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Abstract

We prove that there exists a function a : N0 × R+ → N such that

(i) If G is a 4-connected graph embedded on a surface of Euler genus
g such that the face-width of G is at least a(g, ε), then G can be
covered by two cycles each of which has length at least (1− ε)n.

We apply this to derive lower bounds for the length of a longest cycle
in a graph G on any fixed surface. Specifically, there exist functions
b : N0 → N and c : N0 → R+ such that for every graph G on n
vertices that is embedded on a surface of Euler genus g the following
statements hold:

(ii) If G is 4-connected, then G contains a collection of at most b(g)
paths which cover all vertices of G, and G contains a cycle of
length at least n/b(g).

(iii) If G is 3-connected, then G contains a cycle of length at least
c(g)nlog 2/ log 3.

Moreover, for each ε > 0, every 4-connected graph G with sufficiently
large face-width contains a spanning tree of maximum degree at most
3 and a 2-connected spanning subgraph of maximum degree at most
4 such that the number of vertices of degree 3 or 4 in either of these
subgraphs is at most ε|V (G)|.
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1 Introduction

The notation and terminology in this paper is the same as in [12, 18, 21].
In 1956 Tutte [22] proved that every planar graph G which is not a forest

contains a cycle C such that every component of G−V (C) has at most three
neighbors on C. We call such a cycle a Tutte cycle. Tutte proved that C can
be chosen to contain any prescribed edge if G is 2-connected. For a short
proof see [17]. Thomas and Yu [16] extended Tutte’s theorem to projective
planar graphs. It follows that every 4-connected planar or projective planar
graph has a Hamiltonian cycle.

This result does not extend to 3-connected planar graphs since there exist
planar triangulations on n vertices whose longest cycle is of length O(nα),
where α = log 2/ log 3 ≈ 0.63; cf. [13]. In fact, Grünbaum and Walther
[8] conjectured that every 3-connected planar graph of order n contains
a cycle of length at least cnα for some positive constant c. Jackson and
Wormald [10] proved the existence of a cycle of length at least cnβ where c
is a positive constant and β ≈ 0.2. Gao and Yu [9] improved their result by
showing that every 3-connected planar graph G contains a cycle of length
at least 1

6 |V (G)|0.4 + 1. Recently, Chen and Yu [5] proved the conjecture of
Grünbaum and Walther. Both aforementioned results hold also for graphs
on the projective plane, the torus, and the Klein bottle.

As every graph can be embedded on some surface, these results do
not generalize to surfaces of higher genera even for 1000-connected graphs.
An additional modest condition on the face-width does not help either.
Archdeacon, Hartsfield, and Little [1] proved that for each k there exists
a k-connected triangulation of an orientable surface having face-width k in
which every spanning tree has a vertex of degree at least k. In particular,
such graphs are far from being Hamiltonian.

If the surface is fixed and the face-width is large, the situation changes.
Thomassen [20] proved that large face-width of a triangulation of a fixed ori-
entable surface implies the existence of a spanning tree of maximum degree
at most 4 and that 4 cannot be replaced by 3. It was conjectured in [20]
that the additional condition that the triangulation is 5-connected implies
that the graph is Hamiltonian, and this was verified by Yu [23]. It was also
observed in [20] that “5-connected” cannot be replaced by “4-connected”.
However, we show in this paper that the cutting technique used in [19, 21] to
prove a 5-color theorem for each fixed surface can be used to prove the exis-
tence of long cycles in 4-connected or 3-connected graphs on a fixed surface.
Specifically, we prove the following theorems.
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Theorem 1.1 There is a function a : N0 × R+ → N such that for every
ε > 0 and every 4-connected graph G that has an embedding of Euler genus
g and face-width at least a(g, ε), there are two cycles C1, C2 in G such that

(1) V (C1) ∪ V (C2) = V (G), and

(2) |V (Ci)| ≥ (1− ε)|V (G)|, for i = 1, 2.

We apply Theorem 1.1 to prove

Theorem 1.2 There exists a function b : N0 → N such that, if G is a
4-connected graph of Euler genus g, then G contains a collection of paths
P1, . . . , Pk, where k ≤ b(g), which cover all vertices of G, and G contains a
cycle of length at least 2n/(5b(g)).

Theorem 1.3 There exists a function c : N0 → R+ such that, if G is a
3-connected graph of Euler genus g, then G has a cycle of length at least
c(g) |V (G)|log 2/ log 3.

Barnette [2, 3] proved that every 3-connected planar graph contains a
spanning tree of maximum degree at most 3 and a 2-connected spanning
subgraph of maximum degree at most 16, and Gao [7] improved the bound
16 to 6 (which is best possible). Sanders and Zhao [15] extended these results
to higher surfaces.

Ellingham and Gao [6] modified the method from [20] to prove that
large face-width of a 4-connected triangulation on a fixed surface implies
the existence of a spanning tree of maximum degree at most 3, and Yu
[23] extended this to nontriangulations. Theorem 1.1 implies the following
extension of Yu’s result.

Corollary 1.4 There exists a function a : N0 × R+ → N such that, if G is
a 4-connected graph embedded with face-width at least a(g, ε) on a surface
of Euler genus g, then G contains a spanning tree T of maximum degree at
most 3, a 2-connected spanning subgraph H of maximum degree at most 4,
and a path P such that

(a) P ⊆ T ⊆ H and

(b) the number of vertices of degree 3 or 4 in T and in H is at most
ε|V (G)| and all such vertices are in V (P ).
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Proof. Let C1, C2 be the cycles in Theorem 1.1. Then we take H = C1∪C2

minus those edges of C2 which are chords of C1. Let e be an arbitrary edge of
C1 and let P = C1− e. Then G has a spanning tree T of maximum degree 3
which is obtained fromH−e by deleting only edges in E(C2)\E(C1) incident
with vertices in C1. It is obvious that H,T, P have the stated properties.

We shall use the following lemmas.

Lemma 1.5 If G is a disconnected graph on a surface S, then S\G contains
a simple, closed, twosided curve C which is either noncontractible in S, or
contractible in S such that each of int(C) and ext(C) contains a connected
component of G.

Proof. Add on S an edge e between two components G1, G2 of G. The
facial walk F containing e must contain e twice and in opposite directions
because e is a cutedge. Therefore, S has a simple closed twosided curve
C (close to F ∩ G1) such that C ∩ G = ∅ and C crosses e once. If C is
contractible, then int(C) contains one of G1, G2 and ext(C) contains the
other.

Lemma 1.6 Let G be a connected graph embedded on a surface S, and let
A be a set of vertices such that G−A is disconnected. Then S has a simple
closed curve C such that C ∩ G ⊆ A, and either C is noncontractible or
else C is contractible and each of int(C) and ext(C) contains a connected
component of G−A.

Proof. Apply the proof of Lemma 1.5 to G − A. Let C0 be the corre-
sponding curve. We may assume that C0 intersects G only in edges joining
a component of G−A and A and that C0 intersects each such edge at most
once and that each such intersection is a crossing. Now we modify C as
follows. For each edge e = uv (v ∈ A) where C intersects G, we replace
a short segment of C around that intersection with a simple curve which
follows e to v, crosses through v and returns back on the other side of e.
The resulting curve C ′ is homotopic to C0 and is composed of one or more
simple closed curves C1, . . . , Ck which intersect G only at A. If all of these
curves are contractible, so is C0. Then each of int(C0) and ext(C0) contains
a connected component of G−A (by the assumption on C0). It is easy to see
(by induction on k) that the same must hold for at least one of the curves
C1, . . . , Ck.
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2 Proof of Theorem 1.1

First we introduce some notation.
If G is a plane 2-connected graph with outer cycle C1 and another facial

cycle C0 disjoint from C1, then we call G a cylinder with outer cycle C1 and
inner cycle C0. If H is a graph on a surface of Euler genus g, with disjoint
facial cycles C ′

0, C
′
1 of the same lengths as C0 and C1 (respectively), then

we can identify C0 and C ′
0 into a cycle C ′′

0 and identify C1 and C ′
1 into a

cycle C ′′
1 . Let M be the graph obtained from the union of G and H after

these identifications. The embeddings of G and H determine an embedding
of M into a surface of Euler genus g + 2. We also say that H is obtained
from M by cutting C ′′

0 and C ′′
1 and by deleting the cylinder G. The cylinder-

width of G is the largest integer q such that G has q pairwise disjoint cycles
R0, . . . , Rq−1 such that C0 ⊆ int(R0) ⊆ int(R1) ⊆ · · · ⊆ int(Rq−1). The
paper [21, Theorem 9.1] has a short proof of the following result:

For any natural numbers g and r there exists a natural number
f(g, r) such that any 2-connected graph H on Sg (the orientable
surface of Euler genus 2g) having face-width ≥ f(g, r), contains
g pairwise disjoint cylinders Q1, . . . , Qg of cylinder-width at least
r whose cutting and deletion results in a connected plane graph.

In [21] this was proved for triangulations but the proof extends to all (2-
connected) graphs by standard techniques: If H is not a triangulation, we
form a triangulation H1 ⊇ H by adding a new vertex in each face of size at
least 4 and joining it to all vertices of H on that face. Then it is easy to
see that, if H1 contains a cylinder of cylinder-width q, then H contains a
cylinder of cylinder-width at least q/2− 1.

Suppose, in addition, that H is 4-connected. Let us focus on one of
the g cylinders, say Qj , and suppose its cylinder-width is > 10q. Let
R0, R1, . . . , R10q be the cycles in the definition of the cylinder-width. We
select an i ∈ {0, 1, . . . , q − 1} such that the number of vertices in the sub-
cylinder between R5i and R5i+5 is smallest possible. Then we cut R5i+2

and R5i+3 and delete the cylinder between these two cycles. We repeat this
procedure for each of the cylinders Q1, . . . , Qg. The resulting graph H ′ is
planar, 2-connected and has therefore a Tutte cycle C containing an edge
which is not contained in any of the g cylinders.

We claim that any vertex v ∈ V (H)\V (C) is in one of the cylinders, say
Qj , and in Qj, v is between R5i and R5i+5. (In particular, v is on neither
R5i nor R5i+5.) To see this, let B be the C-bridge of H ′ containing v. (That
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is, B is the component B′ of H ′ − V (C) containing v together with the set
A of vertices on C joined to B′ and all edges between A and B′.) We apply
Lemma 1.6 to the plane graph H ′ and let Q be the resulting simple closed
curve intersecting H ′ only inA. Now, Qmust intersect some face ofH ′ which
is not a face of H since otherwise A would separate H (which is impossible
since H is 4-connected and |A| ≤ 3) or Q would be noncontractible on Sg

(which is impossible because H has face-width > 3). So we may assume
without loss of generality that both C and B intersect R5i+2 in some Qj .
Hence C contains at least two vertices of each of R5i+1 and R5i. Since B
has at most three vertices of attachment, B cannot intersect R5i. So, B is
between R5i and R5i+2. Our choice of i (in each of the g cylinders) implies
that C misses at most |V (H)|/q vertices of H.

Suppose now that we select the indices i in {q, q + 1, . . . , 2q − 1} (one
for each of the cylinders). Then we can find another cycle C ′ in H missing
at most |V (H)|/q vertices of H such that V (C) ∪ V (C ′) = V (H). This
completes the proof of Theorem 1.1 in the orientable case.

We now turn to the nonorientable case. Let g, q be any natural numbers.
Now draw any specific graph H0 on Ng (the nonorientable surface of Euler
genus g) such that H0 contains �g/2� pairwise disjoint cylinders of cylinder
width 10q + 1 whose removal results in a connected graph in the projective
plane (if g is odd) or the sphere (if g is even). Robertson and Seymour
[14] proved that, if the face-width of a graph H on Ng is sufficiently large,
then one can delete edges and contract edges of H such that one obtains
H0 on Ng. In particular, H also contains �g/2� pairwise disjoint cylinders
of cylinder width 10q + 1 whose removal results in a connected graph in
the projective plane or the sphere. If g is even, we repeat the proof in the
orientable case. If g is odd, the same proof works, except that we use the
extension of Tutte’s theorem obtained by Thomas and Yu [16] that every
2-connected graph in the projective plane has a Tutte cycle containing any
prescribed edge.

3 Proof of Theorem 1.2

Bondy and Locke [4] proved that, if a 3-connected graph has a path of length
k, then it has a cycle of length at least 2k/5. So, it suffices to prove the first
statement in Theorem 1.2. We prove this by induction on the Euler genus.

By the theorems of Tutte [22] and Thomas and Yu [16], b(0) = b(1) = 1.
Suppose that b(0) ≤ b(1) ≤ · · · ≤ b(g − 1) exist. We shall prove that
b(g) ≤ 4 a(g, 1/2) · b(g − 1) + 2g + 100.

7



Let G be any 4-connected graph on a surface S of Euler genus g ≥ 2. Let
w0 denote the face-width of G on S. We may assume that w0 < a(g, 1/2),
since otherwise V (G) is covered by two paths by Theorem 1.1.

Consider first the case where w0 ≥ 4. Let C0 be a noncontractible simple
closed curve intersecting G in w0 vertices. We think of C0 as a cycle in the
graph obtained from G by adding (≤) w0 edges, and then we cut that graph
along C0. Then C0 is cut into a cycle C1, say, and (if C0 is twosided) a
cycle C2. The resulting graph G1 is embedded in a surface S′ (possibly
disconnected) of Euler genus g − 1 or g − 2 (if C0 is onesided or twosided,
respectively). We add a new vertex x1 in the face bounded by C1 and join
it to all vertices of C1. If C2 exists, we also add a new vertex x2 in the face
bounded by C2.

We assume that S′ is connected. (The case where S′ is disconnected is
similar and easier.) We claim that the resulting graph G′

1 is 4-connected.
Suppose (reductio ad absurdum) that G′

1 has a (smallest) vertex set A such
that G′

1 − A is disconnected and |A| ≤ 3. If A contains x1, then A also
contains two vertices of C1 by the minimality of A. We now apply Lemma
1.6. It is easy to modify the resulting simple closed curve in S′ into a
noncontractible curve in S having only a proper subset of V (C0) in common
with G, a contradiction to the definition of the face-width. So, we may
assume that A contains neither x1 nor x2. Again, we apply Lemma 1.6 and,
if necessary, modify the resulting simple closed curve R such that it does not
intersect the interior of any of the faces having x1 or x2 on the boundary.
Then R determines a simple closed curve R′ on S such that R′∩G ⊆ A. Since
G is 4-connected, R′ is noncontractible on S, contradicting the assumption
that w0 ≥ 4. So, G′

1 is 4-connected.
By the induction hypothesis, V (G′

1) is covered by at most b(g−1) paths
in G′

1. After removing x1, x2 and some vertices of C1 (or C2) from these
paths, we obtain at most 2a(g, 1/2)b(g − 1) paths in G which cover V (G).

Consider next the case where 2 ≤ w0 ≤ 3. We let C0 be a noncontractible
simple closed curve on S intersecting G in at most 3 points. If possible, we
choose C0 such that it is onesided and |C0∩G| is smallest possible subject to
that condition. If there are no onesided closed curves intersecting G in ≤ 3
points, then we select a twosided curve C0 such that |C0∩G| = w0. As in the
case w0 ≥ 4, we think of C0 as a cycle (of length 2, or 3) and we cut S along
C0 such that C0 becomes one cycle C1 of length 4 or 6 (if C0 is onesided)
or two cycles C1, C2 of length 2 or 3 if C0 is twosided. If C0 is onesided we
add a new vertex x1 and join it to C1. If C0 is twosided, we do not add any
of x1, x2. The resulting graph is called G1. If G1 is 4-connected, we apply
induction as in the case w0 ≥ 4. It is easy to see that G1 is 4-connected if
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C0 is onesided. (For, if a separating set A of at most three vertices contains
x1 and two vertices on C1, then some component of G1 − A is a path on
C1 and we obtain a contradiction to the minimality of C1.) Therefore we
may assume that C0 is twosided and that G1 is not 4-connected. Now we
apply Lemma 1.6 where A is a separating vertex set of G1 with at most
three vertices. The resulting simple closed curve C3 is twosided (otherwise
we would have taken that curve as C0). If necessary, we modify C3 so that
it does not cross C1 or C2. (This is possible since |V (C0)| ≤ 3.) Now we
cut C3 into two cycles C4 and C5. If possible, we select a noncontractible
curve C6 in S which does not cross any of C1, C2, C4, C5 such that C6 has
less than 4 vertices in common with G and we cut C6 into cycles C7 and C8.
We continue like this as often as possible. Thus we cut S into surfaces and
G into graphs G1, . . . , Gp. By Lemma 1.6, each of G1, . . . , Gp is 4-connected
or complete. We define an auxiliary multigraph J1 whose vertices are the
graphs G1, . . . , Gp. Each of the curves C3i (i = 0, 1, 2, . . .) that we have
cut along belongs to two (or one) of the graphs G1, . . . , Gp, and J1 will
have an edge (or a loop) between these graphs. We say that the curve C3i

corresponds to that edge of J1. As G is 4-connected, J1 has no cutedge.
Next we define a multigraph J0 with V (J0) ⊆ V (J1) as follows. If J1 is

a cycle, we let J0 consist of a vertex (corresponding to a surface of Euler
genus > 0 if possible) and a loop. If J1 is not a cycle, we let J0 be the unique
multigraph without vertices of degree 2 such that J1 is a subdivision of J0.
Then J0 has an edge e such that J0 − e has no cutedge. Let P be the path
in J1 which corresponds to the edge e. If P has length 1, then cutting S and
G along the curve corresponding to P results in a 4-connected graph, and
we complete the proof by induction. So assume that P has length at least
2. Assume that the notation is such that the first edge of P corresponds to
C0, and the last edge of P corresponds to one of C3, C6, . . ., say R.

When we cut C0 into C1 and C2, then S becomes a surface with bound-
aries C1 and C2. If we also cut R into R1 and R2, then we disconnect S
into surfaces S′ and S′′ with boundaries C1, R1 and C2, R2, respectively.
We make S′, S′′ into closed surfaces S′

1 and S′′
1 (respectively) by adding a

cylinder (handle) with the outer and inner cycle R1, C1 and R2, C2, respec-
tively. On each of these handles we add edges and possibly one new vertex
so that the two graphs on the two handles are either complete graphs with
four vertices or 4-connected graphs with 6 vertices (see Figure 1). Hence the
resulting graphs on S′

1 and S′′
1 are 4-connected. If these graphs have Euler

genus less than g, we complete the proof by induction (similarly as in the
case w0 ≥ 4). So assume that at least one of them has Euler genus g. Hence
S′ or S′′, say S′, is a cylinder. By the choice of J0 and P , S′ corresponds to
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Figure 1: The cylinder added to S′

P . To each of S′, S′′ we add two discs so that C1, C2, R1, R2 become facial
cycles. The graph on S′′ is 4-connected or complete and of Euler genus less
than g, so we apply induction to that graph. The graph on S′ is planar
with facial cycles C1, R1, each of length 2 or 3. We add a vertex y joined
to all vertices of C1 and a vertex z joined to all vertices of R1. By [17], the
resulting graph M has a path P from y to z such that each P -bridge has
at most 3 vertices of attachment. (In [17] it is required that the graph is
2-connected. If M is not 2-connected, we apply [17] to each block of M .)
Since G is 4-connected, P contains all vertices of M (except possibly some
on C1 or R1) and the proof is complete when 2 ≤ w0 ≤ 3.

Consider finally the case wherew0 = 1. In each face which is not bounded
by a cycle, we add a vertex joined to all vertices on the boundary. As G is
4-connected, we add at most 2g new vertices. For, in each augmented face
we can draw a simple noncontractible curve having precisely one vertex in
common with G, and no two of these curves are homotopic. Hence there are
at most 2g such curves, see, e.g., [11]. Now we repeat the proof of the case
when 2 ≤ w0 ≤ 3.

4 Proof of Theorem 1.3

If the Euler genus is at most 2, we apply the result of [5]. For the general case
we repeat the inductive proof of Theorem 1.2. The only essential difference
is that instead of using [17] at the end of that proof, we apply [5]. Note that
we only need to show that G contains a path of length cnlog 2/ log 3, by the
aforementioned result of Bondy and Locke [4]. We leave the details to the
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reader.
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