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Abstract

It is easy to see that planar graphs without 3-cycles are 3-degenerate.

Recently, it was proved that planar graphs without 5-cycles are also

3-degenerate. In this paper it is shown, more surprisingly, that the

same holds for planar graphs without 6-cycles.

1 Introduction

A graph G is d-degenerate if every subgraph H of G has a vertex of degree
at most d in H. It is an easy consequence of Euler's formula that every

triangle-free planar graph contains a vertex of degree at most 3. Therefore,

triangle-free planar graphs are 3-degenerate.
Recently, Weifan and Lih [12] proved that planar graphs without 5-cycles

are 3-degenerate. In this paper we study planar graphs without cycles of
length 6. We show that every such graph is 3-degenerate. This implies:

Theorem 1.1 If G is a planar graph of minimum degree � 4, then G con-

tains a 3-cycle, a 5-cycle, and a 6-cycle.
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There exist planar graphs of minimum degree 4 without cycles of length 4. An

example of such a graph is obtained by taking the line graph of a cubic planar

graph of girth 5, e.g., the line graph of the dodecahedron. Also, for every
k � 7, there is a planar graph of minimum degree 4 without k-cycles. Such
an example is the octahedron graph. Hence, Theorem 1.1 is best possible.

One of the main motivations to study degenerate graphs is the theory of

graph colorings. The concept of a list coloring is a generalization of ordinary

colorings that attracted considerable attention in the last decade, cf. [1, 3, 4,

9].

A graph G is k-choosable if for every function L:V (G) ! P(N) with

jL(v)j � k for every v 2 V (G), there exists a list coloring �:V (G) ! N ,

where �(v) 2 L(v) for every vertex v 2 V (G) and �(u) 6= �(v) for every edge

uv 2 E(G).

List colorings of planar graphs have been extensively studied. Thomassen
[7] proved that every planar graph is 5-choosable. Examples of non-4-choosable

planar graphs were constructed by Voigt [10], and later also by Gutner [2]
and Mirzakhani [6]. The Gr�otzsch theorem states that �(G) � 3 for ev-
ery planar graph G without triangles. This is not true for list colorings as

shown in [11]; see also [2]. On the other hand, triangle-free planar graphs are
3-degenerate which implies that they are 4-choosable. Thomassen [8] also

proved that every planar graph of girth at least 5 is 3-choosable.
Theorem 1.1 combined with a result of Lam, Xu, and Liu [5], who proved

that every planar graph without 4-cycles is 4-choosable, implies:

Theorem 1.2 Let G be a planar graph and k an integer, 3 � k � 6. If G

has no cycles of length k, then G is 4-choosable.

We conjecture that Theorem 1.2 can be extended to k = 7. It would also
be interesting to �nd the maximum integer � such that every planar graph

without �-cycles is 4-choosable. An example of a non-4-choosable planar

graph by Mirzakhani [6] shows that � � 63.

2 Planar graphs without 6-cycles

We begin this section with a useful tool from elementary topology.

Interlacing Lemma. Let D be a closed disc in the plane and let the points

p1, q1, p2, and q2 appear in this order along the boundary of D. Then we
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cannot simultaneously join p1 with p2 and q1 with q2 with disjoint paths that

are disjoint from the interior of D.

Let G be a plane graph. A vertex of degree d is called a d-vertex. If f

is a face of G, then deg(f) denotes the length of f and we say that f is a
deg(f)-face. A 3-face is also called a triangle. Two faces of G are said to be

adjacent if their facial walks have an edge in common. A cluster of triangles

is a subgraph of G which consists of a nonempty minimal set of 3-faces such

that no other 3-face is adjacent to a member of this set. Let us remark that

each cluster corresponds to a connected component of the subgraph of the

dual graph of G induced by the degree 3 vertices in the dual graph of G.

In the sequel, we shall assume that G has no cycles of length 6, and that

G has no vertices of degree � 3. First, we shall describe possible clusters

in G.

Figure 1: Possible clusters

Claim 1. There are only �ve possible clusters of triangles in G. They are

shown in Fig. 1 where the black squares in Fig. 1(d) represent the same

vertex. In particular, every cluster of triangles contains at most 4 triangles.

Proof. The claim is clear for clusters with at most three triangles. There

are four nonisomorphic ways to increase the number of triangles in a cluster

from three to four. Two of these clusters contain a 6-cycle. The cluster

in Fig. 1(d) also contains a 6-cycle unless the two vertices, shown as black
squares, are identi�ed. Knowing possible clusters with four triangles, it is
easy to see that adding a �fth triangle to a cluster of four triangles yields a

forbidden subcluster on four triangles except in the case of the cluster which

is obtained from Fig. 1(d) by adding a triangle at left side. This gives rise

to a new vertex x. Excluding C6, x must be identi�ed with the lower right
vertex of the cluster. By the Interlacing Lemma, this is not possible.
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We say that a face f is adjacent to a cluster C if f is adjacent to a face in

C. The following claim describes faces of small length that can be adjacent

to a given cluster.

Claim 2.

(1) A cluster of two triangles has at most one adjacent 4-face and forces

an identi�cation as shown in Fig. 2(a).

(2) If a 4-face has two adjacent 3-faces, they are positioned as shown in

Fig. 2(b).

(3) Two adjacent 4-faces force an identi�cation as in Fig. 2(c), and there is

only one way for them to be adjacent to a triangle as shown in Fig. 2(d).

(4) There can be only one triangle adjacent with a 5-face and it forces an

identi�cation as shown in Fig. 2(e). Two 5-faces cannot be adjacent

to the same triangle, and there is only one possibility for two 5-faces

being adjacent to a cluster of two triangles, see Fig. 2(f).

(5) A cluster of three triangles can be adjacent to a 4-face in a unique way,

shown in Fig. 2(g).

(6) There is only one way for a cluster of three triangles to be adjacent to

a 5-face, see Fig. 2(h).

(7) A cluster of two (or three) triangles cannot be simultaneously adjacent

to a 4-face and a 5-face.

(8) A cluster of four triangles has no adjacent 4- and 5-faces.

Proof. Since G does not contain a 6-cycle, the proofs of (1), (2), (3),

and (4) are clear from Fig. 3(a){(d). By (1) and (4), attaching a 4-face or
a 5-face to a cluster of three triangles yields a 6-cycle (cf. Fig. 3(e){(h))

or a con�guration from (5) or (6), respectively. Claims (1), (4), and the

Interlacing Lemma easily imply (7) for a cluster of two triangles. Similarly
(5), (6), and the Interlacing Lemma imply (7) for clusters of three triangles.

Finally, (8) follows by claims (1), (4), (5) and the Interlacing Lemma.

By Claim 1, no four consecutive faces around a vertex of degree � 5 are

triangles. This implies:

Claim 3. Suppose that deg(v) � 5. Then there are at most b3
4
deg(v)c

triangles containing v.

Now, we are ready for the main result of this paper.
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Figure 2: Clusters of triangles and adjacent small faces

Theorem 2.1 Every planar graph without 6-cycles is 3-degenerate.

Proof. Suppose that the theorem is false and let G be a counterexample.
We may assume that G is connected. Suppose that G is not 2-connected.

Take an end-block B of G. Let u be the corresponding cut-vertex in B, and
let v 6= u be a vertex of B lying on a common face with u. Denote by B� the
graph constructed from �ve copies B1; : : : ; B5 of B such that the copy ui of u

in Bi is identi�ed with the copy vi+1 of v in Bi+1 for i = 1; : : : ; 4. The vertices
v1 and u5 are called the connectors of B�. It is easy to see that B� has an

embedding in the plane such that the connectors are on the boundary of the
outer face. Since G is not 2-connected, there is a face f which is incident
with vertices x, y that are not contained in the same block of G. Now, we

identify the connectors of B� with x and y, respectively, and embed B� into
f . The resulting graph G0 has fewer blocks than G. Clearly, G0 has no 6-

cycles and its minimum degree is � 4. Therefore, G0 is a counterexample to

the theorem. By repeating the above construction su�ciently many times,

we obtain a 2-connected counterexample.

Thus, we may assume that G is 2-connected and hence all its facial walks

are cycles. In particular, G has no faces of length 6. In the rest of the proof,
we shall apply the well-known discharging method.

Initial charge. Let F (G) be the set of faces of G. We assign charge c to
the vertices and faces of G as follows. For v 2 V (G), let c(v) = 3 deg(v)� 12
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Figure 3: 6-cycles in some clusters

and for f 2 F (G), let c(f) = 3 deg(f)�12. We can rewrite the Euler formula

in the following form:
X

v2V (G)

(3 deg(v)� 12) +
X

f2F (G)

(3 deg(f)� 12) = �24: (1)

This shows that the total charge of vertices and faces of G is negative. Next,

we redistribute the charge of vertices and faces by applying the rules R1{R5
described below so that the total charge remains the same. The rules are

such that the resulting charge of all vertices and of all faces of length r � 4

(r 6= 7) is clearly nonnegative. The same will be proved for the charge of
7-faces. Furthermore, we shall prove that in each cluster of triangles, the

total charge is also nonnegative. This will contradict (1) and complete the

proof.

After applying Rules R1{R3, which is called Phase 1 of the discharging,
only some 7-faces may have negative charge. Afterwards, we apply Phase 2

(Rules R4 and R5) after which all vertices and faces (clusters) have nonneg-

ative charge.

Discharging { Phase 1: In Phase 1, Rules R1{R3 described below are

applied.

Rule R1. Let v be a vertex of degree � 5 which is incident with t � 1
triangles.
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Figure 4: Discharging rules R1{R3.

(a) Suppose that deg(v) = 5, t = 3, and v is a vertex of a cluster C from
Fig. 1(c) or (e) that is contained in precisely two triangles of C. Denote
by f the 3-face incident with v which does not belong to C. Then v

sends 3
2
to each incident triangle in C (and 0 to f). See Fig. 4.

(b) Otherwise, v sends charge c(v)=t to each of the triangles incident with

v.

Rule R2. Let f be a face of length � 5. If e is an edge of f and the face
f 0 6= f containing e is a 3-face, then f 0 is said to be a sink with respect to

(f; e). Suppose that v is a 4-vertex on f and let f , f1, f2, f3 be the faces

incident with v in that (or reverse) order. Then f2 is a sink with respect to

(f; v) if deg(f2) = 3 and deg(f1) � deg(f3) = 4. Let �c = 1 if deg(f) = 7, and

let �c = c(f)=deg(f) otherwise.

(a) If f 0 is a sink with respect to (f; e), then f sends charge �c to f 0 through

e.
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(b) If deg(f) � 7 and e = uv is an edge on f which is not incident with

a 3-face, let e1 and e2 be the edges which precede and succeed e on

the boundary of f , respectively. Then f sends through e charge �c=2 to
each sink with respect to (f; e1), (f; u), (f; v), and (f; e2).

(c) Suppose that deg(f) = 5 and that e1 is an edge on f which is not

incident with a 3-face and that f = v1e1v2e2 � � � v5e5v1. Then f sends

through e1 charge �c=2 (= 3=10) to the �rst existing sink with respect

to (f; v2), (f; e2), (f; v3), (f; e3); : : :, and sends �c=2 to the �rst existing

sink with respect to (f; v1), (f; e5), (f; v5), (f; e4); : : : (assuming at least

one sink exists).

Let us observe that in Rule R2(b), at most two of the four possible sinks

exist.

Rule R3. Let f be a 7-face.

(a) Suppose that uv is an edge of f , and u, v are 4-vertices. Suppose also

that u and v are contained in precisely two triangles of a cluster C from
Fig. 1(c) or (e). Then f sends charge 1 to the adjacent triangle in C

(in addition to the charge sent by Rule R2).

(b) Suppose that u1v and vu2 are edges of f , and v is a 4-vertex that is
incident with three triangles of a cluster C from Fig. 1(c). Suppose also

that ui (i = 1; 2) is of degree 4 or 5 and there are deg(ui)� 2 triangles
incident with ui and that the two vertices of C distinct from v, u1, u2
are both of degree 4 in G. Then f sends 1

2
to each of the adjacent

triangles in C (in addition to Rule R2).

Let v be a vertex and let f be a 3-face incident with v. If deg(v) = 5,
then v sends no charge to f only if f is the face in Rule R1(a) which does

not belong to C. Otherwise, v sends charge 1 to f if v is incident with three

3-faces. In all other cases, v sends to f at least charge 3
2
. If deg(v) � 6, Claim

3 implies that v sends to f charge � bc, where the values of bc are collected in

Table 1.
Let f and f 0 be adjacent faces, where deg(f 0) = 3. If deg(f) � 5, then f

sends to f 0 charge � bc where bc is given in Table 1. This is clear if deg(f) � 7.
If deg(f) = 5, then f can be adjacent with only one 3-face by Claim 2(4).

Therefore, f 0 receives 3
5
from f through the common edge e by Rule R2(a),

and receives twice 3
10

through the edges which precede and succeed e in f ,

respectively, by Rule R2(b).
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deg(v) 6 7 � 8

bc 3=2 9=5 4� 16=deg(v) � 2

deg(f) 5 7 � 8

bc 6=5 1 3=2

Table 1: The charge sent to a triangle from vertices and faces

Charge after Phase 1. It is easy to see that after Phase 1, the charge of

every vertex and every face of length r � 4, r 6= 7, is nonnegative. Next, we

shall prove that the same holds for every cluster C of triangles, i.e., the sum

of the charges of triangles in C is nonnegative. In other words, if C contains

k triangles, we will prove that the total charge c� which the cluster receives

by Rules R1{R3 is at least 3k.

We split the analysis into �ve cases, depending on the type of the cluster,
cf. Claim 1.

Case 1: C is a cluster consisting of one triangle f .
We say that a vertex v of f is important, if deg(v) � 5 and Rule R1(a)

does not apply to v. Let U � V (f) be the set of important vertices of f .

Let U1 � V (f) be the set of those vertices of degree 4 that are incident with
exactly one 4-face adjacent to f , and U2 � V (f) the set of those vertices of

degree 4 that are incident with exactly two 4-faces adjacent to f . Moreover,
let F be the set of those faces adjacent to f that are of length � 5. If every
vertex of f is either important or of degree 4, it is easy to check that

jU j +
1

2
jU1j+ jU2j+ jF j � 3 : (2)

If a 5-vertex v 2 V (f) is not important, then both faces incident with v and

adjacent to f are in the set F by Claim 2(2). This implies that (2) also holds

if f contains at least two such vertices. If f has precisely one such vertex v,
then either the third face adjacent to f is also in F , a vertex of f is in U , or

both vertices of f distinct from v are in U1. Therefore, (2) always holds.
We will show (with one possible exception) that each element from U [

U2 [ F contributes charge � 1 to f and each element from U1 contributes

charge � 1
2
to f . (As a contribution of a vertex v 2 U1 [ U2 we consider the

charge sent to f from the face incident with v and not adjacent to f .)

If v 2 U , it obviously sends charge � 1 to f . The same also holds for

the faces in F (cf. Table 1). Let us now consider a vertex v 2 U1 [ U2; see
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Figure 5: The case when v 2 U1 [ U2

Fig. 5(a). By Claim 2(2), deg(f 00) � 4. If deg(f 00) = 4, we have the situation
in Fig. 5(b) by Claim 2(3). This situation is the exception and is treated

separately as follows. By Claim 2(2) and the Interlacing Lemma, f is the
only 3-face that is adjacent to f 0. Since also f is adjacent to no other 3-face,
it follows that v0 always sends charge � 3 to f .

If deg(f 00) � 7, then f 00 sends by R2(b) charge � 2 � 1
2
= 1 to f (since f

is a sink for f 00). Therefore, v contributes � 1. It remains to consider the

case when deg(f 00) = 5. If v 2 U1, we are done since f 00 sends to f charge
� 2 � 1

2
� 3
5
> 1

2
. Otherwise we have the situation in Fig. 5(c) where some

identi�cations are possible. The only possible identi�cations are v0 = u2,

v00 = u3, or u0 = u5. Each of these identi�cations excludes the other two.
All other identi�cations give rise to a 6-cycle in G: if v0 = u3, we have

v0u5u4vu1u2u
0

3 (and similarly if v00 = u2); if u0 = u3, we have u0v
00vv0u5u4u3

(and similarly if u5 = u2); if u0 = u4, we have u0v
00vu1u2u3u4 (and similarly

if u5 = u1). Let f1 6= f 00 be the other face containing u1u2 in its boundary.

We claim that deg(f1) > 3. If deg(f1) = 3, the third vertex of f1 must

be u4 by Claim 2(4). But then v0 6= u2, v
00 6= u3, and u1vv

0u5u4u2u1 is a
6-cycle, a contradiction. The same arguments show that also u3u4 does not

belong to a 3-face. We also claim that the face f2 6= f 000 containing u0u1 in
its boundary is not a 3-face. If deg(f2) = 3, then the third vertex of f2 must

be v0 by Claim 2(2). Then, again, v0 6= u2, v
00 6= u3, and v0u1u2u3u4vv

0 is a

6-cycle, a contradiction. By symmetry, u4u5 does not belong to a 3-face. The
preceding discussion implies that f receives half of the charge sent out of f 00
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through edges vu1, vu4, u1u2, and u3u4 by Rules R2(b) and R2(c). Therefore

v contributes to f charge at least 4 � 1
2
� 3
5
> 1.

Case 2: C is a cluster of two triangles, f1 = v1v2v3v1 and f2 = v1v3v4v1.

Suppose �rst that there is a 4-face adjacent to the cluster C. By Claim 2(1),

we may assume that the 4-face is f 0 = v1v2v4xv1. By Claim 2(1) and (7),

other faces adjacent to C are of length � 7. So, they send � 3 to C. If

deg(v1) � 5 or deg(v3) � 5, then that vertex sends � 1 to each of f1 and f2.

Therefore, c� � 6 if deg(v1) � 5 and deg(v3) � 5. If deg(v1) = 4, then v4 is of

degree � 5; otherwise x is a cut-vertex. The face f 00 containing the edge xv4
(f 00 6= f 0) is not a 3-face by Claim 2(2) and the Interlacing Lemma. Since x

is not a cut-vertex, f 00 does not contain the edge v1v4. This implies that v4
is incident with at least four nontriangular faces. Therefore v4 sends charge

� (3 deg(v4) � 12)=(deg(v4) � 4) = 3 to f2. Consequently, c� � 6. Finally,
suppose that deg(v1) � 5 and deg(v3) = 4. Then C receives charge � 3 from

adjacent faces by R2(a), � 2 from v1, and another � 1 from adjacent faces

at v3 by R2(b).
Now, assume that no 4-face is adjacent to C. If there is an adjacent 5-face,

it follows by Claim 2(4) that v1 or v3 is of degree � 5, and so it sends � 1 to
each of f1 and f2. Thus, c

� � 4 � 1 + 2 � 1 = 6.

Finally, assume that all four faces adjacent to C are of length � 7. If
deg(v1) � 5 or deg(v3) � 5, then c� � 4 � 1 + 2 = 6. So, assume that
deg(v1) = deg(v3) = 4. In this case, by Rule R2(b), each adjacent face

contributes at least an additional 1
2
to C. Thus, c� � 4 � 1 + 4 � 1

2
= 6.

Case 3: C is a cluster of three triangles, f1 = v1v2v5v1, f2 = v2v3v5v2, and
f3 = v3v4v5v3.

Suppose �rst that there is a 4-face adjacent to C. Then, by Claim 2(5), we

may assume that it is v1v5xv3v1. By Claim 2(7), it follows that other adjacent

faces are of length � 7. So, by Rule R2(a), they send � 4 to C. Vertex v5
is of degree � 5, so it sends � 1 to each of f1; f2; f3. Note also that v3 is of

degree � 5, so it sends � 1 to each of f2; f3. Thus, c
� � 4 + 3 � 1 + 2 � 1 = 9.

Now, we assume that there are no adjacent 4-faces. Suppose that there

is a 5-face adjacent to C. By Claim 2(6), we may assume that this 5-face is
v2xv5yv3v2 and that all other faces adjacent to C are of length � 7. Note that

deg(v5) � 6. So, v5 sends �
3
2
to each of f1, f2, f3. Hence, c

� � 5�1+3� 3
2
> 9.

Finally, we may assume that all faces adjacent to C are of length � 7.
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Hence, they send � 5 to C. If v2 is of degree � 5, then it sends � 3
2
to each

of f1, f2. Otherwise, deg(v2) = 4. Then, by Rule R2(b), the face adjacent at

v1v2 sends at least an additional 1
2
to f1, and the face adjacent at v2v3 sends

at least an additional 1
2
to f2 by Rule R2(b). The same conclusions hold at

v3. Hence, if either deg(v2) � 5 or deg(v3) � 5, then c� � 5 + 2 � 3
2
+ 1 = 9.

Suppose now that deg(v2) = deg(v3) = 4. Let gi 6� C be the face which

is adjacent to C and contains the edge vivi+1 (indices modulo 5). By R2(a)

and R2(b), g1 and g3 each sends � 3
2
to C. Similarly, g2 sends � 3 to C

if deg(g2) � 8. If deg(g2) = 7, then g2 sends 2 to C by R2(a) and R2(b),

and another 1 by Rule R3(a). In all cases, C receives � 6 from g1, g2, g3.

If deg(v5) � 5, then C receives � 3 from v5. Hence, we may assume that

deg(v5) = 4. Then g4 = g5. If deg(g4) � 8, then g4 sends to C at least 3

by R2(a) through the edges v4v5 and v5v1. So, it remains to consider the

case when deg(g4) = 7. Then C receives at least 6 from g1, g2, g3, and 2
from g4 by R2(a). We shall prove that additional charge 1 is sent to C either

from v1, from v4, by R2(b) from g1, g3, and g4, or by R3(b) from g4. If
deg(v1) � 6, then v1 sends more than 1 to C. Suppose now that deg(v1) � 5.
Let g0 (and g00) be the face(s) incident with v1 and distinct from g1, f1, g5.

If deg(v1) = 5 and g0, g00 are not both triangles, then v1 sends more than 1
to C. If deg(v1) = 4 and deg(g0) � 4, then g1 and g5 send to C at least 1

by R2(b). By symmetry, the same conclusion can be made at v4. Now, the
only remaining case is when deg(v1) and deg(v4) are equal to 4 or 5 and their
incident faces satisfy the requirements in Rule R3(b). Therefore, the face g4
sends an additional charge 1 to C by R3(b).

Case 4: C is a cluster of four triangles, f1 = v1v2v6v1, f2 = v2v5v6v2,
f3 = v2v3v5v2, f4 = v3v4v5v4, and v1 = v4.

By Claim 2(8), all faces adjacent to C are of length � 7. So, they send

� 6 to C. Since G is 2-connected, if deg(v2) = 4, then deg(v1) � 5. In this

case, v1 sends � 3
2
to each of f1, f4. And, if deg(v2) > 4, then v2 sends

� 3 to the cluster. The same conclusion holds at v5. Therefore, if either

deg(v2) � 5 or deg(v5) � 5, then c� � 6 + 3 + 3 = 12. Suppose now that
deg(v2) = deg(v5) = 4. The triangle v1v2v3v1 is not facial. Hence, there are

edges of G inside that triangle. Since deg(v2) = 4, they can be incident with

v1 and v3 only. Since G is 2-connected, at least one such edge is incident with
v1. Similarly, there is an edge incident with v1 inside the triangle v1v5v6v1.

Therefore, deg(v1) � 6. Observe that at least four faces incident with v1
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are not triangles. Therefore, v1 sends � 3 to each of f1 and f4, and so

c� � 6 + 3 + 3 = 12.

Case 5: C is a cluster of four triangles, f1 = v1v2wv1, f2 = v2v3wv2, f3 =

v3v4wv3, and f4 = v4v1wv4.

For i = 1; 2; 3; 4, let gi be the face which is adjacent to fi and is not

contained in C. We say that gi contributes to C the charge that is sent

from gi to C by Rules R2(a), R2(b), and R3(a), plus one half of the charge

sent to C from vi and vi+1 (indices modulo 4). It su�ces to prove that gi
contributes to C at least 3. By Claim 2(8), deg(gi) � 7. Then gi sends

� 1 to C through vivi+1. If deg(vi) � 5, then vi sends to C at least 3. If

deg(vi) = 4, then gi sends to C at least 1
2
by R2(b) through the edge gi\gi�1.

The same holds at vi+1. This implies that gi contributes at least 3 to C unless

deg(vi) = deg(vi+1) = 4, which we assume henceforth. If deg(gi) � 8, then
the charge sent to C by R2(a) and R2(b) is at least 3. If deg(gi) = 7, then

the charge sent to C by R2(a) and R2(b) is equal to 2, and another 1 is sent

by R3(a). This completes the proof of Case 5.
We shall need an extension of the analysis in Case 5 in the proof concern-

ing Phase 2. Observe that for every index i 2 f1; 2; 3; 4g, gi contributes to C
at least 4 if deg(vi) � 5 and deg(vi+1) � 5.

Discharging { Phase 2: After Phase 1, all vertices, all faces of length
6= 3; 7, and all clusters of triangles have nonnegative charge.

A 7-face is bad if it is negatively charged after Phase 1 of the discharging
process. As a bad 7-face f distributes charge � 7 using Rule R2, it sends

at least charge 3 to adjacent triangles by R3(a) and (b). Sending charge by
R3(b) implies that four consecutive edges along f are incident with trian-

gles, whereas using R3(a) implies that two nonconsecutive edges along f are

incident with � 7-faces only. This implies that in a bad 7-face either Rule

R3(a) is applied three times, or Rule R3(b) is applied three times.
Suppose now that Rule R3(a) is applied three times in a 7-face f . We

shall argue that f is not bad. Let f = v1e1v2e2 � � � e6v7e7v1 and suppose that
f sends 1 by Rule R3(a) through the edges e2, e4, and e6. Note that faces

adjacent to f at the edges e1 and e7 are of length � 7. It is enough to see
that f sends � 1

2
through each of e1 and e7 by Rule R2. Suppose this is not

the case and that f sends charge 1 through, say, e1. Since e1 and e7 are not

incident with 3-faces, charge 1
2
is sent by R2(b) to the sink with respect to
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(f; v1). Hence, e1 (or e7) is incident with a 4-face, which is a contradiction.

Therefore, a bad face f sends charge 3 to adjacent clusters by using Rule

R3(b) only. This implies that the neighborhood of f is as shown in Fig. 6
where C is a cluster of triangles and v1; v2 are of degree � 5.

Figure 6: Neighborhood of a bad 7-face

In Phase 2, we send positive charge into bad 7-faces from their neighbor-
hoods by using the following rules.

Rule R4. Let C be a cluster of triangles with positive charge c� after Phase

1. If C is adjacent to t � 1 bad 7-faces, then C sends to each of them charge

c�=t.

Rule R5. Let f be a bad 7-face and let f 0 be a 7-face which has a 4-vertex
v in common with f . (Since bad 7-faces are adjacent only to 3-faces, we

have the situation shown in Fig. 7 where at least one of the edges e, e0 is not
incident with a face of length < 7.) We say that f 0 touches f at v. If f 0 has
positive charge c� after Phase 1 and touches bad 7-faces at t vertices, then

f 0 sends charge c�=t to f through v.

We will show that after Rules R4 and R5 have been applied, all vertices,
clusters of triangles, and all faces of length � 4 have nonnegative charge.

This is clear in all cases except for bad 7-faces.
Let f be a bad 7-face. As shown in Fig. 6, f is adjacent to four clusters

C, C1, C2, and C3, where the notation is taken from the �gure. We split the

proof according to type of C.
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Figure 7: Rule R5

If C were as in Fig. 1(d), then either v1 or v2 would be of degree � 6,

which is not possible for a bad 7-face. Suppose that C is as in Fig. 1(b),

where v1 is incident with two triangles of C. Let us observe that Rule R1(b)

was applied at v1. Then it is easy to see that C1 has charge � 1 after Phase 1.
Since the faces adjacent to C and distinct from f contain edges that are not
incident with triangles, f is the only bad 7-face adjacent to C1. Therefore

f receives charge � 1 from C1 by R4. This proves that f has nonnegative
charge after Phase 2.

Suppose now that C contains a single triangle v1v2w. If deg(f1) � 8, then

it is easy to see that C1 has charge �
1
2
and thus f receives � 1

2
from C1 by R4.

Suppose now that f1 is a 7-face. Let e
0 be the edge on f1 incident with w and

distinct from wv1. If e
0 is not contained in a 3-face, then C receives additional

charge 1
2
from f1 through e0 (by Rule R2(b)), and this 1

2
contributes to the

positive charge in C after Phase 1. Therefore, we may say that f receives

charge 1
2
from f1 by R4. If e0 is contained in a 3-face, then it is easy to see

that f1 has charge � 1 after Phase 1, and that f1 sends charge to at most
two bad 7-faces by Rule R5. Hence, f1 sends � 1

2
to f . The same analysis

applied to f2 shows that f receives � 1
2
from C2 or from f2. Therefore, the

charge in f after Phase 2 is nonnegative.

Let us now consider the case when C is a cluster from Fig. 1(e). If C is

adjacent to another bad 7-face, then that face is neither f1 nor f2. When C
is adjacent to two bad 7-faces, all its exterior vertices have degree 5. The

remark made after Case 5 in the analysis of Phase 1 implies that C has charge
� 2 after Phase 1, so it sends � 1 to f by R4. If f is the only bad 7-face

adjacent to C, then C has two adjacent vertices v1, v2 of degree 5. The same

remark implies that the charge at C after Phase 1 is � 1, and this charge is
transferred to f .
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It remains to consider the case when C is a cluster shown in Fig. 1(c). If

deg(v1) = deg(v2) = 5, then C received charge � 5 from adjacent faces and

charge 6 from v1 and v2 in Phase 1. Therefore, its charge after Phase 1 is
� 2. It is not hard to observe that f is the only bad 7-face adjacent to C.
Hence, C sends � 2 to f by R4.

Since v1 and v2 have degree� 5, we may henceforth assume that deg(v1) =

4 and deg(v2) = 5. If deg(f1) � 8, then after Phase 1, C1 has charge �
1
2
and

C has charge � 1. Since C is adjacent to at most two bad 7-faces, f receives

� 1
2
from C and � 1

2
from C1.

We may henceforth assume that deg(f1) = 7. For i = 1; 2, let v0i be

the vertex of C distinct from vi which is contained in i triangles of C. If

deg(v02) � 5, then C has charge � 2 after Phase 1 and is adjacent to at most

two bad 7-faces. Therefore, C sends � 1 to f . Otherwise, deg(v02) = 4. The

edge incident with v02 which is not contained in C is not incident with a 3-face.
Therefore, f is the only bad 7-face adjacent to C, and v01 is not incident with

a bad 7-face. Hence, Rule R5 does not send charge from f1 through v01. Let
t be the number of applications of Rule R5 in f1. As in the case when C was
a single triangle, we see that t � 2. If R3 was not used in f1, then f1 has

charge � 2 after Phase 1. Since t � 2, f1 sends � 1 to f . Suppose now that
R3 was used in f1. Since deg(v2) = 5, f1 did not send charge to C by Rule

R3(b). This implies that Rule R3 was used exactly once in f1. Observe that
f1 does not touch a bad 7-face at vertices of the cluster in which f1 sends
charge by Rule R3. A short analysis shows that t = 1. The charge in f1 after

Phase 1 is � 1. Hence, f1 sends � 1 to f by R5. This completes the proof.
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