.

Let us observe that Lemma 2.3 holds also in the case when v1 = v2 (in
which case the walks or subwalks may be closed).

3. POLYHEDRAL EMBEDDINGS

Let G be a Π-embedded graph. If eg(G,Π) ≥ 1, the face-width of Π
(also called the representativity), fw(G,Π), is the smallest integer r such
that G has a Π-noncontractible cycle which is the union of r segments,
each of which is contained in a Π-facial walk. If eg(G,Π) = 0, we let
fw(G,Π) =∞.
Let C1 and C2 be distinct Π-facial walks. We say that C1 and C2 meet

properly if the intersection of C1 and C2 is either empty, a single vertex or
an edge. Π is said to be a polyhedral embedding if every Π-facial walk is a
cycle and any two Π-facial walks meet properly. The following results are
due to Robertson and Vitray [13].

Proposition 3.1. Let G be a connected Π-embedded graph. Then Π is
a polyhedral embedding if and only if fw(G,Π) ≥ 3 and G is 3-connected.

Proposition 3.2. Let G be a 3-connected Π-embedded graph. If fw(G,Π)
≥ 3, then every facial cycle is an induced nonseparating cycle.

4. COMPARING DISTINCT EMBEDDINGS

Lemma 4.1. Let Π and Π′ be embeddings of a 3-connected graph G such
that fw(Π) ≥ 3. Suppose that C1, . . . , Cr are distinct Π′-facial cycles such
that any two of them meet properly. If C1, . . . , Cr are all Π-noncontractible
and Π-homotopic to each other, then eg(Π′) ≥ r

13 − 1.

Proof. Suppose first that C1, . . . , Cr are Π-twosided. Then we may
assume that C1, . . . , Cr is a linear nesting, by Corollary 2.1. If Ci intersects
C1 in Ext(C1, Ci,Π), then Ci and Cr do not intersect in Ext(Ci, Cr,Π)
(1 ≤ i ≤ r). Therefore, we may assume that for i = 1, . . . , t = �r/2�, the
cycles C1 and Ci do not intersect in Ext(C1, Ct,Π). LetH = Int(C1, Ct,Π).
By inserting a new vertex into each of the faces C1, Ct of H and joining
each of them to all vertices of C1 and Ct, respectively, we get a plane
graph H ′ without vertices of degree 2 whose facial cycles meet properly. By
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Proposition 3.1, H ′ is 3-connected. By Menger’s Theorem there are three
disjoint (C1, Ct)-paths P ′

1, P
′
2, P

′
3 in H . These paths determine disjoint

paths P1, P2, P3 in G since C1 and Ct do not intersect in Ext(C1, Ct,Π).
Each of P1, P2, P3 intersects all cycles Ci, i = 1, . . . , t. Let vik be a vertex of
Pk∩Ci (k = 1, 2, 3; i = 1, . . . , t). If vik = vi′k′ , then k = k′ but i and i′ may
be distinct. Let G′′ be the graph obtained from G by adding new vertices
v1, . . . , vt and joining each vi with the vertices vi1, vi2, vi3, i = 1, . . . , t.
Since C1, . . . , Ct are Π′-facial, Π′ can be extended to an embedding Π′′ of
G′′ in the same surface as Π′. By contracting P1, P2, P3 to single vertices
in the subgraph of G′′ consisting of P1, P2, P3 and the stars of vertices vi

(i = 1, . . . , t), we obtain K3,t as a minor in G′′. Therefore,

eg(Π′) = eg(G′′,Π′′) ≥ eg(K3,t) ≥
⌈ t− 2
2

⌉
≥ r

4
− 1. (1)

(The second inequality in (1) is an easy corollary of Euler’s formula and
biparticity of G. Ringel [11] proved that this is indeed an equality.)
Suppose now that C1, . . . , Cr are Π-onesided. Then any two cycles in-

tersect (and cross each other locally in Π). Let p = �2r/13�. If p of the
cycles intersect in the same point, then those cycles can be enumerated as
concluded in Lemma 2.1. (The details are left to the reader.) As in (1) we
get the inequality:

eg(Π′) ≥ eg(K3,p) ≥ r

13
− 1. (2)

So, we may assume that no p of the cycles intersect in the same point. Let
vij ∈ V (Ci)∩V (Cj). For each vertex v ∈ {vij | 1 ≤ i < j ≤ r}, select a pair
(i, j) such that v = vij . Now, we define a graph G′′ obtained from G by
adding r new vertices u1, . . . , ur, and joining ul (1 ≤ l ≤ r) to all vertices
vil and vlj whose selected pair contains l. Clearly, Π′ can be extended to an
embedding of G′′ in the same surface. The new vertices and edges form a
subgraph of G′′ which is a subdivision of a simple graph H with r vertices
and at least

(
r
2

)
/(p− 1) edges. Euler’s formula implies that

eg(Π′) ≥ eg(H) ≥ 2− |V (H)|+ 1
3
|E(H)|

≥ 2− r +
13r(r − 1)
6(2r − 1) ≥ r + 11

12
>

r

13
.

Let Π and Π′ be embeddings of a graph G. A closed walk in G is said
to be (Π,Π′)-unstable if it is Π-facial and is not Π′-facial.

Lemma 4.2. Let G be a 3-connected graph with embeddings Π and Π′

such that fw(Π) ≥ 3 and fw(Π′) ≥ 3. If r is the number of (Π,Π′)-unstable
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cycles, then

r ≤ 13(g + 1)c1

where g = eg(G,Π) and c1 = c1(g) is the constant from Lemma 2.2.

Proof. By Proposition 3.1, the unstable cycles meet properly. By
Lemma 2.2, �r/c1� of them are pairwise Π′-homotopic. Proposition 3.2
implies that they are Π′-noncontractible. By Lemma 4.1, eg(G,Π) ≥
r/(13c1)− 1. This proves the lemma.

Lemma 4.3. Let G be a 3-connected graph with distinct embeddings Π
and Π′ such that fw(Π) ≥ 3 and fw(Π′) ≥ 3. Suppose that C is a Π-
facial cycle and that C′ is a Π′-facial cycle. Let p denote the number of
connected components of C ∩ C′. Then p is smaller than the number of
(Π,Π′)-unstable cycles.

Proof. We may assume that C′ is not Π-facial since otherwise p ≤ 1
(and there are at least two unstable cycles). For each edge e ∈ E(C′) there
is a (Π,Π′)-unstable cycle C(e) which contains e. Therefore each connected
component P of C ∩ C′ intersects the Π-facial cycle C(e) �= C where e is
the edge of C′ following P . Since C and C(e) meet properly, these cycles
C(e) are distinct. Since C is also unstable, p is smaller than the number of
(Π,Π′)-unstable cycles.

Let H be a graph with k connected components. The number β(H) =
|E(H)|− |V (H)|+k is called the Betti number (or the cyclomatic number)
of H .

Lemma 4.4. Let G be a 3-connected graph with distinct embeddings Π
and Π′ such that fw(Π) ≥ 3 and fw(Π′) ≥ 3. Let H be the union of all
(Π,Π′)-unstable cycles. Then

β(H) < 85(g + 1)2 c21

where g = eg(G,Π) and c1 = c1(g) is from Lemma 2.2.

Proof. Let C1, . . . , Cr be the (Π,Π′)-unstable cycles. We prove by
induction on t that βt = β(C1 ∪ · · · ∪ Ct) ≤ 1 + t(t − 1)/2, t = 1, . . . , r.
Clearly, β1 = 1. So assume that t > 1. Let S1, . . . , Sq be the maximal
segments of Ct which are edge-disjoint from C1 ∪ · · · ∪ Ct−1. Since the
Π-facial cycles meet properly, q ≤ t − 1. By the induction hypothesis,
βt = βt−1 + q ≤ 1 + (t− 1)(t− 2)/2 + t− 1 = 1 + t(t− 1)/2.
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Finally, r ≤ 13c1 (g+1) by Lemma 4.2. This shows that β(H) < 85c21(g+
1)2.

Let C and C′ be cycles of a Π′-embedded graph G. Suppose that one of
the following holds:

(a) C ∩ C′ = {u} where u ∈ V (G) and the edges of C and C′ incident
with u interlace in the Π′-clockwise ordering around u (cf. Fig. 3(a)).
(b) C ∩ C′ is the edge uv and the edges of C and C′ incident with u

and v interlace in the Π′-clockwise ordering around u and v as shown in
Fig. 3(b).

Then we say that C and C′ interlace in Π′.

FIG. 3. The cycles C and C′ interlace in Π′

Lemma 4.5. Let G be a graph and let Π and Π′ be polyhedral embeddings
of G. Let C be a Π-facial cycle and let S be a segment of C. Suppose that
in the embedding Π′, there is an interior vertex of S which has an edge on
the right and there is an interior vertex of S with an edge on the left side of
C. Then there are interior vertices u, v of S and a Π-facial cycle C′ such
that C ∩ C′ = {u} or C ∩ C′ = {uv} and C and C′ interlace in Π′.

Proof. S contains an interior vertex u which has an edge on the right
and contains an interior vertex v with an edge on the left side of C. Since
each vertex of C has either an edge on the left or on the right side of C,
we may assume that either u = v, or that u and v are adjacent on C. We
assume that u = v since the proof of the case when uv ∈ E(C) proceeds in
the same way. In the Π-clockwise ordering around u, there are consecutive
edges e, f /∈ E(C) such that e is on the left side of C and f is on the
right side in Π′. Now, we let C′ be the Π-facial walk containing e and f .
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5. FLEXIBILITY OF EMBEDDINGS OF FACE-WIDTH 3

Suppose that G is a 3-connected graph and that Π0, . . . ,ΠN are distinct
embeddings of G each of which has face-width at least 3. For distinct
integers i, j ∈ {0, . . . , N} we introduce the following notation. We let
Cij be the set of all (Πi,Πj)-unstable cycles, and let cij = |Cij |. The
subgraph Uij = ∪Cij of G is called the (Πi,Πj)-unstable part of G. Let
us observe that the complements of Uij and Uji in G are the same since
they represent the union of the facial cycles that are common to the two
embeddings. Therefore, Uij = Uji. By a face count in the two embeddings,
cij − eg(G,Πi) = cji − eg(G,Πj). In particular, if eg(G,Πi) = eg(G,Πj),
then cij = cji.

Lemma 5.1. Suppose that Π0,Π1,Π2 are embeddings of G in the same
surface and that c01 = c02 = c12. Suppose, moreover, that C01 ∩ C02 = ∅.
Then U01 = U02 = U12.

Proof. Since C01 ∩ C02 = ∅, we have C02 ⊆ C12. Now, c02 = c12 implies
that C02 = C12. Similarly, C01 = C21. Hence, U02 = U12 = U21 = U01.

Now we turn to the main theorem of this paper.

Theorem 5.1. There is a function ξ : N0 → N0 such that every 3-
connected graph admits at most ξ(g) embeddings of face-width ≥ 3 into
surfaces whose Euler genus is at most g.

The rest of this section is devoted to the proof of Theorem 5.1. The
proof is by induction on g. Clearly, ξ(0) = 1 by Whitney’s Theorem. So,
we let g ≥ 1. We now assume (reductio ad absurdum) that there is no
upper bound on the number of distinct embeddings of face-width ≥ 3 of
3-connected graphs G in a surface S of Euler genus g. Let Π0, . . . ,ΠN be
such embeddings, where eg(G,Πi) = g, i = 0, 1, . . . , N . We assume that
G can be chosen so that N is as large as we want. During the proof, we
will occasionally select and continue working with a subset of Π0, . . . ,ΠN

but we will always be able to argue that the new set of embeddings is still
as large as we want. Our main concern will be a smooth flow of the proof,
and we have no intention to derive good bounds on ξ(g).

Claim 5.1. There is an integer function r(N, g) such that, for each fixed
g > 0, limN→∞ r(N, g) = ∞, and there is an integer c and a subset I of
{0, . . . , N} of cardinality r(N, g) such that cij = c for any distinct elements
i, j ∈ I.
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Proof. By Lemma 4.2, cij = cji are bounded by a constant depending
only on g. Now, the existence of r(N, g) follows by Ramsey’s Theorem (see,
e.g., [10, Theorem 1.1]).

By using Claim 5.1 and by passing to the subset of embeddings Πi, i ∈ I,
we may assume henceforth that cij = cji = c for 0 ≤ i < j ≤ N , and that
N is still as large as we want.

Claim 5.2. Suppose that log2 N ≥ log22(2c). Then there is a number
α > 0 which depends only on g, and there is a subset I ⊆ {0, . . . , N} such
that |I| ≥ α

√
log2 N and such that for each i ∈ I, there is a Πi-facial cycle

Ci which is Πj-nonfacial for every j ∈ I\{i}.

Proof. Suppose that each (Π0,Π1)-unstable cycle is Πi-facial where
i ≥ 2. Then C01 ∩ C0i = ∅. By the proof of Lemma 5.1, U01 = U0i = U1i.
By Lemma 4.4, the Betti number of U01 is bounded by c2/2. Since β(U01) is
the dimension of the cycle space of U01 over GF (2), U01 contains less than
2β(U01) cycles. Hence less than α1 = 2β(U01)c embeddings Πi (i ≥ 1) have
their unstable part U0i contained in U01. We remove all such embeddings
Πi. In each of the remaining N − α1 embeddings Πi (i ≥ 2), one of the
cycles in C01 is Πi-nonfacial. Since |C01| = c, there is a Π0-facial cycle
C0 which is nonfacial in at least N1 = (N − α1)/c embeddings. Clearly,
N1 ≥ N/2c if N ≥ 2α1 (which we may assume).
By passing to the subset of the remaining embeddings and continuing

the process, let us assume that 1 ≤ i ≤ α
√
log2 N where α will be de-

termined below. Suppose that we have cycles C0, . . . , Ci−1 as claimed,
and now we want to find Ci. We are left with Ni ≥ N/(2c)i embeddings
Πi, . . . ,ΠNi+i−1.
Let Ui = U01∪· · ·∪U0,i−1. As before, the Betti number of Ui is bounded

above by r2/2 where r = ic is an upper bound on the number of cycles
in C01 ∪ · · · ∪ C0,i−1. Then Ui contains less than 2β(Ui) cycles, and hence
less than αi = 2β(Ui)c embeddings Πj (j ≥ i) have their unstable part
U0j contained in Ui. We will prove below that Ni − αi ≥ Ni/2. Hence,
we may assume that U0i �⊆ Ui. Denote by Q1, . . . , Qp (1 ≤ p ≤ c) the
(Πi,Π0)-unstable cycles which are not contained in Ui. Each cycle Qs

(1 ≤ s ≤ p) contains an edge which is not in Ui. This implies that Qs

is (Πi,Πj)-unstable for j = 0, . . . , i − 1. Let U ′ = Ui ∪ Q1 ∪ · · · ∪ Qp.
Since r is also an upper bound on the number of Π0-facial cycles forming
U ′, β(U ′) ≤ r2/2 and hence at least Ni − 2cr2/2 embeddings Πj (j > i)
satisfy U0j �⊆ U ′. Assuming 2cr2/2 < Ni/2, we get at least Ni/2p ≥ Ni/2c
remaining embeddings and a Πi-facial cycle Ci (where Ci = Qs for some
1 ≤ s ≤ p) which is nonfacial in all other embeddings. By retaining only
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those embeddings, we can continue the process. The reader can verify that
the choice α = 1

2c
−3/2 guarantees that 2cr2/2 < Ni/2 for i ≤ α

√
log2 N .

By Claim 5.2 we may assume that for each i ∈ {0, . . . , N}, there is a
Πi-facial cycle Ci which is Πj-nonfacial for every j ∈ {0, . . . , N}\{i}. In
particular, the cycles C0, . . . , CN are distinct.
The cycle Ci ∈ Ci0 is contained in U0i = ∪C0i. Since C0i contains c

cycles, any two of which meet properly, Ci can be written as the union
of no more than c2 Π0-facial segments (by Lemma 4.3). Let Si1, . . . , Si,κi

(κi ≤ c2) be these Π0-facial segments.

Claim 5.3. Suppose that there are pairwise disjoint Π0-facial segments
Ai ⊆ Si1 (i = 1, . . . , N), and suppose that there are distinct vertices vij of
Ai ∩ Cj such that an edge ei,j of Cj incident with vij is not in the same
Π0-facial cycle as Ai (1 ≤ i < j ≤ N). Then N < κ where κ is an integer
which depends only on g.

Proof. Let 1 ≤ p(i, j) ≤ c2 be the index of the segment of Cj such
that vij ∈ Si1 ∩ Sj,p(i,j). If N is large enough, then Ramsey’s Theorem
(cf. [10, Theorem 1.1]) implies that there is a set I ⊆ {1, . . . , N} with
k0 = 2�9√g + 18� + 2c elements and there exists an integer p such that
p(i, j) = p for all i, j ∈ I, i < j. We may assume that I = {1, . . . , k0}. Let
Di be the Π0-facial cycle containing Ai, and let D′

i be the Π0-facial cycle
containing Sip, i = 1, . . . , k0. Suppose that for 1 ≤ a < b < d < k0 − 3,
Da = Db = Dd. Then va,k0 , vb,k0 , and vd,k0 all belong to Da ∩Sk0,p. Since
the Π0-facial cycles meet properly, Da = D′

k0
. Similarly we prove that

Da = D′
k0−1 = D′

k0−2. The vertices v1,k0−2, v1,k0−1, and v1,k0 all belong
to D1 ∩D′

k0
, and so D1 = D′

k0
. Similarly, D1 = D2 = · · · = D2d+1 = D′

k0
.

Now, the edges e1,k0 , e2,k0 , . . . , e2d+1,k0 show that Ck0 ∩D1 consists of more
than d components, a contradiction to Lemma 4.3. This proves that there
is a subset of k = �9√g + 18� cycles, say C1, . . . , Ck, such that D1, . . . , Dk

are all distinct. Now we distinguish two cases.
Case 1: p = 1. We can extend the embedding Π0 to an embedding

in the same surface of a graph G̃ ⊇ G which contains a subdivision of the
complete graph Kk as follows. We insert a new vertex xi into each Π0-face
Di and add edges inside Di from xi to vij and inside Dj from vij to xj ,
1 ≤ i < j ≤ k. Since eg(Kk) ≥ (k − 3)(k − 4)/6, we get a contradiction to
the fact that k ≥ 9

√
g + 18.

Case 2: p �= 1, say p = 2. Suppose that 2 < i < j < k and D′
i =

D′
j = D′

k = D′. Then D′ intersects D1 in three distinct vertices. Since the
Π0-facial cycles meet properly, D′ = D1. Similarly we see that D′ = D2,
a contradiction. This implies that we may assume that D′

3, . . . , D
′
k1
are all

distinct, where k1 = �k/2�. Let k2 = �k1/3� > 1.5
√
g + 2. Then we may
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assume thatD′
k2+1, . . . , D

′
2k2

are distinct Π0-facial cycles which are distinct
from each of D1, . . . , Dk2 . We now extend the embedding Π0 to an embed-
ding in the same surface of a graph G̃ ⊇ G which contains a subdivision of
the complete bipartite graph Kk2,k2 in the same way as in Case 1 by using
vertices in the Π0-faces D1, . . . , Dk2 and D′

k2+1, . . . , D
′
2k2
, respectively, and

joining them through the vertices vij , i = 1, . . . , k2, j = k2 + 1, . . . , 2k2.
Since eg(Kk2,k2) ≥ (k2−2)2/2, we get a contradiction to the fact that k2 >

1.5
√
g + 2.

Claim 5.4. Let A,B be segments of distinct Π0-facial cycles or disjoint
segments of the same Π0-facial cycle. Suppose that for i = 1, . . . , N , the
cycle Ci contains a segment Si joining A and B. If S1, . . . , SN are pairwise
internally disjoint, then N < 6480c1(c1 + 1)4.

FIG. 4. The Π0-homotopic segments S1, . . . , Sk

Proof. Suppose that N ≥ 6480c1(c1 + 1)4. Since Π0-facial cycles meet
properly, B−V (A) consists of at most two facial subsegments of B. Hence,
if 2N/5 or more of the segments end up in B − V (A), then B has a sub-
segment disjoint from A such that at least N/5 of the segments Si end
up in that subsegment. A similar conclusion holds if at least 2N/5 of the
segments end up in A − V (B). Otherwise, at least N/5 of the segments
start and end in A ∩ B. Therefore, we may assume that either A = B or
A ∩ B = ∅, and that N ≥ 64c1(c1 + 1)4. We may also assume that the
interior vertices of each segment Si are not in A ∪B. For i = 1, . . . , N , let
ai ∈ A and bi ∈ B be the ends of Si, and let S′

i = Si − {ai, bi}.
By imagining that A and B are contracted to point(s), we may speak of

homotopy of the segments Si. By Lemma 2.2, there is a set I0 of 64(c1+1)4

segments which are Π0-homotopic. Clearly, there is a subset I1 of I0, where
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|I1| ≥ |I0|1/2, such that the ends ai (i ∈ I1) are either all distinct or all
the same. Similarly, there is a subset I2 of I1, where |I2| ≥ |I1|1/2, such
that the vertices bi (i ∈ I2) are either all distinct or all the same. Since
|I2| ≥ 6(c1 + 1), we may assume that S1, . . . , Sk (k = 6c1 + 5) are Π0-
homotopic segments, their ends ai (resp. bi), i = 1, . . . , k, are either all
distinct or all the same, and they are enumerated in the same way as
concluded in Lemma 2.1. For 1 ≤ i < j ≤ k, let Ai,j (resp. Bi,j) be the
segment of A (resp. B) from ai to aj (resp. bi to bj).
Since Si and Sj are Π0-homotopic, Dij = Si ∪ Ai,j ∪ Sj ∪ Bi,j is Π0-

contractible. We will denote Int(Dij ,Π0) by Dij . If 1 < i < j < k, then
Dij is a cycle unless A1,k = B1,k is a single vertex. We have one of the
cases shown in Figure 4 where D24 is drawn by thicker lines. In the case
of Figure 4(a), it is possible that a = b.
Suppose that 1 < i < j < k and j �= i + 1. Suppose first that A1,k =

{a} and B1,k = {b} are just vertices. Since Si is a Πi-facial segment,
Proposition 3.2 implies that G − Si is connected. The same holds for Sj .
In particular, this implies that no Π0-facial walk in D1k contains both a
and b. Therefore, there is a path P ⊆ D1k − {a, b} which joins S′

1 and S′
k.

No edge connects S′
i and S′

j ; such an edge would be either in Dij (in which
case it would cross Si+1) or not (in which case it would cross S1), yielding
a contradiction in each case. Since Si and Sj are induced subgraphs of
G, no (Si ∪ Sj)-bridge in G is just an edge, except possibly the edge ab.
Suppose now that Q is an (Si ∪Sj)-bridge in Dij , and v ∈ V (Q)\(Si ∪Sj).
If v ∈ V (Di,i+1), then there is a path in G− Si from v to S′

j since G− Si

is connected. Such a path intersects Si+1 before it reaches S′
j . Therefore

Q ⊇ Si+1. A similar argument shows that Q ⊇ Si+1 if Q contains a vertex
in Di+1,j . This shows that Q is the only (Si ∪ Sj)-bridge in Dij . If Q
is an (Si ∪ Sj)-bridge which is not in Dij , then we similarly see that this
is the only such bridge. This shows that there are precisely two or three
(Si ∪ Sj)-bridges, and if there are three, one of them is just the edge ab,
which is not in Dij .
Suppose now that B1,k is not just a vertex. Then we can use similar

arguments as above to prove that there are precisely two (Si ∪ Sj)-bridges
which are not edges. Also, there are no edges joining Si\Sj with Sj\Si.
Since Ci is an induced cycle, if aibi ∈ E(G), then Ci = Si + aibi must lie
in D1k, so Ci would be Π0-contractible, a contradiction. Similarly for Sj .
This shows that there are precisely two (Si ∪ Sj)-bridges in G.
Let i = 3c1 + 3. By Lemma 2.2, there are indices 2 ≤ p < q < r ≤

3c1 + 1 such that Sp, Sq, Sr are Πi-homotopic. We claim that D
′
pr :=

Int(Dpr,Πi) = Dpr. Since there are at least two Dpr-bridges in G, Dpr

is not a Πi-facial cycle. Denote by Q and R the (Sp ∪ Sr)-bridges in G
(distinct from ab) where Q ⊆ Dpr.
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If A1,k = {a} and B1,k = {b} are just vertices and ab ∈ E(G), then
Cp = Sp + ab. We already argued above that ab �∈ E(Dpr) and, similarly,
ab �∈ E(D

′
pr). Thus, to prove the above claim, it suffices to show that

Q ⊆ D
′
pr and that R �⊆ D

′
pr.

Suppose that R ⊆ D
′
pr. Since R contains Si and since Ci is Πi-facial,

Ci ⊆ D
′
pr. If Dpr is a cycle, then by using the embeddings of Dpr and

D
′
pr, we easily construct an embedding of G of genus 0. This gives a

contradiction since planar graphs have no nonplanar embeddings of face-
width 3 or more (cf. [13]). This shows that Dpr is not a cycle, i.e., we
have A1,k = B1,k = {a} where a ∈ V (G). Then the Πi-noncontractible
cycles Ci−1 = Si−1 and Ci+1 = Si+1 are both in R and hence they are Πi-
homotopic. It is easy to see that Ci ⊆ D

′
i−1,i+1 = Di−1,i+1. By Lemma 4.5

(applied on S = Si, Π = Πi, Π′ = Π0) we see that there is a Πi-facial cycle
C′ which intersects Ci in a vertex or an edge disjoint from a and which
interlaces with Ci in Π0. Since C′ ⊆ D1k, C′ and Ci have another point of
intersection. This contradiction to Proposition 3.1 proves that R �⊆ D

′
pr.

Suppose now that Q �⊆ D
′
pr. Then there is a Dpr-bridge Q′ ⊆ Q which

is not in D
′
pr. As we proved above, D

′
pr ⊆ Dpr ∪ Q. This implies that

D
′
pr contains a Πi-facial walk D′ which contains all vertices of attachment

of Q′. This, in particular, implies that Q′ is not just an edge. Moreover,
each Πi-facial walk that contains a foot of Q′, contains precisely one other
foot of Q′. Hence, if f is the number of feet of Q′, then there are precisely
f Πi-facial walks Q1, . . . , Qf containing feet of Q′. Let Qj = Qj ∩ Q′,
j = 1, . . . , f . Each Qj intersects D′ in its end(s) x, y. If x �= y, then
(because Qj and D′ meet properly) xy ∈ E(D′) and Qj = Qj + xy. Thus
Qj is an induced nonseparating cycle which is contained in the disk Dpr.
Therefore, it is also Π0-facial. It is easy to see that this is not possible for
j = 1, . . . , f . This proves that Q′ does not exist and hence D

′
pr = Dpr.

Similarly we see that there are Πi-homotopic segments Ss, St, Su where
i+ 1 < s < t < u < 6c1 + 5.
Suppose that A1,k = {a} and B1,k = {b} are just vertices (possibly

a = b). As proved above, no Π0-facial walk in D1k contains a and b.
Therefore Si has an intermediate vertex in which there are edges on the
left side of Si, and an intermediate vertex with an edge on the right side
of Si in the embedding Π0. We say that Si has the left-right property.
Suppose now that B1,k is not just a vertex. Then D1k is a disk and hence

Ci �⊆ D1k. We claim that the segment Si of Ci from ai through Si until
Sr ∪ Ss has the left-right property. If not, then one of the Π0-facial walks
containing an edge e of Si contains the entire Si. In particular, it contains
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e and also a vertex of (Sr ∪ Ss)\{ai}. Clearly, this is not possible, hence
the claim.
Since Si (or Si) has the left-right property, Lemma 4.5 (applied on this

segment as S, Π = Πi, Π′ = Π0) shows that there is a Πi-facial cycle C′

which intersects Si (or Si) in an internal vertex or edge x and interlaces
with Ci in Π0. Therefore C′ is not Π0-facial. In particular, C′ and Ci

are Π0-noncontractible. This implies that C′ �⊆ D1k. (In the case when
A1,k = B1,k = {a} is the same vertex, D1k contains Π0-noncontractible
cycles. Then we use the fact that C′ ∩ Ci = x, so a /∈ V (C′).) Since
Dpr = D

′
pr and Dsu = D

′
su, we have C′ ∩ Dpr ⊆ A ∪ B and C′ ∩ Dsu ⊆

A ∪ B. Since Ci and C′ interlace around x in Π0, we may assume that
C′ ∩Dpr = Ap,r and C′ ∩Dsu = Bs,u. In particular, neither A1,k nor B1,k

is just a vertex. Similarly, Ci ∩ Dpr = Bp,r and Ci ∩ Dsu = As,u. Now,
let S′′

i be the segment of Ci from the edge of Si incident with ai to as (so
that S′

i ∩ S′′
i = e). Then S′′

i has the left-right property, and Lemma 4.5
shows that there is a Πi-facial walk C′′ which intersects Ci in the interior
of S′′

i and which interlaces with Ci in Π0. As above, we conclude that
C′′ ∩ Dpr = Ap,r and C′′ ∩ Dsu = Bs,u. Thus, the Πi-facial cycles C′

and C′′ do not meet properly. This contradiction completes the proof.

Now, we will apply Lemma 2.3 to prove

Claim 5.5. Let A0, . . . , Ap−1 (p ≥ 1) be pairwise disjoint Π0-facial
segments. Suppose that each of the cycles Ci (1 ≤ i ≤ N) intersects A0

and leaves A0 by an edge ei such that e1, . . . , eN are all distinct. Suppose
also that N ≥ ϕ(k, 6480c1(c1+1)4) where ϕ is the function of Lemma 2.3.
Then there is a cycle Ci and a Π0-facial segment Ap contained in Ci and
disjoint from A0, . . . , Ap−1 such that at least k/(4pc3) − 1 other cycles Cj

(1 ≤ j ≤ N) intersect and leave Ci in distinct vertices of the segment Ap.

Proof. Let H be the graph obtained from C1∪· · ·∪CN ∪A0∪· · ·∪Ap−1

by contracting each segment A0, . . . , Ap−1 into a vertex and splitting the
vertex v0 which is obtained from A0 into two vertices v1, v2 so that v1 is
incident with e1, . . . , eN , and v2 is incident with all other edges incident
with v0 before the splitting. Finally, we suppress all vertices of degree
2. Let Ci be the walk in H from v1 to v2 corresponding to Ci. Suppose
that no Ci has more than k vertices of intersection with other walks Cj .
Then we apply Lemma 2.3 to get a set of 6480c1(c1+1)4 internally disjoint
subwalks of the walks Ci between v1 and some vertex v of H . These
subwalks determine internally disjoint paths (or cycles) in G joining v1 and
v (or the corresponding Π0-facial segments). Now, we get a contradiction
by applying Claim 5.4.
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Therefore, some Ci intersects other walks in at least k distinct ver-
tices, and so other cycles intersect and leave Ci in at least k − p dis-
tinct vertices disjoint from A0, . . . , Ap−1. The cycle Ci is the union of
at most c2 Π0-facial segments. Hence, there is a Π0-facial segment A
contained in Ci such that other cycles intersect and leave A in at least
(k − p)/c2 distinct vertices. Therefore, at least (k − p)/c3 distinct cycles
intersect and leave A in distinct vertices. Since A intersects each Π0-
facial segment Aj (0 ≤ j < p) at most once, there is a subsegment Ap

of A disjoint from A0, . . . , Ap−1 such that at least (k − p)/(c3(p + 1)) ≥
k/(2pc3)− 1 other cycles Cj intersect and leave Ap in distinct vertices.

Now we have all the main assumptions and main ingredients to conclude
the proof of Theorem 5.1. Define the function Φ : N → N inductively
as follows. Set Φ(0) = 1, and for k ≥ 1, Φ(k) = ϕ(2κc3(Φ(k − 1) +
1), 6480c1(c1 + 1)4), where κ is the integer from Claim 5.3, and ϕ is the
function of Lemma 2.3.
Now, assume that N > 6c1(c1 + 1)Ψ, where Ψ = (c2Φ(κ))c

2Φ(κ). Let us
first assume that each cycle Ci intersects less than Ψ other cycles. Then
there is a subset of 6c1(c1 + 1) disjoint cycles. By Lemma 2.2, there is
a subset of 6(c1 + 1) disjoint Π0-homotopic cycles, say C1, . . . , C6c1+6.
Similarly to the proof of Claim 5.4, we set i = 3c1 + 3 and take Πi-
homotopic cycles Cp, Cq, Cr and Cs, Ct, Cu where 1 < p < q < r < i <
s < t < u < 6c1 + 5. Clearly, Int(Cp, Cr,Πi) = Int(Cp, Cr,Π0) and
Int(Cs, Cu,Πi) = Int(Cs, Cu,Π0). This shows that every Πi-facial walk
which intersects Ci is contained in Int(Cr, Cs,Π0). In particular, this holds
for the Πi-facial walk C′ obtained by Lemma 4.5 which interlaces with Ci

in Π0, a contradiction.
Suppose now that there is a Π0-facial segment A0 in which at least Φ(κ)

cycles intersect and leave A0 using distinct edges. In such a case, let C be
the set of those cycles. We may assume that C = {C1, . . . , CΦ(κ)}. Now we
successively apply Claim 5.5 as follows. By Claim 5.5, one of the cycles,
say C1, contains a Π0-facial segment A1 which is disjoint from A0 and such
that at least Φ(κ−1) other cycles Cj ∈ C intersect and leave A1 in distinct
vertices. Inductively, we find cycles C1, . . . , Cκ such that each Ci contains
a Π0-facial segment Ai disjoint from A0, . . . , Ai−1 in which all cycles Cj ,
i < j ≤ κ, intersect in distinct vertices. This is a contradiction to Claim
5.3.
In what it remains, we may assume that C1 intersects Ψ other cycles

and that, for i = 1, . . . , N , the cycles intersecting Ci leave Ci in at most
c2(Φ(κ) − 1) distinct edges (since Ci is composed of at most c2 Π0-facial
segments). Starting with C1, there is an edge e1 such that a set C1 of
at least (Ψ − 1)/(c2(Φ(κ) − 1)) ≥ Ψ/(c2Φ(κ)) cycles leave C1 through e1.
Let C2 ∈ C1. For each Ci ∈ C1\{C2}, let fi be the first edge after e1 at
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which Ci leaves C2. Then there is an edge e2 such that fi = e2 for at least
Ψ/(c2Φ(κ))2 cycles Ci ∈ C1. Now we define C2 as the set of all these cycles
Ci. We select C3 ∈ C2, find the next edge e3, etc. Eventually, we end up
with a sequence of cycles C1, C2, . . . , CcΦ(κ). The construction shows that
the cycles C1, C2, . . . , Cc2Φ(κ)−1 leave Cc2Φ(κ) using distinct edges. This
contradiction to the above assumption completes the proof of Theorem
5.1.

6. SOME EXAMPLES

Two embeddings of G are isomorphic if there is a homeomorphism of the
surface taking the first embedded Gto the other embedded G, which does
not necessarily respect the labeling of the vertices.
If Kn (n ≥ 7) triangulates a surface S, then every embedding Π of Kn

in S is triangular and hence of face-width 3. It is easy to see that precisely
2n(n− 1) automorphisms of Kn preserve the embedding Π. Therefore, by
taking all n! automorphisms of Kn we obtain 1

2 (n− 2)! nonequivalent em-
beddings of Kn isomorphic to Π. Bonnington et al. [3] constructed, for all
values of n congruent to 7 or 19 modulo 36, at least 2n2/54−O(n) nonisomor-
phic triangular embeddings of Kn in orientable surfaces. This shows that
Kn (for these restricted values of n) admits at least (n − 2)! 2n2/54−O(n)

nonequivalent embeddings of face-width 3 in the orientable surface of Euler
genus g = (n− 3)(n− 4)/6.
However, unless the number of nonisomorphic triangular embeddings of

Kn can be proved to be much larger, there are even better candidates for
maximum flexibility of embeddings of face-width 3 in the same surface.
Let G0 be a triangulation of the 2-sphere with at least k facial triangles
T1, . . . , Tk, . . . . For each Ti (1 ≤ i ≤ k), add a new copy of the complete
graph K7 and identify three of its vertices with the three vertices of Ti.
Denote the resulting graph by Gk. Since K7 has 48 nonequivalent embed-
dings into the torus such that a fixed triangle is a face, these embeddings
used on each of the added graphs result in 48k distinct embeddings of Gk in
the orientable surface Sk of Euler genus 2k. This shows that ξ(2g) ≥ 48g.
Similarly we see that ξ(2g + 1) ≥ 6 · 48g, by using 6 embeddings of K6

with a fixed facial triangle in the projective plane to get embeddings of
odd Euler genus. This is better than the aforementioned bound for Kn if
k is large enough.
Although the bounds for ξ(g) in the proof of Theorem 5.1 are enormous,

we conjecture that there is a constant C such that ξ(g) ≤ Cg.
Another interesting aspect of flexibility of embeddings of face-width 3 is

the following. For a fixed surface S, there are finitely many graphs without
vertices of degree 2 which are embedded with face-width 3 but the removal
of every edge gives an embedding of face-width 2 [7] (cf. also [9]). Such
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FIG. 5. Three embeddings of the line graph of K3,3

graphs (and their embeddings) are said to be minimal of face-width 3 . If
G is embedded with face-width 3 or more, then it contains a subdivision
of an embedded graph H which is minimal of face-width 3. It is easy
to see that the embedding of H uniquely extends to an embedding of G
(if G is 3-connected). Such an observation was used in [5] to show that
triangulations of a fixed surface have bounded flexibility. Unfortunately,
this does not yield a simple proof of Theorem 5.1 since the subgraph H
may have embeddings of smaller face-width or even smaller genus. Figure 5
shows three embeddings of the line graph of K3,3 in the torus having face-
width 3, 2, and 1, respectively (the first one being minimal of face-width
3).
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