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Abstract

It is shown that the discharging method can be successfully ap-
plied on infinite planar graphs of subexponential growth and even on
those graphs that do not satisfy the strong edge isoperimetric inequal-
ity. The general outline of the method is presented and the following
applications are given: Planar graphs with only finitely many ver-
tices of degree ≤ 5 and with subexponential growth contain arbitrarily
large finite submaps of the tessellation of the plane or of some tessella-
tion of the cylinder by equilateral triangles. Every planar graph with
isoperimetric number zero and with essential minimum degree ≥ 3 has
infinitely many edges whose degree sum is at most 15. In particular,
this holds for all graphs with minimum degree ≥ 3 and with subexpo-
nential growth. The cases without infinitely many edges whose degree
sum is ≤ 14 (≤ 13 or ≤ 12, respectively) are also considered. Several
further results are obtained.

1 Introduction

An infinite graph G satisfies the strong edge isoperimetric inequality if there
is a positive constant h such that every finite vertex set X has at least h|X|
outgoing edges. The supremum of all such constants h is called the isoperi-
metric number of G. Graphs with positive isoperimetric number have many
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interesting properties and have been studied in relation to various other
problems. For example, Dodziuk [6], Gerl [8] and Soardi [20] considered
them in relation to random walks and their transience, Mohar [17, 18, 19]
and Žuk [23] were interested in their spectral properties, Gromov in their
hyperbolic geometric [9] and hyperbolic groups structure [10], Lyons et al.
[14, 16] considered applications in theoretical physics (phase transition and
percolation), Woess [22] was motivated by the study of harmonic functions,
while He and Schramm [13] investigated circle packings.

It is easy to see that every finite planar graph contains a vertex of degree
at most 5. This is not true for infinite planar graphs whose minimum vertex
degree can be arbitrarily large. However, if an infinite planar graph has
minimum degree greater than 6, it has exponential growth and satisfies the
strong isoperimetric inequality. This fact was proved by Dodziuk [6] who
used the strong isoperimetric inequality to prove transience of random walks
on such graphs. Extensions of Dodziuk’s result were obtained by various
authors in different contexts. See, e.g., Mohar [19], Soardi [20], Calogero [5],
Žuk [23], Woess [22], and Baues and Peyerimhoff [3]. Another extension is
obtained in this paper where it is proved that every planar graph with only
finitely many vertices of degree ≤ 5 and of subexponential growth contains
every finite submap of T0 or of T0/Γ where T0 is the infinite triangular lattice
[63], and Γ ≤ Aut([63]) is an infinite cyclic group.

If uv is an edge of a graph, the weight of uv is defined as the sum of
degrees of its endvertices. Kotzig [15] proved that every (finite) 3-connected
planar graph contains an edge uv of weight at most 13. Grünbaum and
Shephard [11] extended Kotzig’s theorem to graphs of periodic tilings of the
plane by proving that there is an edge of weight at most 15. Such graphs
are universal covering spaces of graphs embedded in the torus. Stehling
[21] extended the result of Grünbaum and Shephard to normal tilings of the
plane (where all tiles are uniformly bounded). Theorems 5.1 and 5.2 and
Corollary 5.5 in this paper are extensions of that result to arbitrary infinite
planar graphs of minimum degree ≥ 3 and with subexponential growth. Let
us observe that the graphs considered by Grünbaum and Shephard in [11]
or by Stehling [21] have quadratic growth, have only one end and have only
faces of finite length.

Moreover, we prove that every connected infinite planar graph whose
isoperimetric number is zero contains infinitely many edges of weight at
most 15, and we also show that graphs without infinitely many edges of
weight ≤ 14 (≤ 13 and ≤ 12, respectively) contain arbitrarily large submaps
of certain tessellations of the plane or the flat cylinder.

More generally, it is shown that the well-known discharging method
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(used, for example, in the proof of the Four Color Theorem [2, 12]) can
be extended from finite planar graphs to infinite planar graphs of subexpo-
nential growth, and usually also to planar graphs whose edge isoperimetric
number is zero. The main result (Theorem 3.1) and its proof give rise to
explicit positive lower bounds on the isoperimetric number.

It is worth mentioning that planar graphs treated in this paper are much
more general than graphs of normal tilings since they may have any of the
following:

(a) Growth rates are arbitrary.

(b) Vertex degrees need not be bounded.

(c) Face lengths may be unbounded and faces of infinite length may exist.

(d) The graph may have more than one end (even uncountably many are
possible).

In most of previous works (e.g., [3, 5, 11, 14, 21, 22, 23]), (a)–(d) are not
allowed.

Graphs in this paper are simple (no loops, no multiple edges) and locally
finite, i.e., finite or countably infinite and the degree of every vertex is finite.

We follow standard graph theory terminology and notation. If G is a
graph and v ∈ V (G), then degG(v) is the degree of v. If G is embedded
in the plane and f is its face, then degG(f) denotes the length of f . If
X ⊆ V (G), then G(X) is the subgraph of G induced on the vertex set X,
and δX is the set of all edges with one endvertex in X and the other end in
V (G) \X. For a positive integer r, Nr(X) denotes the set of all vertices in
V (G) \X whose distance from X is at most r.

2 Strong isoperimetric property

Let G be a connected graph and let v ∈ V (G). Denote by Bn(v) the set of
all vertices of G at distance at most n from v (the ball of radius n centered
at v), and let bn(v) := |Bn(v)|. If the graph G is not clear from the context,
we write bn(G, v), or Bn(G, v). The graph G has exponential growth (from
the vertex v) if bn(v) ≥ Cqn for some constants C > 0 and q > 1, and
for every n ≥ 0. It has polynomial growth if bn(v) ≤ p(n) where p(·) is a
polynomial. G has subexponential growth if it does not grow exponentially.
Let us observe that the type of the growth is independent of v since G is
connected. Let

τ(G) = lim inf
n→∞ (bn(G, v))1/n .
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If v and u are vertices of G and d = dist(u, v), then bn(u) ≤ bn+d(v) ≤
bn+2d(u). It follows that τ(G) does not depend on the choice of v. The
following is an easy exercise.

Proposition 2.1 Let G be a connected graph. Then τ(G) > 1 if and only
if G has exponential growth.

The (edge) isoperimetric number h1(G) of G is the number

h1(G) = inf
{ |δX|

|X|
∣∣∣ X ⊂ V (G), 0 < |X| <∞

}
.

Similarly, the (vertex ) isoperimetric number h0(G) is defined as

h0(G) = inf
{ |N1(X)|

|X|
∣∣∣ X ⊂ V (G), 0 < |X| <∞

}
.

Since every vertex in N1(X) is incident with an edge in δX, h0(G) ≤ h1(G).

Proposition 2.2 Let G be a connected graph. Then τ(G) ≥ 1 + h0(G). If
G is a planar graph, then τ2(G) ≥ 1 + 1

2h1(G).

Proof. Let v ∈ V (G). For n ≥ 1, let bn = bn(v) and sn = bn − bn−1. By
selecting X = Bn−1(G, v), we conclude that sn = |N1(X)| ≥ h0(G)|X| =
h0(G)bn−1. This easily implies that bn ≥ (1 + h0(G))n. Consequently,
τ(G) ≥ 1 + h0(G).

To prove the second inequality, let X be as above and let A = N1(X)
and B = N1(X ∪ A). Then A ∪ B and the edges joining A and B form a
bipartite planar graph. Euler’s formula and standard counting arguments
imply that this graph has less than 2|A ∪ B| = 2sn + 2sn+1 edges. On the
other hand, the edge set of this graph is δ(X ∪A) and hence its cardinality
is at least h1(G)|X ∪ A|. As a consequence, h1(G)bn ≤ 2(bn+1 − bn−1).
Therefore, bn ≥ (h1(G)

2 + 1)(n−1)/2. This implies that τ2(G) ≥ h1(G)
2 + 1.

There are planar graphs G such that h0(G) = h1(G) = 0 and τ(G) > 1,
and there are planar graphs for which h0(G) = 0 and h1(G) > 0 (and hence
also τ(G) > 1).

We say that G satisfies the strong vertex isoperimetric inequality if
h0(G) > 0, and that G satisfies the strong edge isoperimetric inequality
if h1(G) > 0.

A graph G has bounded degrees if there is an integer M such that
degG(v) ≤M for every v ∈ V (G). Clearly,

Proposition 2.3 If G has bounded degrees, then h0(G) > 0 if and only if
h1(G) > 0.
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3 Discharging in infinite planar graphs

Let G be a locally finite plane graph. Let F (G) be the set of faces of G. If
H is a finite subgraph of G, consider its induced embedding in the plane.
Let nH , eH , and fH denote the number of vertices, edges, and faces of H,
respectively. For i ≥ 0, let ni be the number of vertices of degree i in H,
and let fi be the number of faces of H of length i. Let us observe that
nH =

∑
i ni, 2eH =

∑
i i ni =

∑
i i fi, and fH =

∑
i fi. Let α ∈ R be a real

number (0 ≤ α ≤ 3), and let α′ = 3− α. Euler’s formula implies that

12 ≤ 6(nH − eH + fH)

= 6
∑
i≥0

ni − α
∑
i≥0

i ni − α′ ∑
i≥0

i fi + 6
∑
i≥0

fi

=
∑
i≥0

(6− α i)ni +
∑
i≥0

(6− α′i)fi

=
∑

v∈V (H)

(6− α degH(v)) +
∑

f∈F (H)

(6− α′ degH(f)). (1)

Next, assign to each vertex v ∈ V (G) and each face f ∈ F (G) a charge

c(v) = α degG(v)− 6 and c(f) = α′ degG(f)− 6,

respectively. (If deg(f) =∞, then we set c(f) =∞.)
Similarly, denote by cH(v) = α degH(v) − 6 (v ∈ V (H)) and cH(f) =

α′ degH(f)− 6 (f ∈ F (H)) the corresponding charges of vertices and faces
of H. Inequality (1) shows that the sum of all charges in H is negative.

Suppose that there is a set R of discharging rules that defines a redistri-
bution of charges in G in the following way. The rules determine that each
vertex and each face sends some of its charge to other vertices and faces. Let
ϕ(x, y) ≥ 0 be the charge that is sent from x to y (x, y ∈ V (G)∪F (G)). Let
c−(x) =

∑
y ϕ(x, y) be the charge sent from x to other vertices and faces,

and let c+(x) =
∑

y ϕ(y, x) be the charge received at x from other vertices
and faces when applying the rules. The new value of the charge at x is then
equal to c∗(x) = c(x)− c−(x) + c+(x) and is called the final charge at x.

Discharging rules not only determine the values ϕ(x, y) but also deter-
mine one or more paths P (x, y) along which the charge is sent from x to y. If
P (x, y) contains more than one path, it is also determined which proportion
of ϕ(x, y) is sent from x to y along particular paths in P (x, y). Each path
in P (x, y) is a path in G except that its first (and last) edge is an auxiliary
edge joining the “center” of a face with an incident vertex if x (or y) is a
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face of G. The maximum length of paths in P (x, y), taken over all pairs x, y
such that ϕ(x, y) 
= 0, is called the impact range of R.

Let e be an (oriented) edge of G, or an auxiliary edge joining the center
of a face with an incident vertex. Let ϕ(e) be the sum of all charges ϕ(x, y)
(or corresponding parts of these charges) for which a path in P (x, y) uses
the edge e in the given direction. The value ϕ0 = sup{ϕ(e)} is called the
flow value of R.

Let F ∈ F (G), and let x be a vertex incident with F . Let ϕ′(F, x)
denote the total charge sent from F through x, i.e. ϕ′(F, x) = ϕ(e) where e
is the auxiliary edge joining F and x. The discharging rules R are said to
be smooth if there is a constant c′0 such that for every F ∈ F (G) and every
segment S on the facial walk of F the following condition holds:

ϕ′(F, V (S)) =
∑

x∈V (S)

ϕ′(F, x) ≤ α′|V (S)| + c′0.

The condition of smoothness is needed in case when there are arbitrarily
large or even infinite faces.

If X and Y are finite subsets of V (G) ∪ F (G), then c(X) = ∑
x∈X c(X)

and ϕ(X,Y ) =
∑{ϕ(x, y) | x ∈ X, y ∈ Y }. The same notation is used for

other functions defined on vertices (and faces) of G. For example, deg(X) =∑
x∈X deg(x).

Theorem 3.1 Let G be a connected infinite planar graph and let 0 < α < 3
and ε > 0 be real numbers. Let c and c∗ be the charge and the final charge,
respectively, with respect to a set of smooth discharging rules of impact range
at most r and with flow value ϕ0. Suppose that there is a finite set F ⊂ F (G)
of faces such that the final charge of every face in F (G) \ F is nonnegative,
and that there is a finite vertex set U ⊂ V (G) such that c∗(v) ≥ ε for every
vertex v ∈ V (G) \ U . Then the following holds:

(a) G has exponential growth.

(b) If G has bounded degree, then h0(G) > 0.

(c) If r ≤ 1, then h1(G) > 0.

Proof. Let X be a finite set of vertices of G and let X = X ∪Nr(X). Let
H = G(X) be the subgraph of G induced on X. Let F0 ⊆ F (H)∩ F (G) be
the set of faces of H that are also faces of G. Let F ′

1 = F (H) \ F0, and let
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F1 ⊆ F (G) be the set of faces of G that are not in F0 but are incident with
an edge with its endvertices in X. Let

ν = −
∑

{c∗(v) | v ∈ V (G), c∗(v) < 0}

and
φ = −

∑
{c∗(f) | f ∈ F (G), c∗(f) < 0}.

The assumptions of the theorem imply:

c∗(X) ≥ ε(|X| − |U |)− ν (2)

and

c∗(F0) ≥ −φ. (3)

Every face in F1 is incident with at least two edges in δX∪E(G(Nr(X)))
(possibly twice with the same edge), and every such edge is contained in at
most two faces in F1. Therefore,

|F ′
1| ≤ |F1| ≤ |δX| + |E(G(Nr(X)))|

≤ |δX| + 3|Nr(X)|. (4)

In the second inequality we used a well-known corollary of Euler’s formula
that a finite planar graph on n vertices contains less than 3n edges. Next,

cH(F (H)) = cH(F0) + cH(F ′
1)

= c(F0) + α′ degH(F ′
1)− 6|F ′

1|
≥ c(F0) + α′ degH(F ′

1)− 6(|δX| + 3|Nr(X)|). (5)

Since cH(v) = c(v)− α degG(v) + αdegH(v) (v ∈ X), we have:

cH(X) = c(X)− α degG(X) + αdegH(X) = c(X)− α|δX|. (6)

We will need estimates on the charge increase in F0 and in X. Since the
discharging rules have impact range ≤ r, the faces in F0 and vertices in X
send (and receive) nonzero charge only to (from) X ∪ F0 ∪ F1. Therefore,

c+(F0)− c−(F0) = ϕ(F0,F0) + ϕ(X,F0) + ϕ(F1,F0)
−ϕ(F0,F0)− ϕ(F0,X)− ϕ(F0,F1)

≤ ϕ(F1,F0) + ϕ(X,F0)− ϕ(F0,X) (7)
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and

c+(X)− c−(X) = ϕ(X,X) + ϕ(F0,X) + ϕ(Nr(X) ∪ F1,X)
−ϕ(X,X) − ϕ(X,F0)− ϕ(X,Nr(X) ∪ F1)

≤ ϕ(F0,X) + ϕ(Nr(X) ∪ F1,X) − ϕ(X,F0). (8)

Smoothness of the discharging rules is needed in the following estimate.
Let us observe that the charge sent from Nr(X)∪F1 to X ∪F0 either flows
through some edge in δX or goes from a face F ∈ F1 through a vertex in X
incident with F . This implies

ϕ(Nr(X) ∪ F1,X ∪ F0) ≤ ϕ0|δX| +
∑

F∈F1

∑
x∈X∩V (F )

ϕ′(F, x)

≤ ϕ0|δX| + α′ degH(F ′
1) + c′0|δX| (9)

where c′0 is the constant from the definition of the smoothness of R. In the
last inequality we used the fact that the number of facial segments S of faces
in F1 which have all their vertices in X is at most |δX|, and that their total
length is smaller than degH(F ′

1).
Starting with (1) and applying inequalities (2)–(9) we get:

−12 ≥ cH(X) + cH(F (H))
≥ c(X)− α|δX| + c(F0)− 6(|δX| + 3|Nr(X)|) + α′ degH(F ′

1)
= c∗(X) − c+(X) + c−(X) + c∗(F0)− c+(F0) + c−(F0)

− (α+ 6)|δX| − 18|Nr(X)| + α′ degH(F ′
1)

≥ c∗(X) − ϕ(F0,X) − ϕ(Nr(X) ∪ F1,X) + ϕ(X,F0)
+ c∗(F0)− ϕ(F1,F0)− ϕ(X,F0) + ϕ(F0,X)
− (α+ 6)|δX| − 18|Nr(X)| + α′ degH(F ′

1)
= c∗(X) + c∗(F0)− ϕ(Nr(X) ∪ F1,X ∪ F0)

− (α+ 6)|δX| − 18|Nr(X)| + α′ degH(F ′
1)

≥ ε|X| − ε|U | − ν − φ

− 18|Nr(X)| − (ϕ0 + c′0 + α+ 6)|δX|. (10)

Suppose now that X is large, say |X| ≥ 2
ε (ε|U | + ν + φ). Then (10)

implies

|δX| + |Nr(X)| ≥ ε

2ρ
|X|. (11)

where ρ = max{18, ϕ0 + c′0 + α+ 6}.
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If r ≤ 1 then |Nr(X)| ≤ |δX|. Now, (11) shows that |δX| ≥ ε
4ρ |X|.

Since this holds for every vertex set X which is large enough and since G is
connected, it follows that h1(G) > 0. This proves (c). By Propositions 2.2
and 2.3, this proves also (a) and (b) in the case when r ≤ 1.

Suppose now that r ≥ 1. Inequality (11) holds for every finite vertex set
X with at least 2

ε (ε|U |+ ν+ φ) elements. In particular, it applies to the set
X1 = X ∪N1(X):

|δX1|+ |Nr(X1)| ≥ ε

2ρ
|X1|. (12)

As in the proof of Proposition 2.2, we see that |δX1| ≤ 2(|N1(X)|+|N1(X1)|)
= 2|N2(X)| ≤ 2|Nr+1(X)|. Since |Nr(X1)| ≤ |Nr+1(X)|, (12) gives:

|Nr+1(X)| ≥ ε

6ρ
|X|.

Consequently,

τ(G) ≥
(
1 +

ε

6ρ

)1/(r+1)
> 1. (13)

This completes the proof of (a).
Suppose now that degG(v) ≤ M (where M ≥ 3) for every v ∈ V (G).

Then

|Nr+1(X)| ≤ |N1(X)| · (1 + (M − 1) + (M − 1)2 + · · ·+ (M − 1)r)
≤ M r+1|N1(X)|.

Therefore, |N1(X)| ≥ M−(r+1) ε
6ρ |X| (for every finite vertex set X with

sufficiently many vertices). Since G is connected, it follows that h0(G) > 0.

Let us observe that the proof of Theorem 3.1 gives explicit positive lower
bounds on the exponential growth rate τ(G) and on the isoperimetric con-
stants h0(G) and h1(G), respectively.

If r = 0 (i.e., no discharging rules are used), the inequalities in the proof
of Theorem 3.1 can be strengthened as follows. We shall assume that U = ∅
and F = ∅, so that ν = φ = 0. First of all, (4) can be replaced by

|F ′
1| ≤ |δX| (14)

and (5) by

cH(F (H)) ≥ c(F0) + (3α′ − 6)|δX|. (15)
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Inequality (9) is void since ϕ(Nr(X) ∪ F1,X ∪ F0) = 0. Then (10) reduces
to

−12 ≥ ε|X| − (α+ 6− 3α′)|δX| = ε|X| − (9− 4α′)|δX|. (16)

Assuming that α′ < 9
4 , this inequality implies

h1(G) ≥ ε

9− 4α′ . (17)

4 Planar graphs of minimum degree 6

Let T0 = [63] be the tessellation of the plane with equilateral triangles
(see Figure 1). We may assume that the origin of R

2 is a vertex of T0.
Denote that vertex by z0. Let z be a vertex of T0 distinct from z0. Let
Γ ≤ Aut(T0) be the infinite cyclic group generated by the translation of R

2

which maps z0 to z. Then T z
0 = T0/Γ is a tessellation of the “flat” cylinder

by equilateral triangles. (The graph of T z
0 may have loops or multiple edges

if distT0(z, z0) ≤ 2.) If r is an integer, denote by T0(r) and T z
0 (r) the

submap of T0 or T z
0 , respectively, consisting of all vertices and faces that are

at distance ≤ r from z0.

Figure 1: A fragment of the tessellation [63]

Let G0 and G be plane graphs and let H0 be a subgraph of G0. Suppose
that G contains a subgraph H isomorphic to H0 such that a closed walk in
H bounds a face of G if and only if the corresponding closed walk in H0

bounds a face of G0. Then we say that G contains H0 (as a submap).

Theorem 4.1 Let G be a finite planar graph, r a positive integer, and let
m ≥ (3r + 1)2. Suppose that v is a vertex of G such that all vertices at
distance ≤ m from v are of degree 6 and are incident only with triangular
faces. Then one of the following holds:
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(a) G contains T0(r) as a submap.

(b) G contains T z
0 (3r) as a submap where distT0(z, z0) ≤ 3r − 1.

Proof. Let U ⊆ V (G) be the set of vertices of G at distance at mostm from
v. Fix a triangle A0 incident with v. Let C be a cycle of G with V (C) ⊆ U .
Denote by int(C) the component of R

2 \ C which does not contain A0. For
u ∈ V (C), let δ(u,C) be the number of edges incident with u which are
embedded in int(C), and let η(C) =

∑
u∈V (C)(δ(u,C) − 2).

The following property of η(C) is easy to prove:

(P1) If P is a path in int(C) with V (P ) ⊆ U such that P ∩ C are the
endvertices of P , let C1 and C2 be the two cycles of C ∪ P distinct
from C. Then

η(C1) + η(C2) = η(C)− 6.

If C2 in (P1) is a facial triangle, then (P1) implies that η(C1) = η(C).
Repetitive use of this property shows that:

(P2) If a cycle C1 with V (C1) ⊆ U is obtained from C by consecutively
adding facial triangles with at least one edge in common with the
current cycle, then η(C1) = η(C).

Properties (P1) and (P2) can be used to prove:

(P3) Suppose that |V (C)| = k and that all vertices in int(C) that are at
distance at most k− 2 from C are in U . If η(C) < 0, then η(C) = −6
and all vertices in int(C) are at distance at most k − 3 from C.

The proof of (P3) is by induction on k. Suppose first that k = 3. Since
η(C) < 0, there is a vertex u ∈ V (C) with δ(u,C) ≤ 1. It is easy to see that
δ(u,C) = 1 is not possible. Therefore, δ(u,C) = 0. This implies that C is a
facial triangle, and hence (P3) holds.

Suppose now that k ≥ 4. Let A be the set of facial triangles in int(C)
that have a vertex in V (C). Let E′ be the set of edges in int(C) that are
contained in precisely one triangle in A. If E′ = ∅ then A partitions int(C)
into triangles, and (P2) implies that η(C) is equal to η(T ) = −6 for some
T ∈ A. Hence, we may assume that E′ 
= ∅. Then E′ can be partitioned
into cycles C1, . . . , Cr (r ≥ 1) with disjoint interiors. The cycles Ci are
boundaries of faces of C ∪ A in int(C) that are not triangles in A. Since
C1, . . . , Cr can be obtained from C by successively applying operations in
(P1) and (P2),

η(C1) + · · ·+ η(Cr) = η(C)− 6(r − 1). (18)
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A simple calculation shows that |E′| ≤ k + η(C) < k. This implies that
|V (Ci)| < k for i = 1, . . . , r. By the induction hypothesis, either η(Ci) = −6
or η(Ci) ≥ 0. Since η(C) < 0, (18) implies that η(Ci) = −6 for every i, and,
consequently, η(C) = −6. Moreover, all vertices in int(Ci) are at distance
at most k − 4 from Ci, i = 1, . . . , r. Therefore, all vertices in int(C) are at
distance at most k − 3 from C. This completes the proof of (P3).

Now we are prepared to prove the theorem. Let q be the largest integer
≤ m such that the q-ball Bq(G, v) is isomorphic to the q-ball Bq(T0, z0) in
T0. We are done if q ≥ r, so suppose that 1 ≤ q ≤ r − 1.

Denote by C the outer cycle of Bq(G, v). Note that |V (C)| = 6q and
that η(C) = 6. Since Bq+1(G, v) is not isomorphic to Bq+1(T0, z0), there are
distinct vertices u1, u2 ∈ V (C) that are not adjacent on C, and there are
edges e1, e2 incident with u1 and u2, respectively, such that either e1 = e2,
or e1 and e2 have a vertex u in int(C) in common. Let C1 and C2 be
the cycles in C + e1 + e2 distinct from C. For i = 1, 2, |V (Ci)| ≤ 6q
and all vertices at distance at most 6q − 2 from Ci are in U . By (P2),
η(C1) + η(C2) = η(C) − 6 = 0. If η(Ci) < 0, then by (P3), η(Ci) = −6.
This implies that δ(u1, Ci) = δ(u2, Ci) = δ(u,Ci) = 0 since all vertices u′ on
C ∩Ci distinct from u1 and u2 have δ(u′, Ci) = δ(u′, C) ≥ 2. Clearly, this is
not possible. Consequently, η(C1) = η(C2) = 0.

Let R be a shortest cycle in G with the following properties:

(a) All vertices of R are at distance at most (3r+1)(3r− |V (R)|) from v.
(In particular, V (R) ⊆ U and |V (R)| ≤ 3r − 1.)

(b) η(R) = 0.

Since q ≤ r − 1, |V (C)| = 6q ≤ 6r − 6. Assuming |V (C1)| ≤ |V (C2)|,
we have |V (C1)| ≤ 1

2 |V (C)| + 2 ≤ 3r − 1. Since all vertices on C1 are at
distance at most q + 1 from v, C1 satisfies (a) and (b). Therefore, R exists.

Suppose that there exists a path P in G, such that P intersects R pre-
cisely at its endvertices u1, u2, and such that the length of P is smaller than
the distance from u1 to u2 on R. Consider the cycles R1, R2 ⊂ R ∪ P dis-
tinct from R. (P1) and (P3) imply that η(R1) = 0 and η(R2) = −6 (or
vice versa). Since R1 is shorter than R and every vertex on R1 is at dis-
tance at most 3r(3r−k)+ k

2 from v, R1 satisfies (a)–(b) and contradicts the
minimality of R. This shows that R is an isometric subgraph of G.

Fix any vertex v0 on R. Then R determines a path P (R) in T0 from
z0 to some vertex z ∈ V (T0) such that v0 corresponds to the ends of the
path and such that at each other vertex on P (R), the number of edges on
the “left” side of the path is equal to δ(u,R), where u is the corresponding
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vertex on R. Since R is an isometric subgraph in G, the path P (R) is also
isometric in T0. The path P (R) can be extended to a two-way-infinite path
P∞(R) in T0. Since η(R) = 0, it is easy to see that P∞(R) does not cross
itself and that it gives rise to a cycle R′ in T z

0 .
We claim that the vertices of G at distance at most 3r from R form a

submap of G isomorphic to the distance-3r neighborhood of R′ in T z
0 . If

not, then we proceed in the same way as above when we proved existence
of C1 and C2. Here, we obtain cycles R1 and R2 in G whose length is not
larger than the length k and such that η(R1) + η(R2) = η(R) − 6 = −6.
Then η(R1) = 0 and η(R2) = −6 (or vice versa). If the length of R1 is
smaller than k, we get a contradiction to the minimality of R. Otherwise,
the length of R2 is either 3 or 4. Since R2 is not a facial triangle and since
η(R2) = −6, we easily get a contradiction. This completes the proof.

If G is a graph, its minimum degree is denoted by δ(G). We also define
its minimum essential degree δess(G) as the minimum integer d such that
there are infinitely many vertices of degree d. If such d does not exist then
δess(G) =∞.

A simple application of Theorem 3.1(c) (with α = 1 and r = 0, i.e., no
discharging rules at all) shows that h1(G) > 0 if δess(G) ≥ 7. This result
was proved by Dodziuk [6]. Here we show that a similar result holds when
δess(G) = 6.

Theorem 4.2 Let G be a connected infinite planar graph with δess(G) ≥ 6.
If G has subexponential growth, then either G contains every finite submap
of T0, or there exists a vertex z ∈ V (T0) such that G contains every finite
submap of T z

0 .

Proof. Let U be the set of vertices whose degree is at most 5, and let U6

be the set of vertices of degree 6. Let m be an arbitrary positive integer.
We shall apply the discharging method with α = 1 and use the following
discharging rule.

Let x be a face of length ≥ 4 or a vertex which is not in U6. Let P (x) be
the set of all paths of length at mostm+1 that start at x and whose all other
vertices are in U6. (If x is a face then the first edge of every such path is an
auxiliary edge joining the “center” of x with an incident vertex of degree 6
in G.) There are at most degG(x)·6m+1 such paths, and the discharging rule
determines that x sends charge ε = (2degG(x) · 6m+1)−1 along every path
in P (x) to the terminal vertex of the path. Clearly, c∗(x) ≥ c(x) − 1

2 ≥ 1
2

if x ∈ V (G) \ (U ∪ U6). Also, every face has nonnegative final charge and
every vertex that belongs to a path in some P (x) has its final charge ≥ ε.

13



Theorem 3.1 can be applied to the given discharging process, showing
that either G has exponential growth, or there is a vertex v ∈ U6 that has
not received any charge. Since G has subexponential growth, v exists, and
every vertex at distance at most m from v is of degree 6 and incident only
with triangular faces.

As m is arbitrarily large, Theorem 4.1 implies that there is an infi-
nite sequence of pairs (ri, zi) ∈ N × V (T0), where ri → ∞ as i → ∞ and
distT0(zi, z0) ≤ 3ri − 1, such that G either contains T0(ri) or T zi

0 (3ri). If
the first case occurs infinitely often or if lim supdistT0(zi, z0) = ∞, then G
contains every finite submap of T0. Otherwise, there exists z ∈ V (T0) such
that zi = z for infinitely many values of i. In that case, G contains every
finite submap of T z

0 . This completes the proof.

5 Kotzig’s theorem for infinite graphs

Let uv ∈ E(G). The sum of degrees, deg(u) + deg(v), of the ends of uv is
called the weight of the edge uv. If deg(u) ≤ deg(v), then the edge uv is
said to be of type (deg(u),deg(v)). The edge is very light if its weight is at
most 11 or if it is of type (3,9) or (3,10). The edge is light if it is either very
light or of one of the following types: (3,11), (3,12), (4,8), or (6,6).

Kotzig [15] proved that every finite 3-connected planar graph contains
a very light edge. Borodin [4] showed that the same result holds under a
weaker hypothesis that the minimum degree is ≥ 3. Grünbaum and Shep-
hard [11] and Stehling [21] extended Kotzig’s theorem to graphs of doubly
periodic tilings and of normal tilings of the plane, respectively, by showing
that they always contain light edges. Let us observe that the graphs of
normal tilings have quadratic growth.

The main result of this section is an extension of Grünbaum and Shep-
hard’s result to arbitrary planar graphs that do not satisfy the strong isoperi-
metric inequality. In particular, this holds for all graphs of subexponential
growth.

Theorem 5.1 Let G be a connected infinite planar graph with δess(G) ≥ 3.
If G has only finitely many light edges, then h1(G) > 0.

Proof. Suppose that G is a connected infinite planar graph with l < ∞
light edges. We define the charge for vertices and faces of G as in Section 3
with α = 1. Then all faces have nonnegative charge and all vertices of
degree ≥ 7 have positive charge c(v) = deg(v)− 6. Let φ(3) = 21

20 , φ(4) =
3
5 ,
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φ(5) = 1
4 , and φ(6) =

1
20 . We shall apply the following set of discharging

rules.
Rule 1: Suppose that f is a face where deg(f) ≥ 4 and that v is a vertex

incident with f . If 4 ≤ deg(v) ≤ 6, then ϕ(f, v) = φ(deg(v)). If deg(v) = 3,
then ϕ(f, v) = 1. Otherwise, ϕ(f, v) = 0.

Rule 2: Suppose that uv ∈ E(G) is an edge of G where deg(u) ≥ 7
and deg(v) ≤ 6. If both faces containing uv are triangles, then ϕ(u, v) =
φ(deg(v)). If only one face containing uv is a triangle, then ϕ(u, v) =
1
2φ(deg(v)). If uv is not contained in a triangular face and deg(v) = 3,
then ϕ(u, v) = 1

20 . Otherwise, ϕ(u, v) = 0.
Rules 1 and 2 clearly satisfy the premises of Theorem 3.1 with impact

range r = 1 and with flow value ϕ0 = 21
20 . Therefore, it suffices to see that

the final charge is nonnegative for all faces that are not incident with light
edges, and that the final charge is ≥ ε = 1

10 for all vertices of degree ≥ 3
that are not incident with a light edge.

Let f ∈ F (G). If deg(f) = 3 then c∗(f) = c(f) = 0. Otherwise, suppose
that deg(f) ≥ 4 and that f is not incident with a light edge. Clearly, for
any two consecutive vertices u, v on the facial walk of f ,

ϕ(f, u) + ϕ(f, v) ≤ 1.

This implies that c−(f) ≤ 1
2 deg(f), and hence c∗(f) = c(f) − c−(f) ≥

3
2 deg(f)− 6 ≥ 0.

Suppose now that v is a vertex of degree d ≥ 3 that is not incident with
a light edge. If d = 3, then it is easy to see that c+(v) ≥ 3 + 1

10 , and hence
c∗(v) ≥ 1

10 . If 4 ≤ d ≤ 6, then c+(v) = d · φ(d). Therefore, c∗(v) = 2
5 if

d = 4, c∗(v) = 1
4 if d = 5, and c∗(v) = 3

10 if d = 6.
If 7 ≤ d ≤ 8, then v sends charge only to vertices of degrees 5 and

6. To any two consecutive neighbors u,w (with respect to the clockwise
orientation around v), v sends at most charge ϕ(5) = 1

4 . Therefore, c
∗(v) ≥

d− 6− d
2 · 1

4 ≥ 1
8 .

If 9 ≤ d ≤ 12, then v sends charge only to vertices of degrees 4, 5, and
6. To any two consecutive neighbors it sends at most ϕ(4) = 3

5 . Therefore,
c∗(v) ≥ d− 6− d

2 · 3
5 ≥ 3

10 .
If d ≥ 13, then v sends at most ϕ(3) to any two consecutive neighbors.

Thus, c∗(v) ≥ d− 6− d
2 · 21

20 ≥ 7
40 . This completes the proof.

Theorem 5.1 is best possible as shown by the following examples. Let
T0 = [63] be the tessellation of the plane by equilateral triangles, let T1 =
[4.82] be the triangulation of the plane obtained from the tessellation with
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Figure 2: Fragments of tessellations [4.82] and [3.122]

squares by adding a vertex of degree 4 in each square, and let T2 = [3.122]
be the triangulation of the plane obtained from [63] by inserting a vertex of
degree 3 into each triangle of [63]. See Figure 2. These examples contain
only edges of types (6,6), (4,8), and (3,12), respectively. We also define the
cylindrical quotients T z

1 and T
z
2 in the same way as T

z
0 (cf. Section 4).

We need some further notation. Let T = T0 or T = T z
0 , and let F be a

set (possibly infinite) of facial triangles of T such that every vertex of T is
incident with at most one triangle in F . Next, add into each face of T which
is not in F a new vertex of degree 3 joined to the vertices on the boundary
of that face. Let T (F) be the resulting map. Note that T0(∅) = T2 and
T z

0 (∅) = T z
2 .

Theorem 5.2 Let G be a connected infinite planar graph of subexponential
growth and with δess(G) ≥ 3.

(a) If G has only finitely many very light edges and finitely many edges
of types (4, 8), (6, 6), and (3, 11), then either G contains every finite
submap of T2, or G contains every finite submap of some T z

2 .

(b) If G has only finitely many very light edges and finitely many edges of
types (4, 8) and (6, 6), then G contains arbitrarily large finite submaps
of some map of the form T0(F) or T z

0 (F).
(c) If G has only finitely many very light edges, then either G contains ar-

bitrarily large finite submaps of some map of the form T0(F) or T z
0 (F),

or G contains every finite submap of a map of the form T0, T
z
0 , T1, or

T z
1 .

Proof. The proof is a continuation of the proof of Theorem 5.1 by adding
similar discharging rules as used in the proof of Theorem 4.2, with an appli-
cation of Theorem 4.1 and its extension from T0 to T1 and T2. We leave the
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details to the reader. Let us only observe that in the case (b), one cannot
guarantee that G contains every finite submap of T0(F) or of some T z

0 (F).
The reason that this is possible in the other cases is that T0, T1, T2 and their
quotients have automorphism group with only finitely many orbits.

The following results are proved analogously:

Corollary 5.3 Let G be a connected infinite planar graph of minimum es-
sential degree δess(G) ≥ 4 and with h1(G) = 0. Then G has infinitely many
edges of weight at most 12. If G has subexponential growth and does not
have infinitely many edges of weight at most 11, then there is a map T
isomorphic to T0, T z

0 , T1, or T z
1 such that G contains every finite submap

of T .

Corollary 5.4 Let G be a connected infinite planar graph of minimum es-
sential degree δess(G) ≥ 5 and with subexponential growth. If G does not
have infinitely many edges of weight at most 11, then either G contains
every finite submap of T0, or G contains every finite submap of some T z

0 .

It is easy to construct examples which show that Theorem 5.2 and Corol-
laries 5.3 and 5.4 cannot be improved to include infinite submaps of [63],
[4.82], or [3.122] (or their cylindrical quotients).

The following corollary of Theorem 5.2(b) is an extension of Grünbaum
and Shephard’s result [11] which states that a doubly periodic tiling of the
plane has an edge of weight at most 14 except when it is isomorphic to
[3.122]. Our result below extends Grünbaum and Shephard’s result to doubly
periodic tilings without edges of weight at most 13. Such tilings are obtained
as follows. Let Q be a 6-regular triangulation of the torus. (Such graphs
have a simple three-parameter description. See, e.g., [1].) Select a set F of
facial triangles of Q such that every vertex of Q is incident with at most one
triangle in F . Then, add into each triangular face which is not in F a new
vertex of degree 3 joined to the vertices on the boundary of that face. Let
Q(F) be the resulting toroidal map. Then a doubly periodic tiling of the
plane with minimum weight 14 (or 15 if F = ∅) is obtained as the universal
cover of Q(F). Note that the tiling is isomorphic to [3.122] if F = ∅.

Corollary 5.5 A doubly periodic tiling of the plane has no edges of weight
at most 13 if and only if it is a universal cover of some toroidal triangulation
Q(F) described above.

The proof is left to the reader.
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6 Hyperbolic tessellations

Let G be a planar graph. Then its minimum face length is denoted by δ∗(G).
We also define its minimum essential face length δ∗ess(G) as the minimum
integer d such that there are infinitely many faces of length d. If such d does
not exist, then δ∗ess(G) =∞.

If G is an infinite planar graph with δess(G) ≥ p and δ∗ess(G) ≥ q where
1
p +

1
q <

1
2 , then we say that G is strongly hyperbolic. (This is a special case

of more general hyperbolic maps as introduced, for example, by Woess [22].)
Let α = 3− 6

q , α
′ = 6

q , and let κ = (1
p +

1
q )− 1

2 < 0. The value of κ can be
viewed as an upper bound on the (negative) curvature, see, e.g., [3]. Then
for all vertices v ∈ V (G) of degree at least p

c(v) = α deg(v)− 6 ≥ αp − 6 = −6pκ > 0

and for all faces f ∈ F (G) of length at least q

c(f) = α′ deg(f)− 6 ≥ α′q − 6 = 0.

If δ(G) ≥ p and δ∗(G) ≥ q, then inequality (17) in the remark after Theorem
3.1 shows that

h1(G) ≥ 2pq|κ|
3q − 8

. (19)

This bound compares well with the result of Baues and Peyerimhoff [3],
whose bound is just slightly better than (19).

More generally, the above method can be used to get explicit positive
lower bounds on h1(G) in more general hyperbolic cases introduced byWoess
[22]. We have to remark, though, that our results are more general than
those in [3, 22] since we do not require tessellations to be normal or to have
only one end.

7 Light subgraphs

Kotzig’s theorem (cf. Section 5) motivated further research on finite 3-
connected planar graphs. Fabrici and Jendrol’ [7] proved that for every
integer k, every finite 3-connected planar graph G that contains at least one
k-path, also contains a k-path whose vertices all have degree at most 5k inG.
Therefore, the k-path Pk is said to be light in the set of 3-connected planar
graphs. On the other hand, no other connected planar graph is light [7].
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We extend these results to infinite graphs. Let us observe that the as-
sumption on 3-connectivity is necessary already for the path P3 on three
vertices (while for P2 a weaker condition δ(G) ≥ 3 suffices as shown by
Theorem 5.1).

Theorem 7.1 Let k ≥ 1 be an integer and let G be a 3-connected infinite
planar graph of subexponential growth. Then G contains infinitely many
(disjoint) k-paths whose vertices have degree at most 6k.

Proof. A vertex of G of degree at most 6k is called a minor vertex. Other
vertices are major . Let M(G) denote the set of major vertices of G.

Let . . . v1v2 . . . vn . . . be a facial walk of a face F and i, j integers such
that i + 2 ≤ j ≤ i+ k, vi and vj are major vertices and vi+1, vi+2, . . . , vj−1

are minor vertices. Then we say that vi and vj are joinable in F . Let G′ be
the graph that is obtained from G by adding all edges between all pairs of
vertices that are joinable in some face. Since G is 3-connected, G′ is a planar
graph (without multiple edges). Clearly, G′ has subexponential growth and
M(G′) = M(G). Therefore, it suffices to prove that G′ has infinitely many
k-paths whose vertices are not in M(G′).

Let G′′ = G′(M(G′)) be the induced subgraph of G′ on major vertices.
We may assume thatM(G′) is infinite. Since G′′ has subexponential growth,
Theorem 4.2 implies that G′′ has infinitely many vertices of degree at most
6.

Let v be any major vertex of G′ whose degree in G′′ is at most 6. Since G
and hence also G′ is 3-connected, the link of v (which consists of all vertices
and edges that are on a common face with v but disjoint from v) is a cycle
in G′. Since degG′(v) ≥ 6k + 1 and degG′′(v) ≤ 6, there is a sequence of k
consecutive neighbors of v (with respect to the clockwise ordering around v
in the plane), none of which is a major vertex. By the definition of G′ it
follows that the corresponding segment on the link of v contains no major
vertices. Therefore, this segment contains a k-path P (v).

This proves that there is an infinite set of k-paths P (v) that contain only
minor vertices, and each P (v) contains a neighbor of v. Every such k-path
corresponds to only finitely many distinct vertices v. This easily implies
that there is an infinite subset of these paths whose members are distinct
and pairwise disjoint.

Let P = v1v2v3 . . . be a one-way-infinite path in G. We say that P has
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average degree ≤ D if for every positive integer k:

k∑
i=1

degG(vi) ≤ kD.

Not every planar graph of polynomial growth contains an infinite path
with bounded average degree. We found a complicated example in which
for every infinite path P = v1v2v3 . . . and every k ≥ 1

k∑
i=1

degG(vi) = Θ(k log k).

We propose the following

Conjecture 7.2 There is a constant C such that every connected infinite
planar graph with subexponential growth contains a one-way-infinite path
P = v1v2v3 . . . such that for every k ≥ 1

k∑
i=1

degG(vi) ≤ Ck log k.

A proof of Conjecture 7.2 would solve an open problem about finite
graphs (cf., e.g., [7, Problem 3]).
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[11] B. Grünbaum, G. C. Shephard, Analogues for tilings of Kotzig’s theo-
rem on minimal weights of edges, in “Theory and practice of combina-
torics,” North-Holland, Amsterdam-New York, 1982, pp. 129–140.

[12] N. Robertson, D. Sanders, P. Seymour, R. Thomas, The four-colour
theorem, J. Combin. Theory Ser. B 70 (1997) 2–44.

[13] Zh.-X. He, O. Schramm, Hyperbolic and parabolic packings, Discrete
Comput. Geom. 14 (1995) 123–149.
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